51
|
Rodrigues FF, Harris TJC. Key roles of Arf small G proteins and biosynthetic trafficking for animal development. Small GTPases 2017; 10:403-410. [PMID: 28410007 DOI: 10.1080/21541248.2017.1304854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Although biosynthetic trafficking can function constitutively, it also functions specifically for certain developmental processes. These processes require either a large increase to biosynthesis or the biosynthesis and targeted trafficking of specific players. We review the conserved molecular mechanisms that direct biosynthetic trafficking, and discuss how their genetic disruption affects animal development. Specifically, we consider Arf small G proteins, such as Arf1 and Sar1, and their coat effectors, COPI and COPII, and how these proteins promote biosynthetic trafficking for cleavage of the Drosophila embryo, the growth of neuronal dendrites and synapses, extracellular matrix secretion for bone development, lumen development in epithelial tubes, notochord and neural tube development, and ciliogenesis. Specific need for the biosynthetic trafficking system is also evident from conserved CrebA/Creb3-like transcription factors increasing the expression of secretory machinery during several of these developmental processes. Moreover, dysfunctional trafficking leads to a range of developmental syndromes.
Collapse
Affiliation(s)
- Francisco F Rodrigues
- Department of Cell & Systems Biology, University of Toronto , Toronto , Ontario , Canada
| | - Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
52
|
Chung S, Kim S, Andrew DJ. Uncoupling apical constriction from tissue invagination. eLife 2017; 6. [PMID: 28263180 PMCID: PMC5338918 DOI: 10.7554/elife.22235] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 02/07/2017] [Indexed: 12/03/2022] Open
Abstract
Apical constriction is a widely utilized cell shape change linked to folding, bending and invagination of polarized epithelia. It remains unclear how apical constriction is regulated spatiotemporally during tissue invagination and how this cellular process contributes to tube formation in different developmental contexts. Using Drosophila salivary gland (SG) invagination as a model, we show that regulation of folded gastrulation expression by the Fork head transcription factor is required for apicomedial accumulation of Rho kinase and non-muscle myosin II, which coordinate apical constriction. We demonstrate that neither loss of spatially coordinated apical constriction nor its complete blockage prevent internalization and tube formation, although such manipulations affect the geometry of invagination. When apical constriction is disrupted, compressing force generated by a tissue-level myosin cable contributes to SG invagination. We demonstrate that fully elongated polarized SGs can form outside the embryo, suggesting that tube formation and elongation are intrinsic properties of the SG. DOI:http://dx.doi.org/10.7554/eLife.22235.001 Many organs in the human body – like the kidneys, lungs, and salivary glands – are organized as a single layer of cells that surround a hollow tube. There are a number of ways that cells can achieve this particular arrangement. In one mechanism, a small group of cells bud out of a single cell layer to become the end of a new tube or a new branch of an existing tube. Since all the cells are still connected, the first cells bring their neighbouring cells along behind them, rearranging these cells to form the walls of a tube. In addition to changing position, the cells must change their shape to form a tube. One crucial change in cell shape is called apical constriction, and involves the side of the cell facing the inside of the tube becoming smaller than the other sides. This creates cells with a wedge-like shape that can fit together to form the curved wall of the tube, similar to shaped bricks in an archway. Apical constriction has been widely studied and is controlled by proteins that act like motors moving along protein-based filaments; however the roles of apical constriction in tube formation have not been fully explained. Using the developing salivary glands of the fruit fly Drosophila melanogaster, Chung et al. confirmed that the motor protein known as myosin II controls apical constriction during tissue invagination. Further examination showed that proteins (called Fork Head and Fog) activate and localize an enzyme (Rho kinase) to control the localized accumulation of myosin II and thereby control apical constriction. Chung et al. then showed that salivary glands could still form tubes if apical constriction was blocked, indicating that it is not an essential part of tissue invagination in this organ. However, blocking apical constriction led the tube to develop unusual shapes at intermediate stages. More work is now needed to better understand the links between apical constriction, cell rearrangement and tissue invagination. These processes are fundamental for organs to form correctly in many organisms and understanding their control could have wide-ranging impacts. A better understanding of these processes may provide insight into how the tubes can form while keeping all the cells adequately supplied with oxygen and nutrients, and into diseases that result if there are defects in the invagination process. DOI:http://dx.doi.org/10.7554/eLife.22235.002
Collapse
Affiliation(s)
- SeYeon Chung
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Sangjoon Kim
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Deborah J Andrew
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
53
|
Wang JB, Lu HL, St. Leger RJ. The genetic basis for variation in resistance to infection in the Drosophila melanogaster genetic reference panel. PLoS Pathog 2017; 13:e1006260. [PMID: 28257468 PMCID: PMC5352145 DOI: 10.1371/journal.ppat.1006260] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/15/2017] [Accepted: 02/24/2017] [Indexed: 01/01/2023] Open
Abstract
Individuals vary extensively in the way they respond to disease but the genetic basis of this variation is not fully understood. We found substantial individual variation in resistance and tolerance to the fungal pathogen Metarhizium anisopliae Ma549 using the Drosophila melanogaster Genetic Reference Panel (DGRP). In addition, we found that host defense to Ma549 was correlated with defense to the bacterium Pseudomonas aeruginosa Pa14, and several previously published DGRP phenotypes including oxidative stress sensitivity, starvation stress resistance, hemolymph glucose levels, and sleep indices. We identified polymorphisms associated with differences between lines in both their mean survival times and microenvironmental plasticity, suggesting that lines differ in their ability to adapt to variable pathogen exposures. The majority of polymorphisms increasing resistance to Ma549 were sex biased, located in non-coding regions, had moderately large effect and were rare, suggesting that there is a general cost to defense. Nevertheless, host defense was not negatively correlated with overall longevity and fecundity. In contrast to Ma549, minor alleles were concentrated in the most Pa14-susceptible as well as the most Pa14-resistant lines. A pathway based analysis revealed a network of Pa14 and Ma549-resistance genes that are functionally connected through processes that encompass phagocytosis and engulfment, cell mobility, intermediary metabolism, protein phosphorylation, axon guidance, response to DNA damage, and drug metabolism. Functional testing with insertional mutagenesis lines indicates that 12/13 candidate genes tested influence susceptibility to Ma549. Many candidate genes have homologs identified in studies of human disease, suggesting that genes affecting variation in susceptibility are conserved across species.
Collapse
Affiliation(s)
- Jonathan B. Wang
- Department of Entomology, University of Maryland College Park, College Park, Maryland, United States of America
| | - Hsiao-Ling Lu
- Department of Entomology, University of Maryland College Park, College Park, Maryland, United States of America
| | - Raymond J. St. Leger
- Department of Entomology, University of Maryland College Park, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
54
|
Penney J, Mendell A, Zeng M, Tran K, Lymer J, Turner PV, Choleris E, MacLusky N, Lu R. LUMAN/CREB3 is a key regulator of glucocorticoid-mediated stress responses. Mol Cell Endocrinol 2017; 439:95-104. [PMID: 27789393 DOI: 10.1016/j.mce.2016.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 01/28/2023]
Abstract
Altered glucocorticoid sensitivity is believed to contribute to a number of human diseases, including inflammatory and autoimmune conditions as well as disorders characterized by abnormal hypothalamic-pituitary-adrenal axis (HPA) function. LUMAN (or CREB3), originally identified through its interaction with a cell cycle regulator HCFC1, is an endoplasmic reticulum membrane-bound transcription factor that is involved in the unfolded protein response. Here we demonstrate that LUMAN changes the glucocorticoid response by modulating the expression of the glucocorticoid receptor leading to an overall increase in GR activity. Luman-deficient mice exhibited a blunted stress response characterized by low levels of both anxiety and depressive-like behaviour in addition to low circulating corticosterone levels. These mice also have reduced dendritic branching in the CA3 region of the hippocampus, consistent with increased GR responses. These findings are consistent with the notion that elevated GR activities are the primary cause of the observed phenotype in these LUMAN-deficient mice. We thus postulate that LUMAN is a key regulator of GR-mediated signaling and modulates HPA axis reactivity.
Collapse
Affiliation(s)
- Jenna Penney
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Ari Mendell
- Department of Biomedical Sciences, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Minghua Zeng
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Khoa Tran
- Department of Biomedical Sciences, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Jennifer Lymer
- Department of Psychology, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Elena Choleris
- Department of Psychology, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Neil MacLusky
- Department of Biomedical Sciences, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Ray Lu
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
55
|
Abstract
The zebrafish skeleton shares many similarities with human and other vertebrate skeletons. Over the past years, work in zebrafish has provided an extensive understanding of the basic developmental mechanisms and cellular pathways directing skeletal development and homeostasis. This review will focus on the cell biology of cartilage and bone and how the basic cellular processes within chondrocytes and osteocytes function to assemble the structural frame of a vertebrate body. We will discuss fundamental functions of skeletal cells in production and secretion of extracellular matrix and cellular activities leading to differentiation of progenitors to mature cells that make up the skeleton. We highlight important examples where findings in zebrafish provided direction for the search for genes causing human skeletal defects and also how zebrafish research has proven important for validating candidate human disease genes. The work we cover here illustrates utility of zebrafish in unraveling molecular mechanisms of cellular functions necessary to form and maintain a healthy skeleton.
Collapse
Affiliation(s)
- Lauryn N Luderman
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States
| | - Gokhan Unlu
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States
| | - Ela W Knapik
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
56
|
Papaioannou A, Chevet E. Driving Cancer Tumorigenesis and Metastasis Through UPR Signaling. Curr Top Microbiol Immunol 2017; 414:159-192. [PMID: 28710693 DOI: 10.1007/82_2017_36] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the tumor microenvironment, cancer cells encounter both external and internal factors that can lead to the accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER) lumen, thus causing ER stress. When this happens, an adaptive mechanism named the Unfolded Protein Response (UPR) is triggered to help the cell cope with this change and restore protein homeostasis in the ER. Sequentially, one would expect that the activation of the three UPR branches, driven namely by IRE1, PERK, and ATF6, are crucial for the adaptation of cancer cells to the changing environment and thus for their survival and further propagation. Indeed, in the last few years, an increasing amount of studies has shown the implication of UPR signaling in different aspects of carcinogenesis and tumor progression. Features such as sustaining proliferation and resistance to cell death, genomic instability, altered metabolism, increased inflammation and tumor-immune infiltration, invasion and metastasis, and angiogenesis, defined as "the hallmarks of cancer", can be regulated by the UPR machinery. At the same time, new potential therapeutic interventions applicable to different kinds of cancers are being revealed. In order to describe the emerging role of UPR in cancer biology, these are the points that will be discussed in this chapter.
