51
|
Liu B, Granville DJ, Golledge J, Kassiri Z. Pathogenic mechanisms and the potential of drug therapies for aortic aneurysm. Am J Physiol Heart Circ Physiol 2020; 318:H652-H670. [PMID: 32083977 PMCID: PMC7099451 DOI: 10.1152/ajpheart.00621.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Aortic aneurysm is a permanent focal dilation of the aorta. It is usually an asymptomatic disease but can lead to sudden death due to aortic rupture. Aortic aneurysm-related mortalities are estimated at ∼200,000 deaths per year worldwide. Because no pharmacological treatment has been found to be effective so far, surgical repair remains the only treatment for aortic aneurysm. Aortic aneurysm results from changes in the aortic wall structure due to loss of smooth muscle cells and degradation of the extracellular matrix and can form in different regions of the aorta. Research over the past decade has identified novel contributors to aneurysm formation and progression. The present review provides an overview of cellular and noncellular factors as well as enzymes that process extracellular matrix and regulate cellular functions (e.g., matrix metalloproteinases, granzymes, and cathepsins) in the context of aneurysm pathogenesis. An update of clinical trials focusing on therapeutic strategies to slow abdominal aortic aneurysm growth and efforts underway to develop effective pharmacological treatments is also provided.
Collapse
Affiliation(s)
- Bo Liu
- University of Wisconsin, Madison, Department of Surgery, Madison Wisconsin
| | - David J Granville
- International Collaboration on Repair Discoveries Centre and University of British Columbia Centre for Heart Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Department of Vascular and Endovascular Surgery, Townsville Hospital and Health Services, Townsville, Queensland, Australia
| | - Zamaneh Kassiri
- University of Alberta, Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
52
|
Kiso A, Toba Y, Tsutsumi S, Deguchi S, Igai K, Koshino S, Tanaka Y, Takayama K, Mizuguchi H. Tolloid-Like 1 Negatively Regulates Hepatic Differentiation of Human Induced Pluripotent Stem Cells Through Transforming Growth Factor Beta Signaling. Hepatol Commun 2020; 4:255-267. [PMID: 32025609 PMCID: PMC6996343 DOI: 10.1002/hep4.1466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Single nucleotide polymorphisms in Tolloid‐like 1 (TLL1) and the expression of TLL1 are known to be closely related to hepatocarcinogenesis after hepatitis C virus elimination or liver fibrosis in patients with nonalcoholic fatty liver disease. TLL1 is a type of matrix metalloprotease and has two isoforms in humans, with the short isoform showing higher activity. However, the functional role of TLL1 in human liver development is unknown. Here, we attempted to elucidate the function of human TLL1 using hepatocyte‐like cells generated from human pluripotent stem cells. First, we generated TLL1‐knockout human induced pluripotent stem (iPS) cells and found that hepatic differentiation was promoted by TLL1 knockout. Next, we explored TLL1‐secreting cells using a model of liver development and identified that kinase insert domain receptor (FLK1)‐positive cells (mesodermal cells) highly express TLL1. Finally, to elucidate the mechanism by which TLL1 knockout promotes hepatic differentiation, the expression profiles of transforming growth factor beta (TGFβ), a main target gene of TLL1, and its related genes were analyzed in hepatic differentiation. Both the amount of active TGFβ and the expression of TGFβ target genes were decreased by TLL1 knockout. It is known that TGFβ negatively regulates hepatic differentiation. Conclusion: TLL1 appears to negatively regulate hepatic differentiation of human iPS cells by up‐regulating TGFβ signaling. Our findings will provide new insight into the function of TLL1 in human liver development.
Collapse
Affiliation(s)
- Ayumi Kiso
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan
| | - Yukiko Toba
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan.,Laboratory of Hepatocyte Regulation National Institutes of Biomedical Innovation, Health, and Nutrition Osaka Japan
| | - Susumu Tsutsumi
- Department of Gastroenterology and Metabolism Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Sayaka Deguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan
| | - Keisuke Igai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan
| | - Saki Koshino
- Laboratory of Hepatocyte Regulation National Institutes of Biomedical Innovation, Health, and Nutrition Osaka Japan.,Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences Osaka University Osaka Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Metabolism Nagoya City University Graduate School of Medical Sciences Nagoya Japan
| | - Kazuo Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan.,Laboratory of Hepatocyte Regulation National Institutes of Biomedical Innovation, Health, and Nutrition Osaka Japan.,Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences Osaka University Osaka Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency Saitama Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan.,Laboratory of Hepatocyte Regulation National Institutes of Biomedical Innovation, Health, and Nutrition Osaka Japan.,Laboratory of Biochemistry and Molecular Biology, School of Pharmaceutical Sciences Osaka University Osaka Japan.,Global Center for Medical Engineering and Informatics Osaka University Osaka Japan.,Integrated Frontier Research for Medical Science Division Institute for Open and Transdisciplinary Research Initiatives Osaka University Osaka Japan
| |
Collapse
|
53
|
Huang A, Huang Y. Role of Sfrps in cardiovascular disease. Ther Adv Chronic Dis 2020; 11:2040622320901990. [PMID: 32064070 PMCID: PMC6987486 DOI: 10.1177/2040622320901990] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Secreted frizzled-related proteins (Sfrps) are a family of secreted proteins that
bind extracellularly to Wnt ligands and frizzled receptors. This binding
modulates the Wnt signaling cascade, and Sfrps interact with their corresponding
receptors. Sfrps are thought to play an important role in the pathological
mechanism of cardiac disease such as myocardial infarction, cardiac remodeling,
and heart failure. However, the overall role of Sfrps in cardiac disease is
unknown. Some members of the Sfrps family modulate cellular apoptosis,
angiogenesis, differentiation, the inflammatory process, and cardiac remodeling.
In this review, we summarize the evidence of Sfrps association with cardiac
disease. We also discuss how multiple mechanisms may underlie Sfrps being
involved in such diverse pathologies.
Collapse
Affiliation(s)
- Anqing Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Jiazhi Road, Lunjiao Town, Shunde District, Foshan, Guangdong 528300, China The George Institute for Global Health, NSW 2042, Australia
| |
Collapse
|
54
|
Haas CS, Rovani MT, Ilha GF, Bertolin K, Ferst JG, Bridi A, Bordignon V, Duggavathi R, Antoniazzi AQ, Gonçalves PBD, Gasperin BG. Transforming growth factor-beta family members are regulated during induced luteolysis in cattle. Anim Reprod 2019; 16:829-837. [PMID: 32368260 PMCID: PMC7189511 DOI: 10.21451/1984-3143-ar2018-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The transforming growth factors beta (TGFβ) are local factors produced by ovarian cells which, after binding to their receptors, regulate follicular deviation and ovulation. However, their regulation and function during corpus luteum (CL) regression has been poorly investigated. The present study evaluated the mRNA regulation of some TGFβ family ligands and their receptors in the bovine CL during induced luteolysis in vivo. On day 10 of the estrous cycle, cows received an injection of prostaglandin F2α (PGF) and luteal samples were obtained from separate groups of cows (n= 4-5 cows per time-point) at 0, 2, 12, 24 or 48 h after treatment. Since TGF beta family comprises more than 30 ligands, we focused in some candidates genes such as activin receptors (ACVR-1A, -1B, -2A, -2B) AMH, AMHR2, BMPs (BMP-1, -2, -3, -4, -6 and -7), BMP receptors (BMPR-1A, -1B and -2), inhibin subunits (INH-A, -BA, -BB) and betaglycan (TGFBR3). The mRNA levels of BMP4, BMP6 and INHBA were higher at 2 h after PGF administration (P<0.05) in comparison to 0 h. The relative mRNA abundance of BMP1, BMP2, BMP3, BMP4, BMP6, ACVR1B, INHBA and INHBB was upregulated up to 12 h post PGF (P<0.05). On the other hand, TGFBR3 mRNA that codes for a reservoir of ligands that bind to TGF-beta receptors, was lower at 48 h. In conclusion, findings from this study demonstrated that genes encoding several TGFβ family members are expressed in a time-specific manner after PGF administration.
Collapse
Affiliation(s)
- Cristina Sangoi Haas
- Universidade Federal de Pelotas, Departamento de Patologia Animal, Capão do Leão, RS, Brasil
| | - Monique Tomazele Rovani
- Universidade Federal de Pelotas, Departamento de Patologia Animal, Capão do Leão, RS, Brasil
| | - Gustavo Freitas Ilha
- Universidade Federal de Santa Maria, Laboratório de Biotecnologia e Reprodução Animal, Santa Maria, RS, Brasil
| | - Kalyne Bertolin
- Universidade Federal de Santa Maria, Laboratório de Biotecnologia e Reprodução Animal, Santa Maria, RS, Brasil
| | - Juliana Germano Ferst
- Universidade Federal de Santa Maria, Laboratório de Biotecnologia e Reprodução Animal, Santa Maria, RS, Brasil
| | - Alessandra Bridi
- Universidade Federal de Santa Maria, Laboratório de Biotecnologia e Reprodução Animal, Santa Maria, RS, Brasil
| | - Vilceu Bordignon
- McGill University, Department of Animal Science, Sainte-Anne-de-Bellevue, QC, Canada
| | - Raj Duggavathi
- McGill University, Department of Animal Science, Sainte-Anne-de-Bellevue, QC, Canada
| | - Alfredo Quites Antoniazzi
- Universidade Federal de Santa Maria, Laboratório de Biotecnologia e Reprodução Animal, Santa Maria, RS, Brasil
| | - Paulo Bayard Dias Gonçalves
- Universidade Federal de Santa Maria, Laboratório de Biotecnologia e Reprodução Animal, Santa Maria, RS, Brasil
| | | |
Collapse
|
55
|
Lysyl oxidases: linking structures and immunity in the tumor microenvironment. Cancer Immunol Immunother 2019; 69:223-235. [PMID: 31650200 PMCID: PMC7000489 DOI: 10.1007/s00262-019-02404-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023]
Abstract
The lysyl oxidases (LOXs) are a family of enzymes deputed to cross-link collagen and elastin, shaping the structure and strength of the extracellular matrix (ECM). However, many novel “non-canonical” functions, alternative substrates, and regulatory mechanisms have been described and are being continuously elucidated. The activity of LOXs, therefore, appears to be integrated into a complex network of signals regulating many cell functions, including survival/proliferation/differentiation. Among these signaling pathways, TGF-β and PI3K/Akt/mTOR, in particular, cross-talk extensively with each other and with LOXs also initiating complex feedback loops which modulate the activity of LOXs and direct the remodeling of the ECM. A growing body of evidence indicates that LOXs are not only important in the homeostasis of the normal structure of the ECM, but are also implicated in the establishment and maturation of the tumor microenvironment. LOXs’ association with advanced and metastatic cancer is well established; however, there is enough evidence to support a significant role of LOXs in the transformation of normal epithelial cells, in the accelerated tumor development and the induction of invasion of the premalignant epithelium. A better understanding of LOXs and their interactions with the different elements of the tumor immune microenvironment will prove invaluable in the design of novel anti-tumor strategies.
