51
|
Jing Y, Cao M, Zhang B, Long X, Wang X. cDC1 Dependent Accumulation of Memory T Cells Is Required for Chronic Autoimmune Inflammation in Murine Testis. Front Immunol 2021; 12:651860. [PMID: 34381443 PMCID: PMC8350123 DOI: 10.3389/fimmu.2021.651860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
As an immune privilege site, there are various types of immune cells in the testis. Previous research has been focused on the testicular macrophages, and much less is known about the T cells in the testis. Here, we found that T cells with memory phenotypes were the most abundant leukocyte in the testis except for macrophages. Our results showed that the proportion of testicular T cells increases gradually from birth to adulthood in mice and that the primary type of T cells changed from γδTCR+ T cells to αβTCR+ T cells. In addition, under homeostatic conditions, CD8+ T cells are the dominant subgroup and have different phenotypic characteristics from CD4+ T cells. We found that cDC1, but not cDC2, is necessary for the presence of T cells in the testis under physiological state. A significant decrease of T cells does not have a deleterious effect on the development of the testis or spermatogenesis. However, cDC1-dependent T cells play an indispensable role in chronic autoimmune orchitis of the testis. Collectively, our multifaceted data provide a comprehensive picture of the accumulation, localization, and function of testicular T cells.
Collapse
Affiliation(s)
- Yuchao Jing
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Min Cao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Bei Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuehui Long
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoming Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
52
|
Figueiredo AFA, Wnuk NT, Vieira CP, Gonçalves MFF, Brener MRG, Diniz AB, Antunes MM, Castro-Oliveira HM, Menezes GB, Costa GMJ. Activation of C-C motif chemokine receptor 2 modulates testicular macrophages number, steroidogenesis, and spermatogenesis progression. Cell Tissue Res 2021; 386:173-190. [PMID: 34296344 DOI: 10.1007/s00441-021-03504-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/02/2021] [Indexed: 01/13/2023]
Abstract
The monocyte chemoattractant protein 1 (MCP-1) belongs to the CC chemokine family and acts in the recruitment of C-C motif chemokine receptor 2 (CCR2)-positive immune cell types to inflammation sites. In testis, the MCP-1/CCR2 axis has been associated with the macrophage population's functional regulation, which presents significant functions supporting germ cell development. In this context, herein, we aimed to investigate the role of the chemokine receptor CCR2 in mice testicular environment and its impact on male sperm production. Using adult transgenic mice strain that had the CCR2 gene replaced by a red fluorescent protein gene, we showed a stage-dependent expression of CCR2 in type B spermatogonia and early primary spermatocytes. Several parameters related to sperm production were reduced in the absence of CCR2 protein, such as Sertoli cell efficiency, meiotic index, and overall yield of spermatogenesis. Daily sperm production decreased by almost 40%, and several damages in the seminiferous tubules were observed. Significant reduction in the expression of important genes related to the Sertoli cell function (Cnx43, Vim, Ocln, Spna2) and meiosis initiation (Stra8, Pcna, Prdm9, Msh5) occurred in comparison to controls. Also, the number of macrophages significantly decreased in the absence of CCR2 protein, along with a disturbance in Leydig cell steroidogenic activity. In summary, our results show that the non-activation of the MCP-1/CCR2 axis disturbs the testicular homeostasis, interfering in macrophage population, meiosis initiation, blood-testis barrier function, and androgen synthesis, leading to the malfunction of seminiferous tubules, decreased testosterone levels, defective sperm production, and lower fertility index.
Collapse
Affiliation(s)
- A F A Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - N T Wnuk
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - C P Vieira
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M F F Gonçalves
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M R G Brener
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A B Diniz
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M M Antunes
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - H M Castro-Oliveira
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - G B Menezes
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - G M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
53
|
Ye L, Huang W, Liu S, Cai S, Hong L, Xiao W, Thiele K, Zeng Y, Song M, Diao L. Impacts of Immunometabolism on Male Reproduction. Front Immunol 2021; 12:658432. [PMID: 34367130 PMCID: PMC8334851 DOI: 10.3389/fimmu.2021.658432] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
The physiological process of male reproduction relies on the orchestration of neuroendocrine, immune, and energy metabolism. Spermatogenesis is controlled by the hypothalamic-pituitary-testicular (HPT) axis, which modulates the production of gonadal steroid hormones in the testes. The immune cells and cytokines in testes provide a protective microenvironment for the development and maturation of germ cells. The metabolic cellular responses and processes in testes provide energy production and biosynthetic precursors to regulate germ cell development and control testicular immunity and inflammation. The metabolism of immune cells is crucial for both inflammatory and anti-inflammatory responses, which supposes to affect the spermatogenesis in testes. In this review, the role of immunometabolism in male reproduction will be highlighted. Obesity, metabolic dysfunction, such as type 2 diabetes mellitus, are well documented to impact male fertility; thus, their impacts on the immune cells distributed in testes will also be discussed. Finally, the potential significance of the medicine targeting the specific metabolic intermediates or immune metabolism checkpoints to improve male reproduction will also be reassessed.
