51
|
The cell biology of cross‐presentation and the role of dendritic cell subsets. Immunol Cell Biol 2008; 86:353-62. [DOI: 10.1038/icb.2008.3] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
52
|
Belz GT, Wilson NS, Kupresanin F, Mount AM, Smith CM. Shaping Naive and Memory Cd8+ T Cell Responses in Pathogen Infections Through Antigen Presentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 590:31-42. [PMID: 17191375 DOI: 10.1007/978-0-387-34814-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gabrielle T Belz
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3050 Australia.
| | | | | | | | | |
Collapse
|
53
|
Abstract
Virus-like particles (VLPs) consist of viral structural proteins that, when overexpressed, spontaneously self-assemble into particles that are antigenically indistinguishable from infectious virus or subviral particles. VLPs can be considered as dense, repetitive arrays of one or more protein subunits with properties that are highly advantageous for use as stand-alone vaccines or as vaccine platforms. This review discusses the development of VLP-based platform technologies for vaccines against pathogens, as well as nontraditional targets such as self-antigens involved in chronic diseases.
Collapse
Affiliation(s)
- Bryce Chackerian
- University of New Mexico, Department of Molecular Genetics and Microbiology, Center for Infectious Disease and Immunity, Cancer Research and Treatment Center, Cancer Biology Program, School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
54
|
Chung Y, Chang JH, Kim BS, Lee JM, Kim HY, Kang CY. Anatomic location defines antigen presentation by dendritic cells to T cells in response to intravenous soluble antigens. Eur J Immunol 2007; 37:1453-62. [PMID: 17474148 DOI: 10.1002/eji.200636544] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the spleen, exogenous antigen is preferentially presented by CD8alpha+CD11b- DC to CD8 T cells and by CD8alpha-CD11b+ DC to CD4 T cells. However, it is not yet clear whether the same rule applies to other secondary lymphoid organs. To address this issue, we first classified secondary lymphoid tissues into three categories based on the expression pattern of CD8alpha and CD11b in C57BL/6 and BALB/c mice: (a) spleen, (b) mesenteric lymph node (MLN) and (c) other peripheral lymph nodes (PLN). We then analyzed the OVA-specific T cell-stimulating capacity of each DC subset after intravenous injection with soluble OVA. Our results show that, regardless of tissue origin, CD8alpha-CD11b+ DC generally present OVA to CD4 T cells, a finding that held true as well for CD8alpha+CD11b+ DC in PLN. In striking contrast, CD8alpha+CD11b- DC in spleen, CD8alpha-CD11b+ DC in MLN and CD8alpha+CD11b+ DC in PLN mainly cross-present OVA to CD8 T cells in their respective tissues. Of note, CD8alpha-CD11b+ DC in MLN and CD8alpha+CD11b+ DC in PLN present OVA to both CD4 T and CD8 T cells. Therefore, the antigen-presenting capacity of each distinct DC subset is determined by its anatomic environment in combination with its surface phenotype.
Collapse
Affiliation(s)
- Yeonseok Chung
- Laboratory of Immunology, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
55
|
Yoon H, Legge KL, Sung SSJ, Braciale TJ. Sequential activation of CD8+ T cells in the draining lymph nodes in response to pulmonary virus infection. THE JOURNAL OF IMMUNOLOGY 2007; 179:391-9. [PMID: 17579060 DOI: 10.4049/jimmunol.179.1.391] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have used a TCR-transgenic CD8+ T cell adoptive transfer model to examine the tempo of T cell activation and proliferation in the draining lymph nodes (DLN) in response to respiratory virus infection. The T cell response in the DLN differed for mice infected with different type A influenza strains with the onset of T cell activation/proliferation to the A/JAPAN virus infection preceding the A/PR8 response by 12-24 h. This difference in T cell activation/proliferation correlated with the tempo of accelerated respiratory DC (RDC) migration from the infected lungs to the DLN in response to influenza virus infection, with the migrant RDC responding to the A/JAPAN infection exhibiting a more rapid accumulation in the lymph nodes (i.e., peak migration for A/JAPAN at 18 h, A/PR8 at 24-36 h). Furthermore, in vivo administration of blocking anti-CD62L Ab at various time points before/after infection revealed that the virus-specific CD8+ T cells entered the DLN and activated in a sequential "conveyor belt"-like fashion. These results indicate that the tempo of CD8+ T cell activation/proliferation after viral infection is dependent on the tempo of RDC migration to the DLN and that T cell activation occurs in an ordered sequential fashion.
Collapse
Affiliation(s)
- Heesik Yoon
- Carter Immunology Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
56
|
Yao Y, Li P, Singh P, Thiele AT, Wilkes DS, Renukaradhya GJ, Brutkiewicz RR, Travers JB, Luker GD, Hong SC, Blum JS, Chang CH. Vaccinia virus infection induces dendritic cell maturation but inhibits antigen presentation by MHC class II. Cell Immunol 2007; 246:92-102. [PMID: 17678637 PMCID: PMC2100387 DOI: 10.1016/j.cellimm.2007.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 06/15/2007] [Accepted: 06/16/2007] [Indexed: 11/19/2022]
Abstract
Vaccinia virus (VV) infection is known to inhibit dendritic cells (DC) functions in vitro. Paradoxically, VV is also highly immunogenic and thus has been used as a vaccine. In the present study, we investigated the effects of an in vivo VV infection on DC function by focusing on early innate immunity. Our data indicated that DC are activated upon in vivo VV infection of mice. Splenic DC from VV-infected mice expressed elevated levels of MHC class I and co-stimulatory molecules on their cell surface and exhibited the enhanced potential to produce cytokines upon LPS stimulation. DC from VV-infected mice also expressed a high level of interferon-beta. However, a VV infection resulted in the down-regulation of MHC class II expression and the impairment of antigen presentation to CD4 T cells by DC. Thus, during the early stage of a VV infection, although DC are impaired in some of the critical antigen presentation functions, they can promote innate immune defenses against viral infection.
Collapse
Affiliation(s)
- Yongxue Yao
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ping Li
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Pratibha Singh
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Allison T. Thiele
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - David S. Wilkes
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gourapura J. Renukaradhya
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Randy R. Brutkiewicz
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jeffrey B. Travers
- Department of Dermatology and H.B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gary D. Luker
- Departments of Radiology and Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Soon-Cheol Hong
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Janice S. Blum
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202
- *Correspondence to: Dr. Cheong-Hee Chang, Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, Phone: (734) 647-7570, Fax: (734) 764-3562, E-mail:
| |
Collapse
|
57
|
Song S, Wang Y, Zhang Y, Wang F, He Y, Ren D, Guo Y, Sun S. Augmented induction of CD8+ cytotoxic T-cell response and antitumor effect by DCs pulsed with virus-like particles packaging with CpG. Cancer Lett 2007; 256:90-100. [PMID: 17656012 DOI: 10.1016/j.canlet.2007.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/02/2007] [Accepted: 06/05/2007] [Indexed: 11/28/2022]
Abstract
The present study aims at establishing a novel vaccine procedure based on HBc-VLP-pulsed DCs. Immature mice BMDCs could capture HBc-VLP or HBc-VLP packaging CpG efficiently and present the antigen to syngeneic mice spleen T cells in vitro. Immunization with DCs showed that compared to VLP-pulsed DCs, VLP packaging CpG-pulsed DCs elicit stronger T-cell responses in vivo, as measured by both intracellular production of IFN-gamma and in vivo killing assays by Ag-specific T cells. In the B16-pIR-HH tumor therapy model, the growth of established tumors was significantly inhibited by single immunization of DCs pulsed with HBc-VLP packaged with CpG, resulting in significantly longer survival of immunized animals and strikingly, high frequencies (>10% of CD8(+) cells) of protective CTL could be induced and maintained. The mice immunized with DCs treated with HBc-VLP, however, trigger an antitumor effect at the early phase of vaccination, after 20 days of tumor injection, the tumor growth inhibition of VLP-pulsed DCs vaccination was decreased gradually and the fact could be interpreted by the decreasing number of antigen-specific CD8(+) T-cell and IFN-gamma(+)-producing CD8(+) T cell. This study therefore shows that the use of HBc-VLP packaging CpG-pulsed DCs could facilitate the development of effective T-cell-based vaccines.
Collapse
Affiliation(s)
- Shuxia Song
- Department of Medical Genetics, Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Iga M, Boissonnas A, Mahé B, Bonduelle O, Combadière C, Combadière B. Single CX3CL1-Ig DNA administration enhances T cell priming in vivo. Vaccine 2007; 25:4554-63. [PMID: 17493713 DOI: 10.1016/j.vaccine.2007.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 02/23/2007] [Accepted: 04/02/2007] [Indexed: 01/22/2023]
Abstract
Upon antigenic stimulation, establishment of adaptive immune responses that determines vaccine efficacy is dependent on efficient T cell priming. Here, single CX3CL1-Ig DNA administration, a unique ligand of CX3CR1, together with viral or tumor antigens induced a strong in vivo antigen-specific T cell proliferation and effector function that was enough efficient to protect against a tumor challenge. We also showed that early expression of CX3CL1-Ig and antigens in muscle and lymphoid organs induces an increased in vivo migration of myeloid CD14+CD11c+ DC but not lymphoid CD8alpha+CD11c+ DC at these sites. Thus, by effectively directing DC toward lymphoid organs to encounter T cells, CX3CL1-Ig become a new candidate that augments T cell priming and increases efficiency of vaccination.