Collapse
Affiliation(s)
- Alexandra Papaioannou
- Inserm U1242 «Chemistry, Oncogenesis, Stress and Signaling», University of Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Avenue de la bataille Flandres Dunkerque, 35000, Rennes, France
| | - Eric Chevet
- Inserm U1242 «Chemistry, Oncogenesis, Stress and Signaling», University of Rennes 1, Rennes, France.
| |
Collapse
|
57
|
Scharaw S, Iskar M, Ori A, Boncompain G, Laketa V, Poser I, Lundberg E, Perez F, Beck M, Bork P, Pepperkok R. The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR. J Cell Biol 2016; 215:543-558. [PMID: 27872256 PMCID: PMC5119934 DOI: 10.1083/jcb.201601090] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 09/07/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022] Open
Abstract
Maintenance of EGFR plasma membrane levels is critical for cell functioning. Scharaw et al. demonstrate that endosomal RNF11 is required for transcriptional up-regulation of COPII components, specifically facilitating EGFR transport in response to its lysosomal degradation after EGF stimulation. Stimulation of cells with epidermal growth factor (EGF) induces internalization and partial degradation of the EGF receptor (EGFR) by the endo-lysosomal pathway. For continuous cell functioning, EGFR plasma membrane levels are maintained by transporting newly synthesized EGFRs to the cell surface. The regulation of this process is largely unknown. In this study, we find that EGF stimulation specifically increases the transport efficiency of newly synthesized EGFRs from the endoplasmic reticulum to the plasma membrane. This coincides with an up-regulation of the inner coat protein complex II (COPII) components SEC23B, SEC24B, and SEC24D, which we show to be specifically required for EGFR transport. Up-regulation of these COPII components requires the transcriptional regulator RNF11, which localizes to early endosomes and appears additionally in the cell nucleus upon continuous EGF stimulation. Collectively, our work identifies a new regulatory mechanism that integrates the degradation and transport of EGFR in order to maintain its physiological levels at the plasma membrane.
Collapse
Affiliation(s)
- Sandra Scharaw
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Murat Iskar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Alessandro Ori
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Gaelle Boncompain
- Institut Curie, Paris Sciences et Lettres Research University, 75248 Paris, France.,Institut Curie, Centre National de la Recherche Scientifique UMR144, 75248 Paris, France
| | - Vibor Laketa
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Emma Lundberg
- Science for Life Laboratory, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | - Franck Perez
- Institut Curie, Paris Sciences et Lettres Research University, 75248 Paris, France.,Institut Curie, Centre National de la Recherche Scientifique UMR144, 75248 Paris, France
| | - Martin Beck
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany.,Department of Bioinformatics, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Rainer Pepperkok
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
58
|
Krawczyk KK, Ekman M, Rippe C, Grossi M, Nilsson BO, Albinsson S, Uvelius B, Swärd K. Assessing the contribution of thrombospondin-4 induction and ATF6α activation to endoplasmic reticulum expansion and phenotypic modulation in bladder outlet obstruction. Sci Rep 2016; 6:32449. [PMID: 27581066 PMCID: PMC5007532 DOI: 10.1038/srep32449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/08/2016] [Indexed: 12/15/2022] Open
Abstract
Phenotypic modulation of smooth muscle cells is a hallmark of disease. The associated expansion of endoplasmic reticulum (ER) volume remains unexplained. Thrombospondin-4 was recently found to promote ATF6α activation leading to ER expansion. Using bladder outlet obstruction as a paradigm for phenotypic modulation, we tested if thrombospondin-4 is induced in association with ATF6α activation and ER expansion. Thrombospondin-4 was induced and ATF6α was activated after outlet obstruction in rodents. Increased abundance of spliced of Xbp1, another ER-stress sensor, and induction of Atf4 and Creb3l2 was also seen. Downstream of ATF6α, Calr, Manf, Sdf2l1 and Pdi increased as did ER size, whereas contractile markers were reduced. Overexpression of ATF6α, but not of thrombospondin-4, increased Calr, Manf, Sdf2l1 and Pdi and caused ER expansion, but the contractile markers were inert. Knockout of thrombospondin-4 neither affected bladder growth nor expression of ATF6α target genes, and repression of contractile markers was the same, even if ATF6α activation was curtailed. Increases of Xbp1s, Atf4 and Creb3l2 were similar. Our findings demonstrate reciprocal regulation of the unfolded protein response, including ATF6α activation and ER expansion, and reduced contractile differentiation in bladder outlet obstruction occurring independently of thrombospondin-4, which however is a sensitive indicator of obstruction.
Collapse
Affiliation(s)
| | - Mari Ekman
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mario Grossi
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Bengt Uvelius
- Department of Urology, Clinical Sciences, Lund University, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
59
|
Horiuchi K, Tohmonda T, Morioka H. The unfolded protein response in skeletal development and homeostasis. Cell Mol Life Sci 2016; 73:2851-69. [PMID: 27002737 PMCID: PMC11108572 DOI: 10.1007/s00018-016-2178-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/06/2016] [Accepted: 03/10/2016] [Indexed: 12/20/2022]
Abstract
Osteoblasts and chondrocytes produce a large number of extracellular matrix proteins to generate and maintain the skeletal system. To cope with their functions as secretory cells, these cells must acquire a considerable capacity for protein synthesis and also the machinery for the quality-control and transport of newly synthesized secreted proteins. The unfolded protein response (UPR) plays a crucial role during the differentiation of these cells to achieve this goal. Unexpectedly, however, studies in the past several years have revealed that the UPR has more extensive functions in skeletal development than was initially assumed, and the UPR critically orchestrates many facets of skeletal development and homeostasis. This review focuses on recent findings on the functions of the UPR in the differentiation of osteoblasts, chondrocytes, and osteoclasts. These findings may have a substantial impact on our understanding of bone metabolism and also on establishing treatments for congenital and acquired skeletal disorders.
Collapse
Affiliation(s)
- Keisuke Horiuchi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Department of Anti-aging Orthopedic Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takahide Tohmonda
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Anti-aging Orthopedic Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideo Morioka
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
60
|
Riedel F, Gillingham AK, Rosa-Ferreira C, Galindo A, Munro S. An antibody toolkit for the study of membrane traffic in Drosophila melanogaster. Biol Open 2016; 5:987-92. [PMID: 27256406 PMCID: PMC4958275 DOI: 10.1242/bio.018937] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of Drosophila melanogaster as a model organism has been pivotal to understanding the developmental processes of metazoans. However, the use of flies for studying subcellular organization is hampered by a paucity of reliable reagents to label specific organelles. Here, we describe the generation of mouse monoclonal antibodies against a set of markers of the secretory and endocytic pathways, along with goat polyclonal antibodies against two Golgi proteins. We show that the monoclonal antibodies are highly specific and sufficiently sensitive to detect endogenous proteins in crude extracts by immunoblotting with little background staining. By immunofluorescence the major compartments of the membrane traffic system (including the endoplasmic reticulum, the Golgi, and early and late endosomes) are labeled by at least one antibody. Moreover, the antibodies can be used to label organelles in fly tissues including salivary glands and wing imaginal discs. We anticipate that these antibodies will provide a useful tool kit to facilitate the investigation of how the endomembrane system functions and varies in the diverse tissue types of metazoans. Summary: We report the generation and characterization of set of monoclonal and polyclonal antibodies for labeling the major compartments of the secretory and endocytic pathways in Drosophila melanogaster.
Collapse
Affiliation(s)
- Falko Riedel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Alison K Gillingham
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Cláudia Rosa-Ferreira
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonio Galindo
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
61
|
Pastor-Cantizano N, Montesinos JC, Bernat-Silvestre C, Marcote MJ, Aniento F. p24 family proteins: key players in the regulation of trafficking along the secretory pathway. PROTOPLASMA 2016; 253:967-985. [PMID: 26224213 DOI: 10.1007/s00709-015-0858-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/13/2015] [Indexed: 05/20/2023]
Abstract
p24 family proteins have been known for a long time, but their functions have remained elusive. However, they are emerging as essential regulators of protein trafficking along the secretory pathway, influencing the composition, structure, and function of different organelles in the pathway, especially the ER and the Golgi apparatus. In addition, they appear to modulate the transport of specific cargos, including GPI-anchored proteins, G-protein-coupled receptors, or K/HDEL ligands. As a consequence, they have been shown to play specific roles in signaling, development, insulin secretion, and the pathogenesis of Alzheimer's disease. The search of new putative ligands may open the way to discover new functions for this fascinating family of proteins.