Collapse
Affiliation(s)
- Lijun Ye
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Wensi Huang
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Su Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Ling Hong
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Weiqiang Xiao
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yong Zeng
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Mingzhe Song
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
54
|
Zheng W, Zhang S, Jiang S, Huang Z, Chen X, Guo H, Li M, Zheng S. Evaluation of immune status in testis and macrophage polarization associated with testicular damage in patients with nonobstructive azoospermia. Am J Reprod Immunol 2021; 86:e13481. [PMID: 34192390 DOI: 10.1111/aji.13481] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Immune cells residing in the testicular interstitial space form the immunological microenvironment of the testis. They are assumed to play a role in maintaining testicular homeostasis and immune privilege. However, the immune status and related cell polarization in patients with nonobstructive azoospermia (NOA) remains poorly characterized. System evaluation of the testis immunological microenvironment in NOA patients may help to reveal the mechanisms of idiopathic azoospermia. STUDY DESIGN The gene expression patterns of immune cells in normal human testes were systematically analyzed by single-cell RNA sequencing (scRNA-seq) and preliminarily verification by the human protein atlas (HPA) online database. The immune cell infiltration profiles and immune status of patients with NOA was analyzed by single-sample gene set enrichment analysis (ssGSEA) and gene set variation analysis (GSVA) based on four independent public microarray datasets (GSE45885, GSE45887, GSE9210, and GSE145467), obtained from Gene Expression Omnibus (GEO) online database. The relationship between immune cells and spermatogenesis score was further analyzed by Spearman correlation analysis. Finally, immunohistochemistry (IHC) staining was performed to identify the main immune cell types and their polarization status in patients with NOA. RESULTS Both scRNA-seq and HPA analysis showed that testicular macrophages represent the largest pool of immune cells in the normal testis, and also exhibit an attenuated inflammatory response by expressing high levels of tolerance proteins (CD163, IL-10, TGF-β, and VEGF) and reduced expression of TLR signaling pathway-related genes. Correlation analysis revealed that the testicular immune score and macrophages including M1 and M2 macrophages were significantly negatively correlated with spermatogenesis score in patients with NOA (GSE45885 and GSE45887). In addition, the number of M1 and M2 macrophages was significantly higher in patients with NOA (GSE9210 and GSE145467) than in normal testis. GSVA analysis indicated that the immunological microenvironment in NOA tissues was manifested by activated immune system and pro-inflammatory status. IHC staining results showed that the number of M1 and M2 macrophages was significantly higher in NOA tissues than in normal testis and negatively correlated with the Johnson score. CONCLUSION Testicular macrophage polarization may play a vital role in NOA development and is a promising potential therapeutic target.
Collapse
Affiliation(s)
- Wenzhong Zheng
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shiqiang Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shaoqin Jiang
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhangcheng Huang
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaobao Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huan Guo
- Department of Urology, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China
| | - Mengqiang Li
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Song Zheng
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
55
|
Vasamsetti SB, Coppin E, Zhang X, Florentin J, Koul S, Götberg M, Clugston AS, Thoma F, Sembrat J, Bullock GC, Kostka D, St Croix CM, Chattopadhyay A, Rojas M, Mulukutla SR, Dutta P. Apoptosis of hematopoietic progenitor-derived adipose tissue-resident macrophages contributes to insulin resistance after myocardial infarction. Sci Transl Med 2021; 12:12/553/eaaw0638. [PMID: 32718989 DOI: 10.1126/scitranslmed.aaw0638] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/27/2019] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Patients with insulin resistance have high risk of cardiovascular disease such as myocardial infarction (MI). However, it is not known whether MI can initiate or aggravate insulin resistance. We observed that patients with ST-elevation MI and mice with MI had de novo hyperglycemia and features of insulin resistance, respectively. In mouse models of both myocardial and skeletal muscle injury, we observed that the number of visceral adipose tissue (VAT)-resident macrophages decreased because of apoptosis after these distant organ injuries. Patients displayed a similar decrease in VAT-resident macrophage numbers and developed systemic insulin resistance after ST-elevation MI. Loss of VAT-resident macrophages after MI injury led to systemic insulin resistance in non-diabetic mice. Danger signaling-associated protein high mobility group box 1 was released by the dead myocardium after MI in rodents and triggered macrophage apoptosis via Toll-like receptor 4. The VAT-resident macrophage population in the steady state in mice was transcriptomically distinct from macrophages in the brain, skin, kidney, bone marrow, lungs, and liver and was derived from hematopoietic progenitor cells just after birth. Mechanistically, VAT-resident macrophage apoptosis and de novo insulin resistance in mouse models of MI were linked to diminished concentrations of macrophage colony-stimulating factor and adiponectin. Collectively, these findings demonstrate a previously unappreciated role of adipose tissue-resident macrophages in sensing remote organ injury and promoting MI pathogenesis.