Collapse
|
56
|
Goebel EJ, Hart KN, McCoy JC, Thompson TB. Structural biology of the TGFβ family. Exp Biol Med (Maywood) 2019; 244:1530-1546. [PMID: 31594405 DOI: 10.1177/1535370219880894] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transforming growth factor beta (TGFβ) signaling pathway orchestrates a wide breadth of biological processes, ranging from bone development to reproduction. Given this, there has been a surge of interest from the drug development industry to modulate the pathway – at several points. This review discusses and provides additional context for several layers of the TGFβ signaling pathway from a structural biology viewpoint. The combination of structural techniques coupled with biophysical studies has provided a foundational knowledge of the molecular mechanisms governing this high impact, ubiquitous pathway, underlying many of the current therapeutic pursuits. This work seeks to consolidate TGFβ-related structural knowledge and educate other researchers of the apparent gaps that still prove elusive. We aim to highlight the importance of these structures and provide the contextual information to understand the contribution to the field, with the hope of advancing the discussion and exploration of the TGFβ signaling pathway. Impact statement The transforming growth factor beta (TGFβ) signaling pathway is a multifacetted and highly regulated pathway, forming the underpinnings of a large range of biological processes. Here, we review and consolidate the key steps in TGFβ signaling using literature rooted in structural and biophysical techniques, with a focus on molecular mechanisms and gaps in knowledge. From extracellular regulation to ligand–receptor interactions and intracellular activation cascades, we hope to provide an introductory base for understanding the TGFβ pathway as a whole.
Collapse
Affiliation(s)
- Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
57
|
Scharf GM, Kilian K, Cordero J, Wang Y, Grund A, Hofmann M, Froese N, Wang X, Kispert A, Kist R, Conway SJ, Geffers R, Wollert KC, Dobreva G, Bauersachs J, Heineke J. Inactivation of Sox9 in fibroblasts reduces cardiac fibrosis and inflammation. JCI Insight 2019; 5:126721. [PMID: 31310588 DOI: 10.1172/jci.insight.126721] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fibrotic scarring drives the progression of heart failure after myocardial infarction (MI). Therefore, the development of specific treatment regimens to counteract fibrosis is of high clinical relevance. The transcription factor SOX9 functions as an important regulator during embryogenesis, but recent data point towards an additional causal role in organ fibrosis. We show here that SOX9 is upregulated in the scar after MI in mice. Fibroblast specific deletion of Sox9 ameliorated MI-induced left ventricular dysfunction, dilatation and myocardial scarring in vivo. Unexpectedly, deletion of Sox9 also potently eliminated persisting leukocyte infiltration of the scar in the chronic phase after MI. RNA-sequencing from the infarct scar revealed that Sox9 deletion in fibroblasts resulted in strongly downregulated expression of genes related to extracellular matrix, proteolysis and inflammation. Importantly, Sox9 deletion in isolated cardiac fibroblasts in vitro similarly affected gene expression as in the cardiac scar and reduced fibroblast proliferation, migration and contraction capacity. Together, our data demonstrate that fibroblast SOX9 functions as a master regulator of cardiac fibrosis and inflammation and might constitute a novel therapeutic target during MI.
Collapse
Affiliation(s)
- Gesine M Scharf
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research and
| | - Katja Kilian
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Julio Cordero
- Department of Anatomy and Developmental Biology Center for Biomedicine and Medical Technology Mannheim, European Center for Angioscience, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Yong Wang
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, and
| | - Andrea Grund
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research and
| | - Melanie Hofmann
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Natali Froese
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Xue Wang
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Ralf Kist
- Institute of Genetic Medicine, Faculty of Medical Sciences, and Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert Geffers
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Kai C Wollert
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, and
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology Center for Biomedicine and Medical Technology Mannheim, European Center for Angioscience, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany.,German Center for Cardiovascular Research partner site Mannheim/Heidelberg, Heidelberg, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Joerg Heineke
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research and.,German Center for Cardiovascular Research partner site Mannheim/Heidelberg, Heidelberg, Germany
| |
Collapse
|
58
|
Overexpression of BMP1 reflects poor prognosis in clear cell renal cell carcinoma. Cancer Gene Ther 2019; 27:330-340. [PMID: 31155610 PMCID: PMC7237353 DOI: 10.1038/s41417-019-0107-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/18/2019] [Accepted: 05/04/2019] [Indexed: 12/24/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the highest mortality, invasion, and metastasis subtype of renal cell carcinoma. Bone morphogenetic protein (BMP) family has recently emerged as a group of cancer-related proteins in multiple pathogenesis of cancers. Currently, little is known about the prediction role of BMPs in ccRCC. Therefore, we screened The Cancer Genome Atlas Kidney Clear Cell Carcinoma (TCGA-KIRC) database for ccRCC patients with complete clinical information and BMP family expression data. Multivariate analysis showed that high expression of BMP1 was associated with shorter overall survival (OS) (P = 0.001), and shorter disease-free survival (DFS) (P = 0.018). Gene set enrichment analysis (GSEA) showed BMP1 was associated with epithelial–mesenchymal transition (EMT), G2M checkpoint, angiogenesis, hypoxia pathway, and Kirsten rat sarcoma viral oncogene (KRAS) signaling. Knockdown BMP1 suppressed malignancy of ccRCC in vitro and in vivo. Our results indicated that high expressions of BMP1 were poor prognostic factors and gene therapy could be an effective treatment for ccRCC.
Collapse
|
59
|
Zigrino P, Sengle G. Fibrillin microfibrils and proteases, key integrators of fibrotic pathways. Adv Drug Deliv Rev 2019; 146:3-16. [PMID: 29709492 DOI: 10.1016/j.addr.2018.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/12/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
Abstract
Supramolecular networks composed of multi-domain ECM proteins represent intricate cellular microenvironments which are required to balance tissue homeostasis and direct remodeling. Structural deficiency in ECM proteins results in imbalances in ECM-cell communication resulting often times in fibrotic reactions. To understand how individual components of the ECM integrate communication with the cell surface by presenting growth factors or providing fine-tuned biomechanical properties is mandatory for gaining a better understanding of disease mechanisms in the quest for new therapeutic approaches. Here we provide an overview about what we can learn from inherited connective tissue disorders caused primarily by mutations in fibrillin-1 and binding partners as well as by altered ECM processing leading to defined structural changes and similar functional knock-in mouse models. We will utilize this knowledge to propose new molecular hypotheses which should be tested in future studies.
Collapse
|
60
|
Iio E, Matsuura K, Shimada N, Atsukawa M, Itokawa N, Abe H, Kato K, Takaguchi K, Senoh T, Eguchi Y, Nomura H, Yoshizawa K, Kang JH, Matsui T, Hirashima N, Kusakabe A, Miyaki T, Fujiwara K, Matsunami K, Tsutsumi S, Iwakiri K, Tanaka Y. TLL1 variant associated with development of hepatocellular carcinoma after eradication of hepatitis C virus by interferon-free therapy. J Gastroenterol 2019; 54:339-346. [PMID: 30382363 DOI: 10.1007/s00535-018-1526-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/24/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND The aim of this study is to ascertain whether the TLL1 variant at rs17047200 is associated with the development of HCC after achieving sustained virological response (SVR) by interferon (IFN)-free therapy for chronic hepatitis C (CHC). METHODS A total of 1029 Japanese CHC patients with the following inclusion criteria were enrolled: (i) achieved SVR by IFN-free therapy, (ii) followed up at least 1 year from the end of treatment (EOT) (median 104 weeks), (iii) no history of hepatocellular carcinoma (HCC) by 1 year from the EOT. RESULTS Nineteen patients developed HCC (HCC group) and 1010 did not (non-HCC group). The proportion of rs17047200 AT/TT was significantly higher in the HCC group than the non-HCC group (47.4% vs. 20.1%, P = 0.008). Multivariate analysis showed that higher levels of α-fetoprotein, FIB-4 and rs17047200 AT/TT were independent risk factors for developing HCC (HR = 3.22, P = 0.021 for α-fetoprotein > 4.6 ng/ml; HR = 3.89, P = 0.036 for FIB-4 > 2.67; HR = 2.80, P = 0.026 for rs17047200 AT/TT). Cumulative incidence of HCC was significantly higher in patients with rs17047200 AT/TT than in those with AA (P = 0.006). Comparing clinical characteristics according to the TLL1 genotypes, patients with rs17047200 AT/TT had significantly lower platelet counts and higher levels of FIB-4 than those with AA (P = 0.011 and 0.032, respectively). CONCLUSIONS The TLL1 variant was independently associated with HCC development after HCV eradication by IFN-free regimen. It might be involved in hepatic fibrogenesis and thereby carcinogenesis.
Collapse
Affiliation(s)
- Etsuko Iio
- Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Kentaro Matsuura
- Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | - Norio Itokawa
- Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Hiroshi Abe
- Shinmatsudo Central General Hospital, Chiba, Japan
| | - Keizo Kato
- Shinmatsudo Central General Hospital, Chiba, Japan
| | | | | | | | | | | | | | | | - Noboru Hirashima
- National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | | | | | - Kei Fujiwara
- Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Kayoko Matsunami
- Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Susumu Tsutsumi
- Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | | | - Yasuhito Tanaka
- Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|
61
|
Karmilin K, Schmitz C, Kuske M, Körschgen H, Olf M, Meyer K, Hildebrand A, Felten M, Fridrich S, Yiallouros I, Becker-Pauly C, Weiskirchen R, Jahnen-Dechent W, Floehr J, Stöcker W. Mammalian plasma fetuin-B is a selective inhibitor of ovastacin and meprin metalloproteinases. Sci Rep 2019; 9:546. [PMID: 30679641 PMCID: PMC6346019 DOI: 10.1038/s41598-018-37024-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/28/2018] [Indexed: 11/29/2022] Open
Abstract
Vertebrate fetuins are multi-domain plasma-proteins of the cystatin-superfamily. Human fetuin-A is also known as AHSG, α2-Heremans-Schmid-glycoprotein. Gene-knockout in mice identified fetuin-A as essential for calcified-matrix-metabolism and bone-mineralization. Fetuin-B deficient mice, on the other hand, are female infertile due to zona pellucida ‘hardening’ caused by the metalloproteinase ovastacin in unfertilized oocytes. In wildtype mice fetuin-B inhibits the activity of ovastacin thus maintaining oocytes fertilizable. Here we asked, if fetuins affect further proteases as might be expected from their evolutionary relation to single-domain-cystatins, known as proteinase-inhibitors. We show that fetuin-A is not an inhibitor of any tested protease. In stark contrast, the closely related fetuin-B selectively inhibits astacin-metalloproteinases such as meprins and ovastacin, but not astacins of the tolloid-subfamily, nor any other proteinase. The analysis of fetuin-B expressed in various mammalian cell types, insect cells, and truncated fish-fetuin expressed in bacteria, showed that the cystatin-like domains alone are necessary and sufficient for inhibition. This report highlights fetuin-B as a specific antagonist of ovastacin and meprin-metalloproteinases. Control of ovastacin was shown to be indispensable for female fertility. Meprin inhibition, on the other hand, renders fetuin-B a potential key-player in proteolytic networks controlling angiogenesis, immune-defense, extracellular-matrix-assembly and general cell-signaling, with implications for inflammation, fibrosis, neurodegenerative disorders and cancer.