Collapse
Affiliation(s)
- Noelia Pastor-Cantizano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - Juan Carlos Montesinos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - César Bernat-Silvestre
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de València, Avenida Vicente Andrés Estellés, s/n, E-46100, Burjassot, Valencia, Spain.
| |
Collapse
|
62
|
Loganathan R, Lee JS, Wells MB, Grevengoed E, Slattery M, Andrew DJ. Ribbon regulates morphogenesis of the Drosophila embryonic salivary gland through transcriptional activation and repression. Dev Biol 2015; 409:234-250. [PMID: 26477561 DOI: 10.1016/j.ydbio.2015.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 01/08/2023]
Abstract
Transcription factors affect spatiotemporal patterns of gene expression often regulating multiple aspects of tissue morphogenesis, including cell-type specification, cell proliferation, cell death, cell polarity, cell shape, cell arrangement and cell migration. In this work, we describe a distinct role for Ribbon (Rib) in controlling cell shape/volume increases during elongation of the Drosophila salivary gland (SG). Notably, the morphogenetic changes in rib mutants occurred without effects on general SG cell attributes such as specification, proliferation and apoptosis. Moreover, the changes in cell shape/volume in rib mutants occurred without compromising epithelial-specific morphological attributes such as apicobasal polarity and junctional integrity. To identify the genes regulated by Rib, we performed ChIP-seq analysis in embryos driving expression of GFP-tagged Rib specifically in the SGs. To learn if the Rib binding sites identified in the ChIP-seq analysis were linked to changes in gene expression, we performed microarray analysis comparing RNA samples from age-matched wild-type and rib null embryos. From the superposed ChIP-seq and microarray gene expression data, we identified 60 genomic sites bound by Rib likely to regulate SG-specific gene expression. We confirmed several of the identified Rib targets by qRT-pCR and/or in situ hybridization. Our results indicate that Rib regulates cell growth and tissue shape in the Drosophila salivary gland via a diverse array of targets through both transcriptional activation and repression. Furthermore, our results suggest that autoregulation of rib expression may be a key component of the SG morphogenetic gene network.
Collapse
Affiliation(s)
- Rajprasad Loganathan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Joslynn S Lee
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Michael B Wells
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Elizabeth Grevengoed
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Matthew Slattery
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, United States
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
63
|
Novel roles of the unfolded protein response in the control of tumor development and aggressiveness. Semin Cancer Biol 2015; 33:67-73. [DOI: 10.1016/j.semcancer.2015.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022]
|
64
|
Bauke AC, Sasse S, Matzat T, Klämbt C. A transcriptional network controlling glial development in the Drosophila visual system. Development 2015; 142:2184-93. [DOI: 10.1242/dev.119750] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/28/2015] [Indexed: 01/07/2023]
Abstract
In the nervous system, glial cells need to be specified from a set of progenitor cells. In the developing Drosophila eye, perineurial glia proliferate and differentiate as wrapping glia in response to a neuronal signal conveyed by the FGF receptor pathway. To unravel the underlying transcriptional network we silenced all genes encoding predicted DNA-binding proteins in glial cells using RNAi. Dref and other factors of the TATA box-binding protein-related factor 2 (TRF2) complex were previously predicted to be involved in cellular metabolism and cell growth. Silencing of these genes impaired early glia proliferation and subsequent differentiation. Dref controls proliferation via activation of the Pdm3 transcription factor, whereas glial differentiation is regulated via Dref and the homeodomain protein Cut. Cut expression is controlled independently of Dref by FGF receptor activity. Loss- and gain-of-function studies show that Cut is required for glial differentiation and is sufficient to instruct the formation of membrane protrusions, a hallmark of wrapping glial morphology. Our work discloses a network of transcriptional regulators controlling the progression of a naïve perineurial glia towards the fully differentiated wrapping glia.
Collapse
Affiliation(s)
- Ann-Christin Bauke
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Sofia Sasse
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Till Matzat
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| |
Collapse
|
65
|
Retention of Ejaculate by Drosophila melanogaster Females Requires the Male-Derived Mating Plug Protein PEBme. Genetics 2015; 200:1171-9. [PMID: 26058847 DOI: 10.1534/genetics.115.176669] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/30/2015] [Indexed: 11/18/2022] Open
Abstract
Within the mated reproductive tracts of females of many taxa, seminal fluid proteins (SFPs) coagulate into a structure known as the mating plug (MP). MPs have diverse roles, including preventing female remating, altering female receptivity postmating, and being necessary for mated females to successfully store sperm. The Drosophila melanogaster MP, which is maintained in the mated female for several hours postmating, is comprised of a posterior MP (PMP) that forms quickly after mating begins and an anterior MP (AMP) that forms later. The PMP is composed of seminal proteins from the ejaculatory bulb (EB) of the male reproductive tract. To examine the role of the PMP protein PEBme in D. melanogaster reproduction, we identified an EB GAL4 driver and used it to target PEBme for RNA interference (RNAi) knockdown. PEBme knockdown in males compromised PMP coagulation in their mates and resulted in a significant reduction in female fertility, adversely affecting postmating uterine conformation, sperm storage, mating refractoriness, egg laying, and progeny generation. These defects resulted from the inability of females to retain the ejaculate in their reproductive tracts after mating. The uncoagulated MP impaired uncoupling by the knockdown male, and when he ultimately uncoupled, the ejaculate was often pulled out of the female. Thus, PEBme and MP coagulation are required for optimal fertility in D. melanogaster. Given the importance of the PMP for fertility, we identified additional MP proteins by mass spectrometry and found fertility functions for two of them. Our results highlight the importance of the MP and the proteins that comprise it in reproduction and suggest that in Drosophila the PMP is required to retain the ejaculate within the female reproductive tract, ensuring the storage of sperm by mated females.
Collapse
|
66
|
Singh N, Joshi R, Komurov K. HER2-mTOR signaling-driven breast cancer cells require ER-associated degradation to survive. Sci Signal 2015; 8:ra52. [PMID: 26012635 DOI: 10.1126/scisignal.aaa6922] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Targeting non-oncogenic vulnerabilities may provide additional therapeutic approaches in tumors that are resistant to oncogene-targeted therapy. Using a computational pathway-based approach, we interrogated clinical breast cancer genomic data sets for candidate non-oncogenic vulnerabilities in breast cancers that have genomic amplification of ERBB2, which encodes human epidermal growth factor 2 (HER2). HER2-positive (HER2(+)) breast cancers showed increased expression of genes encoding proteins in the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. Genetic ablation or pharmacological inhibition of ERAD led to irrecoverable ER stress and selectively killed HER2(+) breast cancer cells. Cell death caused by ERAD inhibition partially depended on increased HER2-mTOR signaling, which imposed an increased proteotoxic burden on the ER. Cell death in response to ER stress required the IRE1α-JNK pathway, which was selectively suppressed in HER2(+) breast cancers by phosphatases that inactivate JNK. Accordingly, the cytotoxicity of inhibiting ERAD as well as JNK phosphatases was synergistic in HER2(+) but not in HER2-negative breast cancer cells. Therefore, our study suggests that reactivation of oncogene-induced stress by targeting stress-adaptive pathways may be a beneficial approach for therapy-resistant breast cancers.
Collapse
Affiliation(s)
- Navneet Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rashika Joshi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA. Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
67
|
Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks. MICROARRAYS 2015; 4:255-69. [PMID: 27600224 PMCID: PMC4996389 DOI: 10.3390/microarrays4020255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/30/2015] [Indexed: 01/01/2023]
Abstract
Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions). Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.
Collapse
|
68
|
Kertai MD, Li YJ, Li YW, Ji Y, Alexander J, Newman MF, Smith PK, Joseph D, Mathew JP, Podgoreanu MV. Genome-wide association study of perioperative myocardial infarction after coronary artery bypass surgery. BMJ Open 2015; 5:e006920. [PMID: 25948407 PMCID: PMC4431169 DOI: 10.1136/bmjopen-2014-006920] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Identification of patient subpopulations susceptible to develop myocardial infarction (MI) or, conversely, those displaying either intrinsic cardioprotective phenotypes or highly responsive to protective interventions remain high-priority knowledge gaps. We sought to identify novel common genetic variants associated with perioperative MI in patients undergoing coronary artery bypass grafting using genome-wide association methodology. SETTING 107 secondary and tertiary cardiac surgery centres across the USA. PARTICIPANTS We conducted a stage I genome-wide association study (GWAS) in 1433 ethnically diverse patients of both genders (112 cases/1321 controls) from the Genetics of Myocardial Adverse Outcomes and Graft Failure (GeneMAGIC) study, and a stage II analysis in an expanded population of 2055 patients (225 cases/1830 controls) combined from the GeneMAGIC and Duke Perioperative Genetics and Safety Outcomes (PEGASUS) studies. Patients undergoing primary non-emergent coronary bypass grafting were included. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome variable was perioperative MI, defined as creatine kinase MB isoenzyme (CK-MB) values ≥10× upper limit of normal during the first postoperative day, and not attributable to preoperative MI. Secondary outcomes included postoperative CK-MB as a quantitative trait, or a dichotomised phenotype based on extreme quartiles of the CK-MB distribution. RESULTS Following quality control and adjustment for clinical covariates, we identified 521 single nucleotide polymorphisms in the stage I GWAS analysis. Among these, 8 common variants in 3 genes or intergenic regions met p<10(-5) in stage II. A secondary analysis using CK-MB as a quantitative trait (minimum p=1.26×10(-3) for rs609418), or a dichotomised phenotype based on extreme CK-MB values (minimum p=7.72×10(-6) for rs4834703) supported these findings. Pathway analysis revealed that genes harbouring top-scoring variants cluster in pathways of biological relevance to extracellular matrix remodelling, endoplasmic reticulum-to-Golgi transport and inflammation. CONCLUSIONS Using a two-stage GWAS and pathway analysis, we identified and prioritised several potential susceptibility loci for perioperative MI.