Collapse
Affiliation(s)
- Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Emilie Coppin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Regeneration in Hematopoiesis, Leibniz Institute on Aging- Fritz Lipmann Institute, Jena 07745, Germany
| | - Xinyi Zhang
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.,The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sasha Koul
- Department of Cardiology, Lund University, Skane University Hospital, Lund, 22184, Sweden
| | - Matthias Götberg
- Department of Cardiology, Lund University, Skane University Hospital, Lund, 22184, Sweden
| | - Andrew S Clugston
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Floyd Thoma
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - John Sembrat
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Grant C Bullock
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dennis Kostka
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | - Mauricio Rojas
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Suresh R Mulukutla
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA. .,Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
56
|
Two populations of self-maintaining monocyte-independent macrophages exist in adult epididymis and testis. Proc Natl Acad Sci U S A 2021; 118:2013686117. [PMID: 33372158 DOI: 10.1073/pnas.2013686117] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages are the principal immune cells of the epididymis and testis, but their origins, heterogeneity, development, and maintenance are not well understood. Here, we describe distinct populations of epididymal and testicular macrophages that display an organ-specific cellular identity. Combining in vivo fate-mapping, chimeric and parabiotic mouse models with in-depth cellular analyses, we found that CD64hiMHCIIlo and CD64loMHCIIhi macrophage populations of epididymis and testis arise sequentially from yolk sac erythro-myeloid progenitors, embryonic hematopoiesis, and nascent neonatal monocytes. While monocytes were the major developmental source of both epididymal and testicular macrophages, both populations self-maintain in the steady-state independent of bone marrow hematopoietic precursors. However, after radiation-induced macrophage ablation or during infection, bone marrow-derived circulating monocytes are recruited to the epididymis and testis, giving rise to inflammatory macrophages that promote tissue damage. These results define the layered ontogeny, maintenance and inflammatory response of macrophage populations in the male reproductive organs.
Collapse
|
57
|
Macrophages and Stem Cells-Two to Tango for Tissue Repair? Biomolecules 2021; 11:biom11050697. [PMID: 34066618 PMCID: PMC8148606 DOI: 10.3390/biom11050697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Macrophages (MCs) are present in all tissues, not only supporting homeostasis, but also playing an important role in organogenesis, post-injury regeneration, and diseases. They are a heterogeneous cell population due to their origin, tissue specificity, and polarization in response to aggression factors, depending on environmental cues. Thus, as pro-inflammatory M1 phagocytic MCs, they contribute to tissue damage and even fibrosis, but the anti-inflammatory M2 phenotype participates in repairing processes and wound healing through a molecular interplay with most cells in adult stem cell niches. In this review, we emphasize MC phenotypic heterogeneity in health and disease, highlighting their systemic and systematic contribution to tissue homeostasis and repair. Unraveling the intervention of both resident and migrated MCs on the behavior of stem cells and the regulation of the stem cell niche is crucial for opening new perspectives for novel therapeutic strategies in different diseases.
Collapse
|
58
|
Gu X, Li SY, DeFalco T. Immune and vascular contributions to organogenesis of the testis and ovary. FEBS J 2021; 289:2386-2408. [PMID: 33774913 PMCID: PMC8476657 DOI: 10.1111/febs.15848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/07/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Gonad development is a highly regulated process that coordinates cell specification and morphogenesis to produce sex-specific organ structures that are required for fertility, such as testicular seminiferous tubules and ovarian follicles. While sex determination occurs within specialized gonadal supporting cells, sexual differentiation is evident throughout the entire organ, including within the interstitial compartment, which contains immune cells and vasculature. While immune and vascular cells have been traditionally appreciated for their supporting roles during tissue growth and homeostasis, an increasing body of evidence supports the idea that these cell types are critical drivers of sexually dimorphic morphogenesis of the gonad. Myeloid immune cells, such as macrophages, are essential for multiple aspects of gonadogenesis and fertility, including for forming and maintaining gonadal vasculature in both sexes at varying stages of life. While vasculature is long known for supporting organ growth and serving as an export mechanism for gonadal sex steroids in utero, it is also an important component of fetal testicular morphogenesis and differentiation; additionally, it is vital for ovarian corpus luteal function and maintenance of pregnancy. These findings point toward a new paradigm in which immune cells and blood vessels are integral components of sexual differentiation and organogenesis. In this review, we discuss the state of the field regarding the diverse roles of immune and vascular cells during organogenesis of the testis and ovary and highlight outstanding questions in the field that could stimulate new research into these previously underappreciated constituents of the gonad.