Collapse
Affiliation(s)
- Konstantin Karmilin
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Carlo Schmitz
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Michael Kuske
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Hagen Körschgen
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Mario Olf
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Katharina Meyer
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - André Hildebrand
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Matthias Felten
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Sven Fridrich
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry RWTH, 52074, Aachen, Germany
| | - Willi Jahnen-Dechent
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Julia Floehr
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany.
| |
Collapse
|
62
|
Van Gils M, Nollet L, Verly E, Deianova N, Vanakker OM. Cellular signaling in pseudoxanthoma elasticum: an update. Cell Signal 2019; 55:119-129. [PMID: 30615970 DOI: 10.1016/j.cellsig.2018.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
Abstract
Pseudoxanthoma elasticum is an autosomal recessive genodermatosis with variable expression, due to mutations in the ABCC6 or ENPP1 gene. It is characterized by elastic fiber mineralization and fragmentation, resulting in skin, eye and cardiovascular symptoms. Significant advances have been made in the last 20 years with respect to the phenotypic characterization and pathophysiological mechanisms leading to elastic fiber mineralization. Nonetheless, the substrates of the ABCC6 transporter - the main cause of PXE - remain currently unknown. Though the precise mechanisms linking the ABCC6 transporter to mineralization of the extracellular matrix are unclear, several studies have looked into the cellular consequences of ABCC6 deficiency in PXE patients and/or animal models. In this paper, we compile the evidence on cellular signaling in PXE, which seems to revolve mainly around TGF-βs, BMPs and inorganic pyrophosphate signaling cascades. Where conflicting results or fragmented data are present, we address these with novel signaling data. This way, we aim to better understand the up- and down-stream signaling of TGF-βs and BMPs in PXE and we demonstrate that ANKH deficiency can be an additional mechanism contributing to decreased serum PPi levels in PXE patients.
Collapse
Affiliation(s)
- M Van Gils
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium
| | - L Nollet
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - E Verly
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - N Deianova
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - O M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium.
| |
Collapse
|
63
|
Zhu Q, Guo W, Zhang S, Feng Y, Wang X, Zhou L, Huang GR. Synergistic effect of PCPE1 and sFRP2 on the processing of procollagens via BMP1. FEBS Lett 2018; 593:119-127. [PMID: 30411347 DOI: 10.1002/1873-3468.13291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/25/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022]
Abstract
Procollagen processing is essential for organ development and tissue functions. Both procollagen C-proteinase enhancer 1 (PCPE1) and secreted frizzled-related protein 2 (sFRP2) play vital roles in collagen formation via regulating the procollagen C-proteinase activity of bone morphogenetic protein 1 (BMP1). However, whether the two proteins exert a synergistic effect on BMP1 activity remains unclear. Here, simultaneous knockdown of sFRP2 and PCPE1 led to less collagen formation in mouse embryonic fibroblasts and dorsalized phenotypes in zebrafish embryos. Further studies revealed a direct interaction between the Frizzled domain of sFRP2 and the complement/Uegf/BMP-1 domain of PCPE1, which enhances the cleavage activity of BMP1 on procollagen. These results suggest that double silencing of sFRP2 and PCPE1 may provide a strategy for treating fibrosis diseases caused by collagen deposition.
Collapse
Affiliation(s)
- Qin Zhu
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Wei Guo
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Shengjie Zhang
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Yang Feng
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Xiao Wang
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Libin Zhou
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Guo-Ru Huang
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.,National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| |
Collapse
|
64
|
Huang CF, Yeh ML, Huang CI, Lin ZY, Chen SC, Huang JF, Dai CY, Chuang WL, Chen JJ, Yu ML. Tolloid-like 1 genetic variants determine fibrosis regression in chronic hepatitis C patients with curative antivirals. Sci Rep 2018; 8:15058. [PMID: 30305682 PMCID: PMC6180045 DOI: 10.1038/s41598-018-33448-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) eradication by antivirals promote fibrosis modification. Whether host genetics determined fibrosis regression in chronic hepatitis C (CHC) patients with sustained virological response (SVR) is to be determined. One hundred and fifty-six SVR patients with paired liver biopsy before and after antivirals were enrolled. Host genetic factors including single nucleotide polymorphism rs17047200 of tolloid-like 1(TLL-1) were analyzed for their association with fibrosis modification. The proportions of improved, unchanged and worsening fibrotic stags were 39.1% (n = 61), 39.1% (n = 61), and 21.8% (n = 34), respectively. The rate of annual fibrotic improvement was 0.16 ± 0.79. There was a significant trend of increased fibrotic improvement rate in patients from F01 to F4 (P < 0.001). However, the rate of improvement seemed more limited in cirrhotic patients among those with advanced liver disease. Patients with fibrotic improvement had a significantly higher proportion of TLL-1 rs17047200 AA genotype compared to those without (92.5% vs. 79.3%, p = 0.039). Logistic regression analysis revealed that the TLL-1 rs17047200 AA genotype was the only independent factor associated with fibrosis improvement (odds ratio/95% confidence intervals: 3.2/1.01-10.12, p = 0.047). Compared with TLL-1 rs17047200 non-AA carriers, a significantly higher proportion of fibrosis improvement in AA genotype carriers was observed among patients with F0-2 (33.3% vs. 0%, p = 0.005) but not with F34 (70% vs. 80%, p = 1). We concluded that TLL-1 genetic variants determined fibrotic improvement in CHC with curative antivirals, particularly in patients with mild liver disease.
Collapse
Affiliation(s)
- Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Occupational Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-I Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zu-Yau Lin
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shinn-Cherng Chen
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Preventive Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyh-Jou Chen
- Division of Gastroenterology and Hepatology, Chi-Mei Medical Center, Liouying, Taiwan.
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- College of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan.
| |
Collapse
|
65
|
Zent J, Guo LW. Signaling Mechanisms of Myofibroblastic Activation: Outside-in and Inside-Out. Cell Physiol Biochem 2018; 49:848-868. [PMID: 30184544 DOI: 10.1159/000493217] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
Myofibroblasts are central mediators of fibrosis. Typically derived from resident fibroblasts, myofibroblasts represent a heterogeneous population of cells that are principally defined by acquired contractile function and high synthetic ability to produce extracellular matrix (ECM). Current literature sheds new light on the critical role of ECM signaling coupled with mechanotransduction in driving myofibroblastic activation. In particular, transforming growth factor β1 (TGF-β1) and extra domain A containing fibronectin (EDA-FN) are thought to be the primary ECM signaling mediators that form and also induce positive feedback loops. The outside-in and inside-out signaling circuits are transmitted and integrated by TGF-β receptors and integrins at the cell membrane, ultimately perpetuating the abundance and activities of TGF-β1 and EDA-FN in the ECM. In this review, we highlight these conceptual advances in understanding myofibroblastic activation, in hope of revealing its therapeutic anti-fibrotic implications.
Collapse
Affiliation(s)
- Joshua Zent
- Medical Scientist Training Program, the Ohio State University, Columbus, Columbus, Ohio, USA
| | - Lian-Wang Guo
- Department of Surgery, Department of Physiology & Cell Biology, College of Medicine, Davis Heart and Lung Research Institute, Wexner Medical Center, the Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
66
|
Zheng Y, Li X, Huang Y, Jia L, Li W. Time series clustering of mRNA and lncRNA expression during osteogenic differentiation of periodontal ligament stem cells. PeerJ 2018; 6:e5214. [PMID: 30038865 PMCID: PMC6052852 DOI: 10.7717/peerj.5214] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are regulatory molecules that participate in biological processes such as stem cell differentiation. Periodontal ligament stem cells (PDLSCs) exhibit great potential for the regeneration of periodontal tissue and the formation of new bone. However, although several lncRNAs have been found to be involved in the osteogenic differentiation of PDLSCs, the temporal transcriptomic landscapes of mRNAs and lncRNAs need to be mapped to obtain a complete picture of osteoblast differentiation. In this study, we aimed to characterize the time-course expression patterns of lncRNAs during the osteogenic differentiation of PDLSCs and to identify the lncRNAs that are related to osteoblastic differentiation. Methods We cultured PDLSCs in an osteogenic medium for 3, 7, or 14 days. We then used RNA sequencing (RNA-seq) to analyze the expression of the coding and non-coding transcripts in the PDLSCs during osteogenic differentiation. We also utilized short time-series expression miner (STEM) to describe the temporal patterns of the mRNAs and lncRNAs. We then performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses to assess the biological relevance of genes in each profile, and used quantitative real-time PCR (qRT-PCR) to validate the differentially expressed mRNAs and lncRNAs that were associated with osteoblast differentiation. Lastly, we performed a knock down of two lncRNAs, MEG8, and MIR22HG, and evaluated the expression of osteogenic markers. Results When PDLSCs were differentiated to osteoblasts, mRNAs associated with bone remodeling, cell differentiation, and cell apoptosis were upregulated while genes associated with cell proliferation were downregulated. lncRNAs showed stage-specific expression, and more than 200 lncRNAs were differentially expressed between the undifferentiated and osteogenically differentiated PDLSCs. Using STEM, we identified 25 temporal gene expression profiles, among which 14 mRNA and eight lncRNA profiles were statistically significant. We found that genes in pattern 12 were associated with osteoblast differentiation. The expression patterns of osteogenic mRNAs (COL6A1, VCAN, RRBP1, and CREB3L1) and lncRNAs (MEG8 and MIR22HG) were consistent between the qRT-PCR and RNA-seq results. Moreover, the knockdown of MEG8 and MIR22HG significantly decreased the expression of osteogenic markers (runt-related transcription factor 2 and osteocalcin). Discussion During the osteogenic differentiation of PDLSCs, both mRNAs and lncRNAs showed stage-specific expression. lncRNAs MEG8 and MIR22HG showed a high correlation with osteoblastogenesis. Our results can be used to gain a more comprehensive understanding of the molecular events regulating osteoblast differentiation and the identification of functional lncRNAs in PDLSCs.
Collapse
Affiliation(s)
- Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaobei Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
67
|
Astacin gene family of metalloproteinases in planarians: Structural organization and tissue distribution. Gene Expr Patterns 2018; 28:77-86. [DOI: 10.1016/j.gep.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 11/22/2022]
|
68
|
Upregulation of bone morphogenetic protein 1 is associated with poor prognosis of late-stage gastric Cancer patients. BMC Cancer 2018; 18:508. [PMID: 29720137 PMCID: PMC5930761 DOI: 10.1186/s12885-018-4383-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/17/2018] [Indexed: 01/02/2023] Open
Abstract
Background Gastric cancer is the eighth most common cancer in Taiwan, with a 40% 5-year survival rate. Approximately 40% of patients are refractory to chemotherapy. Currently, the anti-HER2 therapy is the only clinically employed targeted therapy. However, only 7% patients in Taiwan are HER2-positive. Identifying candidate target genes will facilitate the development of adjuvant targeted therapy to increase the efficacy of gastric cancer treatment. Methods Clinical specimens were analyzed by targeted RNA sequencing to assess the expression levels of target genes. Statistical significance of differential expression and correlation between specimens was evaluated. The correlation with patient survival was analyzed as well. In vitro cell mobility was determined using wound-healing and transwell mobility assays. Results Expression of BMP1, COL1A1, STAT3, SOX2, FOXA2, and GATA6 was progressively dysregulated through the stages of gastric oncogenesis. The expression profile of these six genes forms an ubiquitously biomarker signature that is sufficient to differentiate cancer from non-cancerous specimens. High expression status of BMP1 correlates with poor long-term survival of late-stage patients. In vitro, suppression of BMP1 inhibits the mobility of the gastric cancer cell lines, indicating a role of BMP1 in metastasis. Conclusions BMP1 is upregulated in gastric cancer and is correlated with poor patient survival. Suppression of BMP1 reduced gastric cancer mobility in vitro. Our finding suggests that anti-BMP1 therapy will likely augment the efficacy of standard chemotherapy and improve the treatment outcome.