Collapse
Affiliation(s)
- Mutsunori Iga
- Institut National de la Santé et de la Recherche Médicale, INSERM U543, Université Pierre et Marie Curie-Paris6 (UPMC-Paris6), Laboratoire d'Immunologie Cellulaire, 75634 Paris, Cedex 13, France
| | | | | | | | | | | |
Collapse
|
59
|
Villadangos JA, Heath WR. Life cycle, migration and antigen presenting functions of spleen and lymph node dendritic cells: limitations of the Langerhans cells paradigm. Semin Immunol 2007; 17:262-72. [PMID: 15946854 DOI: 10.1016/j.smim.2005.05.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The phenotypic and functional studies carried out in recent years on dendritic cells (DC) purified from spleen and lymph nodes has revealed the existence of heterogeneous populations with distinct life cycles, migratory properties and antigen presenting functions. A major subdivision can be made between "tissue derived" DC that migrate to the lymph nodes from peripheral tissues, both in the steady state and in the course of infections, and "blood-derived" DC, which reside in the spleen and lymph nodes throughout their life cycle. These two groups of DC can be subdivided into smaller subsets. The tissue-derived and the blood-derived DC also show fundamental differences in maturational status and antigen presenting capabilities. In this review, we summarize the roles played by the different DC types in the steady state and during pathogen infections, relating those roles to maintenance of peripheral tolerance and the induction of immunity. We point out the caveats of assuming that the DC that collect antigens are the ones involved in their presentation, emphasizing the phenomenon of antigen transfer as an important component of the immune response.
Collapse
Affiliation(s)
- José A Villadangos
- Immunology Division, The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, Vic. 3050, Australia.
| | | |
Collapse
|
60
|
Abstract
Antigen presentation by professional antigen-presenting cells (pAPCs) to cytotoxic CD8(+) T cells can occur via two processing routes - the direct and cross-presentation pathways. Cross-presentation of exogenous antigens in the context of major histocompatibility complex (MHC) class I molecules has recently attracted a lot of research interest because it may prove crucial for vaccine development. This alternative pathway has been implicated in priming CD8(+) T-cell responses to pathogens as well as tumours in vivo (cross-priming). In cross-presentation, the internalized antigens can be processed through diverse intracellular routes. As many unresolved questions regarding the molecular basis that controls the cross-priming process still exist, it is essential to explore the various elements involved therein, to better elucidate this pathway. In this review, we summarize current data that explore how the source and nature of antigens could affect their cross-presentation. Moreover, we will discuss and outline how recent advances regarding pAPCs' properties have increased our appreciation of the complex nature of the cross-priming pathway in vivo. In conclusion, we contemplate how the direct and cross-presentation pathways can function to allow the immune system to deal efficiently with diverse pathogens.
Collapse
Affiliation(s)
- S Basta
- Department of Microbiology & Immunology, Queen's University, Kingston, ON, Canada.
| | | |
Collapse
|
61
|
Hervas-Stubbs S, Rueda P, Lopez L, Leclerc C. Insect baculoviruses strongly potentiate adaptive immune responses by inducing type I IFN. THE JOURNAL OF IMMUNOLOGY 2007; 178:2361-9. [PMID: 17277142 DOI: 10.4049/jimmunol.178.4.2361] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Baculoviruses (BVs) are dsDNA viruses that are pathogenic for insects. They have been used worldwide as selective bioinsecticides and for producing recombinant proteins in insect cells. Surprisingly, despite their widespread use in research and industry and their dissemination in the environment, the potential effects of these insect viruses on the immune responses of mammals remain totally unknown. We show in this study that BVs have strong adjuvant properties in mice, promoting potent humoral and CD8(+) T cell adaptive responses against coadministered Ag. BVs also induce the in vivo maturation of dendritic cells and the production of inflammatory cytokines. We demonstrate that BVs play a major role in the strong immunogenicity of virus-like particles produced in the BV-insect cell expression system. The presence of even small numbers of BVs among the recombinant proteins produced in the BV expression system may therefore strengthen the immunological properties of these proteins. This adjuvant behavior of BVs is mediated primarily by IFN-alphabeta, although mechanisms independent of type I IFN signaling are also involved. This study demonstrates that nonpathogenic insect viruses may have a strong effect on the mammalian immune system.
Collapse
Affiliation(s)
- Sandra Hervas-Stubbs
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris, France
| | | | | | | |
Collapse
|
62
|
Lasarte JJ, Casares N, Gorraiz M, Hervás-Stubbs S, Arribillaga L, Mansilla C, Durantez M, Llopiz D, Sarobe P, Borrás-Cuesta F, Prieto J, Leclerc C. The Extra Domain A from Fibronectin Targets Antigens to TLR4-Expressing Cells and Induces Cytotoxic T Cell Responses In Vivo. THE JOURNAL OF IMMUNOLOGY 2007; 178:748-56. [PMID: 17202335 DOI: 10.4049/jimmunol.178.2.748] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vaccination strategies based on the in vivo targeting of Ags to dendritic cells (DCs) are needed to improve the induction of specific T cell immunity against tumors and infectious agents. In this study, we have used a recombinant protein encompassing the extra domain A from fibronectin (EDA), an endogenous ligand for TLR4, to deliver Ags to TLR4-expressing DC. The purified EDA protein was shown to bind to TLR4-expressing HEK293 cells and to activate the TLR4 signaling pathway. EDA also stimulated the production by DC of proinflammatory cytokines such as IL-12 or TNF-alpha and induced their maturation in vitro and in vivo. A fusion protein between EDA and a cytotoxic T cell epitope from OVA efficiently presented this epitope to specific T cells and induced the in vivo activation of a strong and specific CTL response. Moreover, a fusion protein containing EDA and the full OVA also improved OVA presentation by DC and induced CTL responses in vivo. These EDA recombinant proteins protected mice from a challenge with tumor cells expressing OVA. These results strongly suggest that the fibronectin extra domain A may serve as a suitable Ag carrier for the development of antiviral or antitumoral vaccines.
Collapse
Affiliation(s)
- Juan J Lasarte
- Area de Hepatología y Terapia Génica, Universidad de Navarra, Centro de Investigación Médica Aplicada, Avenida Pío XII 55, 31008 Pamplona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Neugebauer M, Walders B, Brinkman M, Ruehland C, Schumacher T, Bertling WM, Geuther E, Reiser COA, Reichel C, Strich S, Hess J. Development of a vaccine marker technology: Display of B cell epitopes on the surface of recombinant polyomavirus-like pentamers and capsoids induces peptide-specific antibodies in piglets after vaccination. Biotechnol J 2006; 1:1435-46. [PMID: 17109492 DOI: 10.1002/biot.200600149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Highly immunogenic capsomers (pentamers) and virus-like particles (VLPs) were generated through insertion of foreign B cell epitopes into the surface-exposed loops of the VP1 protein of murine polyomavirus and via heterologous expression of the recombinant fusion proteins in E. coli. Usually, complex proteins like the keyhole limpet hemocyanin (KLH) act as standard carrier devices for the display of such immunogenic peptides after chemical linkage. Here, a comparative analysis revealed that antibody responses raised against the carrier entities, KLH or VP1 pentamers, did not significantly differ up to 18 weeks, demonstrating the highly immunogenic nature of VP1-based particulate structures. The carrier-specific antibody response was reproducibly detected in the meat juice after processing. More importantly, chimeric VP1 pentamers and VLPs carrying peptides of 12 and 14 amino acids in length, inserted into the BC2 loop, induced a strong and long-lasting humoral immune response against VP1 and the inserted foreign epitope. Remarkably, the epitope-specific antibody response was only moderately decreased when VP1 pentamers were used instead of VLPs. In conclusion, we identified polyomavirus VP1-based structures displaying surface-exposed immunodominant B cell epitopes as being an efficient carrier system for the induction of potent peptide-specific antibodies. The application of this approach in vaccine marker technology in livestock holding and the meat production chain is discussed.
Collapse
|
64
|
McCormick AA, Corbo TA, Wykoff-Clary S, Nguyen LV, Smith ML, Palmer KE, Pogue GP. TMV-peptide fusion vaccines induce cell-mediated immune responses and tumor protection in two murine models. Vaccine 2006; 24:6414-23. [PMID: 16860441 DOI: 10.1016/j.vaccine.2006.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 06/01/2006] [Accepted: 06/07/2006] [Indexed: 11/23/2022]
Abstract
Fusion of peptides to viral carriers has proven an effective method for improving cellular immunity. In this study we explore the ability of a plant virus, Tobacco mosaic virus (TMV), to stimulate cellular immunity by interacting directly with immune cells. Fluorescently labeled TMV was incubated in vitro with murine spleen or lymph node cells, and near quantitative labeling of lymphocytes was achieved after 2 h, which persisted for up to 48 h. Direct TMV uptake and upregulation of the CD86 activation marker was measured in nearly all dendritic cells (DCs) by flow cytometry. To demonstrate that TMV can also provide functional antigen delivery and immune stimulation in vivo, two well-characterized T-cell epitopes that provide protection against tumor challenge in mice were fused to TMV coat protein by genetic manipulation, or by chemical conjugation. Vaccination of C57BL/6 mice elicited measurable cellular responses by interferon gamma (IFN gamma) ELISpot and resulted in significantly improved protection from tumor challenge in both the EG.7-Ova and B16 melanoma models. From these results we conclude that TMV was an effective antigen carrier for inducing cellular immune responses to less than 1 microg of peptide.