Collapse
Affiliation(s)
- Xiaowei Gu
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Shu-Yun Li
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, OH, USA
| |
Collapse
|
59
|
Patel AA, Ginhoux F, Yona S. Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease. Immunology 2021; 163:250-261. [PMID: 33555612 DOI: 10.1111/imm.13320] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Phagocytes form a family of immune cells that play a crucial role in tissue maintenance and help orchestrate the immune response. This family of cells can be separated by their nuclear morphology into mononuclear and polymorphonuclear phagocytes. The generation of these cells in the bone marrow, to the blood and finally into tissues is a tightly regulated process. Ensuring the adequate production of these cells and their timely removal is key for both the initiation and resolution of inflammation. Insight into the kinetic profiles of innate myeloid cells during steady state and pathology will permit the rational development of therapies to boost the production of these cells in times of need or reduce them when detrimental.
Collapse
Affiliation(s)
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Simon Yona
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
60
|
Hashimoto M, Kimura S, Kanno C, Yanagawa Y, Watanabe T, Okabe J, Takahashi E, Nagano M, Kitamura H. Macrophage ubiquitin-specific protease 2 contributes to motility, hyperactivation, capacitation, and in vitro fertilization activity of mouse sperm. Cell Mol Life Sci 2021; 78:2929-2948. [PMID: 33104844 PMCID: PMC11073191 DOI: 10.1007/s00018-020-03683-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Macrophages are innate immune cells that contribute to classical immune functions and tissue homeostasis. Ubiquitin-specific protease 2 (USP2) controls cytokine production in macrophages, but its organ-specific roles are still unknown. In this study, we generated myeloid-selective Usp2 knockout (msUsp2KO) mice and specifically explored the roles of testicular macrophage-derived USP2 in reproduction. The msUsp2KO mice exhibited normal macrophage characteristics in various tissues. In the testis, macrophage Usp2 deficiency negligibly affected testicular macrophage subpopulations, spermatogenesis, and testicular organogenesis. However, frozen-thawed sperm derived from msUsp2KO mice exhibited reduced motility, capacitation, and hyperactivation. In addition, macrophage Usp2 ablation led to a decrease in the sperm population exhibiting high intracellular pH, calcium influx, and mitochondrial membrane potential. Interrupted pronuclei formation in eggs was observed when using frozen-thawed sperm from msUsp2KO mice for in vitro fertilization. Administration of granulocyte macrophage-colony stimulating factor (GM-CSF), whose expression was decreased in testicular macrophages derived from msUsp2KO mice, restored mitochondrial membrane potential and total sperm motility. Our observations demonstrate a distinct role of the deubiquitinating enzyme in organ-specific macrophages that directly affect sperm function.
Collapse
Affiliation(s)
- Mayuko Hashimoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| | - Chihiro Kanno
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Jun Okabe
- Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Eiki Takahashi
- Research Resources Centre, RIKEN Brain Science Institute, Wako, Japan
| | - Masashi Nagano
- Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Hiroshi Kitamura
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| |
Collapse
|
61
|
Bijnen M, Bajénoff M. Gland Macrophages: Reciprocal Control and Function within Their Niche. Trends Immunol 2021; 42:120-136. [PMID: 33423933 DOI: 10.1016/j.it.2020.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/30/2022]
Abstract
The human body contains dozens of endocrine and exocrine glands, which regulate physiological processes by secreting hormones and other factors. Glands can be subdivided into contiguous tissue modules, each consisting of an interdependent network of cells that together perform particular tissue functions. Among those cells are macrophages, a diverse type of immune cells endowed with trophic functions. In this review, we discuss recent findings on how resident macrophages support tissue modules within glands via the creation of mutually beneficial cell-cell circuits. A better comprehension of gland macrophage function and local control within their niche is essential to achieve a refined understanding of gland physiology in homeostasis and disease.