Collapse
Affiliation(s)
- Miklos D Kertai
- Division of Cardiothoracic Anesthesiology, Duke University, Durham, North Carolina, USA
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
- Duke Molecular Physiology Institute; Duke University, Durham, North Carolina, USA
| | - Yen-Wei Li
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Yunqi Ji
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - John Alexander
- Division of Cardiology, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute; Duke University, Durham, North Carolina, USA
| | - Mark F Newman
- Division of Cardiothoracic Anesthesiology, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute; Duke University, Durham, North Carolina, USA
| | - Peter K Smith
- Cardiac Surgery; Duke University, Durham, North Carolina, USA
| | - Diane Joseph
- Duke Clinical Research Institute; Duke University, Durham, North Carolina, USA
| | - Joseph P Mathew
- Division of Cardiothoracic Anesthesiology, Duke University, Durham, North Carolina, USA
| | - Mihai V Podgoreanu
- Division of Cardiothoracic Anesthesiology, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute; Duke University, Durham, North Carolina, USA
| |
Collapse
|
69
|
Navis A, Bagnat M. Developing pressures: fluid forces driving morphogenesis. Curr Opin Genet Dev 2015; 32:24-30. [PMID: 25698116 PMCID: PMC4470832 DOI: 10.1016/j.gde.2015.01.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/27/2015] [Indexed: 11/26/2022]
Abstract
Over several decades genetic studies have unraveled many molecular mechanisms that underlie the signaling networks guiding morphogenesis, but the mechanical forces at work remain much less well understood. Accumulation of fluid within a luminal space can generate outward hydrostatic pressure capable of shaping morphogenesis at several scales, ranging from individual organs to the entire vertebrate body-plan. Here, we focus on recent work that uncovered mechanical roles for fluid secretion during morphogenesis. Identifying the roles and regulation of fluid secretion will be instrumental for understanding the mechanics of morphogenesis as well as many human diseases of complex genetic and environmental origin including secretory diarrheas and scoliosis.
Collapse
Affiliation(s)
- Adam Navis
- Department of Cell Biology, Duke University Medical Center, 333B Nanaline Duke Bldg., Box 3709, Durham, NC, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical Center, 333B Nanaline Duke Bldg., Box 3709, Durham, NC, USA.
| |
Collapse
|
70
|
Fox RM, Andrew DJ. Changes in organelle position and epithelial architecture associated with loss of CrebA. Biol Open 2015; 4:317-30. [PMID: 25681391 PMCID: PMC4359738 DOI: 10.1242/bio.201411205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drosophila CrebA facilitates high-level secretion by transcriptional upregulation of the protein components of the core secretory machinery. In CrebA mutant embryos, both salivary gland (SG) morphology and epidermal cuticle secretion are abnormal, phenotypes similar to those observed with mutations in core secretory pathway component genes. Here, we examine the cellular defects associated with CrebA loss in the SG epithelium. Apically localized secretory vesicles are smaller and less abundant, consistent with overall reductions in secretion. Unexpectedly, global mislocalization of cellular organelles and excess membrane accumulation in the septate junctions (SJs) are also observed. Whereas mutations in core secretory pathway genes lead to organelle localization defects similar to those of CrebA mutants, they have no effect on SJ-associated membrane. Mutations in tetraspanin genes, which are normally repressed by CrebA, have mild defects in SJ morphology that are rescued by simultaneous CrebA loss. Correspondingly, removal of several tetraspanins gives partial rescue of the CrebA SJ phenotype, supporting a role for tetraspanins in SJ organization.
Collapse
Affiliation(s)
- Rebecca M Fox
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah J Andrew
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
71
|
Hadžić T, Park D, Abruzzi KC, Yang L, Trigg JS, Rohs R, Rosbash M, Taghert PH. Genome-wide features of neuroendocrine regulation in Drosophila by the basic helix-loop-helix transcription factor DIMMED. Nucleic Acids Res 2015; 43:2199-215. [PMID: 25634895 PMCID: PMC4344488 DOI: 10.1093/nar/gku1377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuroendocrine (NE) cells use large dense core vesicles (LDCVs) to traffic, process, store and secrete neuropeptide hormones through the regulated secretory pathway. The dimmed (DIMM) basic helix-loop-helix transcription factor of Drosophila controls the level of regulated secretory activity in NE cells. To pursue its mechanisms, we have performed two independent genome-wide analyses of DIMM's activities: (i) in vivo chromatin immunoprecipitation (ChIP) to define genomic sites of DIMM occupancy and (ii) deep sequencing of purified DIMM neurons to characterize their transcriptional profile. By this combined approach, we showed that DIMM binds to conserved E-boxes in enhancers of 212 genes whose expression is enriched in DIMM-expressing NE cells. DIMM binds preferentially to certain E-boxes within first introns of specific gene isoforms. Statistical machine learning revealed that flanking regions of putative DIMM binding sites contribute to its DNA binding specificity. DIMM's transcriptional repertoire features at least 20 LDCV constituents. In addition, DIMM notably targets the pro-secretory transcription factor, creb-A, but significantly, DIMM does not target any neuropeptide genes. DIMM therefore prescribes the scale of secretory activity in NE neurons, by a systematic control of both proximal and distal points in the regulated secretory pathway.
Collapse
Affiliation(s)
- Tarik Hadžić
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Dongkook Park
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Katharine C Abruzzi
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Lin Yang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer S Trigg
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Remo Rohs
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Paul H Taghert
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
72
|
Fox RM, Andrew DJ. Transcriptional regulation of secretory capacity by bZip transcription factors. ACTA ACUST UNITED AC 2014; 10:28-51. [PMID: 25821458 PMCID: PMC4374484 DOI: 10.1007/s11515-014-1338-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cells of specialized secretory organs expand their secretory pathways to accommodate the increased protein load necessary for their function. The endoplasmic reticulum (ER), the Golgi apparatus and the secretory vesicles, expand not only the membrane components but also the protein machinery required for increased protein production and transport. Increased protein load causes an ER stress response akin to the Unfolded Protein Response (UPR). Recent work has implicated several bZip transcription factors in the regulation of protein components of the early secretory pathway necessary to alleviate this stress. Here, we highlight eight bZip transcription factors in regulating secretory pathway component genes. These include components of the three canonical branches of the UPR-ATF4, XBP1, and ATF6, as well as the five members of the Creb3 family of transcription factors.We review findings from both invertebrate and vertebrate model systems suggesting that all of these proteins increase secretory capacity in response to increased protein load. Finally, we propose that the Creb3 family of factors may have a dual role in secretory cell differentiation by also regulating the pathways necessary for cell cycle exit during terminal differentiation.
Collapse
Affiliation(s)
- Rebecca M Fox
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah J Andrew
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
73
|
Cancino J, Capalbo A, Di Campli A, Giannotta M, Rizzo R, Jung JE, Di Martino R, Persico M, Heinklein P, Sallese M, Luini A. Control systems of membrane transport at the interface between the endoplasmic reticulum and the Golgi. Dev Cell 2014; 30:280-94. [PMID: 25117681 DOI: 10.1016/j.devcel.2014.06.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/08/2014] [Accepted: 06/23/2014] [Indexed: 10/24/2022]
Abstract
A fundamental property of cellular processes is to maintain homeostasis despite varying internal and external conditions. Within the membrane transport apparatus, variations in membrane fluxes from the endoplasmic reticulum (ER) to the Golgi complex are balanced by opposite fluxes from the Golgi to the ER to maintain homeostasis between the two organelles. Here we describe a molecular device that balances transport fluxes by integrating transduction cascades with the transport machinery. Specifically, ER-to-Golgi transport activates the KDEL receptor at the Golgi, which triggers a cascade that involves Gs and adenylyl cyclase and phosphodiesterase isoforms and then PKA activation and results in the phosphorylation of transport machinery proteins. This induces retrograde traffic to the ER and balances transport fluxes between the ER and Golgi. Moreover, the KDEL receptor activates CREB1 and other transcription factors that upregulate transport-related genes. Thus, a Golgi-based control system maintains transport homeostasis through both signaling and transcriptional networks.
Collapse
Affiliation(s)
- Jorge Cancino
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy; Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Quillota 980, Viña del Mar 2520000, Chile.
| | - Anita Capalbo
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Antonella Di Campli
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Monica Giannotta
- Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro (Chieti), Italy
| | - Riccardo Rizzo
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Juan E Jung
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Istituto di Ricerca Diagnostica e Nucleare (SDN), 80143 Napoli, Italy
| | - Rosaria Di Martino
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Maria Persico
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Istituto di Ricerca Diagnostica e Nucleare (SDN), 80143 Napoli, Italy
| | - Petra Heinklein
- Institut für Biochemie Charité, Universitätsmedizin Berlin, CrossOver Charitéplatz 1/Sitz, Virchowweg 6, 10117 Berlin, Germany
| | - Michele Sallese
- Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro (Chieti), Italy
| | - Alberto Luini
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
74
|
Neuronal remodeling during metamorphosis is regulated by the alan shepard (shep) gene in Drosophila melanogaster. Genetics 2014; 197:1267-83. [PMID: 24931409 DOI: 10.1534/genetics.114.166181] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptidergic neurons are a group of neuronal cells that synthesize and secrete peptides to regulate a variety of biological processes. To identify genes controlling the development and function of peptidergic neurons, we conducted a screen of 545 splice-trap lines and identified 28 loci that drove expression in peptidergic neurons when crossed to a GFP reporter transgene. Among these lines, an insertion in the alan shepard (shep) gene drove expression specifically in most peptidergic neurons. shep transcripts and SHEP proteins were detected primarily and broadly in the central nervous system (CNS) in embryos, and this expression continued into the adult stage. Loss of shep resulted in late pupal lethality, reduced adult life span, wing expansion defects, uncoordinated adult locomotor activities, rejection of males by virgin females, and reduced neuropil area and reduced levels of multiple presynaptic markers throughout the adult CNS. Examination of the bursicon neurons in shep mutant pharate adults revealed smaller somata and fewer axonal branches and boutons, and all of these cellular phenotypes were fully rescued by expression of the most abundant wild-type shep isoform. In contrast to shep mutant animals at the pharate adult stage, shep mutant larvae displayed normal bursicon neuron morphologies. Similarly, shep mutant adults were uncoordinated and weak, while shep mutant larvae displayed largely, although not entirely, normal locomotor behavior. Thus, shep played an important role in the metamorphic development of many neurons.