Collapse
|
69
|
Yamawaki S, Naitoh M, Kubota H, Aya R, Katayama Y, Ishiko T, Tamura T, Yoshikawa K, Enoshiri T, Ikeda M, Suzuki S. HtrA1 Is Specifically Up-Regulated in Active Keloid Lesions and Stimulates Keloid Development. Int J Mol Sci 2018; 19:E1275. [PMID: 29695130 PMCID: PMC5983720 DOI: 10.3390/ijms19051275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 11/16/2022] Open
Abstract
Keloids occur after failure of the wound healing process; inflammation persists, and various treatments are ineffective. Keloid pathogenesis is still unclear. We have previously analysed the gene expression profiles in keloid tissue and found that HtrA1 was markedly up-regulated in the keloid lesions. HtrA1 is a serine protease suggested to play a role in the pathogenesis of various diseases, including age-related macular degeneration and osteoarthritis, by modulating extracellular matrix or cell surface proteins. We analysed HtrA1 localization and its role in keloid pathogenesis. Thirty keloid patients and twelve unrelated patients were enrolled for in situ hybridization, immunohistochemical, western blot, and cell proliferation analyses. Fibroblast-like cells expressed more HtrA1 in active keloid lesions than in surrounding lesions. The proportion of HtrA1-positive cells in keloids was significantly higher than that in normal skin, and HtrA1 protein was up-regulated relative to normal skin. Silencing HtrA1 gene expression significantly suppressed cell proliferation. HtrA1 was highly expressed in keloid tissues, and the suppression of the HtrA1 gene inhibited the proliferation of keloid-derived fibroblasts. HtrA1 may promote keloid development by accelerating cell proliferation and remodelling keloid-specific extracellular matrix or cell surface molecules. HtrA1 is suggested to have an important role in keloid pathogenesis.
Collapse
Affiliation(s)
- Satoko Yamawaki
- Department of Plastic and Reconstructive Surgery, Japanese Red Cross Fukui Hospital, 2-4-1, Tsukimi, Fukui-City, Fukui 918-8501, Japan.
| | - Motoko Naitoh
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Hiroshi Kubota
- Department of Life Science, Faculty of Engineering Science, Akita University, 1-1 Tegata Gakuenmachi, Akita 010-8502, Japan.
| | - Rino Aya
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Yasuhiro Katayama
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Toshihiro Ishiko
- Department of Plastic and Reconstructive Surgery, Japanese Red Cross Otsu Hospital, 1-1-35, Nagara, Otsu City, Shiga 520-8511, Japan.
| | - Taku Tamura
- Department of Life Science, Faculty of Engineering Science, Akita University, 1-1 Tegata Gakuenmachi, Akita 010-8502, Japan.
| | - Katsuhiro Yoshikawa
- Department of Plastic and Reconstructive Surgery, Shiga Medical Center for Adults, 5-4-30, Moriyama, Moriyama City, Shiga 524-8524, Japan.
| | - Tatsuki Enoshiri
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Mika Ikeda
- Department of Plastic and Reconstructive Surgery, Kobe City Medical Center General Hospital, 2-1-1, Minatojima minami-machi, Cyuou-ku, Kobe City, Hyogo 650-0047, Japan.
| | - Shigehiko Suzuki
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
70
|
Matsuura K, Tanaka Y. Host genetic variations associated with disease progression in chronic hepatitis C virus infection. Hepatol Res 2018; 48:127-133. [PMID: 29235266 DOI: 10.1111/hepr.13042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/19/2022]
Abstract
Treatment with recently developed interferon-free oral regimens combining direct-acting antiviral agents (DAAs) results in the elimination of hepatitis C virus (HCV) in almost all chronic hepatitis C (CHC) patients. In the era of DAAs, surveillance of hepatocellular carcinoma (HCC) after eradication of HCV by anti-HCV therapy is particularly important. As is well known, an advanced state of hepatic fibrosis is the major risk factor for developing HCC. Therefore, an increased understanding of various factors associated with disease progression and development of HCC in CHC patients is essential for implementing personalized treatment and surveillance of disease progression and HCC. Recent genome-wide association studies (GWAS) have identified several host genetic variants influencing treatment efficacy or clinical course in HCV infection. This review focuses on these host genetic variations recently identified, mainly by GWAS, which are associated with the clinical course of chronic HCV infection, especially disease progression and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Kentaro Matsuura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
71
|
Proteomic analysis reveals distinctive protein profiles involved in CD8 + T cell-mediated murine autoimmune cholangitis. Cell Mol Immunol 2018; 15:756-767. [PMID: 29375127 DOI: 10.1038/cmi.2017.149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/23/2022] Open
Abstract
Autoimmune cholangitis arises from abnormal innate and adaptive immune responses in the liver, and T cells are critical drivers in this process. However, little is known about the regulation of their functional behavior during disease development. We previously reported that mice with T cell-restricted expression of a dominant negative form of transforming growth factor beta receptor type II (dnTGFβRII) spontaneously develop an autoimmune cholangitis that resembles human primary biliary cholangitis (PBC). Adoptive transfer of CD8+ but not CD4+ T cells into Rag1-/- mice reproduced the disease, demonstrating a critical role for CD8+ T cells in PBC pathogenesis. Herein, we used SOMAscan technology to perform proteomic analysis of serum samples from dnTGFβRII and B6 control mice at different ages. In addition, we analyzed CD8 protein profiles after adoptive transfer of splenic CD8+ cells into Rag1-/- recipients. The use of the unique SOMAscan aptamer technology revealed critical and distinct profiles of CD8 cells, which are key to biliary mediation. In total, 254 proteins were significantly increased while 216 proteins were significantly decreased in recipient hepatic CD8+ cells compared to donor splenic CD8+ cells. In contrast to donor splenic CD8+ cells, recipient hepatic CD8+ cells expressed distinct profiles for proteins involved in chemokine signaling, focal adhesion, T cell receptor and natural killer cell-mediated cytotoxicity pathways.
Collapse
|
72
|
Chiu APL, Bierende D, Lal N, Wang F, Wan A, Vlodavsky I, Hussein B, Rodrigues B. Dual effects of hyperglycemia on endothelial cells and cardiomyocytes to enhance coronary LPL activity. Am J Physiol Heart Circ Physiol 2018; 314:H82-H94. [DOI: 10.1152/ajpheart.00372.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the diabetic heart, there is excessive dependence on fatty acid (FA) utilization to generate ATP. Lipoprotein lipase (LPL)-mediated hydrolysis of circulating triglycerides is suggested to be the predominant source of FA for cardiac utilization during diabetes. In the heart, the majority of LPL is synthesized in cardiomyocytes and secreted onto cell surface heparan sulfate proteoglycan (HSPG), where an endothelial cell (EC)-releasable β-endoglycosidase, heparanase cleaves the side chains of HSPG to liberate LPL for its onward movement across the EC. EC glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) captures this released enzyme at its basolateral side and shuttles it across to its luminal side. We tested whether the diabetes-induced increase of transforming growth factor-β (TGF-β) can influence the myocyte and EC to help transfer LPL to the vascular lumen to generate triglyceride-FA. In response to high glucose and EC heparanase secretion, this endoglycosidase is taken up by the cardiomyocyte (Wang Y, Chiu AP, Neumaier K, Wang F, Zhang D, Hussein B, Lal N, Wan A, Liu G, Vlodavsky I, Rodrigues B. Diabetes 63: 2643–2655, 2014) to stimulate matrix metalloproteinase-9 expression and the conversion of latent to active TGF-β. In the cardiomyocyte, TGF-β activation of RhoA enhances actin cytoskeleton rearrangement to promote LPL trafficking and secretion onto cell surface HSPG. In the EC, TGF-β signaling promotes mesodermal homeobox 2 translocation to the nucleus, which increases the expression of GPIHBP1, which facilitates movement of LPL to the vascular lumen. Collectively, our data suggest that in the diabetic heart, TGF-β actions on the cardiomyocyte promotes movement of LPL, whereas its action on the EC facilitates LPL shuttling. NEW & NOTEWORTHY Endothelial cells, as first responders to hyperglycemia, release heparanase, whose subsequent uptake by cardiomyocytes amplifies matrix metalloproteinase-9 expression and activation of transforming growth factor-β. Transforming growth factor-β increases lipoprotein lipase secretion from cardiomyocytes and promotes mesodermal homeobox 2 to enhance glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1-dependent transfer of lipoprotein lipase across endothelial cells, mechanisms that accelerate fatty acid utilization by the diabetic heart.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Denise Bierende
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fulong Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea Wan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
73
|
Grgurevic L, Erjavec I, Grgurevic I, Dumic-Cule I, Brkljacic J, Verbanac D, Matijasic M, Paljetak HC, Novak R, Plecko M, Bubic-Spoljar J, Rogic D, Kufner V, Pauk M, Bordukalo-Niksic T, Vukicevic S. Systemic inhibition of BMP1-3 decreases progression of CCl 4-induced liver fibrosis in rats. Growth Factors 2017; 35:201-215. [PMID: 29482391 DOI: 10.1080/08977194.2018.1428966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is a progressive pathological process resulting in an accumulation of excess extracellular matrix proteins. We discovered that bone morphogenetic protein 1-3 (BMP1-3), an isoform of the metalloproteinase Bmp1 gene, circulates in the plasma of healthy volunteers and its neutralization decreases the progression of chronic kidney disease in 5/6 nephrectomized rats. Here, we investigated the potential role of BMP1-3 in a chronic liver disease. Rats with carbon tetrachloride (CCl4)-induced liver fibrosis were treated with monoclonal anti-BMP1-3 antibodies. Treatment with anti-BMP1-3 antibodies dose-dependently lowered the amount of collagen type I, downregulated the expression of Tgfb1, Itgb6, Col1a1, and Acta2 and upregulated the expression of Ctgf, Itgb1, and Dcn. Mehanistically, BMP1-3 inhibition decreased the plasma levels of transforming growth factor beta 1(TGFβ1) by prevention of its activation and lowered the prodecorin production further suppressing the TGFβ1 profibrotic effect. Our results suggest that BMP1-3 inhibitors have significant potential for decreasing the progression of fibrosis in liver cirrhosis.