Collapse
Affiliation(s)
- Mitchell Bijnen
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Marc Bajénoff
- Aix Marseille University, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
62
|
Sreejit G, Fleetwood AJ, Murphy AJ, Nagareddy PR. Origins and diversity of macrophages in health and disease. Clin Transl Immunology 2020; 9:e1222. [PMID: 33363732 PMCID: PMC7750014 DOI: 10.1002/cti2.1222] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the first immune cells in the developing embryo and have a central role in organ development, homeostasis, immunity and repair. Over the last century, our understanding of these cells has evolved from being thought of as simple phagocytic cells to master regulators involved in governing a myriad of cellular processes. A better appreciation of macrophage biology has been matched with a clearer understanding of their diverse origins and the flexibility of their metabolic and transcriptional machinery. The understanding of the classical mononuclear phagocyte system in its original form has now been expanded to include the embryonic origin of tissue-resident macrophages. A better knowledge of the intrinsic similarities and differences between macrophages of embryonic or monocyte origin has highlighted the importance of ontogeny in macrophage dysfunction in disease. In this review, we provide an update on origin and classification of tissue macrophages, the mechanisms of macrophage specialisation and their role in health and disease. The importance of the macrophage niche in providing trophic factors and a specialised environment for macrophage differentiation and specialisation is also discussed.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Division of Cardiac SurgeryDepartment of SurgeryThe Ohio State University Wexner Medical CenterColumbusOHUSA
| | - Andrew J Fleetwood
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Andrew J Murphy
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Prabhakara R Nagareddy
- Division of Cardiac SurgeryDepartment of SurgeryThe Ohio State University Wexner Medical CenterColumbusOHUSA
| |
Collapse
|
63
|
Yang W, Wu YH, Liu SQ, Sheng ZY, Zhen ZD, Gao RQ, Cui XY, Fan DY, Qin ZH, Zheng AH, Wang PG, An J. S100A4+ macrophages facilitate zika virus invasion and persistence in the seminiferous tubules via interferon-gamma mediation. PLoS Pathog 2020; 16:e1009019. [PMID: 33315931 PMCID: PMC7769614 DOI: 10.1371/journal.ppat.1009019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Testicular invasion and persistence are features of Zika virus (ZIKV), but their mechanisms are still unknown. Here, we showed that S100A4+ macrophages, a myeloid macrophage subpopulation with susceptibility to ZIKV infection, facilitated ZIKV invasion and persistence in the seminiferous tubules. In ZIKV-infected mice, S100A4+ macrophages were specifically recruited into the interstitial space of testes and differentiated into interferon-γ-expressing M1 macrophages. With interferon-γ mediation, S100A4+ macrophages down-regulated Claudin-1 expression and induced its redistribution from the cytosol to nucleus, thus increasing the permeability of the blood-testis barrier which facilitated S100A4+ macrophages invasion into the seminiferous tubules. Intraluminal S100A4+ macrophages were segregated from CD8+ T cells and consequently helped ZIKV evade cellular immunity. As a result, ZIKV continued to replicate in intraluminal S100A4+ macrophages even when the spermatogenic cells disappeared. Deficiencies in S100A4 or interferon-γ signaling both reduced ZIKV infection in the seminiferous tubules. These results demonstrated crucial roles of S100A4+ macrophages in ZIKV infection in testes.
Collapse
Affiliation(s)
- Wei Yang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan-Hua Wu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuang-Qing Liu
- Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Zi-Yang Sheng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zi-Da Zhen
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Rui-Qi Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Yun Cui
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Science and Technology, Capital Institute of Pediatrics, Beijing, China
| | - Dong-Ying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhi-Hai Qin
- Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Ai-Hua Zheng
- Institute of Zoology, Chinese Academy of Science, Beijing, China
| | - Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- * E-mail: (PGW); , (JA)
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
- * E-mail: (PGW); , (JA)
| |
Collapse
|
64
|
Deng SL, Zhang BL, Reiter RJ, Liu YX. Melatonin Ameliorates Inflammation and Oxidative Stress by Suppressing the p38MAPK Signaling Pathway in LPS-Induced Sheep Orchitis. Antioxidants (Basel) 2020; 9:antiox9121277. [PMID: 33327643 PMCID: PMC7765110 DOI: 10.3390/antiox9121277] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Gram-negative bacterial infections of the testis can lead to infectious orchitis, which negatively influences steroid hormone synthesis and spermatogenesis. Lipopolysaccharide (LPS), a major component of the Gram-negative bacterial cell wall, acts via toll like receptors 4 (TLR4) to trigger innate immune responses and activate nuclear factor kappa B signaling. The protective mechanisms of melatonin on LPS-induced infectious orchitis have not been reported. Herein, we developed an LPS-induced sheep infectious orchitis model. In this model, the phagocytic activity of testicular macrophages (TM) was enhanced after melatonin treatment. Moreover, we found that melatonin suppressed secretion of TM pro-inflammatory factors by suppressing the p38MAPK pathway and promoting Leydig cell testosterone secretion. Expressions of GTP cyclohydrolase-I and NADPH oxidase-2 were reduced by melatonin while heme oxygenase-1 expression was up-regulated. Thus, melatonin reduced the severity of LPS-induced orchitis by stimulating antioxidant activity. The results of this study provide a reference for the treatment of acute infectious orchitis.