Collapse
|
75
|
Chandran RR, Iordanou E, Ajja C, Wille M, Jiang L. Gene expression profiling of Drosophila tracheal fusion cells. Gene Expr Patterns 2014; 15:112-23. [PMID: 24928808 DOI: 10.1016/j.gep.2014.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
Abstract
The Drosophila trachea is a premier genetic system to investigate the fundamental mechanisms of tubular organ formation. Tracheal fusion cells lead the branch fusion process to form an interconnected tubular network. Therefore, fusion cells in the Drosophila trachea will be an excellent model to study branch fusion in mammalian tubular organs, such as kidneys and blood vessels. The fusion process is a dynamic cellular process involving cell migration, adhesion, vesicle trafficking, cytoskeleton rearrangement, and membrane fusion. To understand how these cellular events are coordinated, we initiated the critical step to assemble a gene expression profile of fusion cells. For this study, we analyzed the expression of 234 potential tracheal-expressed genes in fusion cells during fusion cell development. 143 Tracheal genes were found to encode transcription factors, signal proteins, cytoskeleton and matrix proteins, transporters, and proteins with unknown function. These genes were divided into four subgroups based on their levels of expression in fusion cells compared to neighboring non-fusion cells revealed by in situ hybridization: (1) genes that have relative high abundance in fusion cells, (2) genes that are dynamically expressed in fusion cells, (3) genes that have relative low abundance in fusion cells, and (4) genes that are expressed at similar levels in fusion cells and non-fusion tracheal cells. This study identifies the expression profile of fusion cells and hypothetically suggests genes which are necessary for the fusion process and which play roles in distinct stages of fusion, as indicated by the location and timing of expression. These data will provide the basis for a comprehensive understanding of the molecular and cellular mechanisms of branch fusion.
Collapse
Affiliation(s)
- Rachana R Chandran
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Ekaterini Iordanou
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Crystal Ajja
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Michael Wille
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States.
| |
Collapse
|
76
|
Ying Z, Zhang R, Verge VMK, Misra V. Cloning and characterization of rat Luman/CREB3, a transcription factor highly expressed in nervous system tissue. J Mol Neurosci 2014; 55:347-54. [PMID: 24894591 DOI: 10.1007/s12031-014-0330-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/12/2014] [Indexed: 11/24/2022]
Abstract
Human Luman/CREB3 is a basic leucine zipper transcription factor involved in regulation of the unfolded protein response, dendritic cell maturation, and cell migration. But despite reported expression in primary sensory neurons, little is known about its role in the nervous system. To begin investigations into its role in the adult rat nervous system, the rat Luman/CREB3 coding sequence was isolated so its expression within the nervous system could be determined. The rat Luman/CREB3 clone contains a full-length open reading frame encoding 387 amino acids. The recombinant protein generated from this clone activated transcription in a manner equivalent to human Luman/CREB3 from a CAT reporter plasmid construct containing the unfolded protein response element. Quantitative RT-PCR revealed that rat Luman/CREB3 transcripts in a variety of rat tissues with the highest levels in nervous system tissue. In situ hybridization performed on tissue sections confirmed the findings and demonstrated that the Luman/CREB3 mRNA hybridization signal localizes to neurons and satellite glial cells in dorsal root ganglia, the cytoplasm of hepatocytes in liver, and the hippocampal pyramidal cell layers of CA1 and CA3 and the granular cell layer of the dentate gyrus. Collectively, these findings support a role for Luman/CREB3 in the regulation of nervous system function.
Collapse
Affiliation(s)
- Zhengxin Ying
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | | | | | |
Collapse
|
77
|
Chung S, Hanlon CD, Andrew DJ. Building and specializing epithelial tubular organs: the Drosophila salivary gland as a model system for revealing how epithelial organs are specified, form and specialize. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 3:281-300. [PMID: 25208491 DOI: 10.1002/wdev.140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/02/2014] [Accepted: 04/15/2014] [Indexed: 12/28/2022]
Abstract
The past two decades have witnessed incredible progress toward understanding the genetic and cellular mechanisms of organogenesis. Among the organs that have provided key insight into how patterning information is integrated to specify and build functional body parts is the Drosophila salivary gland, a relatively simple epithelial organ specialized for the synthesis and secretion of high levels of protein. Here, we discuss what the past couple of decades of research have revealed about organ specification, development, specialization, and death, and what general principles emerge from these studies.
Collapse
Affiliation(s)
- SeYeon Chung
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Caitlin D Hanlon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
78
|
Regulating the large Sec7 ARF guanine nucleotide exchange factors: the when, where and how of activation. Cell Mol Life Sci 2014; 71:3419-38. [PMID: 24728583 DOI: 10.1007/s00018-014-1602-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Eukaryotic cells require selective sorting and transport of cargo between intracellular compartments. This is accomplished at least in part by vesicles that bud from a donor compartment, sequestering a subset of resident protein "cargos" destined for transport to an acceptor compartment. A key step in vesicle formation and targeting is the recruitment of specific proteins that form a coat on the outside of the vesicle in a process requiring the activation of regulatory GTPases of the ARF family. Like all such GTPases, ARFs cycle between inactive, GDP-bound, and membrane-associated active, GTP-bound, conformations. And like most regulatory GTPases the activating step is slow and thought to be rate limiting in cells, requiring the use of ARF guanine nucleotide exchange factor (GEFs). ARF GEFs are characterized by the presence of a conserved, catalytic Sec7 domain, though they also contain motifs or additional domains that confer specificity to localization and regulation of activity. These domains have been used to define and classify five different sub-families of ARF GEFs. One of these, the BIG/GBF1 family, includes three proteins that are each key regulators of the secretory pathway. GEF activity initiates the coating of nascent vesicles via the localized generation of activated ARFs and thus these GEFs are the upstream regulators that define the site and timing of vesicle production. Paradoxically, while we have detailed molecular knowledge of how GEFs activate ARFs, we know very little about how GEFs are recruited and/or activated at the right time and place to initiate transport. This review summarizes the current knowledge of GEF regulation and explores the still uncertain mechanisms that position GEFs at "budding ready" membrane sites to generate highly localized activated ARFs.
Collapse
|
79
|
Feng YX, Sokol ES, Del Vecchio CA, Sanduja S, Claessen JHL, Proia TA, Jin DX, Reinhardt F, Ploegh HL, Wang Q, Gupta PB. Epithelial-to-mesenchymal transition activates PERK-eIF2α and sensitizes cells to endoplasmic reticulum stress. Cancer Discov 2014; 4:702-15. [PMID: 24705811 DOI: 10.1158/2159-8290.cd-13-0945] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Epithelial-to-mesenchymal transition (EMT) promotes both tumor progression and drug resistance, yet few vulnerabilities of this state have been identified. Using selective small molecules as cellular probes, we show that induction of EMT greatly sensitizes cells to agents that perturb endoplasmic reticulum (ER) function. This sensitivity to ER perturbations is caused by the synthesis and secretion of large quantities of extracellular matrix (ECM) proteins by EMT cells. Consistent with their increased secretory output, EMT cells display a branched ER morphology and constitutively activate the PERK-eIF2α axis of the unfolded protein response (UPR). Protein kinase RNA-like ER kinase (PERK) activation is also required for EMT cells to invade and metastasize. In human tumor tissues, EMT gene expression correlates strongly with both ECM and PERK-eIF2α genes, but not with other branches of the UPR. Taken together, our findings identify a novel vulnerability of EMT cells, and demonstrate that the PERK branch of the UPR is required for their malignancy. SIGNIFICANCE EMT drives tumor metastasis and drug resistance, highlighting the need for therapies that target this malignant subpopulation. Our findings identify a previously unrecognized vulnerability of cancer cells that have undergone an EMT: sensitivity to ER stress. We also find that PERK-eIF2α signaling, which is required to maintain ER homeostasis, is also indispensable for EMT cells to invade and metastasize.
Collapse
Affiliation(s)
- Yu-Xiong Feng
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ethan S Sokol
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North CarolinaAuthors' Affiliations:Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Catherine A Del Vecchio
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Sandhya Sanduja
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Jasper H L Claessen
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Theresa A Proia
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Dexter X Jin
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North CarolinaAuthors' Affiliations:Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North CarolinaAuthors' Affiliations:Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Qiu Wang
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Piyush B Gupta
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North CarolinaAuthors' Affiliations:Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts
| |
Collapse
|
80
|
Sánchez-Herrero E. Hox targets and cellular functions. SCIENTIFICA 2013; 2013:738257. [PMID: 24490109 PMCID: PMC3892749 DOI: 10.1155/2013/738257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function.
Collapse
Affiliation(s)
- Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
81
|
Unlu G, Levic DS, Melville DB, Knapik EW. Trafficking mechanisms of extracellular matrix macromolecules: insights from vertebrate development and human diseases. Int J Biochem Cell Biol 2013; 47:57-67. [PMID: 24333299 DOI: 10.1016/j.biocel.2013.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/01/2013] [Accepted: 11/10/2013] [Indexed: 12/19/2022]
Abstract
Cellular life depends on protein transport and membrane traffic. In multicellular organisms, membrane traffic is required for extracellular matrix deposition, cell adhesion, growth factor release, and receptor signaling, which are collectively required to integrate the development and physiology of tissues and organs. Understanding the regulatory mechanisms that govern cargo and membrane flow presents a prime challenge in cell biology. Extracellular matrix (ECM) secretion remains poorly understood, although given its essential roles in the regulation of cell migration, differentiation, and survival, ECM secretion mechanisms are likely to be tightly controlled. Recent studies in vertebrate model systems, from fishes to mammals and in human patients, have revealed complex and diverse loss-of-function phenotypes associated with mutations in components of the secretory machinery. A broad spectrum of diseases from skeletal and cardiovascular to neurological deficits have been linked to ECM trafficking. These discoveries have directly challenged the prevailing view of secretion as an essential but monolithic process. Here, we will discuss the latest findings on mechanisms of ECM trafficking in vertebrates.