Collapse
Affiliation(s)
- Alison A McCormick
- Large Scale Biology Corporation, Vaccine Development, Vacaville, CA 95688, USA.
| | | | | | | | | | | | | |
Collapse
|
65
|
He Y, Zhang J, Donahue C, Falo LD. Skin-derived dendritic cells induce potent CD8(+) T cell immunity in recombinant lentivector-mediated genetic immunization. Immunity 2006; 24:643-56. [PMID: 16713981 PMCID: PMC3077717 DOI: 10.1016/j.immuni.2006.03.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 02/16/2006] [Accepted: 03/01/2006] [Indexed: 11/17/2022]
Abstract
The skin contains readily accessible dendritic cells (DCs) with potent antigen presentation function and functional plasticity enabling the integration of antigen specificity with environmentally responsive immune control. Recent studies challenge the established paradigm of cutaneous immune function by suggesting that lymph node-resident DCs, rather than skin-derived DCs (sDCs), are responsible for eliciting T cell immunity against cutaneous pathogens including viral vectors. We show that cutaneous delivery of lentivirus results in direct transfection of sDCs and potent and prolonged antigen presentation. Further, sDCs are the predominant antigen-presenting cells for the induction of potent and durable CD8(+) T cell immunity. These results support the classical paradigm of cutaneous immune function and suggest that antigen presentation by sDCs contributes to the high potency of lentivector-mediated genetic immunization.
Collapse
Affiliation(s)
- Yukai He
- Department of Dermatology, University of Pittsburgh School of Medicine, Suite 145 Lothrop Hall, 190 Lothrop Street, Pittsburgh, Pennsylvania 15213
- Department of Immunology, University of Pittsburgh School of Medicine, Suite 145 Lothrop Hall, 190 Lothrop Street, Pittsburgh, Pennsylvania 15213
- Correspondence: (Y.H.); (L.D.F.)
| | - Jiying Zhang
- Department of Dermatology, University of Pittsburgh School of Medicine, Suite 145 Lothrop Hall, 190 Lothrop Street, Pittsburgh, Pennsylvania 15213
| | - Cara Donahue
- Department of Dermatology, University of Pittsburgh School of Medicine, Suite 145 Lothrop Hall, 190 Lothrop Street, Pittsburgh, Pennsylvania 15213
| | - Louis D. Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Suite 145 Lothrop Hall, 190 Lothrop Street, Pittsburgh, Pennsylvania 15213
- Correspondence: (Y.H.); (L.D.F.)
| |
Collapse
|
66
|
Vingert B, Adotevi O, Patin D, Jung S, Shrikant P, Freyburger L, Eppolito C, Sapoznikov A, Amessou M, Quintin-Colonna F, Fridman WH, Johannes L, Tartour E. The Shiga toxin B-subunit targets antigen in vivo to dendritic cells and elicits anti-tumor immunity. Eur J Immunol 2006; 36:1124-35. [PMID: 16568496 DOI: 10.1002/eji.200535443] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The non-toxic B-subunit of Shiga toxin (STxB) interacts with the glycolipid Gb3, which is preferentially expressed on dendritic cells (DC) and B cells. After administration of STxB chemically coupled to OVA (STxB-OVA) in mice, we showed that the immunodominant OVA(257-264) peptide restricted by K(b) molecules is specifically presented by CD11c+ CD8alpha- DC, some of them displaying a mature phenotype. Using mice carrying a transgene encoding a diphtheria toxin receptor (DTR) under the control of the murine CD11c promoter, which allows inducible ablation of DC, we showed that DC are required for efficient priming of CTL after STxB-OVA vaccination. Immunization of mice with STxB-OVA induced OVA-specific CD8+ T cells detected ex vivo; these cells were long lasting, since they could be detected even 91 days after the last immunization and were composed of both central and memory T cells. Vaccination of mice with STxB-OVA and STxB coupled to E7, a protein derived from HPV16, inhibited tumor growth in prophylactic and therapeutic experiments. This effect was mainly mediated by CD8+ T cells. STxB therefore appears to be a powerful carrier directly targeting DC in vivo, resulting in a strong and durable CTL response associated with tumor protection.
Collapse
Affiliation(s)
- Benoit Vingert
- INSERM U255, Université René Descartes, Unité d'Immunologie Biologique, Hopital Européen Georges Pompidou AP-HP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Ruehland C, Reichel C, Neugebauer M, Strich S, Bertling WM, Reiser COA, Hess J. ImmunoTrack®: The novel antibody-based technology for tracing in animal health. Biotechnol J 2006; 1:625-32. [PMID: 16892310 DOI: 10.1002/biot.200600040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper describes a novel antibody-based livestock movement control tool and method of meat allocation, both in livestock husbandry as well as during the meat-processing chain. Immuno Track fulfills diverse prerequisites and meets regulatory demands which are substantial for a successful monitoring technology: (i) the induction of long-lasting antibody responses detectable onsite throughout the whole mast period of pigs, (ii) a single immunization injection with protein derivatives is sufficient to evoke a strong epitope-specific antibody response, and (iii) the complete degradation of the protein markers after the antibody response has been triggered in meatproducing animals such as cattle or pigs. There are diverse fields of application for the Immuno-Track marker technology, such as in quality meat programs, as compliance markers for animal vaccines or as a tool for verification of origin. Combination of this monitoring technology with the husbandry and identification databases for cattle and pigs within the European Community will lead to greater transparency in meat production, thereby regaining consumers' trust in concomitant structures of the meat-producing industry.
Collapse
|
68
|
Zvirbliene A, Samonskyte L, Gedvilaite A, Voronkova T, Ulrich R, Sasnauskas K. Generation of monoclonal antibodies of desired specificity using chimeric polyomavirus-derived virus-like particles. J Immunol Methods 2006; 311:57-70. [PMID: 16516908 DOI: 10.1016/j.jim.2006.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 11/18/2005] [Accepted: 01/04/2006] [Indexed: 11/30/2022]
Abstract
Foreign protein sequences presented on hamster polyomavirus (HaPyV) major capsid protein VP1-derived virus-like particles (VLPs) have been demonstrated to be highly immunogenic. The current study was aimed to evaluate VP1-derived chimeric VLPs as tools for hybridoma technology to generate monoclonal antibodies (mAbs) of desired specificity. Chimeric VLPs containing inserts of different size and origin were used as immunogens. Chimeric VLPs carrying a 9 amino acid (aa)-long cytotoxic T-cell epitope (STAPPVHNV) of human mucin 1 (MUC1) elicited a strong epitope-specific humoral immune response in mice and promoted the production of MUC1-specific mAbs. From a total of seven mAbs of IgG isotype generated against the chimeric VLPs, two mAbs were directed against the MUC1 epitope and five mAbs against the VP1-carrier. Two out of five anti-VP1 mAbs recognized epitopes located at the previously defined insertion site #2 (aa 223/224), which confirms its surface-exposed localization. Chimeric VLPs carrying a 120-aa long sequence of Puumala hantavirus (PUUV) nucleocapsid protein (NP) promoted the generation of five mAbs of IgG isotype specific to PUUV NP. All mAbs recognized the full-length NP of different PUUV strains. In contrast, no VP1-specific mAbs were obtained. The ability of chimeric VLPs to activate antigen-presenting cells was evaluated by studying the uptake of chimeric VLPs by murine spleen cell-derived dendritic cells (DCs). Efficient uptake of VLPs and activation of murine DCs were demonstrated, which may represent the basis of the strong immunogenicity of chimeric VLPs. In conclusion, chimeric VLPs effectively stimulated the production of IgG antibodies specific for foreign epitopes presented at surface-exposed regions. Thus, chimeric HaPyV VP1-derived VLPs represent efficient immunogens for hybridoma technology and provide a promising alternative to chemical coupling of synthetic peptides to carrier proteins.
Collapse
Affiliation(s)
- A Zvirbliene
- Institute of Biotechnology, V. Graiciuno 8, LT-02241 Vilnius, Lithuania.
| | | | | | | | | | | |
Collapse
|
69
|
|
70
|
Marsac D, Puaux AL, Rivière Y, Michel ML. In vivo induction of cellular and humoral immune responses by hybrid DNA vectors encoding simian/human immunodeficiency virus/hepatitis B surface antigen virus particles in BALB/c and HLA-A2-transgenic mice. Immunobiology 2005; 210:305-19. [PMID: 16164038 DOI: 10.1016/j.imbio.2005.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To improve the immunogenicity of epitopes derived from Gag proteins of simian immunodeficiency virus (SIV) and from the envelope (Env) protein of human immunodeficiency virus type 1 (HIV-1), we have designed hybrid DNA vaccines by inserting sequences encoding antigenic domains of SIV and HIV-1 into the hepatitis B virus envelope gene. This gene encodes the hepatitis B surface antigen (HBsAg) capable of spontaneous assembly into virus-like particles that were used here as carrier. Injections of hybrid vectors encoding B-cell epitopes from the gp41 and the gp120 envelope proteins of HIV-1 induced specific humoral responses in BALB/c mice. Furthermore, high frequencies of IFN-gamma-secreting CD8+ T cells specific for various antigenic determinants of SIV-Gag were observed after intramuscular injections of hybrid DNA vectors in BALB/c mice. Genetic immunization of HLA-A2.1-transgenic mice with HIV-Env/HBsAg-encoding DNA generated a strong CTL response and IFN-gamma-secreting CD8+ T lymphocytes specific for HIV-1 envelope-derived peptide. H-2d-restricted HBs-specific T-cell responses dominated over SIV-Gag responses in BALB/c mice whereas HLA-A2-restricted HIV-Env response was enhanced after fusion with HBsAg. These data demonstrate that different B and T-cell epitopes of vaccine-relevant viral antigens can be expressed in vivo as fusion proteins with HBsAg but that the optimal immunogenicity may differ strikingly between individual epitopes.