Collapse
Affiliation(s)
- Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Bao-Lu Zhang
- Marine Consulting Center of Natural Resources of the People’s Republic of China, Beijing 100071, China;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
- Correspondence: (R.J.R.); (Y.-X.L.); Tel.: +35-210-567-3859 (R.J.R.); +86-010-84097698 (Y.-X.L.)
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (R.J.R.); (Y.-X.L.); Tel.: +35-210-567-3859 (R.J.R.); +86-010-84097698 (Y.-X.L.)
| |
Collapse
|
65
|
Spiteri AG, Wishart CL, King NJC. Immovable Object Meets Unstoppable Force? Dialogue Between Resident and Peripheral Myeloid Cells in the Inflamed Brain. Front Immunol 2020; 11:600822. [PMID: 33363542 PMCID: PMC7752943 DOI: 10.3389/fimmu.2020.600822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation of the brain parenchyma is characteristic of neurodegenerative, autoimmune, and neuroinflammatory diseases. During this process, microglia, which populate the embryonic brain and become a permanent sentinel myeloid population, are inexorably joined by peripherally derived monocytes, recruited by the central nervous system. These cells can quickly adopt a morphology and immunophenotype similar to microglia. Both microglia and monocytes have been implicated in inducing, enhancing, and/or maintaining immune-mediated pathology and thus disease progression in a number of neuropathologies. For many years, experimental and analytical systems have failed to differentiate resident microglia from peripherally derived myeloid cells accurately. This has impeded our understanding of their precise functions in, and contributions to, these diseases, and hampered the development of novel treatments that could target specific cell subsets. Over the past decade, microglia have been investigated more intensively in the context of neuroimmunological research, fostering the development of more precise experimental systems. In light of our rapidly growing understanding of these cells, we discuss the differential origins of microglia and peripherally derived myeloid cells in the inflamed brain, with an analysis of the problems resolving these cell types phenotypically and morphologically, and highlight recent developments enabling more precise identification.
Collapse
Affiliation(s)
- Alanna G. Spiteri
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Claire L. Wishart
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas J. C. King
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry Facility, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
66
|
Osman A, Oze M, Afify SM, Hassan G, EL-Ghlban S, Nawara HM, Fu X, Zahra MH, Seno A, Winer I, Salomon DS, Seno M. Tumor-associated macrophages derived from cancer stem cells. Acta Histochem 2020; 122:151628. [PMID: 32992123 DOI: 10.1016/j.acthis.2020.151628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/03/2023]
Abstract
Macrophages are the most abundant immune cells in the microenvironment of solid tumors. The present study displayed histological and immunohistochemical analyses of a malignant tumor model developed from cancer stem cells (CSCs) converted from human induced pluripotent stem cells (hiPSCs) in a cancer microenvironment prepared from the conditioned medium (CM) of a pancreatic cancer cell line. We focused on the localization and the origin of tumor-associated macrophages (TAMs), To the best of our knowledge this may be the first study to suggest the potential differentiation of CSCs to TAMs. hiPSCs were converted into CSCs in the presence of CM from PK8 cells. CSCs were then transplanted in vivo and formed primary tumors. Primary cultures for these tumors were serially transplanted again to obtain secondary tumors. Secondary tumors exhibited histopathological features of malignancy. Cells derived from tumors maintained the expression of endogenous stemness markers and pancreatic CSCs markers. Simultaneously, high immunoreactivity to anti-mouse CD68, anti-human CD68, CD206 and CD11b antibodies were detected revealing that the tumor tissue derived from CSCs was enriched for macrophages which can originate from both human and mouse cells. The model of CSCs highlighted the possibility of CSCs to differentiate into TAMs.
Collapse
|
67
|
Etzerodt A, Moulin M, Doktor TK, Delfini M, Mossadegh-Keller N, Bajenoff M, Sieweke MH, Moestrup SK, Auphan-Anezin N, Lawrence T. Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. J Exp Med 2020; 217:133611. [PMID: 31951251 PMCID: PMC7144521 DOI: 10.1084/jem.20191869] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/23/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Experimental and clinical evidence suggests that tumor-associated macrophages (TAMs) play important roles in cancer progression. Here, we have characterized the ontogeny and function of TAM subsets in a mouse model of metastatic ovarian cancer that is representative for visceral peritoneal metastasis. We show that the omentum is a critical premetastatic niche for development of invasive disease in this model and define a unique subset of CD163+ Tim4+ resident omental macrophages responsible for metastatic spread of ovarian cancer cells. Transcriptomic analysis showed that resident CD163+ Tim4+ omental macrophages were phenotypically distinct and maintained their resident identity during tumor growth. Selective depletion of CD163+ Tim4+ macrophages in omentum using genetic and pharmacological tools prevented tumor progression and metastatic spread of disease. These studies describe a specific role for tissue-resident macrophages in the invasive progression of metastatic ovarian cancer. The molecular pathways of cross-talk between tissue-resident macrophages and disseminated cancer cells may represent new targets to prevent metastasis and disease recurrence.