Collapse
Affiliation(s)
- Gokhan Unlu
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel S Levic
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David B Melville
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ela W Knapik
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
82
|
Physiological functions of endoplasmic reticulum stress transducer OASIS in central nervous system. Anat Sci Int 2013; 89:11-20. [PMID: 24242870 PMCID: PMC3889286 DOI: 10.1007/s12565-013-0214-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/27/2013] [Indexed: 02/02/2023]
Abstract
Eukaryotic cells can adapt to endoplasmic reticulum (ER) dysfunction by producing diverse signals from the ER to the cytosol or nucleus. These signaling pathways are collectively known as the unfolded protein response (UPR). The canonical branches of the UPR are mediated by three ER membrane-bound proteins: double-stranded RNA-dependent protein kinase (PKR)-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme-1 (IRE1) and activating transcription factor 6 (ATF6). These ER stress transducers basically play important roles in cell survival after ER stress. Recently, novel types of ER stress transducers that share a region of high sequence similarity with ATF6 have been identified. They have a transmembrane domain, which allows them to associate with the ER, and possess a transcription-activation domain and a basic leucine zipper (bZIP) domain. These membrane-bound bZIP transcription factors include OASIS, BBF2H7 CREBH, CREB4 and Luman, and are collectively referred to as OASIS family members. Despite their structural similarities with ATF6, differences in activating stimuli and tissue distribution indicate specialized functions of each member on regulating UPR signaling in specific organs and tissues. One of them, OASIS, is expressed preferentially in astrocytes in the central nervous system (CNS). OASIS temporally regulates the differentiation from neural precursor cells into astrocytes to promote the expression of Glial Cell Missing 1 through dynamic interactions among OASIS family members followed by accelerating demethylation of the Gfap promoter. This review is a summary of our current understanding of the physiological functions of OASIS in the CNS.
Collapse
|
83
|
Abrams EW, Cheng YL, Andrew DJ. Drosophila KDEL receptor function in the embryonic salivary gland and epidermis. PLoS One 2013; 8:e77618. [PMID: 24204897 PMCID: PMC3799842 DOI: 10.1371/journal.pone.0077618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022] Open
Abstract
Core components of the secretory pathway have largely been identified and studied in single cell systems such as the budding yeast S. cerevisiae or in mammalian tissue culture. These studies provide details on the molecular functions of the secretory machinery; they fail, however, to provide insight into the role of these proteins in the context of specialized organs of higher eukaryotes. Here, we identify and characterize the first loss-of-function mutations in a KDEL receptor gene from higher eukaryotes. Transcripts from the Drosophila KDEL receptor gene KdelR - formerly known as dmErd2 - are provided maternally and, at later stages, are at elevated levels in several embryonic cell types, including the salivary gland secretory cells, the fat body and the epidermis. We show that, unlike Saccharomyces cerevisiae Erd2 mutants, which are viable, KdelR mutations are early larval lethal, with homozygous mutant animals dying as first instar larvae. KdelR mutants have larval cuticle defects similar to those observed with loss-of-function mutations in other core secretory pathway genes and with mutations in CrebA, which encodes a bZip transcription factor that coordinately upregulates secretory pathway component genes in specialized secretory cell types. Using the salivary gland, we demonstrate a requirement for KdelR in maintaining the ER pool of a subset of soluble resident ER proteins. These studies underscore the utility of the Drosophila salivary gland as a unique system for studying the molecular machinery of the secretory pathway in vivo in a complex eukaryote.
Collapse
Affiliation(s)
- Elliott W. Abrams
- Department of Cell Biology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yim Ling Cheng
- Department of Cell Biology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Deborah J. Andrew
- Department of Cell Biology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
84
|
Venditti R, Wilson C, De Matteis MA. Exiting the ER: what we know and what we don't. Trends Cell Biol 2013; 24:9-18. [PMID: 24076263 DOI: 10.1016/j.tcb.2013.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/07/2013] [Accepted: 08/13/2013] [Indexed: 01/17/2023]
Abstract
The vast majority of proteins that are transported to different cellular compartments and secreted from the cell require coat protein complex II (COPII) for export from the endoplasmic reticulum (ER). Many of the molecular mechanisms underlying COPII assembly are understood in great detail, but it is becoming increasingly evident that this basic machinery is insufficient to account for diverse aspects of protein export from the ER that are observed in vivo. Here we review recent data that have furthered our mechanistic understanding of COPII assembly and, in particular, how genetic diseases associated with the early secretory pathway have added fundamental insights into the regulation of ER-derived carrier formation. We also highlight some unresolved issues that future work should address to better understand the physiology of COPII-mediated transport.
Collapse
Affiliation(s)
- Rossella Venditti
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, Naples 80131, Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, Naples 80131, Italy
| | | |
Collapse
|
85
|
Iyer SC, Ramachandran Iyer EP, Meduri R, Rubaharan M, Kuntimaddi A, Karamsetty M, Cox DN. Cut, via CrebA, transcriptionally regulates the COPII secretory pathway to direct dendrite development in Drosophila. J Cell Sci 2013; 126:4732-45. [PMID: 23902691 DOI: 10.1242/jcs.131144] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dendrite development is crucial in the formation of functional neural networks. Recent studies have provided insights into the involvement of secretory transport in dendritogenesis, raising the question of how the secretory pathway is controlled to direct dendritic elaboration. Here, we identify a functional link between transcriptional regulatory programs and the COPII secretory machinery in driving dendrite morphogenesis in Drosophila dendritic arborization (da) sensory neurons. MARCM analyses and gain-of-function studies reveal cell-autonomous requirements for the COPII coat protein Sec31 in mediating da neuron dendritic homeostasis. We demonstrate that the homeodomain protein Cut transcriptionally regulates Sec31 in addition to other components of COPII secretory transport, to promote dendrite elaboration, accompanied by increased satellite secretory endoplasmic reticulum (ER) and Golgi outposts primarily localized to dendritic branch points. We further establish a novel functional role for the transcription factor CrebA in regulating dendrite development and show that Cut initiates a gene expression cascade through CrebA that coordinately affects the COPII machinery to mediate dendritic morphology.
Collapse
|
86
|
Fox RM, Vaishnavi A, Maruyama R, Andrew DJ. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA. Development 2013; 140:2160-71. [PMID: 23578928 DOI: 10.1242/dev.092924] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.
Collapse
Affiliation(s)
- Rebecca M Fox
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2196, USA
| | | | | | | |
Collapse
|
87
|
Thiel K, Heier C, Haberl V, Thul PJ, Oberer M, Lass A, Jäckle H, Beller M. The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage. J Cell Sci 2013; 126:2198-212. [PMID: 23525007 DOI: 10.1242/jcs.120493] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lipid droplets (LDs) are specialized cell organelles for the storage of energy-rich lipids. Although lipid storage is a conserved feature of all cells and organisms, little is known about fundamental aspects of the cell biology of LDs, including their biogenesis, structural assembly and subcellular positioning, and the regulation of organismic energy homeostasis. We identified a novel LD-associated protein family, represented by the Drosophila protein CG9186 and its murine homolog MGI:1916082. In the absence of LDs, both proteins localize at the endoplasmic reticulum (ER). Upon lipid storage induction, they translocate to LDs using an evolutionarily conserved targeting mechanism that acts through a 60-amino-acid targeting motif in the center of the CG9186 protein. Overexpression of CG9186, and MGI:1916082, causes clustering of LDs in both tissue culture and salivary gland cells, whereas RNAi knockdown of CG9186 results in a reduction of LDs. Organismal RNAi knockdown of CG9186 results in a reduction in lipid storage levels of the fly. The results indicate that we identified the first members of a novel and evolutionarily conserved family of lipid storage regulators, which are also required to properly position LDs within cells.
Collapse
Affiliation(s)
- Katharina Thiel
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Barbosa S, Fasanella G, Carreira S, Llarena M, Fox R, Barreca C, Andrew D, O'Hare P. An orchestrated program regulating secretory pathway genes and cargos by the transmembrane transcription factor CREB-H. Traffic 2013; 14:382-98. [PMID: 23279168 DOI: 10.1111/tra.12038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/14/2022]
Abstract
CREB3 proteins comprise a set of ER-localized bZip transcription factors defined by the presence of a transmembrane domain. They are regulated by inter-compartmental transport, Golgi cleavage and nuclear transport where they promote appropriate transcriptional responses. Although CREB3 proteins play key roles in differentiation, inflammation and metabolism, a general framework relating their defining features to these diverse activities is lacking. We identify unique features of CREB3 organization including the ATB domain, which we show it is essential for transcriptional activity. This domain is absent in all other human bZip factors, but conserved in Drosophila CREBA, which controls secretory pathway genes (SPGs). Furthermore, each of the five human CREB3 factors was capable of activating SPGs in Drosophila, dependent upon the ATB domain. Expression of the CREB3 protein, CREB-H, in 293 cells, upregulated genes involved in secretory capacity, extracellular matrix formation and lipid metabolism and increased secretion of specific cargos. In liver cells, which normally express CREB-H, the active form specifically induced secretion of apolipoproteins, including ApoA-IV, ApoAI, consistent with data implicating CREB-H in metabolic homeostasis. Based on these data and other recent studies, we propose a general role for the CREB3 family in regulating secretory capacity, with particular relevance to specialized cargos.
Collapse
Affiliation(s)
- Sónia Barbosa
- Department of Medicine, Imperial College, London, W2 1PG, UK
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Romero N, Dumur CI, Martinez H, García IA, Monetta P, Slavin I, Sampieri L, Koritschoner N, Mironov AA, De Matteis MA, Alvarez C. Rab1b overexpression modifies Golgi size and gene expression in HeLa cells and modulates the thyrotrophin response in thyroid cells in culture. Mol Biol Cell 2013; 24:617-32. [PMID: 23325787 PMCID: PMC3583665 DOI: 10.1091/mbc.e12-07-0530] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
An increase in Rab1b levels induces changes in Golgi size and in gene expression. These Rab1b-dependent changes require the activity of p38 mitogen-activated protein kinase and the cAMP-responsive element binding protein consensus binding. The results show a Rab1b increase in secretory cells after stimulation and suggest that this increase is required to elicit a secretory response. Rab1b belongs to the Rab-GTPase family that regulates membrane trafficking and signal transduction systems able to control diverse cellular activities, including gene expression. Rab1b is essential for endoplasmic reticulum–Golgi transport. Although it is ubiquitously expressed, its mRNA levels vary among different tissues. This work aims to characterize the role of the high Rab1b levels detected in some secretory tissues. We report that, in HeLa cells, an increase in Rab1b levels induces changes in Golgi size and gene expression. Significantly, analyses applied to selected genes, KDELR3, GM130 (involved in membrane transport), and the proto-oncogene JUN, indicate that the Rab1b increase acts as a molecular switch to control the expression of these genes at the transcriptional level, resulting in changes at the protein level. These Rab1b-dependent changes require the activity of p38 mitogen-activated protein kinase and the cAMP-responsive element-binding protein consensus binding site in those target promoter regions. Moreover, our results reveal that, in a secretory thyroid cell line (FRTL5), Rab1b expression increases in response to thyroid-stimulating hormone (TSH). Additionally, changes in Rab1b expression in FRTL5 cells modify the specific TSH response. Our results show, for the first time, that changes in Rab1b levels modulate gene transcription and strongly suggest that a Rab1b increase is required to elicit a secretory response.