Collapse
Affiliation(s)
- Delphine Marsac
- INSERM U 370 Carcinogenèse Hépatique et Virologie Moléculaire, Département de Médecine Moléculaire, Institut Pasteur, 28, rue du Docteur Roux, 75724 PARIS CEDEX 15, France
| | | | | | | |
Collapse
|
71
|
Pollara G, Kwan A, Newton PJ, Handley ME, Chain BM, Katz DR. Dendritic cells in viral pathogenesis: protective or defective? Int J Exp Pathol 2005; 86:187-204. [PMID: 16045541 PMCID: PMC2517433 DOI: 10.1111/j.0959-9673.2005.00440.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DC) are potent antigen-presenting cells that are critical in the initiation of immune responses to control and/or eliminate viral infections. Recent studies have investigated the effects of virus infection on the biology of DC. This review summarizes these changes, focusing on both the DC parameters affected and the viral factors involved. In addition, the central role of DC biology in the pathogenesis of several viral families, including herpesviruses, paramyxoviruses and retroviruses, is explored. The field of pathogen recognition by DC is addressed, focusing on its role in protecting the host from viral infection, as well as the ability of viruses to exploit such host receptor ligation and signalling to their replicative advantage. The hypothesis is proposed that virus and host have evolved a symbiotic relationship to ensure both viral transmission and host survival.
Collapse
Affiliation(s)
- Gabriele Pollara
- Department of Immunology and Molecular Pathology, University College London, Windeyer Institute of Medical Sciences, London W1T 4JF, UK.
| | | | | | | | | | | |
Collapse
|
72
|
Brinkman M, Walter J, Grein S, Thies MJW, Schulz TW, Herrmann M, Reiser COA, Hess J. Beneficial therapeutic effects with different particulate structures of murine polyomavirus VP1-coat protein carrying self or non-self CD8 T cell epitopes against murine melanoma. Cancer Immunol Immunother 2005; 54:611-22. [PMID: 15685447 PMCID: PMC11034281 DOI: 10.1007/s00262-004-0655-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 11/25/2004] [Indexed: 10/25/2022]
Abstract
Polyomavirus-like-particles (PLPs) are empty, non-replicative, non-infectious particles that represent a potent antigen-delivery system against malignant disease. Protective anti-tumour immunity can be induced under therapy conditions by subcutaneous (s.c.) treatment with particulate antigenic structures like chimerical polyomavirus-pentamers (PPs). These PPs displaying an immunodominant H-2Kb-restricted ovalbumin (OVA)257-264 epitope evoked nearly complete tumour remission in MO5 (B16-OVA) melanoma-bearing C57BL/6 mice by two s.c. applications in a weekly interval. The immunotherapeutic intervention started at day 4 after melanoma implant. Furthermore, 40% of melanoma-bearing mice vaccinated with heterologous PPs carrying a H-2Kb-restricted cytotoxic T lymphocyte (CTL) epitope derived from of tyrosinase-related protein 2 (TRP2) survived similar treatment conditions. However, a late immunotherapeutic onset at day 10 post melanoma inoculation revealed no significant differences between the therapeutic values (40-60% survival) of VP1-OVA252-270 and VP1-TRP2180-192 PPs, respectively. These experiments underlined the capacity of PPs to break T cell tolerance against a differentially expressed self-antigen. As a correlate for preventive and therapeutic immunity against MO5 melanoma the number of OVA257-264- or TRP2180-188-specific CD8 T cells were significantly increased within the splenocyte population of treated mice as measured by H-2Kb-OVA257-264-PE tetramer staining or appropriate ELISPOT assays, respectively. These results reveal that heterologous PLPs and even chimerical PPs represent highly efficient antigen carriers for inducing CTL responses underlining their potential as immunotherapeutics against cancer.
Collapse
Affiliation(s)
- Marc Brinkman
- responsif GmbH, Schallershofer Strasse 84, 91056 Erlangen, Germany
| | - Juergen Walter
- responsif GmbH, Schallershofer Strasse 84, 91056 Erlangen, Germany
| | - Swen Grein
- responsif GmbH, Schallershofer Strasse 84, 91056 Erlangen, Germany
| | | | | | - Martin Herrmann
- responsif GmbH, Schallershofer Strasse 84, 91056 Erlangen, Germany
- Institute for Clinical Immunology and Rheumatology, Medical Department III, University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | | | - Juergen Hess
- responsif GmbH, Schallershofer Strasse 84, 91056 Erlangen, Germany
| |
Collapse
|
73
|
Raykov Z, Savelyeva L, Balboni G, Giese T, Rommelaere J, Giese NA. B1 lymphocytes and myeloid dendritic cells in lymphoid organs are preferential extratumoral sites of parvovirus minute virus of mice prototype strain expression. J Virol 2005; 79:3517-24. [PMID: 15731246 PMCID: PMC1075710 DOI: 10.1128/jvi.79.6.3517-3524.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Due to their oncolytic properties and apathogenicity, autonomous parvoviruses have attracted significant interest as possible anticancer agents. Recent preclinical studies provided evidence of the therapeutic potential of minute virus of mice prototype strain (MVMp) and its recombinant derivatives. In a murine model of hemangiosarcoma, positive therapeutic outcome correlated with high intratumoral expression of MVMp-encoded genes in tumors and lymphoid organs, especially in tumor-draining lymph nodes. The source and relevance of this extratumoral expression, which came as a surprise because of the known fibrotropism of MVMp, remained unclear. In the present study, we investigated (i) whether the observed expression pattern occurs in different tumor models, (ii) which cell population is targeted by the virus, and (iii) the immunological consequences of this infection. Significant MVMp gene expression was detected in lymphoid tissues from infected tumor-free as well as melanoma-, lymphoma-, and hemangiosarcoma-bearing mice. This expression was especially marked in lymph nodes draining virus-injected tumors. Fluorescent in situ hybridization analysis, multicolor fluorescence-activated cell sorting, and quantitative reverse transcription-PCR revealed that MVMp was expressed in rare subpopulations of CD11b (Mac1)-positive cells displaying CD11c+ (myeloid dendritic cells [MDC]) or CD45B (B220+ [B1 lymphocytes]) markers. Apart from the late deletion of cytotoxic memory cells (CD8+ CD44+ CD62L-), this infection did not lead to significant alteration of the immunological profile of cells populating lymphoid organs. However, subtle changes were detected in the production of specific proinflammatory cytokines in lymph nodes from virus-treated animals. Considering the role of B1 lymphocytes and MDC in cancer and immunological surveillance, the specific ability of these cell types to sustain parvovirus-driven gene expression may be exploited in gene therapy protocols.
Collapse
Affiliation(s)
- Zahari Raykov
- Department of Surgery, Medical School, University of Heidelberg, INF 116, 60120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
74
|
Gamvrellis A, Leong D, Hanley JC, Xiang SD, Mottram P, Plebanski M. Vaccines that facilitate antigen entry into dendritic cells. Immunol Cell Biol 2005; 82:506-16. [PMID: 15479436 DOI: 10.1111/j.0818-9641.2004.01271.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although vaccines have been highly successful in preventing and treating many infectious diseases (including smallpox, polio and diphtheria) diseases prevalent in the developing world such as malaria and HIV, that suppress the host immune system, require new, multiple strategies that will be defined by our growing understanding of specific immune activation. The definition of adjuvants, previously thought of as any substance that enhanced the immunogenicity of antigen, could now include soluble mediators and antigenic carriers that interact with surface molecules present on DC (e.g. LPS, Flt3L, heat shock protein) particulate antigens which are taken up by mechanisms available to APC but not other cell types (e.g. immunostimulatory complexes, latex, polystyrene particles) and viral/bacterial vectors that infect antigen presenting cells (e.g. vaccinia, lentivirus, adenovirus). These approaches, summarized herein, have shown potential in vaccinating against disease in animal models, and in some cases in humans. Of these, particle-antigen conjugates provide rapid formulation of the vaccine, easy storage and wide application, with both carrier and adjuvant functions that activate DC. Combined vaccines of the future could use adjuvants such as virus-like particles and particles targeted towards a predominant cellular type or immune response, with target cell activation enhanced by growth factors or maturation signals prior to, or during immunization. Collectively, these new additions to adjuvant technology provide opportunities for more specific immune regulation than previously available.
Collapse
Affiliation(s)
- Anita Gamvrellis
- Vaccine Development and Infectious Diseases Unit, The Austin Research Institute, Austin Hospital, Studley Road, Heidelberg, Victoria 3084, Australia
| | | | | | | | | | | |
Collapse
|
75
|
Boisgérault F, Rueda P, Sun CM, Hervas-Stubbs S, Rojas M, Leclerc C. Cross-Priming of T Cell Responses by Synthetic Microspheres Carrying a CD8+ T Cell Epitope Requires an Adjuvant Signal. THE JOURNAL OF IMMUNOLOGY 2005; 174:3432-9. [PMID: 15749877 DOI: 10.4049/jimmunol.174.6.3432] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Controlling the cross-presentation of exogenous Ags to CD8+ T cells represents a major step for designing new vaccination strategies. Whereas several recombinant pseudo-viral particles have been used as delivery systems for triggering potent CTL responses to heterologous exogenous Ags, the adjuvant properties of virus-like particles (VLPs) themselves were little questioned. Here, we analyzed the contribution of the porcine parvovirus (PPV)-VLPs to the induction of protective cellular responses to exogenous Ags carried by an independent delivery system. Microspheres, which are known to transfer exogenous Ags into the MHC class I pathway, were chosen for delivering the immunodominant OVA(257-264) CD8+ T cell epitope (B-OVAp). This delivery system fulfills the requirements in terms of cross-presentation, but fails to induce cross-priming of specific CD8+ T cells. Coinjection of PPV-VLPs with B-OVAp results in the priming of potent CTL responses and type 1-biased immunity in a CD4- and CD40-independent manner, as efficiently as the recombinant PPV-VLPs carrying the same epitope (PPV-OVAp). Furthermore, vaccination with PPV-VLPs and B-OVAp was fully efficient to protect mice against the development of OVA-bearing melanoma. These findings indicate that PPV-VLPs act not only as a delivery system but also as a strong adjuvant when independently provided with exogenous Ag. Thus, dissociation between delivery system and adjuvant would provide a more flexible and reliable system to induce potent and protective CTL.