Collapse
Affiliation(s)
- Lovorka Grgurevic
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Igor Erjavec
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Ivica Grgurevic
- c Department of Gastroenterology , University Hospital Dubrava, Center for Scientific Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Ivo Dumic-Cule
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Jelena Brkljacic
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Donatella Verbanac
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Mario Matijasic
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Hana Cipcic Paljetak
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Rudjer Novak
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Mihovil Plecko
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Jadranka Bubic-Spoljar
- b Center for Translational and Clinical Research, School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Dunja Rogic
- d Department of Laboratory Diagnosis , University Hospital Centre , Zagreb , Croatia
| | - Vera Kufner
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Martina Pauk
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Tatjana Bordukalo-Niksic
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| | - Slobodan Vukicevic
- a Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine , University of Zagreb, Scientific Center of Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
- c Department of Gastroenterology , University Hospital Dubrava, Center for Scientific Excellence for Reproductive and Regenerative Medicine , Zagreb , Croatia
| |
Collapse
|
74
|
Modulation of TGF‑β activity by latent TGF‑β‑binding protein 1 in human osteoarthritis fibroblast‑like synoviocytes. Mol Med Rep 2017; 17:1893-1900. [PMID: 29257223 DOI: 10.3892/mmr.2017.8086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/20/2017] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease; however, its underlying pathogenesis remains to be elucidated. Previous studies have demonstrated that the transforming growth factor‑β (TGF‑β) signaling pathway has a role in the initiation and development of OA. Additionally, latent TGF‑β‑binding protein‑1 (LTBP‑1) modulates the activity of the TGF‑β‑mothers against decapentaplegic (Smad) signaling pathway in numerous diseases, including malignant glioma. The present study demonstrated that expression of LTBP‑1 is increased in OA synovial tissues compared with normal synovial tissues. The effect of TGF‑β was identified to be mediated by phosphorylated(p)‑(Smad)2/3, which may activate activin‑like kinase (ALK)5 receptor, and by p‑Smad1/5/8, which may induce ALK1, thereby stimulating expression of matrix metalloproteinase‑(MMP)‑13 in OA fibroblast‑like synoviocytes (FLS). Compared with normal FLS, OA FLS demonstrated an increased p‑Smad1/5/8:p‑Smad2 ratio, which led to elevated MMP‑13 expression and aggravation of OA. Furthermore, knockdown of the LTBP‑1 gene by siRNA transfection in OA FLS reduced p‑Smad1/5/8 expression without affecting TGF‑β mRNA levels, although p‑Smad2 expression increased. It was also demonstrated that OA FLS exhibited increased proliferation compared with normal FLS in vitro. Furthermore, siRNA‑mediated downregulation of LTBP‑1 reduced proliferation of OA FLS. In conclusion, the present study demonstrated that an alteration in the p‑Smad1/5/8:p‑Smad2 ratio as well as association between p‑Smad1/5/8 and MMP‑13 expression in human OA FLS, may contribute to the development of OA. The results of the present study suggested that LTBP‑1 is a modulator of the TGF‑β signaling pathway in human OA FLS, which may aid in elucidating the mechanism underlying the pathology of OA.
Collapse
|
75
|
Yamashiro Y, Yanagisawa H. Crossing Bridges between Extra- and Intra-Cellular Events in Thoracic Aortic Aneurysms. J Atheroscler Thromb 2017; 25:99-110. [PMID: 28943527 PMCID: PMC5827090 DOI: 10.5551/jat.rv17015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thoracic aortic aneurysms (TAAs) are common, life-threatening diseases and are a major cause of mortality and morbidity. Over the past decade, genetic approaches have revealed that 1) activation of the transforming growth factor beta (TGF-β) signaling, 2) alterations in the contractile apparatus of vascular smooth muscle cells (SMCs), and 3) defects in the extracellular matrix (ECM) were responsible for development of TAAs. Most recently, a fourth mechanism has been proposed in that dysfunction of mechanosensing in the aortic wall in response to hemodynamic stress may be a key driver of TAAs. Interestingly, the elastin-contractile unit, which is an anatomical and functional unit connecting extracellular elastic laminae to the intracellular SMC contractile filaments, via cell surface receptors, has been shown to play a critical role in the mechanosensing of SMCs, and many genes identified in TAAs encode for proteins along this continuum. However, it is still debated whether these four pathways converge into a common pathway. Currently, an effective therapeutic strategy based on the underlying mechanism of each type of TAAs has not been established. In this review, we will update the present knowledge on the molecular mechanism of TAAs with a focus on the signaling pathways potentially involved in the initiation of TAAs. Finally, we will evaluate current therapeutic strategies for TAAs and propose new directions for future treatment of TAAs.
Collapse
Affiliation(s)
- Yoshito Yamashiro
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
| | - Hiromi Yanagisawa
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba
| |
Collapse
|
76
|
Robertson IB, Dias HF, Osuch IH, Lowe ED, Jensen SA, Redfield C, Handford PA. The N-Terminal Region of Fibrillin-1 Mediates a Bipartite Interaction with LTBP1. Structure 2017; 25:1208-1221.e5. [PMID: 28669633 PMCID: PMC5548924 DOI: 10.1016/j.str.2017.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/05/2017] [Accepted: 06/01/2017] [Indexed: 11/26/2022]
Abstract
Fibrillin-1 (FBN1) mutations associated with Marfan syndrome lead to an increase in transforming growth factor β (TGF-β) activation in connective tissues resulting in pathogenic changes including aortic dilatation and dissection. Since FBN1 binds latent TGF-β binding proteins (LTBPs), the major reservoir of TGF-β in the extracellular matrix (ECM), we investigated the structural basis for the FBN1/LTBP1 interaction. We present the structure of a four-domain FBN1 fragment, EGF2-EGF3-Hyb1-cbEGF1 (FBN1E2cbEGF1), which reveals a near-linear domain organization. Binding studies demonstrate a bipartite interaction between a C-terminal LTBP1 fragment and FBN1E2cbEGF1, which lies adjacent to the latency-associated propeptide (LAP)/TGF-β binding site of LTBP1. Modeling of the binding interface suggests that, rather than interacting along the longitudinal axis, LTBP1 anchors itself to FBN1 using two independent epitopes. As part of this mechanism, a flexible pivot adjacent to the FBN1/LTBP1 binding site allows LTBP1 to make contacts with different ECM networks while presumably facilitating a force-induced/traction-based TGF-β activation mechanism.
Collapse
Affiliation(s)
- Ian B Robertson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Hans F Dias
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Isabelle H Osuch
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Edward D Lowe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Sacha A Jensen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
77
|
Kokkinopoulos I, Wong MM, Potter CMF, Xie Y, Yu B, Warren DT, Nowak WN, Le Bras A, Ni Z, Zhou C, Ruan X, Karamariti E, Hu Y, Zhang L, Xu Q. Adventitial SCA-1 + Progenitor Cell Gene Sequencing Reveals the Mechanisms of Cell Migration in Response to Hyperlipidemia. Stem Cell Reports 2017; 9:681-696. [PMID: 28757161 PMCID: PMC5549964 DOI: 10.1016/j.stemcr.2017.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 01/08/2023] Open
Abstract
Adventitial progenitor cells, including SCA-1+ and mesenchymal stem cells, are believed to be important in vascular remodeling. It has been shown that SCA-1+ progenitor cells are involved in neointimal hyperplasia of vein grafts, but little is known concerning their involvement in hyperlipidemia-induced atherosclerosis. We employed single-cell sequencing technology on primary adventitial mouse SCA-1+ cells from wild-type and atherosclerotic-prone (ApoE-deficient) mice and found that a group of genes controlling cell migration and matrix protein degradation was highly altered. Adventitial progenitors from ApoE-deficient mice displayed an augmented migratory potential both in vitro and in vivo. This increased migratory ability was mimicked by lipid loading to SCA-1+ cells. Furthermore, we show that lipid loading increased miRNA-29b expression and induced sirtuin-1 and matrix metalloproteinase-9 levels to promote cell migration. These results provide direct evidence that blood cholesterol levels influence vascular progenitor cell function, which could be a potential target cell for treatment of vascular disease.
Collapse
Affiliation(s)
- Ioannis Kokkinopoulos
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Mei Mei Wong
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Claire M F Potter
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Yao Xie
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Baoqi Yu
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Derek T Warren
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Witold N Nowak
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Alexandra Le Bras
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Zhichao Ni
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Chao Zhou
- John Moorhead Research Laboratory, Centre for Nephrology, University College London, Rowland Hill Street, London NW3 2PF, UK
| | - Xiongzhong Ruan
- John Moorhead Research Laboratory, Centre for Nephrology, University College London, Rowland Hill Street, London NW3 2PF, UK
| | - Eirini Karamariti
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Yanhua Hu
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China.
| | - Qingbo Xu
- Cardiovascular Division, King's College London BHF Centre, 125 Coldharbour Lane, London SE5 9NU, UK.
| |
Collapse
|
78
|
Matsuura K, Sawai H, Ikeo K, Ogawa S, Iio E, Isogawa M, Shimada N, Komori A, Toyoda H, Kumada T, Namisaki T, Yoshiji H, Sakamoto N, Nakagawa M, Asahina Y, Kurosaki M, Izumi N, Enomoto N, Kusakabe A, Kajiwara E, Itoh Y, Ide T, Tamori A, Matsubara M, Kawada N, Shirabe K, Tomita E, Honda M, Kaneko S, Nishina S, Suetsugu A, Hiasa Y, Watanabe H, Genda T, Sakaida I, Nishiguchi S, Takaguchi K, Tanaka E, Sugihara J, Shimada M, Kondo Y, Kawai Y, Kojima K, Nagasaki M, Tokunaga K, Tanaka Y. Genome-Wide Association Study Identifies TLL1 Variant Associated With Development of Hepatocellular Carcinoma After Eradication of Hepatitis C Virus Infection. Gastroenterology 2017; 152:1383-1394. [PMID: 28163062 DOI: 10.1053/j.gastro.2017.01.041] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS There is still a risk for hepatocellular carcinoma (HCC) development after eradication of hepatitis C virus (HCV) infection with antiviral agents. We investigated genetic factors associated with the development of HCC in patients with a sustained virologic response (SVR) to treatment for chronic HCV infection. METHODS We obtained genomic DNA from 457 patients in Japan with a SVR to interferon-based treatment for chronic HCV infection from 2007 through 2015. We conducted a genome-wide association study (GWAS), followed by a replication analysis of 79 candidate single nucleotide polymorphisms (SNPs) in an independent set of 486 patients in Japan. The study end point was HCC diagnosis or confirmation of lack of HCC (at follow-up examinations until December 2014 in the GWAS cohort, and until January 2016 in the replication cohort). We collected clinical and laboratory data from all patients. We analyzed expression levels of candidate gene variants in human hepatic stellate cells, rats with steatohepatitis caused by a choline-deficient L-amino acid-defined diet, and a mouse model of liver injury caused by administration of carbon tetrachloride. We also analyzed expression levels in liver tissues of patients with chronic HCV infection with different stages of fibrosis or tumors vs patients without HCV infection (controls). RESULTS We found a strong association between the SNP rs17047200, located within the intron of the tolloid like 1 gene (TLL1) on chromosome 4, and development of HCC; there was a genome-wide level of significance when the results of the GWAS and replication study were combined (odds ratio, 2.37; P = 2.66 × 10-8). Multivariate analysis showed rs17047200 AT/TT to be an independent risk factor for HCC (hazard ratio, 1.78; P = .008), along with male sex, older age, lower level of albumin, advanced stage of hepatic fibrosis, presence of diabetes, and higher post-treatment level of α-fetoprotein. Combining the rs17047200 genotype with other factors, we developed prediction models for HCC development in patients with mild or advanced hepatic fibrosis. Levels of TLL1 messenger RNA (mRNA) in human hepatic stellate cells increased with activation. Levels of Tll1 mRNA increased in liver tissues of rodents with hepatic fibrogenesis compared with controls. Levels of TLL1 mRNA increased in liver tissues of patients with progression of fibrosis. Gene expression levels of TLL1 short variants, including isoform 2, were higher in patients with rs17047200 AT/TT. CONCLUSIONS In a GWAS, we identified the association between the SNP rs17047200, within the intron of TLL1, and development of HCC in patients who achieved an SVR to treatment for chronic HCV infection. We found levels of Tll1/TLL1 mRNA to be increased in rodent models of liver injury and liver tissues of patients with fibrosis, compared with controls. We propose that this SNP might affect splicing of TLL1 mRNA, yielding short variants with high catalytic activity that accelerates hepatic fibrogenesis and carcinogenesis. Further studies are needed to determine how rs17047200 affects TLL1 mRNA levels, splicing, and translation, as well as the prevalence of this variant among other patients with HCC. Tests for the TLL1 SNP might be used to identify patients at risk for HCC after an SVR to treatment of HCV infection.