Collapse
Affiliation(s)
- Anders Etzerodt
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Morgane Moulin
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | | - Marc Bajenoff
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Michael H Sieweke
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Centre for Regenerative Therapies, TU Dresden, Dresden, Germany
| | - Søren Kragh Moestrup
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Toby Lawrence
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, UK.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
68
|
Lacerda Mariano L, Rousseau M, Varet H, Legendre R, Gentek R, Saenz Coronilla J, Bajenoff M, Gomez Perdiguero E, Ingersoll MA. Functionally distinct resident macrophage subsets differentially shape responses to infection in the bladder. SCIENCE ADVANCES 2020; 6:6/48/eabc5739. [PMID: 33239294 PMCID: PMC7688323 DOI: 10.1126/sciadv.abc5739] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/15/2020] [Indexed: 05/11/2023]
Abstract
Resident macrophages are abundant in the bladder, playing key roles in immunity to uropathogens. Yet, whether they are heterogeneous, where they come from, and how they respond to infection remain largely unknown. We identified two macrophage subsets in mouse bladders, MacM in muscle and MacL in the lamina propria, each with distinct protein expression and transcriptomes. Using a urinary tract infection model, we validated our transcriptomic analyses, finding that MacM macrophages phagocytosed more bacteria and polarized to an anti-inflammatory profile, whereas MacL macrophages died rapidly during infection. During resolution, monocyte-derived cells contributed to tissue-resident macrophage pools and both subsets acquired transcriptional profiles distinct from naïve macrophages. Macrophage depletion resulted in the induction of a type 1-biased immune response to a second urinary tract infection, improving bacterial clearance. Our study uncovers the biology of resident macrophages and their responses to an exceedingly common infection in a largely overlooked organ, the bladder.
Collapse
Affiliation(s)
- Livia Lacerda Mariano
- Department of Immunology, Institut Pasteur, 75015 Paris, France
- INSERM U1223 Paris, France
| | - Matthieu Rousseau
- Department of Immunology, Institut Pasteur, 75015 Paris, France
- INSERM U1223 Paris, France
| | - Hugo Varet
- Bioinformatic and Biostatistic Hub, Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France
- Biomics Platform, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Rachel Legendre
- Bioinformatic and Biostatistic Hub, Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France
- Biomics Platform, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Rebecca Gentek
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Javier Saenz Coronilla
- Macrophages and Endothelial Cells, Department of Developmental and Stem Cell Biology, CNRS UMR3738, Department of Immunology, Institut Pasteur, Paris, France
| | - Marc Bajenoff
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Elisa Gomez Perdiguero
- Macrophages and Endothelial Cells, Department of Developmental and Stem Cell Biology, CNRS UMR3738, Department of Immunology, Institut Pasteur, Paris, France
| | - Molly A Ingersoll
- Department of Immunology, Institut Pasteur, 75015 Paris, France.
- INSERM U1223 Paris, France
| |
Collapse
|
69
|
Wittamer V, Bertrand JY. Yolk sac hematopoiesis: does it contribute to the adult hematopoietic system? Cell Mol Life Sci 2020; 77:4081-4091. [PMID: 32405721 PMCID: PMC11104818 DOI: 10.1007/s00018-020-03527-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/10/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022]
Abstract
In most vertebrates, the yolk sac (YS) represents the very first tissue where blood cells are detected. Therefore, it was thought for a long time that it generated all the blood cells present in the embryo. This model was challenged using different animal models, and we now know that YS hematopoietic precursors are mostly transient although their contribution to the adult system cannot be excluded. In this review, we aim at properly define the different waves of blood progenitors that are produced by the YS and address the fate of each of them. Indeed, in the last decade, many evidences have emphasized the role of the YS in the emergence of several myeloid tissue-resident adult subsets. We will focus on the development of microglia, the resident macrophages in the central nervous system, and try to untangle the recent controversy about their origin.