Collapse
Affiliation(s)
- Florence Boisgérault
- Unité de Biologie des Régulations Immunitaires, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale E352, Paris, France
| | | | | | | | | | | |
Collapse
|
76
|
Wong SBJ, Siliciano RF. Contribution of virus-like particles to the immunogenicity of human immunodeficiency virus type 1 Gag-derived vaccines in mice. J Virol 2005; 79:1701-12. [PMID: 15650195 PMCID: PMC544117 DOI: 10.1128/jvi.79.3.1701-1712.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag protein is a major target antigen for cytotoxic-T-lymphocyte-based vaccine strategies because of its high level of conservation. The murine model has been used extensively to evaluate potential HIV-1 vaccines. However, the biology of HIV-1 Gag is somewhat different in human and murine tissues. The ability of HIV-1 Gag to form virus-like particles (VLPs) in human cells is severely curtailed in murine cells. Hence, it is not known whether immunizing mice with expression vectors encoding HIV-1 Gag provides an accurate assessment of the immunogenicity of these candidate vaccines in primates. In this report, we made use of a chimeric Moloney murine leukemia virus (MMLV)-HIV-1 Gag in which the p17 matrix domain of HIV-1 was replaced with the p15 matrix and p12 domains from MMLV. Murine cells expressing this construct released significant amounts of VLPs. The construct preserved H-2d-restricted antigenic determinants in the remaining portion of HIV-1 Gag, allowing immunogenicity studies to be performed with mice. We demonstrated that immunizing mice with plasmid DNA or adenoviral vectors encoding this chimeric Gag did not significantly increase the HIV-1 Gag-specific cellular or humoral immune response when compared to immunization with a myristoylation-incompetent version of the construct. Thus, the release of VLPs formed in vivo may not play a major role in the immunogenicity of vectors expressing HIV-1 Gag constructs.
Collapse
Affiliation(s)
- S B Justin Wong
- Program in Cellular and Moleculat Medicine, Department of Medicine and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Broadway Research Building Suite 879, 733 North Broadway, Baltimore, MD 21205, USA
| | | |
Collapse
|
77
|
Abstract
Traditional successful antiviral vaccines have relied mostly on live-attenuated viruses. Live-attenuated HIV vaccine candidates are not ideal as they pose risks of reversion, recombination or mutations. Other current HIV vaccine candidates have difficulties generating broadly effective neutralising antibodies and cytotoxic T cell immune responses to primary HIV isolates. Virus-like-particles (VLPs) have been demonstrated to be safe to administer to animals and human patients as well as being potent and efficient stimulators of cellular and humoral immune responses. Therefore, VLPs are being considered as possible HIV vaccines. Chimeric HIV-1 VLPs constructed with either HIV or SIV capsid protein plus HIV immune epitopes and immuno-stimulatory molecules have further improved on early VLP designs, leading to enhanced immune stimulation. The administration of VLP vaccines via mucosal surfaces has also emerged as a promising strategy with which to elicit mucosal and systemic humoral and cellular immune responses. Additionally, new information on antigen processing and the presentation of particulate antigens by dendritic cells (DCs) has created new strategies for improved VLP vaccine candidates. This paper reviews the field of HIV-1 VLP vaccine development, focusing on recent studies that will likely uncover promising prospects for new HIV vaccines.
Collapse
Affiliation(s)
- Linh X Doan
- Molecular Surgeon Research Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
78
|
Wykes MN, Beattie L, Macpherson GG, Hart DN. Dendritic cells and follicular dendritic cells express a novel ligand for CD38 which influences their maturation and antibody responses. Immunology 2004; 113:318-27. [PMID: 15500618 PMCID: PMC1782574 DOI: 10.1111/j.1365-2567.2004.01968.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CD38 is a cell surface molecule with ADP-ribosyl cyclase activity, which is predominantly expressed on lymphoid and myeloid cells. CD38 has a significant role in B-cell function as some anti-CD38 antibodies can deliver potent growth and differentiation signals, but the ligand that delivers this signal in mice is unknown. We used a chimeric protein of mouse CD38 and human immunogobulin G (IgG) (CD38-Ig) to identify a novel ligand for murine CD38 (CD38L) on networks of follicular dendritic cells (FDCs) as well as dendritic cells (DCs) in the spleen. Flow-cytometry found that all DC subsets expressed cytoplasmic CD38L but only fresh ex vivo CD11c+ CD11b- DCs had cell surface CD38L. Anti-CD38 antibody blocked the binding of CD38-Ig to CD38L, confirming the specificity of detection. CD38-Ig immuno-precipitated ligands of 66 and 130 kDa. Functional studies found that CD38-Ig along with anti-CD40 and anti-major histocompatibility complex (MHC) class II antibody provided maturation signals to DCs in vitro. When CD38-Ig was administered in vivo with antigen, IgG2a responses were significantly reduced, suggesting that B and T cells expressing CD38 may modulate the isotype of antibodies produced through interaction with CD38L on DCs. CD38-Ig also expanded FDC networks when administered in vivo. In conclusion, this study has identified a novel ligand for CD38 which has a role in functional interactions between lymphocytes and DCs or FDCs.
Collapse
Affiliation(s)
- Michelle N Wykes
- Queensland Institute of Medical Research, The Bancroft Center, Herston, Australia.
| | | | | | | |
Collapse
|
79
|
Heath WR, Belz GT, Behrens GMN, Smith CM, Forehan SP, Parish IA, Davey GM, Wilson NS, Carbone FR, Villadangos JA. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004; 199:9-26. [PMID: 15233723 DOI: 10.1111/j.0105-2896.2004.00142.x] [Citation(s) in RCA: 558] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cross-presentation involves the uptake and processing of exogenous antigens within the major histocompatibility complex (MHC) class I pathway. This process is primarily performed by dendritic cells (DCs), which are not a single cell type but may be divided into several distinct subsets. Those expressing CD8alpha together with CD205, found primarily in the T-cell areas of the spleen and lymph nodes, are the major subset responsible for cross-presenting cellular antigens. This ability is likely to be important for the generation of cytotoxic T-cell immunity to a variety of antigens, particularly those associated with viral infection, tumorigenesis, and DNA vaccination. At present, it is unclear whether the CD8alpha-expressing DC subset captures antigen directly from target cells or obtains it indirectly from intermediary DCs that traffic from peripheral sites. In this review, we examine the molecular basis for cross-presentation, discuss the role of DC subsets, and examine the contribution of this process to immunity, with some emphasis on DNA vaccination.
Collapse
Affiliation(s)
- William R Heath
- Department of Immunology and The Cooperative Research Center for Vaccine Technology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Fayolle C, Bauche C, Ladant D, Leclerc C. Bordetella pertussis adenylate cyclase delivers chemically coupled CD8+ T-cell epitopes to dendritic cells and elicits CTL in vivo. Vaccine 2004; 23:604-14. [PMID: 15542180 DOI: 10.1016/j.vaccine.2004.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 07/12/2004] [Indexed: 11/22/2022]
Abstract
The adenylate cyclase (CyaA) produced by Bordetella pertussis is able to deliver CD8+ and CD4+ T-cell epitopes genetically grafted within the catalytic domain of the molecule into antigen presenting cells in vivo. We develop now a new approach in which peptides containing CD8+ epitopes are chemically linked to CyaA. We show that CTL responses were induced in mice immunized with CyaA bearing these CD8+ epitopes. Moreover, we demonstrate that the OVA257-264 CD8+ epitope chemically grafted to CyaA is presented to CD8+ T cells by a mechanism requiring (1) proteasome processing, (2) TAP and (3) neosynthesis of MHC class I molecules. Thus, this novel strategy represents a very versatile system as a single CyaA carrier protein could be easily and rapidly coupled to any desired synthetic peptide.