Collapse
Affiliation(s)
- Kentaro Matsuura
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromi Sawai
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Shintaro Ogawa
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Etsuko Iio
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Isogawa
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Noritomo Shimada
- Division of Gastroenterology and Hepatology, Otakanomori Hospital, Kashiwa, Japan
| | - Atsumasa Komori
- Clinical Research Center, National Nagasaki Medical Center, Omura, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Takashi Kumada
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Tadashi Namisaki
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Japan
| | - Hitoshi Yoshiji
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Japan
| | - Naoya Sakamoto
- Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mina Nakagawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan; Center for Interprofessional Education, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masayuki Kurosaki
- Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan
| | - Namiki Izumi
- Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Musashino, Japan
| | - Nobuyuki Enomoto
- First Department of Internal Medicine, University of Yamanashi, Chuo, Japan
| | - Atsunori Kusakabe
- Division of Gastroenterology, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Japan
| | - Eiji Kajiwara
- Department of Hepatology, Steel Memorial Yahata Hospital, Kitakyushu, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsuya Ide
- Division of Gastroenterology, Department of Medicine, Kurume University, Kurume, Japan
| | - Akihiro Tamori
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Misako Matsubara
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Ken Shirabe
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiichi Tomita
- Department of Gastroenterology, Gifu Municipal Hospital, Gifu, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Sohji Nishina
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Atsushi Suetsugu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Hisayoshi Watanabe
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takuya Genda
- Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shuhei Nishiguchi
- Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Koichi Takaguchi
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Eiji Tanaka
- Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Junichi Sugihara
- Department of Gastroenterology, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Mitsuo Shimada
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Yasuteru Kondo
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yosuke Kawai
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kaname Kojima
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | | |
Collapse
|
79
|
Hayashi N, Iwamoto T, Qi Y, Niikura N, Santarpia L, Yamauchi H, Nakamura S, Hortobagyi GN, Pusztai L, Symmans WF, Ueno NT. Bone metastasis-related signaling pathways in breast cancers stratified by estrogen receptor status. J Cancer 2017; 8:1045-1052. [PMID: 28529618 PMCID: PMC5436258 DOI: 10.7150/jca.13690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background: Breast cancer bone metastasis (BCBM)-specific genes have been reported without considering biological differences based on estrogen receptor (ER) status. The aims of this study were to identify BCBM-specific genes using our patient dataset and validate previously reported BCBM-specific genes, and to determine whether ER-status-related biological differences matter in identification of BCBM-specific genes. Methods: We used Affymetrix GeneChips to analyze 365 primary human epidermal growth factor receptor 2 (HER2)-negative invasive breast cancer specimens. Genes that were differentially expressed between patients who developed bone metastasis and those who developed non-bone metastasis were identified using Cox proportional hazards model, and differential expression of gene sets was assessed using gene set analysis. We performed gene set analysis to determine whether biological function associated with bone metastasis were different by ER status using 2,246 functionally annotated gene sets assembled from Gene Ontology data base. Results: Among 16,712 probe sets, 592 were overexpressed in the bone metastasis cohort compared to the non-bone-metastasis cohort (false discovery rate ≤ 0.05). However, no BCBM-specific genes met our significance tests when the cancers were stratified by ER status. In ER-positive and ER-negative breast cancers, 151 and 125 gene sets, respectively, were overexpressed for BCBM and the majority of BCBM-related pathways were different. Of significant gene sets, only 13 gene sets were overlapped between ER-positive and -negative cohorts. Conclusion: ER-positive and ER-negative breast cancers have different biological pathways in BCBM development. We have yet to explore BCBM-related biomarkers and targets considering the biological features associated with BCBM depending on the ER status.
Collapse
Affiliation(s)
- Naoki Hayashi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Takayuki Iwamoto
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuan Qi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoki Niikura
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Libero Santarpia
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hideko Yamauchi
- Department of Breast Surgical Oncology, St. Luke's International Hospital, Tokyo, Japan
| | - Seigo Nakamura
- Department of Surgery, Division of Breast Surgical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lajos Pusztai
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Fraser Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
80
|
Potter EA, Dolgova EV, Proskurina AS, Efremov YR, Minkevich AM, Rozanov AS, Peltek SE, Nikolin VP, Popova NA, Seledtsov IA, Molodtsov VV, Zavyalov EL, Taranov OS, Baiborodin SI, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Gene expression profiling of tumor-initiating stem cells from mouse Krebs-2 carcinoma using a novel marker of poorly differentiated cells. Oncotarget 2017; 8:9425-9441. [PMID: 28031533 PMCID: PMC5354742 DOI: 10.18632/oncotarget.14116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022] Open
Abstract
Using the ability of poorly differentiated cells to natively internalize fragments of extracellular double-stranded DNA as a marker, we isolated a tumorigenic subpopulation present in Krebs-2 ascites that demonstrated the features of tumor-inducing cancer stem cells. Having combined TAMRA-labeled DNA probe and the power of RNA-seq technology, we identified a set of 168 genes specifically expressed in TAMRA-positive cells (tumor-initiating stem cells), these genes remaining silent in TAMRA-negative cancer cells. TAMRA+ cells displayed gene expression signatures characteristic of both stem cells and cancer cells. The observed expression differences between TAMRA+ and TAMRA- cells were validated by Real Time PCR. The results obtained corroborated the biological data that TAMRA+ murine Krebs-2 tumor cells are tumor-initiating stem cells. The approach developed can be applied to profile any poorly differentiated cell types that are capable of immanent internalization of double-stranded DNA.
Collapse
Affiliation(s)
- Ekaterina A. Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Evgenia V. Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anastasia S. Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yaroslav R. Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexandra M. Minkevich
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Aleksey S. Rozanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergey E. Peltek
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Valeriy P. Nikolin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nelly A. Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | | | - Vladimir V. Molodtsov
- Novosibirsk State University, Novosibirsk 630090, Russia
- Softberry Inc., New York 10549, USA
| | - Evgeniy L Zavyalov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Oleg S. Taranov
- The State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk 630559, Russia
| | - Sergey I. Baiborodin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexander A. Ostanin
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk 630099, Russia
| | - Elena R. Chernykh
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk 630099, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergey S. Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
81
|
LEI X, CUI K, CAI X, REN Y, LIU Q, SHI D. Bone morphogenetic protein 1 is expressed in porcine ovarian follicles and promotes oocyte maturation and early embryonic development. J Vet Med Sci 2017; 79:258-266. [PMID: 27890905 PMCID: PMC5326928 DOI: 10.1292/jvms.16-0277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/08/2016] [Indexed: 01/24/2023] Open
Abstract
In the present study, we tried to determine whether bone morphogenetic protein 1 (BMP1) plays a role in ovarian follicular development and early embryo development. We systematically investigated the expression and influence of BMP1 during porcine follicle and early embryonic development. Immunohistochemistry demonstrated that the BMP1 protein is expressed in granular cells and oocytes during follicular development, from primary to pre-ovulatory follicles, including atretic follicles and the corpus luteum. The mRNA expression of BMP1 significantly increased as the porcine follicles grew. Immunofluorescence analysis indicated that BMP1 was expressed in cumulus-oocyte complexes (COCs), oocytes and porcine embryos during early in vitro culture. qPCR and western blot analysis showed that the expression of BMP1 was significantly up-regulated in mature porcine oocytes and COCs compared to immature oocytes and COCs. BMP1 is expressed in early porcine embryos, and its expression reaches a peak at the 8-cell stage. To determine the effect of BMP1 on the maturation of oocytes and the development of early embryos, various concentrations of BMP1 recombinant protein or antibody were added to the in vitro culture media, respectively. BMP1 significantly affected the porcine oocyte maturation rate, the cleavage rate and the blastocyst development rate of embryos cultured in vitro in a positive way, as well as the blastocyst cell number. In conclusion, BMP1 is expressed throughout porcine ovarian follicle development and early embryogenesis, and it promotes oocyte maturation and the developmental ability of embryos during early in vitro culture.
Collapse
Affiliation(s)
- Xiaocan LEI
- State Key Laboratory for Conservation and Utilization of
Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China
- School of Basic Medical Sciences, Zunyi Medical University,
Zunyi 563000, Guizhou, China
| | - Kuiqing CUI
- State Key Laboratory for Conservation and Utilization of
Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China
| | - Xiaoyan CAI
- State Key Laboratory for Conservation and Utilization of
Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China
| | - Yanping REN
- State Key Laboratory for Conservation and Utilization of
Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China
- School of Basic Medical Sciences, Zunyi Medical University,
Zunyi 563000, Guizhou, China
| | - Qingyou LIU
- State Key Laboratory for Conservation and Utilization of
Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China
| | - Deshun SHI
- State Key Laboratory for Conservation and Utilization of
Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
82
|
Ma Z, Hu J, Yu G, Qin JG. Gene expression of bone morphogenetic proteins and jaw malformation in golden pompano Trachinotus ovatus larvae in different feeding regimes. JOURNAL OF APPLIED ANIMAL RESEARCH 2017. [DOI: 10.1080/09712119.2017.1282371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhenhua Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People’s Republic of China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, People’s Republic of China
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Jing Hu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People’s Republic of China
| | - Gang Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People’s Republic of China
| | - Jian G. Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
83
|
Costanza B, Umelo IA, Bellier J, Castronovo V, Turtoi A. Stromal Modulators of TGF-β in Cancer. J Clin Med 2017; 6:jcm6010007. [PMID: 28067804 PMCID: PMC5294960 DOI: 10.3390/jcm6010007] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is an intriguing cytokine exhibiting dual activities in malignant disease. It is an important mediator of cancer invasion, metastasis and angiogenesis, on the one hand, while it exhibits anti-tumor functions on the other hand. Elucidating the precise role of TGF-β in malignant development and progression requires a better understanding of the molecular mechanisms involved in its tumor suppressor to tumor promoter switch. One important aspect of TGF-β function is its interaction with proteins within the tumor microenvironment. Several stromal proteins have the natural ability to interact and modulate TGF-β function. Understanding the complex interplay between the TGF-β signaling network and these stromal proteins may provide greater insight into the development of novel therapeutic strategies that target the TGF-β axis. The present review highlights our present understanding of how stroma modulates TGF-β activity in human cancers.
Collapse
Affiliation(s)
- Brunella Costanza
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
| | - Ijeoma Adaku Umelo
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
| | - Justine Bellier
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
| | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, 4000 Liege, Belgium.