Collapse
Affiliation(s)
- Nahuel Romero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
OASIS/CREB3L1 is induced by endoplasmic reticulum stress in human glioma cell lines and contributes to the unfolded protein response, extracellular matrix production and cell migration. PLoS One 2013; 8:e54060. [PMID: 23335989 PMCID: PMC3545929 DOI: 10.1371/journal.pone.0054060] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/06/2012] [Indexed: 11/19/2022] Open
Abstract
OASIS is a transcription factor similar to ATF6 that is activated by endoplasmic reticulum stress. In this study we investigated the expression of OASIS in human glioma cell lines and the effect of OASIS knock-down on the ER stress response and cell migration. OASIS mRNA was detected in three distinct glioma cell lines (U373, A172 and U87) and expression levels were increased upon treatment with ER stress-inducing compounds in the U373 and U87 lines. OASIS protein, which is glycosylated on Asn-513, was detected in the U373 and U87 glioma lines at low levels in control cells and protein expression was induced by ER stress. Knock-down of OASIS in human glioma cell lines resulted in an attenuated unfolded protein response to ER stress (reduced GRP78/BiP and GRP94 induction) and decreased expression of chondroitin sulfate proteoglycan extracellular matrix proteins, but induction of the collagen gene Col1a1 was unaffected. Cells in which OASIS was knocked-down exhibited altered cell morphology and reduced cell migration. These results suggest that OASIS is important for the ER stress response and maintenance of some extracellular matrix proteins in human glioma cells.
Collapse
|
91
|
Abstract
Multiple studies have shown that endomembranes can act as signaling platforms for plasma-membrane-originated signaling. In particular, the Golgi complex operates as a relay station for signaling, which is initiated by classical ligand-receptor systems at the plasma membrane, acting as a positive or negative regulator of these plasma-membrane signals. Thus, the Golgi complex has emerged as a hub for intracellular signaling. Furthermore, recent evidence has indicated that the Golgi complex can also trigger its own signaling cascades, which involve some of the molecular players that are classically engaged in signal transduction at the plasma membrane. This aspect of the Golgi complex, namely, the ability to generate autonomous signaling, has been experimentally addressed only in the last few years. These studies have revealed that the transport vesicles that leave the ER for the Golgi complex also carry signal molecules that can then be sensed by a receptor in the Golgi complex to coordinate secretory organelles. The receptor involved in the sensing of incoming traffic at the Golgi complex has been shown to be the KDEL receptor (KDELR), a proposed new G-protein-coupled receptor. Upon binding to a KDEL-containing ligand (a chaperone), the KDELR can activate a signaling cascade that regulates anterograde intra-Golgi trafficking. However, this Golgi-based signaling response is only partially understood to date. Here we report on several approaches that are suitable for the study of traffic-initiated and KDELR-dependent signaling.
Collapse
|
92
|
Kosla J, Dvorak M, Cermak V. Molecular analysis of the TGF-beta controlled gene expression program in chicken embryo dermal myofibroblasts. Gene 2012; 513:90-100. [PMID: 23127594 DOI: 10.1016/j.gene.2012.10.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 12/11/2022]
Abstract
The myofibroblast is a mesenchymal cell characterized by synthesis of the extracellular matrix, plus contractile and secretory activities. Myofibroblasts participate in physiological tissue repair, but can also cause devastating fibrosis. They are present in the tumor stroma of carcinomas and contribute to tumor growth and spreading. As myofibroblasts derive from various cell types and appear in a variety of tissues, there is marked variability in their phenotype. As regulatory mechanisms of wound healing are likely conserved among vertebrates, detailed knowledge of these mechanisms in more distant species will help to distinguish general from specific phenomena. To provide this as yet missing comparison, we analyzed the impact of the chemical inhibition of TGF-beta signaling on gene expression in chicken embryo dermal myofibroblasts. We revealed genes previously reported in mammalian systems (e.g. SPON2, ASPN, COMP, LUM, HAS2, IL6, CXCL12, VEGFA) as well as novel TGF-beta dependent genes, among them PGF, VEGFC, PTN, FAM180A, FIBIN, ZIC1, ADCY2, RET, HHIP and DNER. Inhibition of TGF-beta signaling also induced multiple genes, including NPR3, AGTR2, MTUS1, SOD3 and NOV. We also analyzed the effects of long term inhibition, and found that it is not able to induce myofibroblast dedifferentiation.
Collapse
Affiliation(s)
- Jan Kosla
- Laboratory of Molecular Virology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, CZ-14220 Prague 4, Czech Republic.
| | | | | |
Collapse
|
93
|
Ogrydziak DM, Nicaud JM. Characterization of Yarrowia lipolytica XPR2 multi-copy strains over-producing alkaline extracellular protease - a system for rapidly increasing secretory pathway cargo loads. FEMS Yeast Res 2012; 12:938-48. [PMID: 22909173 DOI: 10.1111/j.1567-1364.2012.00846.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 01/07/2023] Open
Abstract
Upon transfer to alkaline extracellular protease (AEP) induction medium, strain 773-2 (50 integrated copies of XPR2), derived from highly inbred strain E129, grew for at least 10 h before AEP production began, and then growth rate decreased before increasing again; by then, cells had lost copies of XPR2 (Le Dall et al., 1994). Slowing of growth following AEP induction suggested that increased secretory pathway cargo load was affecting cell growth and that such a system had potential for secretion stress studies. Development of W29-derived XPR2 multi-copy strains and improved AEP induction conditions realized this potential. AEP production was sixfold higher than for 773-2. Rapid AEP induction and slowing of growth by 3 h minimized loss of XPR2 gene copies. Two strains, examined in more detail, differed in initial AEP productivity, extent of slowing of growth during AEP induction, and subsequent recovery of growth rate and AEP productivity demonstrating that the system provides a range of secretion stresses and ensuing adaptations. W29-derived strains should be more 'wild type' than 773-2 for secretory pathway components and their regulation. They should provide an excellent system for kinetic analysis of gene expression responses to acute increases in secretory pathway cargo load.
Collapse
Affiliation(s)
- David M Ogrydziak
- Department of Food Science and Technology, University of California, Davis, USA.
| | | |
Collapse
|
94
|
Wilson K, Zanella R, Ventura C, Johansen HL, Framstad T, Janczak A, Zanella AJ, Neibergs HL. Identification of chromosomal locations associated with tail biting and being a victim of tail-biting behaviour in the domestic pig (Sus scrofa domesticus). J Appl Genet 2012; 53:449-56. [PMID: 22941514 DOI: 10.1007/s13353-012-0112-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/07/2012] [Accepted: 08/09/2012] [Indexed: 02/07/2023]
Abstract
The objective of this study was to identify loci associated with tail biting or being a victim of tail biting in Norwegian crossbred pigs using a genome-wide association study with PLINK case-control analysis. DNA was extracted from hair or blood samples collected from 98 trios of crossbred pigs located across Norway. Each trio came from the same pen and consisted of one pig observed to initiate tail biting, one pig which was the victim of tail biting and a control pig which was not involved in either behaviour. DNA was genotyped using the Illumina PorcineSNP60 BeadChip whole-genome single-nucleotide polymorphism (SNP) assay. After quality assurance filtering, 53,952 SNPs remained comprising 74 animals (37 pairs) for the tail biter versus control comparison and 53,419 SNPs remained comprising 80 animals (40 pairs) for the victim of tail biting versus control comparison. An association with being a tail biter was observed on Sus scrofa chromosome 16 (SSC16; p = 1.6 × 10(-5)) and an unassigned chromosome (p = 3.9 × 10(-5)). An association with being the victim of tail biting was observed on Sus scrofa chromosomes 1 (SSC1; p = 4.7 × 10(-5)), 9 (SSC9; p = 3.9 × 10(-5)), 18 (SSC18; p = 7 × 10(-5) for 9,602,511 bp, p = 3.4 × 10(-5) for 9,653,881 bp and p = 5.3 × 10(-5) for 29,577,783 bp) and an unassigned chromosome (p = 6.1 × 10(-5)). An r(2) = 0.96 and a D' = 1 between the two SNPs at 9 Mb on SSC18 indicated extremely high linkage disequilibrium, suggesting that these two markers represent a single locus. These results provide evidence of a moderate genetic association between the propensity to participate in tail-biting behaviour and the likelihood of becoming a victim of this behaviour.