Collapse
Affiliation(s)
- Catherine Fayolle
- Unité de Biologie des Régulations Immunitaires, INSERM E 352, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
81
|
Schlecht G, Loucka J, Najar H, Sebo P, Leclerc C. Antigen Targeting to CD11b Allows Efficient Presentation of CD4+ and CD8+ T Cell Epitopes and In Vivo Th1-Polarized T Cell Priming. THE JOURNAL OF IMMUNOLOGY 2004; 173:6089-97. [PMID: 15528345 DOI: 10.4049/jimmunol.173.10.6089] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bordetella pertussis adenylate cyclase (CyaA) is an invasive bacterial toxin that delivers its N-terminal catalytic domain into the cytosol of eukaryotic cells bearing the alpha(M)beta(2) integrin (CD11b/CD18), such as myeloid dendritic cells. This allows use of engineered CyaA for targeted delivery of CD8(+) T cell epitopes into the MHC class I pathway of APC and induction of robust and protective cytotoxic responses. In this study, we demonstrate that CyaA can efficiently codeliver both a CD8(+) T cell epitope (OVA(257-264)) and a CD4(+) T cell epitope (MalE(100-114)) into, respectively, the conventional cytosolic or endocytic routes of processing of murine bone marrow-derived dendritic cells. Upon CyaA delivery, a strong potentiation of the MalE(100-114) CD4(+) T cell epitope presentation is observed as compared with the MalE protein, which depends on CyaA interaction with its CD11b receptor and its subsequent clathrin-mediated endocytosis. In vivo, CyaA induces strong and specific Th1 CD4(+) and CD8(+) T cell responses against, respectively, the MalE(100-114) and OVA(257-264) epitopes. These results underscore the potency of CyaA for design of new vaccines.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/metabolism
- Actins/metabolism
- Adenylate Cyclase Toxin/administration & dosage
- Adenylate Cyclase Toxin/genetics
- Adenylate Cyclase Toxin/immunology
- Adenylate Cyclase Toxin/metabolism
- Amino Acid Sequence
- Animals
- Antigen Presentation/genetics
- Bone Marrow Cells/enzymology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- CD11b Antigen/metabolism
- CD4-Positive T-Lymphocytes/enzymology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Clathrin-Coated Vesicles/physiology
- Cytotoxicity, Immunologic/genetics
- Dendritic Cells/enzymology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Drug Delivery Systems/methods
- Endosomes/enzymology
- Endosomes/immunology
- Endosomes/metabolism
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Escherichia coli Proteins/administration & dosage
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/immunology
- Female
- Genes, Reporter
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Antigens Class II/metabolism
- Hybridomas
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Ovalbumin/administration & dosage
- Ovalbumin/genetics
- Ovalbumin/immunology
- Peptide Fragments/administration & dosage
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Peptide Hydrolases/physiology
- Periplasmic Binding Proteins/administration & dosage
- Periplasmic Binding Proteins/genetics
- Periplasmic Binding Proteins/immunology
- Proteasome Endopeptidase Complex/metabolism
- Th1 Cells/enzymology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/metabolism
- Vacuoles/metabolism
Collapse
Affiliation(s)
- Géraldine Schlecht
- Unité de Biologie des Régulations Immunitaires, Institut National de la Santé et de la Recherche Médicale E 352, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris cedex 15, Paris, France
| | | | | | | | | |
Collapse
|
82
|
Yao Q, Zhang R, Guo L, Li M, Chen C. Th cell-independent immune responses to chimeric hemagglutinin/simian human immunodeficiency virus-like particles vaccine. THE JOURNAL OF IMMUNOLOGY 2004; 173:1951-8. [PMID: 15265929 DOI: 10.4049/jimmunol.173.3.1951] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+) Th cells are believed to be essential for the induction of humoral and cellular immune responses. In this study we tested the effect and possible mechanisms of the major antigenic component in influenza, hemagglutinin (HA), in helping HIV Env to induce immune responses in CD4(+) T cell knockout (CD4 KO) mice. Simian HIV virus-like particles (SHIV VLPs) or phenotypically mixed chimeric influenza HA/SHIV VLPs were used as immunogens to immunize CD4 KO mice either i.p. or intranasally (i.n.). We found that chimeric HA/SHIV VLPs significantly induced a greater IgG Ab response in both i.p. and i.n. immunized mice and a greater IgA Ab response in mucosal washes in i.n. immunized mice compared with SHIV VLPs. Importantly, chimeric HA/SHIV VLPs induced approximately 3-fold higher neutralizing Ab titers against HIV 89.6 than SHIV VLPs in the absence of CD4(+) T cell help. There was also approximately 40% more specific lysis of the HIV Env-expressing target cells in chimeric HA/SHIV VLP-immunized than in SHIV VLP-immunized CD4 KO mouse splenocytes. Moreover, we have found that chimeric HA/SHIV VLPs could efficiently bind and activate dendritic cells and stimulate the activated dendritic cells to secret TNF-alpha and IFN-gamma. Therefore, chimeric HA/SHIV VLPs could efficiently prime and activate APCs, which could, in turn, induce immune responses in a CD4(+) T cell-independent manner. This study suggests a novel adjuvant role of influenza HA as well as a new strategy to develop more effective therapeutic vaccines for AIDS patients with low CD4(+) T cell counts.
Collapse
Affiliation(s)
- Qizhi Yao
- Molecular Surgeon Research Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
83
|
Homann D, McGavern DB, Oldstone MBA. Visualizing the viral burden: phenotypic and functional alterations of T cells and APCs during persistent infection. THE JOURNAL OF IMMUNOLOGY 2004; 172:6239-50. [PMID: 15128812 DOI: 10.4049/jimmunol.172.10.6239] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Persistent viral infections continue to present major public health problems. Failure to achieve virus control confronts the immune system with a chronic viral burden that may involve immune cells themselves and directly compromise the functionality of effector lymphocytes and APCs. In this study we use the lymphocytic choriomeningitis virus system for persistent viral infection of its natural murine host and use analytical techniques for direct ex vivo visualization of virus-infected immune cells. We report that virtually all cells of the immune system can be infected, but the distribution of the viral burden is differentially allocated to lymphocyte and APC subsets of defined phenotypes. Importantly, the profile of immune cell infection found in the blood is broadly representative for the pattern of cellular infection in most organs and is independent of the presence of Abs or complement. By direct comparison of virus-infected and uninfected cell subsets, we demonstrate that lymphocytic choriomeningitis virus-infected T cells show preferential activation, skewed cytokine profiles, and increased apoptosis. In contrast, increased activation of APCs is generalized and independent of the presence of viral Ag. Our data indicate that specific patterns of immune cell infection are associated with distinct forms of immunostimulatory and immunosuppressive alterations that may provide insights into autoimmune processes associated with infectious disease and offer clues for therapeutic interventions aimed at restoration of complete immunity.
Collapse
Affiliation(s)
- Dirk Homann
- Department of Neuropharmacology, Division of Virology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
84
|
Belz GT, Smith CM, Eichner D, Shortman K, Karupiah G, Carbone FR, Heath WR. Cutting edge: conventional CD8 alpha+ dendritic cells are generally involved in priming CTL immunity to viruses. THE JOURNAL OF IMMUNOLOGY 2004; 172:1996-2000. [PMID: 14764661 DOI: 10.4049/jimmunol.172.4.1996] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play a central role in initiating immune responses. Despite this, there is little understanding how different DC subsets contribute to immunity to different pathogens. CD8alpha(+) DC have been shown to prime immunity to HSV. Whether this very limited capacity of a single DC subset priming CTL immunity is restricted to HSV infection or is a more general property of anti-viral immunity was examined. Here, we show that the CD8alpha(+) DCs are the principal DC subset that initiates CTL immunity to s.c. infection by influenza virus, HSV, and vaccinia virus. This same subset also dominated immunity after i.v. infection with all three viruses, suggesting a similar involvement in other routes of infection. These data highlight the general role played by CD8alpha(+) DCs in CTL priming to viral infection and raises the possibility that this DC subset is specialized for viral immunity.
Collapse
Affiliation(s)
- Gabrielle T Belz
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
PURPOSE OF REVIEW Infection with herpes simplex virus remains a significant cause of disease. The host immune system plays an important role in containing viral replication, and there has been considerable progress in defining which components of immunity are key to the resolution of infection. Nevertheless, effective immunoprophylaxis or immunotherapy has not yet been achieved. RECENT FINDINGS Recent work has focused on understanding the early events leading to the herpes simplex virus-specific immune response, in particular on the role of antigen-presenting dendritic cells. Herpes simplex virus has evolved a number of ways of interfering with antigen presentation by dendritic cells, thus presumably impeding or delaying the host immune response. Nevertheless, herpes simplex virus triggers strong cellular and humoral immunity. The ability of dendritic cells to take up dead or dying infected cells and cross-present them to cognate T cells may be the key to resolving this apparent paradox. Interaction between dendritic cell subsets, and particularly the virus-induced release of type I interferons may be essential to drive efficient antigen cross-presentation and subsequent T-cell activation. SUMMARY A greater understanding of the importance of dendritic cells in driving viral immunity, and of the ligands that activate these cells and the cytokines they secrete, has provided novel vaccination strategies. The delivery of immunomodulatory genes together with viral antigens, for example by DNA vaccination, may harness the full potential of dendritic cells, and achieve the goal of effective immunological control of herpes simplex virus.
Collapse
Affiliation(s)
- Gabriele Pollara
- Department of Immunology and Molecular Pathology, University College London, Windeyer Institute of Medical Sciences, London, UK
| | | | | |
Collapse
|
86
|
Belz GT, Smith CM, Kleinert L, Reading P, Brooks A, Shortman K, Carbone FR, Heath WR. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc Natl Acad Sci U S A 2004; 101:8670-5. [PMID: 15163797 PMCID: PMC423253 DOI: 10.1073/pnas.0402644101] [Citation(s) in RCA: 291] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
During lung infection with virus, airway-derived dendritic cells (DC) have been thought to be the dominant cell type involved in acquisition, transport, and direct antigen presentation for cytotoxic T lymphocyte priming. Contrary to this view, we have found that both an airway-derived CD8alpha(-)CD11b(-) DC subset and distinct CD8alpha(+) lymph node resident DC can present class I-restricted antigens after lung infection with influenza virus or herpes simplex virus 1. Presentation by a nonairway-derived DC population argues that cytotoxic T lymphocyte priming may involve interplay between different DC subsets, not all of which originate within the site of infection.
Collapse
Affiliation(s)
- Gabrielle T Belz
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Rueda P, Morón G, Sarraseca J, Leclerc C, Casal JI. Influence of flanking sequences on presentation efficiency of a CD8+ cytotoxic T-cell epitope delivered by parvovirus-like particles. J Gen Virol 2004; 85:563-572. [PMID: 14993639 DOI: 10.1099/vir.0.19525-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have previously developed an antigen-delivery system based on hybrid recombinant porcine parvovirus-like particles (PPV-VLPs) formed by the self-assembly of the VP2 protein of PPV carrying a foreign epitope at its N terminus. In this study, different constructs were made containing a CD8(+) T-cell epitope of chicken ovalbumin (OVA) to analyse the influence of the sequence inserted into VP2 on the correct processing of VLPs by antigen-presenting cells. We analysed the presentation of the OVA epitope inserted without flanking sequences or with either different natural flanking sequences or with the natural flanking sequences of a CD8(+) T-cell epitope from the lymphocytic choriomeningitis virus nucleoprotein, and as a dimer with or without linker sequences. All constructs were studied in terms of level of expression, assembly of VLPs and ability to deliver the inserted epitope into the MHC I pathway. The presentation of the OVA epitope was considerably improved by insertion of short natural flanking sequences, which indicated the relevance of the flanking sequences on the processing of PPV-VLPs. Only PPV-VLPs carrying two copies of the OVA epitope linked by two glycines were able to be properly processed, suggesting that the introduction of flexible residues between the two consecutive OVA epitopes may be necessary for the correct presentation of these dimers by PPV-VLPs. These results provide information to improve the insertion of epitopes into PPV-VLPs to facilitate their processing and presentation by MHC class I molecules.