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université Montpellier, Institut Régional du Cancer de Montpellier, 34298 Montpellier, France.
| |
Collapse
|
84
|
Abstract
A compelling long-term goal of cancer biology is to understand the crucial players during tumorigenesis in order to develop new interventions. Here, we review how the four non-redundant tissue inhibitors of metalloproteinases (TIMPs) regulate the pericellular proteolysis of a vast range of matrix and cell surface proteins, generating simultaneous effects on tumour architecture and cell signalling. Experimental studies demonstrate the contribution of TIMPs to the majority of cancer hallmarks, and human cancers invariably show TIMP deregulation in the tumour or stroma. Of the four TIMPs, TIMP1 overexpression or TIMP3 silencing is consistently associated with cancer progression or poor patient prognosis. Future efforts will align mouse model systems with changes in TIMPs in patients, will delineate protease-independent TIMP function, will pinpoint therapeutic targets within the TIMP-metalloproteinase-substrate network and will use TIMPs in liquid biopsy samples as biomarkers for cancer prognosis.
Collapse
Affiliation(s)
- Hartland W Jackson
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
- Bodenmiller Laboratory, University of Zürich, Institute for Molecular Life Sciences, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Virginie Defamie
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Paul Waterhouse
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Rama Khokha
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| |
Collapse
|
85
|
Cain SA, Mularczyk EJ, Singh M, Massam-Wu T, Kielty CM. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions. Sci Rep 2016; 6:35956. [PMID: 27779234 PMCID: PMC5078793 DOI: 10.1038/srep35956] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022] Open
Abstract
ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10.
Collapse
Affiliation(s)
- Stuart A. Cain
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ewa J. Mularczyk
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Mukti Singh
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Teresa Massam-Wu
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Cay M. Kielty
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
86
|
Song KH, Cho SJ, Song JY. αvβ1 integrin as a novel therapeutic target for tissue fibrosis. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:411. [PMID: 27867963 DOI: 10.21037/atm.2016.10.33] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic tissue injury with fibrosis results in disruption of tissue architecture, organ dysfunction and eventually organ failure. Currently, therapeutic options for tissue fibrosis are severely limited and organ transplantation including high cost and co-morbidities is the only effective treatment for end-stage fibrotic disease. Therefore, it is imperative to develop effective anti-fibrotic agents. Integrins are transmembrane proteins and are major receptors for cell-extracellular matrix (ECM) and cell-cell adhesion. Modulation of these molecules, particularly αv integrin family, has exhibited profound effects on fibrosis in multiple organ and disease state. Based on the several studies, the integrins αvβ3, αvβ5, αvβ6, and αvβ8 have been known to modulate the fibrotic process via activation of latent transforming growth factor (TGF)-β in pre-clinical models of fibrosis. In this perspective, we reviewed the functions of αvβ1 integrin as a potentially useful target molecule for antifibrotic agent and introduced novel specific small-molecule inhibitors targeting this integrin.
Collapse
Affiliation(s)
- Kyung-Hee Song
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Seong-Jun Cho
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Jie-Young Song
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| |
Collapse
|
87
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
88
|
Troilo H, Bayley CP, Barrett AL, Lockhart-Cairns MP, Jowitt TA, Baldock C. Mammalian tolloid proteinases: role in growth factor signalling. FEBS Lett 2016; 590:2398-407. [PMID: 27391803 PMCID: PMC4988381 DOI: 10.1002/1873-3468.12287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022]
Abstract
Tolloid proteinases are essential for tissue patterning and extracellular matrix assembly. The members of the family differ in their substrate specificity and activity, despite sharing similar domain organization. The mechanisms underlying substrate specificity and activity are complex, with variation between family members, and depend on both multimerization and substrate interaction. In addition, enhancers, such as Twisted gastrulation (Tsg), promote cleavage of tolloid substrate, chordin, to regulate growth factor signalling. Although Tsg and mammalian tolloid (mTLD) are involved in chordin cleavage, no interaction has been detected between them, suggesting Tsg induces a change in chordin to increase susceptibility to cleavage. All members of the tolloid family bind the N terminus of latent TGFβ‐binding protein‐1, providing support for their role in TGFβ signalling.
Collapse
Affiliation(s)
- Helen Troilo
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK
| | - Christopher P Bayley
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK
| | - Anne L Barrett
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK
| | - Michael P Lockhart-Cairns
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK.,Beamline B21, Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, UK
| | - Thomas A Jowitt
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, UK
| |
Collapse
|
89
|
Nik AM, Johansson JA, Ghiami M, Reyahi A, Carlsson P. Foxf2 is required for secondary palate development and Tgfβ signaling in palatal shelf mesenchyme. Dev Biol 2016; 415:14-23. [DOI: 10.1016/j.ydbio.2016.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/19/2023]
|
90
|
Muir AM, Massoudi D, Nguyen N, Keene DR, Lee SJ, Birk DE, Davidson JM, Marinkovich MP, Greenspan DS. BMP1-like proteinases are essential to the structure and wound healing of skin. Matrix Biol 2016; 56:114-131. [PMID: 27363389 DOI: 10.1016/j.matbio.2016.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/12/2016] [Accepted: 06/21/2016] [Indexed: 01/10/2023]
Abstract
Closely related extracellular metalloproteinases bone morphogenetic protein 1 (BMP1) and mammalian Tolloid-like 1 (mTLL1) are co-expressed in various tissues and have been suggested to have overlapping roles in the biosynthetic processing of extracellular matrix components. Early lethality of mice null for the BMP1 gene Bmp1 or the mTLL1 gene Tll1 has impaired in vivo studies of these proteinases. To overcome issues of early lethality and functional redundancy we developed the novel BTKO mouse strain, with floxed Bmp1 and Tll1 alleles, for induction of postnatal, simultaneous ablation of the two genes. We previously showed these mice to have a skeletal phenotype that includes elements of osteogenesis imperfecta (OI), osteomalacia, and deficient osteocyte maturation, observations validated by the finding of BMP1 mutations in a subset of human patients with OI-like phenotypes. However, the roles of BMP1-like proteinase in non-skeletal tissues have yet to be explored, despite the supposed importance of putative substrates of these proteinases in such tissues. Here, we employ BTKO mice to investigate potential roles for these proteinases in skin. Loss of BMP1-like proteinase activity is shown to result in markedly thinned and fragile skin with unusually densely packed collagen fibrils and delayed wound healing. We demonstrate deficits in the processing of collagens I and III, decorin, biglycan, and laminin 332 in skin, which indicate mechanisms whereby BMP1-like proteinases affect the biology of this tissue. In contrast, lack of effects on collagen VII processing or deposition indicates this putative substrate to be biosynthetically processed by non-BMP1-like proteinases.
Collapse
Affiliation(s)
- Alison M Muir
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Dawiyat Massoudi
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Ngon Nguyen
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Dermatology, VA Medical Center, Palo Alto, CA 94304, USA
| | - Douglas R Keene
- Microimaging Center, Shriners Hospitals for Children, Portland, OR 97239, USA
| | - Se-Jin Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David E Birk
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA; Research Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - M Peter Marinkovich
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Dermatology, VA Medical Center, Palo Alto, CA 94304, USA
| | - Daniel S Greenspan
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
91
|
Robertson IB, Rifkin DB. Regulation of the Bioavailability of TGF-β and TGF-β-Related Proteins. Cold Spring Harb Perspect Biol 2016; 8:8/6/a021907. [PMID: 27252363 DOI: 10.1101/cshperspect.a021907] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bioavailability of members of the transforming growth factor β (TGF-β) family is controlled by a number of mechanisms. Bona fide TGF-β is sequestered into the matrix in a latent state and must be activated before it can bind to its receptors. Here, we review the molecules and mechanisms that regulate the bioavailability of TGF-β and compare these mechanisms with those used to regulate other TGF-β family members. We also assess the physiological significance of various latent TGF-β activators, as well as other extracellular modulators of TGF-β family signaling, by examining the available in vivo data from knockout mouse models and other biological systems.
Collapse
Affiliation(s)
- Ian B Robertson
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016
| | - Daniel B Rifkin
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016 Departments of Medicine, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
92
|
Abstract
The bioavailability of members of the transforming growth factor β (TGF-β) family is controlled by a number of mechanisms. Bona fide TGF-β is sequestered into the matrix in a latent state and must be activated before it can bind to its receptors. Here, we review the molecules and mechanisms that regulate the bioavailability of TGF-β and compare these mechanisms with those used to regulate other TGF-β family members. We also assess the physiological significance of various latent TGF-β activators, as well as other extracellular modulators of TGF-β family signaling, by examining the available in vivo data from knockout mouse models and other biological systems.
Collapse
Affiliation(s)
- Ian B Robertson
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016
| | - Daniel B Rifkin
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016 Departments of Medicine, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
93
|
Subramanian A, Schilling TF. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development 2016; 142:4191-204. [PMID: 26672092 DOI: 10.1242/dev.114777] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tendons and ligaments are extracellular matrix (ECM)-rich structures that interconnect muscles and bones. Recent work has shown how tendon fibroblasts (tenocytes) interact with muscles via the ECM to establish connectivity and strengthen attachments under tension. Similarly, ECM-dependent interactions between tenocytes and cartilage/bone ensure that tendon-bone attachments form with the appropriate strength for the force required. Recent studies have also established a close lineal relationship between tenocytes and skeletal progenitors, highlighting the fact that defects in signals modulated by the ECM can alter the balance between these fates, as occurs in calcifying tendinopathies associated with aging. The dynamic fine-tuning of tendon ECM composition and assembly thus gives rise to the remarkable characteristics of this unique tissue type. Here, we provide an overview of the functions of the ECM in tendon formation and maturation that attempts to integrate findings from developmental genetics with those of matrix biology.
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| |
Collapse
|
94
|
Zhang C, Shu L, Kim H, Khor TO, Wu R, Li W, Kong ANT. Phenethyl isothiocyanate (PEITC) suppresses prostate cancer cell invasion epigenetically through regulating microRNA-194. Mol Nutr Food Res 2016; 60:1427-36. [PMID: 26820911 DOI: 10.1002/mnfr.201500918] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Abstract
SCOPE Tumor metastasis greatly contributes to the mortality of prostate cancer. The glucosinolate-derived phenethyl isothiocyanate (PEITC) has been widely documented to reduce the risk of prostate cancer by modulating multiple biologically relevant processes. Emerging evidence suggests that PEITC may exert its anti-cancer effects through epigenetic mechanisms including microRNAs. Altered levels of miRNA have been linked to tumor malignancy due to their capacity to regulate functional gene expression in carcinogenesis. Here, we assessed the effects of PEITC on miRNA expression which is related to PCa cell invasiveness. METHODS AND RESULTS Utilizing oligonucleotide microarray first identified the most affected miRNAs in LNCaP cells after PEITC treatment. Several top altered miRNAs were further validated using quantitative PCR. Interestingly, overexpression of miR-194 suppressed PC3 cell invasion in matrigel-coated Transwell chambers. Bone morphogenetic protein 1 (BMP1) was shown to be a direct target of miR-194. Downregulation of BMP1 by miR-194 or PEITC led to decreased expression of key oncogenic matrix metalloproteinases, MMP2 and MMP9. This in turn resulted in the suppression of tumor invasion. CONCLUSION Our results indicate that miR-194 downregulates the expression of oncogenic MMP2 and MMP9 by targeting BMP1, which suggests a potential new mechanistic target by which PEITC suppresses prostate cancer cell invasiveness.