Collapse
Affiliation(s)
- Kaitlin Wilson
- Deparment of Animal Sciences, Washington State University, Pullman, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Mahdi R, Madduri AS, Wang G, Strulovici-Barel Y, Salit J, Hackett NR, Crystal RG, Mezey JG. Empirical Bayes conditional independence graphs for regulatory network recovery. Bioinformatics 2012; 28:2029-36. [PMID: 22685074 PMCID: PMC3400959 DOI: 10.1093/bioinformatics/bts312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 05/01/2012] [Accepted: 05/22/2012] [Indexed: 02/01/2023] Open
Abstract
MOTIVATION Computational inference methods that make use of graphical models to extract regulatory networks from gene expression data can have difficulty reconstructing dense regions of a network, a consequence of both computational complexity and unreliable parameter estimation when sample size is small. As a result, identification of hub genes is of special difficulty for these methods. METHODS We present a new algorithm, Empirical Light Mutual Min (ELMM), for large network reconstruction that has properties well suited for recovery of graphs with high-degree nodes. ELMM reconstructs the undirected graph of a regulatory network using empirical Bayes conditional independence testing with a heuristic relaxation of independence constraints in dense areas of the graph. This relaxation allows only one gene of a pair with a putative relation to be aware of the network connection, an approach that is aimed at easing multiple testing problems associated with recovering densely connected structures. RESULTS Using in silico data, we show that ELMM has better performance than commonly used network inference algorithms including GeneNet, ARACNE, FOCI, GENIE3 and GLASSO. We also apply ELMM to reconstruct a network among 5492 genes expressed in human lung airway epithelium of healthy non-smokers, healthy smokers and individuals with chronic obstructive pulmonary disease assayed using microarrays. The analysis identifies dense sub-networks that are consistent with known regulatory relationships in the lung airway and also suggests novel hub regulatory relationships among a number of genes that play roles in oxidative stress and secretion. AVAILABILITY AND IMPLEMENTATION Software for running ELMM is made available at http://mezeylab.cb.bscb.cornell.edu/Software.aspx. CONTACT ramimahdi@yahoo.com or jgm45@cornell.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rami Mahdi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Wang G, Xu Z, Wang R, Al-Hijji M, Salit J, Strulovici-Barel Y, Tilley AE, Mezey JG, Crystal RG. Genes associated with MUC5AC expression in small airway epithelium of human smokers and non-smokers. BMC Med Genomics 2012; 5:21. [PMID: 22676183 PMCID: PMC3443416 DOI: 10.1186/1755-8794-5-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 05/01/2012] [Indexed: 12/15/2022] Open
Abstract
Background Mucus hypersecretion contributes to the morbidity and mortality of smoking-related lung diseases, especially chronic obstructive pulmonary disease (COPD), which starts in the small airways. Despite progress in animal studies, the genes and their expression pattern involved in mucus production and secretion in human airway epithelium are not well understood. We hypothesized that comparison of the transcriptomes of the small airway epithelium of individuals that express high vs low levels of MUC5AC, the major macromolecular component of airway mucus, could be used as a probe to identify the genes related to human small airway mucus production/secretion. Methods Flexible bronchoscopy and brushing were used to obtain small airway epithelium (10th to 12th order bronchi) from healthy nonsmokers (n=60) and healthy smokers (n=72). Affymetrix HG-U133 plus 2.0 microarrays were used to assess gene expression. Massive parallel sequencing (RNA-Seq) was used to verify gene expression of small airway epithelium from 5 nonsmokers and 6 smokers. Results MUC5AC expression varied 31-fold among the healthy nonsmokers. Genome-wide comparison between healthy nonsmokers (n = 60) grouped as “high MUC5AC expressors” vs “low MUC5AC expressors” identified 528 genes significantly up-regulated and 15 genes significantly down-regulated in the high vs low expressors. This strategy identified both mucus production and secretion related genes under control of a network composed of multiple transcription factors. Based on the literature, genes in the up-regulated list were used to identify a 73 “MUC5AC-associated core gene” list with 9 categories: mucus component; mucus-producing cell differentiation-related transcription factor; mucus-producing cell differentiation-related pathway or mediator; post-translational modification of mucin; vesicle transport; endoplasmic reticulum stress-related; secretory granule-associated; mucus secretion-related regulator and mucus hypersecretory-related ion channel. As a validation cohort, we assessed the MUC5AC-associated core gene list in the small airway epithelium of an independent set of healthy smokers (n = 72). There was up-regulation of MUC5AC in the small airway epithelium of smokers (2.3-fold, p < 10-8) associated with a coordinated up-regulation of MUC5AC-associated core gene expression pattern in the small airway epithelium of smokers (p < 0.01). Deep sequencing confirmed these observations. Conclusion The identification of the genes associated with increased airway mucin production in humans should be useful in understanding the pathogenesis of airway mucus hypersecretion and identifying therapeutic targets. Author summary Mucus hypersecretion contributes to the morbidity and mortality of smoking-related lung diseases, especially chronic obstructive pulmonary disease (COPD), which starts in the small airways. Little is known about the gene networks associated with the synthesis and secretion of mucins in the human small airway epithelium. Taking advantage of the knowledge that MUC5AC is a major mucin secreted by the small airway epithelium, the expression of MUC5AC in small airway epithelium is highly regulated at the transcriptional level and our observation that healthy nonsmokers have variable numbers of MUC5AC+ secretory cells in the human small airway epithelium, we compared genome-wide gene expression of the small airway epithelium of high vs low MUC5AC expressors from 60 nonsmokers to identify the genes associated with MUC5AC expression. This novel strategy enabled identification of a 73 “MUC5AC-associated core gene” list with 9 categories, which control a series of processes from mucin biosynthesis to mucus secretion. The coordinated gene expression pattern of MUC5AC-associated core genes were corroborated in an independent cohort of 72 healthy smokers. Deep sequencing of small airway epithelium RNA confirmed these observations. This finding will be useful in identifying therapeutic targets to treat small airway mucus hypersecretion.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Protein traffic is necessary to maintain homeostasis in all eukaryotic organisms. All newly synthesized secretory proteins destined to the secretory and endolysosmal systems are transported from the endoplasmic reticulum to the Golgi before delivery to their final destinations. Here, we describe the COPII and COPI coating machineries that generate carrier vesicles and the tethers and SNAREs that mediate COPII and COPI vesicle fusion at the ER-Golgi interface.
Collapse
Affiliation(s)
- Tomasz Szul
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
98
|
Denard B, Seemann J, Chen Q, Gay A, Huang H, Chen Y, Ye J. The membrane-bound transcription factor CREB3L1 is activated in response to virus infection to inhibit proliferation of virus-infected cells. Cell Host Microbe 2011; 10:65-74. [PMID: 21767813 DOI: 10.1016/j.chom.2011.06.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/02/2011] [Accepted: 06/06/2011] [Indexed: 01/22/2023]
Abstract
CREB3L1/OASIS is a cellular transcription factor synthesized as a membrane-bound precursor and activated by regulated intramembrane proteolysis in response to stimuli like ER stress. Comparing gene expression between Huh7 subclones that are permissive for hepatitis C virus (HCV) replication versus the nonpermissive parental Huh7 cells, we identified CREB3L1 as a host factor that inhibits proliferation of virus-infected cells. Upon infection with diverse DNA and RNA viruses, including murine γ-herpesvirus 68, HCV, West Nile virus (WNV), and Sendai virus, CREB3L1 was proteolytically cleaved, allowing its NH(2) terminus to enter the nucleus and induce multiple genes encoding inhibitors of the cell cycle to block cell proliferation. Consistent with this, we observed a necessity for CREB3L1 expression to be silenced in proliferating cells that harbor replicons of HCV or WNV. Our results indicate that CREB3L1 may play an important role in limiting virus spread by inhibiting proliferation of virus-infected cells.
Collapse
Affiliation(s)
- Bray Denard
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Maruyama R, Andrew DJ. Drosophila as a model for epithelial tube formation. Dev Dyn 2011; 241:119-35. [PMID: 22083894 DOI: 10.1002/dvdy.22775] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2011] [Indexed: 12/17/2022] Open
Abstract
Epithelial tubular organs are essential for life in higher organisms and include the pancreas and other secretory organs that function as biological factories for the synthesis and delivery of secreted enzymes, hormones, and nutrients essential for tissue homeostasis and viability. The lungs, which are necessary for gas exchange, vocalization, and maintaining blood pH, are organized as highly branched tubular epithelia. Tubular organs include arteries, veins, and lymphatics, high-speed passageways for delivery and uptake of nutrients, liquids, gases, and immune cells. The kidneys and components of the reproductive system are also epithelial tubes. Both the heart and central nervous system of many vertebrates begin as epithelial tubes. Thus, it is not surprising that defects in tube formation and maintenance underlie many human diseases. Accordingly, a thorough understanding how tubes form and are maintained is essential to developing better diagnostics and therapeutics. Among the best-characterized tubular organs are the Drosophila salivary gland and trachea, organs whose relative simplicity have allowed for in depth analysis of gene function, yielding key mechanistic insight into tube initiation, remodeling and maintenance. Here, we review our current understanding of salivary gland and trachea formation - highlighting recent discoveries into how these organs attain their final form and function.
Collapse
Affiliation(s)
- Rika Maruyama
- The Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
100
|
Amodio V, Tevy MF, Traina C, Ghosh TK, Capovilla M. Transactivation in Drosophila of human enhancers by human transcription factors involved in congenital heart diseases. Dev Dyn 2011; 241:190-9. [PMID: 21990232 PMCID: PMC3326377 DOI: 10.1002/dvdy.22763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2011] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The human transcription factors (TFs) GATA4, NKX2.5 and TBX5 form part of the core network necessary to build a human heart and are involved in Congenital Heart Diseases (CHDs). The human natriuretic peptide precursor A (NPPA) and α-myosin heavy chain 6 (MYH6) genes are downstream effectors involved in cardiogenesis that have been demonstrated to be in vitro targets of such TFs. RESULTS To study the interactions between these human TFs and their target enhancers in vivo, we overexpressed them in the whole Drosophila cardiac tube using the UAS/GAL4 system. We observed that all three TFs up-regulate their natural target enhancers in Drosophila and cause developmental defects when overexpressed in eyes and wings. CONCLUSIONS A strong potential of the present model might be the development of combinatorial and mutational assays to study the interactions between human TFs and their natural target promoters, which are not easily undertaken in tissue culture cells because of the variability in transfection efficiency, especially when multiple constructs are used. Thus, this novel system could be used to determine in vivo the genetic nature of the human mutant forms of these TFs, setting up a powerful tool to unravel the molecular genetic mechanisms that lead to CHDs.
Collapse
Affiliation(s)
- Vincenzo Amodio
- Dulbecco Telethon Institute, Department of Biology and Evolution, University of Ferrara, Ferrara, Italy
| | | | | | | | | |
Collapse
|