Collapse
Affiliation(s)
- P Rueda
- Inmunología y Genética Aplicada SA (INGENASA), C/Hnos García Noblejas 41, 28037 Madrid, Spain
| | - G Morón
- Unité de Biologie des Régulations Immunitaires, INSERM E 352, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - J Sarraseca
- Inmunología y Genética Aplicada SA (INGENASA), C/Hnos García Noblejas 41, 28037 Madrid, Spain
| | - C Leclerc
- Unité de Biologie des Régulations Immunitaires, INSERM E 352, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - J I Casal
- Inmunología y Genética Aplicada SA (INGENASA), C/Hnos García Noblejas 41, 28037 Madrid, Spain
| |
Collapse
|
88
|
Gliddon DR, Hope JC, Brooke GP, Howard CJ. DEC-205 expression on migrating dendritic cells in afferent lymph. Immunology 2004; 111:262-72. [PMID: 15009426 PMCID: PMC1782417 DOI: 10.1111/j.0019-2805.2004.01820.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 12/03/2003] [Accepted: 12/16/2003] [Indexed: 11/29/2022] Open
Abstract
Previous studies have identified a 210 000-molecular weight molecule expressed at a high level on the surface of dendritic cells (DCs) in afferent lymph of cattle and evident on cells with the morphology of DCs in lymphoid tissues. Expression is either absent from other immune cells or is present at a lower level. The molecular weight and cellular distribution suggested that the molecule, called bovine WC6 antigen (workshop cluster), might be an orthologue of human DEC-205 (CD205). To establish whether this was the case, the open reading frame of bovine DEC-205 was amplified, by polymerase chain reaction, from thymic cDNA (accession no. AY264845). The cDNA sequence of bovine DEC-205 had 86% and 78% nucleic acid identity with human and mouse molecules, respectively. COS-7 cells transfected with a plasmid containing the cattle DEC-205 coding region expressed a molecule that stained with WC6-specific monoclonal antibody, showing that ruminant WC6 is an orthologue of DEC-205. Two-colour flow cytometry of mononuclear cells from afferent lymph draining cattle skin, and from blood, confirmed the high level of expression on large cells in lymph that were uniformly DC-LAMP positive and major histocompatibility complex class II positive. Within this DEC-205+ DC-LAMP+ population were subpopulations of cells that expressed the mannose receptor or SIRPalpha. The observations imply that DCs in afferent lymph are all DEC-205high, but not a uniform population of homogeneous mature DCs.
Collapse
Affiliation(s)
- Daniel R Gliddon
- Institute for Animal Health, Compton, Newbury, Berks. RG20 7NN, UK
| | | | | | | |
Collapse
|
89
|
Iwasaki A. The role of dendritic cells in immune responses against vaginal infection by herpes simplex virus type 2. Microbes Infect 2004; 5:1221-30. [PMID: 14623018 DOI: 10.1016/j.micinf.2003.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Herpes simplex virus type 2 is a leading cause of genital ulcers that affects more women than men worldwide. Recent evidence indicates that protective immunity can be generated by specialized dendritic cells in the female genital mucosa. This article aims to provide an overview of the effector immunity required for protection from genital herpes, and to discuss the mechanism by which specific subsets of dendritic cells mediate induction of adaptive immunity following genital infection with herpes simplex virus type 2 in vivo.
Collapse
Affiliation(s)
- Akiko Iwasaki
- Department of Epidemiology and Public Health and Immunobiology, Yale University School of Medicine, 60 College Street, LEPH 716, New Haven, CT 06510, USA.
| |
Collapse
|
90
|
Abstract
At the beginning of this new millennium, pathogens and cancer remain the leading causes of death worldwide. The development of vaccines to prevent diseases for which no vaccine currently exists, such as AIDS or malaria, or to treat chronic infections or cancers, as well as the improvement of efficacy and safety of existing vaccines, remains a high priority. In most cases, the development of such vaccines requires strategies capable of stimulating CD8(+) cytotoxic T lymphocytes (CTLs) and thus, to deliver antigen to MHC class I molecules. There exists several different pathways for loading antigenic peptides onto MHC class I molecules, either based on the endogenous cytosolic MHC I pathway or on cross-presentation. The understanding of the relevance of each of these mechanisms in CTL activation will help vaccine design to progress more rationally.
Collapse
Affiliation(s)
- Gabriel Morón
- Unité de Biologie des Régulations Immunitaires, INSERM E0352, Institut Pasteur, 25 rue du Docteur Roux 75724, Paris Cedex 15, France
| | | | | |
Collapse
|
91
|
Abstract
Dendritic cells (DC) are the key link between innate and adaptive immunity. Features of DC, including their presence at sites of antigen entry, their ability to migrate from peripheral sites to secondary lymphoid organs, and their superior capacity to stimulate naïve T cells places them in this pivotal role in the immune system. DC also produce cytokines, particularly IL-12, upon antigen encounter and can thus influence the ensuing adaptive immune response. As DC are phagocytic antigen-presenting cells located at sites exposed to bacterial invaders, studies have been performed to gain insight into the role of DC in combating bacterial infections. Indeed, studies with Salmonella have shown that DC can internalize and process this bacterium for peptide presentation on MHC-II as well as MHC-I. DC can also act as bystander antigen--presenting cells by presenting Salmonella antigens after internalizing neighbouring cells that have undergone Salmonella-induced apoptotic death. DC also produce IL-12 and TNF-alpha upon Salmonella encounter. Moreover, studies in a murine infection model have shown that splenic DC increase surface expression of co-stimulatory molecules during infection, and DC contain intracellular bacteria. In addition, quantitative changes occur in splenic DC numbers in the early stages of oral Salmonella infection, and this is accompanied by redistribution of the defined DC subsets in the spleen of infected mice. DC from Salmonella-infected mice also produce cytokines and can stimulate bacteria-specific T cells upon ex vivo co-culture. In addition, DC may play a role in the traversal of bacteria from the intestinal lumen. Studying the function of DC during Salmonella infection provides insight into the capacity of this sophisticated antigen-presenting cell to initiate and modulate the immune response to bacteria.
Collapse
Affiliation(s)
- Malin Sundquist
- Department of Clinical Immunology, Göteborg University, Göteborg, Sweden
| | | | | |
Collapse
|
92
|
Warfield KL, Bosio CM, Welcher BC, Deal EM, Mohamadzadeh M, Schmaljohn A, Aman MJ, Bavari S. Ebola virus-like particles protect from lethal Ebola virus infection. Proc Natl Acad Sci U S A 2003; 100:15889-94. [PMID: 14673108 PMCID: PMC307663 DOI: 10.1073/pnas.2237038100] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Indexed: 11/18/2022] Open
Abstract
The filovirus Ebola causes hemorrhagic fever with 70-80% human mortality. High case-fatality rates, as well as known aerosol infectivity, make Ebola virus a potential global health threat and possible biological warfare agent. Development of an effective vaccine for use in natural outbreaks, response to biological attack, and protection of laboratory workers is a higher national priority than ever before. Coexpression of the Ebola virus glycoprotein (GP) and matrix protein (VP40) in mammalian cells results in spontaneous production and release of virus-like particles (VLPs) that resemble the distinctively filamentous infectious virions. VLPs have been tested and found efficacious as vaccines for several viruses, including papillomavirus, HIV, parvovirus, and rotavirus. Herein, we report that Ebola VLPs (eVLPs) were immunogenic in vitro as eVLPs matured and activated mouse bone marrow-derived dendritic cells, assessed by increases in cell-surface markers CD40, CD80, CD86, and MHC class I and II and secretion of IL-6, IL-10, macrophage inflammatory protein (MIP)-1alpha, and tumor necrosis factor alpha by the dendritic cells. Further, vaccinating mice with eVLPs activated CD4+ and CD8+ T cells, as well as CD19+ B cells. After vaccination with eVLPs, mice developed high titers of Ebola virus-specific antibodies, including neutralizing antibodies. Importantly, mice vaccinated with eVLPs were 100% protected from an otherwise lethal Ebola virus inoculation. Together, our data suggest that eVLPs represent a promising vaccine candidate for protection against Ebola virus infections and a much needed tool to examine the genesis and nature of immune responses to Ebola virus.
Collapse
Affiliation(s)
- Kelly L Warfield
- US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
In the last century, vaccines have been one of the most powerful tools for preventing infectious diseases. Smallpox has been eradicated and other diseases such as poliomyelitis or measles have been reduced to very low levels in many regions of the world. However, infectious diseases remain the leading cause of death worldwide. Thus, the development of vaccines to prevent diseases for which no vaccine currently exists such as AIDS or malaria as well as the improvement of efficacy and safety of existing vaccines remains a high priority. Achieving such ambitious goals in a near future will certainly require a strong modification of the methods that have been used so far to identify vaccine candidates. In particular, modern vaccinology could strongly benefit of the latest developments of molecular biology and immunology. Here, we will discuss some potential applications of the increasing knowledge of pathogen genomes as well as the immune system for the discovery of new antigenic targets and the development of new strategies of vaccination.