Collapse
Affiliation(s)
- Chengyue Zhang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Limin Shu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA
| | - Hyuck Kim
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA
| | - Tin Oo Khor
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Wenji Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.,Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, , the State University of New Jersey, USA.,Center for Epigenomics of CAM Natural Products, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, USA
| |
Collapse
|
95
|
Torricelli AAM, Santhanam A, Wu J, Singh V, Wilson SE. The corneal fibrosis response to epithelial-stromal injury. Exp Eye Res 2016; 142:110-8. [PMID: 26675407 DOI: 10.1016/j.exer.2014.09.012] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 12/22/2022]
Abstract
The corneal wound healing response, including the development of stromal opacity in some eyes, is a process that often leads to scarring that occurs after injury, surgery or infection to the cornea. Immediately after epithelial and stromal injury, a complex sequence of processes contributes to wound repair and regeneration of normal corneal structure and function. In some corneas, however, often depending on the type and extent of injury, the response may also lead to the development of mature vimentin+ α-smooth muscle actin+ desmin+ myofibroblasts. Myofibroblasts are specialized fibroblastic cells generated in the cornea from keratocyte-derived or bone marrow-derived precursor cells. The disorganized extracellular matrix components secreted by myofibroblasts, in addition to decreased expression of corneal crystallins in these cells, are central biological processes that result in corneal stromal fibrosis associated with opacity or "haze". Several factors are associated with myofibroblast generation and haze development after PRK surgery in rabbits, a reproducible model of scarring, including the amount of tissue ablated, which may relate to the extent of keratocyte apoptosis in the early response to injury, irregularity of stromal surface after surgery, and changes in corneal stromal proteoglycans, but normal regeneration of the epithelial basement membrane (EBM) appears to be a critical factor determining whether a cornea heals with relative transparency or vision-limiting stromal opacity. Structural and functional abnormalities of the regenerated EBM facilitate prolonged entry of epithelium-derived growth factors such as transforming growth factor β (TGF-β) and platelet-derived growth factor (PDGF) into the stroma that both drive development of mature myofibroblasts from precursor cells and lead to persistence of the cells in the anterior stroma. A major discovery that has contributed to our understanding of haze development is that keratocytes and corneal fibroblasts produce critical EBM components, such as nidogen-1, nidogen-2 and perlecan, that are essential for complete regeneration of a normal EBM once laminin secreted by epithelial cells self-polymerizes into a nascent EBM. Mature myofibroblasts that become established in the anterior stroma are a barrier to keratocyte/corneal fibroblast contributions to the nascent EBM. These myofibroblasts, and the opacity they produce, often persist for months or years after the injury. Transparency is subsequently restored when the EBM is completely regenerated, myofibroblasts are deprived of TGFβ and undergo apoptosis, and the keratocytes re-occupy the anterior stroma and reabsorb disordered extracellular matrix. The aim of this review is to highlight factors involved in the generation of stromal haze and its subsequent removal.
Collapse
Affiliation(s)
- Andre A M Torricelli
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA; University of Sao Paulo, Sao Paulo, Brazil
| | | | - Jiahui Wu
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vivek Singh
- Prof. Brien Holden Eye Research Centre, C-TRACER, LV Prasad Eye Institute, Hyderabad, Andhra Pradesh, India
| | | |
Collapse
|
96
|
Hung CW, Koudelka T, Anastasi C, Becker A, Moali C, Tholey A. Characterization of post-translational modifications in full-length human BMP-1 confirms the presence of a rare vicinal disulfide linkage in the catalytic domain and highlights novel features of the EGF domain. J Proteomics 2016; 138:136-45. [DOI: 10.1016/j.jprot.2016.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/12/2016] [Accepted: 02/24/2016] [Indexed: 12/29/2022]
|
97
|
Gu H, Fisher AJ, Mickler EA, Duerson F, Cummings OW, Peters-Golden M, Twigg HL, Woodruff TM, Wilkes DS, Vittal R. Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis. FASEB J 2016; 30:2336-50. [PMID: 26956419 DOI: 10.1096/fj.201500044] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/22/2016] [Indexed: 12/24/2022]
Abstract
Complement activation, an integral arm of innate immunity, may be the critical link to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Whereas we have previously reported elevated anaphylatoxins-complement component 3a (C3a) and complement component 5a (C5a)-in IPF, which interact with TGF-β and augment epithelial injury in vitro, their role in IPF pathogenesis remains unclear. The objective of the current study is to determine the mechanistic role of the binding of C3a/C5a to their respective receptors (C3aR and C5aR) in the progression of lung fibrosis. In normal primary human fetal lung fibroblasts, C3a and C5a induces mesenchymal activation, matrix synthesis, and the expression of their respective receptors. We investigated the role of C3aR and C5aR in lung fibrosis by using bleomycin-injured mice with fibrotic lungs, elevated local C3a and C5a, and overexpression of their receptors via pharmacologic and RNA interference interventions. Histopathologic examination revealed an arrest in disease progression and attenuated lung collagen deposition (Masson's trichrome, hydroxyproline, collagen type I α 1 chain, and collagen type I α 2 chain). Pharmacologic or RNA interference-specific interventions suppressed complement activation (C3a and C5a) and soluble terminal complement complex formation (C5b-9) locally and active TGF-β1 systemically. C3aR/C5aR antagonists suppressed local mRNA expressions of tgfb2, tgfbr1/2, ltbp1/2, serpine1, tsp1, bmp1/4, pdgfbb, igf1, but restored the proteoglycan, dcn Clinically, compared with pathologically normal human subjects, patients with IPF presented local induction of C5aR, local and systemic induction of soluble C5b-9, and amplified expression of C3aR/C5aR in lesions. The blockade of C3aR and C5aR arrested the progression of fibrosis by attenuating local complement activation and TGF-β/bone morphologic protein signaling as well as restoring decorin, which suggests a promising therapeutic strategy for patients with IPF.-Gu, H., Fisher, A. J., Mickler, E. A., Duerson, F., III, Cummings, O. W., Peters-Golden, M., Twigg, H. L., III, Woodruff, T. M., Wilkes, D. S., Vittal, R. Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Hongmei Gu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amanda J Fisher
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizabeth A Mickler
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Frank Duerson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Oscar W Cummings
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Homer L Twigg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - David S Wilkes
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ragini Vittal
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
98
|
Lamar KM, Miller T, Dellefave-Castillo L, McNally EM. Genotype-Specific Interaction of Latent TGFβ Binding Protein 4 with TGFβ. PLoS One 2016; 11:e0150358. [PMID: 26918958 PMCID: PMC4769137 DOI: 10.1371/journal.pone.0150358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/12/2016] [Indexed: 01/06/2023] Open
Abstract
Latent TGFβ binding proteins are extracellular matrix proteins that bind latent TGFβ to form the large latent complex. Nonsynonymous polymorphisms in LTBP4, a member of the latent TGFβ binding protein gene family, have been linked to several human diseases, underscoring the importance of TGFβ regulation for a range of phenotypes. Because of strong linkage disequilibrium across the LTBP4 gene, humans have two main LTBP4 alleles that differ at four amino acid positions, referred to as IAAM and VTTT for the encoded residues. VTTT is considered the “risk” allele and associates with increased intracellular TGFβ signaling and more deleterious phenotypes in muscular dystrophy and other diseases. We now evaluated LTBP4 nsSNPs in dilated cardiomyopathy, a distinct disorder associated with TGFβ signaling. We stratified based on self-identified ethnicity and found that the LTBP4 VTTT allele is associated with increased risk of dilated cardiomyopathy in European Americans extending the diseases that associate with LTBP4 genotype. However, the association of LTBP4 SNPs with dilated cardiomyopathy was not observed in African Americans. To elucidate the mechanism by which LTBP4 genotype exerts this differential effect, TGFβ’s association with LTBP4 protein was examined. LTBP4 protein with the IAAM residues bound more latent TGFβ compared to the LTBP4 VTTT protein. Together these data provide support that LTBP4 genotype exerts its effect through differential avidity for TGFβ accounting for the differences in TGFβ signaling attributed to these two alleles.
Collapse
Affiliation(s)
- Kay-Marie Lamar
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Tamari Miller
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Lisa Dellefave-Castillo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Elizabeth M. McNally
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
99
|
Bayley CP, Ruiz Nivia HD, Dajani R, Jowitt TA, Collins RF, Rada H, Bird LE, Baldock C. Diversity between mammalian tolloid proteinases: Oligomerisation and non-catalytic domains influence activity and specificity. Sci Rep 2016; 6:21456. [PMID: 26902455 PMCID: PMC4763255 DOI: 10.1038/srep21456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/25/2016] [Indexed: 11/17/2022] Open
Abstract
The mammalian tolloid family of metalloproteinases is essential for tissue patterning and extracellular matrix assembly. The four members of the family: bone morphogenetic protein-1 (BMP-1), mammalian tolloid (mTLD), tolloid-like (TLL)-1 and TLL-2 differ in their substrate specificity and activity levels, despite sharing similar domain organization. We have previously described a model of substrate exclusion by dimerisation to explain differences in the activities of monomeric BMP-1 and dimers of mTLD and TLL-1. Here we show that TLL-2, the least active member of the tolloid family, is predominantly monomeric in solution, therefore it appears unlikely that substrate exclusion via dimerisation is a mechanism for regulating TLL-2 activity. X-ray scattering and electron microscopy structural and biophysical analyses reveal an elongated shape for the monomer and flexibility in the absence of calcium. Furthermore, we show that TLL-2 can cleave chordin in vitro, similar to other mammalian tolloids, but truncated forms of TLL-2 mimicking BMP-1 are unable to cleave chordin. However, both the N- and C-terminal non-catalytic domains from all mammalian tolloids bind chordin with high affinity. The mechanisms underlying substrate specificity and activity in the tolloid family are complex with variation between family members and depend on both multimerisation and substrate interaction.
Collapse
Affiliation(s)
- Christopher P. Bayley
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - Hilda D. Ruiz Nivia
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - Rana Dajani
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - Thomas A. Jowitt
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - Richard F. Collins
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Heather Rada
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, OX11 0FA, UK
| | - Louise E. Bird
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, OX11 0FA, UK
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
100
|
Perturbations of the cerebrovascular matrisome: A convergent mechanism in small vessel disease of the brain? J Cereb Blood Flow Metab 2016; 36:143-57. [PMID: 25853907 PMCID: PMC4758555 DOI: 10.1038/jcbfm.2015.62] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/17/2015] [Indexed: 02/08/2023]
Abstract
The term matrisome refers to the ensemble of proteins constituting the extracellular matrix (ECM) (core matrisome) as well as the proteins associated with the ECM. Every organ has an ECM with a unique composition that not only provides the support and anchorage for cells, but also controls fundamental cellular processes as diverse as differentiation, survival, proliferation, and polarity. The current knowledge of the matrisome of small brain vessels is reviewed with a focus on the basement membrane (BM), a specialized form of ECM located at the interface between endothelial cells, contractile cells (smooth muscle cells and pericytes), and astrocyte endfeet—a very strategic location in the communication pathway between the cerebral microcirculation and astrocytes. We discuss some of the most recent genetic data and relevant findings from experimental models of nonamyloid cerebral small vessel disease (SVD). We propose the concept that perturbations of the cerebrovascular matrisome is a convergent pathologic pathway in monogenic forms of SVD, and is likely relevant to the sporadic disease.
Collapse
|