Collapse
Affiliation(s)
- Claude Leclerc
- Unité de Biologie des Régulations Immunitaires, Institut Pasteur, 28 rue du Docteur Roux, Cedex 15 75015, Paris, France.
| |
Collapse
|
94
|
Morón VG, Rueda P, Sedlik C, Leclerc C. In vivo, dendritic cells can cross-present virus-like particles using an endosome-to-cytosol pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2242-50. [PMID: 12928368 DOI: 10.4049/jimmunol.171.5.2242] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recombinant parvovirus-like particles (PPV-VLPs) are particulate exogenous Ags that induce strong CTL response in the absence of adjuvant. In the present report to decipher the mechanisms responsible for CTL activation by such exogenous Ag, we analyzed ex vivo and in vitro the mechanisms of capture and processing of PPV-VLPs by dendritic cells (DCs). In vivo, PPV-VLPs are very efficiently captured by CD8alpha- and CD8alpha+ DCs and then localize in late endosomes of DCs. Macropinocytosis and lipid rafts participate in PPV-VLPs capture. Processing of PPV-VLPs does not depend upon recycling of MHC class I molecules, but requires vacuolar acidification as well as proteasome activity, TAP translocation, and neosynthesis of MHC class I molecules. This study therefore shows that in vivo DCs can cross-present PPV-VLPs using an endosome-to-cytosol processing pathway.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/physiology
- Actins/immunology
- Actins/metabolism
- Amino Acid Sequence
- Animals
- Antigen Presentation/drug effects
- Antigen Presentation/genetics
- Brefeldin A
- Cell Line
- Coated Pits, Cell-Membrane/genetics
- Coated Pits, Cell-Membrane/immunology
- Coated Pits, Cell-Membrane/virology
- Cysteine Endopeptidases/metabolism
- Cytosol/immunology
- Cytosol/metabolism
- Cytosol/virology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/virology
- Endopeptidases/metabolism
- Endosomes/genetics
- Endosomes/immunology
- Endosomes/metabolism
- Endosomes/virology
- Female
- Genetic Vectors/administration & dosage
- Hybridomas
- Hydrogen-Ion Concentration
- Hydrolysis
- Membrane Microdomains/genetics
- Membrane Microdomains/immunology
- Membrane Microdomains/virology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Multienzyme Complexes/metabolism
- Ovalbumin/administration & dosage
- Ovalbumin/genetics
- Ovalbumin/immunology
- Ovalbumin/metabolism
- Parvovirus, Porcine/drug effects
- Parvovirus, Porcine/genetics
- Parvovirus, Porcine/immunology
- Parvovirus, Porcine/metabolism
- Peptide Fragments/administration & dosage
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Pinocytosis/genetics
- Pinocytosis/immunology
- Proteasome Endopeptidase Complex
- Protein Binding/genetics
- Protein Binding/immunology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/immunology
- Vacuoles/enzymology
- Vacuoles/metabolism
- Vacuoles/virology
- Virion/drug effects
- Virion/genetics
- Virion/immunology
- Virion/metabolism
Collapse
Affiliation(s)
- Víctor Gabriel Morón
- Unité de Biologie des Régulations Immunitaires, Institut National de la Santé et de la Recherche Médicale, E352, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
95
|
Abstract
Dendritic cells (DCs) have several functions in innate and adaptive immunity. In addition, there is increasing evidence that DCs in situ induce antigen-specific unresponsiveness or tolerance in central lymphoid organs and in the periphery. In the thymus DCs generate tolerance by deleting self-reactive T cells. In peripheral lymphoid organs DCs also induce tolerance to antigens captured by receptors that mediate efficient uptake of proteins and dying cells. Uptake by these receptors leads to the constitutive presentation of antigens on major histocompatibility complex (MHC) class I and II products. In the steady state the targeting of DC antigen capture receptors with low doses of antigens leads to deletion of the corresponding T cells and unresponsiveness to antigenic rechallenge with strong adjuvants. In contrast, if a stimulus for DC maturation is coadministered with the antigen, the mice develop immunity, including interferon-gamma-secreting effector T cells and memory T cells. There is also new evidence that DCs can contribute to the expansion and differentiation of T cells that regulate or suppress other immune T cells. One possibility is that distinct developmental stages and subsets of DCs and T cells can account for the different pathways to peripheral tolerance, such as deletion or suppression. We suggest that several clinical situations, including autoimmunity and certain infectious diseases, can be influenced by the antigen-specific tolerogenic role of DCs.
Collapse
Affiliation(s)
- Ralph M Steinman
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10021-6399, USA.
| | | | | |
Collapse
|
96
|
Abstract
Dendritic cells orchestrate the adaptive immune response. As well as presenting MHC-restricted antigen for T-cell activation, they provide all the co-receptor signals required for full T-cell priming. As a consequence, they play a central role in the immune response to infections caused by many pathogenic agents, including viruses. In recent times, it has become apparent that dendritic cells represent a particularly heterogeneous population with individual subsets playing specialized roles in response to infection.
Collapse
Affiliation(s)
- Francis R Carbone
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia.
| | | |
Collapse
|
97
|
Doxsee CL, Riter TR, Reiter MJ, Gibson SJ, Vasilakos JP, Kedl RM. The immune response modifier and Toll-like receptor 7 agonist S-27609 selectively induces IL-12 and TNF-alpha production in CD11c+CD11b+CD8- dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1156-63. [PMID: 12874201 DOI: 10.4049/jimmunol.171.3.1156] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-12 and TNF-alpha production by dendritic cells (DCs) is a critical step in the initiation of local inflammation and adaptive immune responses. We show in this study that a small molecule immune response modifier that is a Toll-like receptor 7 (TLR7) agonist induces IL-12 and TNF-alpha production from murine CD11c(+)CD11b(+)CD8(-) DCs, a subset not previously known for this activity. Stimulation of these DCs through TLR7 in vivo induces significant cytokine production even 12 h after initial stimulation, as well as migration of the DC into T cell zones of the lymphoid tissue. In contrast, stimulation through TLR4 and TLR9 induced IL-12 production predominantly from CD8(+) DCs, consistent with previously published data. All TLR stimuli induced the increase in surface expression of the activation markers B7-1, B7-2, and class II in both CD8(+) and CD8(-) DCs, demonstrating that CD8(+) DCs do respond to TLR7-mediated stimuli. To date this is the only known stimuli to induce preferential cytokine production from CD8(-) DCs. Given the efficacy of TLR7 agonists as antiviral agents, the data collectively indicate that stimulation of CD8(-) DCs through TLR7 most likely plays a role in the generation of antiviral immune responses.
Collapse
Affiliation(s)
- Christie L Doxsee
- Department of Pharmacology, 3 M Pharmaceuticals, St Paul, MN 55144, USA
| | | | | | | | | | | |
Collapse
|
98
|
Edwards AD, Chaussabel D, Tomlinson S, Schulz O, Sher A, Reis e Sousa C. Relationships among murine CD11c(high) dendritic cell subsets as revealed by baseline gene expression patterns. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:47-60. [PMID: 12816982 DOI: 10.4049/jimmunol.171.1.47] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The functional relationships and properties of different subtypes of dendritic cells (DC) remain largely undefined. To better characterize these cells, we used global gene analysis to determine gene expression patterns among murine CD11c(high) DC subsets. CD4(+), CD8alpha(+), and CD8alpha(-) CD4(-) (double negative (DN)) DC were purified from spleens of normal C57/BL6 mice and analyzed using Affymetrix microarrays. The CD4(+) and CD8alpha(+) DC subsets showed distinct basal expression profiles differing by >200 individual genes. These included known DC subset markers as well as previously unrecognized, differentially expressed CD Ags such as CD1d, CD5, CD22, and CD72. Flow cytometric analysis confirmed differential expression in nine of nine cases, thereby validating the microarray analysis. Interestingly, the microarray expression profiles for DN cells strongly resembled those of CD4(+) DC, differing from them by <25 genes. This suggests that CD4(+) and DN DC are closely related phylogenetically, whereas CD8alpha(+) DC represent a more distant lineage, supporting the historical distinction between CD8alpha(+) and CD8alpha(-) DC. However, staining patterns revealed that in contrast to CD4(+) DC, the DN subset is heterogeneous and comprises at least two subpopulations. Gene Ontology and literature mining analyses of genes expressed differentially among DC subsets indicated strong associations with immune response parameters as well as cell differentiation and signaling. Such associations offer clues to possible unique functions of the CD11c(high) DC subsets that to date have been difficult to define as rigid distinctions.
Collapse
Affiliation(s)
- Alexander D Edwards
- Immunobiology Laboratory and Computational Genome Analysis Laboratory, Cancer Research UK, London Research Institute, London, UK
| | | | | | | | | | | |
Collapse
|
99
|
Abstract
Functional specialization allows defined dendritic-cell (DC) subsets to induce efficient defence mechanisms against pathogens and tumour cells, and maintain T-cell tolerance by inducing the inactivation of autoreactive T cells. A crucial question, which has important implications for both our understanding of the induction and control of immunity by DCs, as well as the use of DCs for immunotherapy, is whether the functional diversity of DCs results from the existence of developmentally independent DC subpopulations, or whether DC subsets that share a common differentiation origin acquire specific functions in response to environmental signals. This review discusses recent findings on mouse DC development.
Collapse
Affiliation(s)
- Carlos Ardavín
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid 28040, Spain.
| |
Collapse
|
100
|
Abstract
Models of infection have provided important insight into the function of dendritic cells (DC) in vivo. Several microbial products induce DC maturation via Toll-like receptors, a process that is crucial for the ability of DC to initiate adaptive immune responses. Splenic DC have also been shown to produce IL-12 during infection in vivo. This DC-derived IL-12 might be important to skew T cell responses towards Th1. Microbial infections also induce changes in the DC populations of lymphoid organs, often in a subset-specific manner, manifested as an accumulation and redistribution of DC. Furthermore, data are emerging pointing at an absolute requirement of DC in priming of naïve T cells in vivo.
Collapse
Affiliation(s)
- Malin Sundquist
- Department of Clinical Immunology, Göteborg University, Sweden
| | | | | |
Collapse
|