Collapse
Affiliation(s)
- Valerie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Brussels, Belgium
- ULB Institute of Neuroscience (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO, Brussels, Belgium
| | - Julien Y Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva 4, 1211, Geneva, Switzerland.
| |
Collapse
|
70
|
Bhushan S, Theas MS, Guazzone VA, Jacobo P, Wang M, Fijak M, Meinhardt A, Lustig L. Immune Cell Subtypes and Their Function in the Testis. Front Immunol 2020; 11:583304. [PMID: 33101311 PMCID: PMC7554629 DOI: 10.3389/fimmu.2020.583304] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Immunoregulation in the testis is characterized by a balance between immuno-suppression (or immune privilege) and the ability to react to infections and inflammation. In this review, we analyze the phenotypes of the various immune cell subtypes present in the testis, and how their functions change between homeostatic and inflammatory conditions. Starting with testicular macrophages, we explore how this heterogeneous population is shaped by the testicular microenvironment to ensure immune privilege. We then describe how dendritic cells exhibit a tolerogenic status under normal conditions, but proliferate, mature and then stimulate effector T-cell expansion under inflammatory conditions. Finally, we outline the two T-cell populations in the testis: CD4+/CD8+ αβ T cells and CD4+/CD8+ Foxp3+ regulatory T cells and describe the distribution and function of mast cells. All these cells help modulate innate immunity and regulate the immune response. By improving our understanding of immune cell behavior in the testis under normal and inflammatory conditions, we will be better placed to evaluate testis impairment due to immune mechanisms in affected patients.
Collapse
Affiliation(s)
- Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany.,Hessian Center of Reproductive Medicine, Justus-Leibig-University Giessen, Giessen, Germany
| | - María S Theas
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Vanesa A Guazzone
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Patricia Jacobo
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ming Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany.,Hessian Center of Reproductive Medicine, Justus-Leibig-University Giessen, Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany.,Hessian Center of Reproductive Medicine, Justus-Leibig-University Giessen, Giessen, Germany
| | - Livia Lustig
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
71
|
Bryan ER, Kollipara A, Trim LK, Armitage CW, Carey AJ, Mihalas B, Redgrove KA, McLaughlin EA, Beagley KW. Hematogenous dissemination of Chlamydia muridarum from the urethra in macrophages causes testicular infection and sperm DNA damage†. Biol Reprod 2020; 101:748-759. [PMID: 31373361 DOI: 10.1093/biolre/ioz146] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 05/27/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022] Open
Abstract
The incidence of Chlamydia infection, in both females and males, is increasing worldwide. Male infections have been associated clinically with urethritis, epididymitis, and orchitis, believed to be caused by ascending infection, although the impact of infection on male fertility remains controversial. Using a mouse model of male chlamydial infection, we show that all the major testicular cell populations, germ cells, Sertoli cells, Leydig cells, and testicular macrophages can be productively infected. Furthermore, sperm isolated from vas deferens of infected mice also had increased levels of DNA damage as early as 4 weeks post-infection. Bilateral vasectomy, prior to infection, did not affect the chlamydial load recovered from testes at 2, 4, and 8 weeks post-infection, and Chlamydia-infected macrophages were detectable in blood and the testes as soon as 3 days post-infection. Partial depletion of macrophages with clodronate liposomes significantly reduced the testicular chlamydial burden, consistent with a hematogenous route of infection, with Chlamydia transported to the testes in infected macrophages. These data suggest that macrophages serve as Trojan horses, transporting Chlamydia from the penile urethra to the testes within 3 days of infection, bypassing the entire male reproductive tract. In the testes, infected macrophages likely transfer infection to Leydig, Sertoli, and germ cells, causing sperm DNA damage and impaired spermatogenesis.
Collapse
Affiliation(s)
- Emily R Bryan
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| | - Avinash Kollipara
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| | - Logan K Trim
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| | - Charles W Armitage
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| | - Alison J Carey
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| | - Bettina Mihalas
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Kate A Redgrove
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia.,Science and Technology Office, University of Canberra, Bruce, ACT, Australia
| | - Kenneth W Beagley
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| |
Collapse
|
72
|
Indumathy S, Pueschl D, Klein B, Fietz D, Bergmann M, Schuppe HC, Da Silva N, Loveland BE, Hickey MJ, Hedger MP, Loveland KL. Testicular immune cell populations and macrophage polarisation in adult male mice and the influence of altered activin A levels. J Reprod Immunol 2020; 142:103204. [PMID: 33130539 DOI: 10.1016/j.jri.2020.103204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Detailed morphological characterization of testicular leukocytes in the adult CX3CR1 gfp/+ transgenic mouse identified two distinct CX3CR1 + mononuclear phagocyte (macrophage and dendritic cell) populations: stellate/dendriform cells opposed to the seminiferous tubules (peritubular), and polygonal cells associated with Leydig cells (interstitial). Using confocal microscopy combined with stereological enumeration of CX3CR1gfp/+ cells established that there were twice as many interstitial cells (68%) as peritubular cells (32%). Flow cytometric analyses of interstitial cells from mechanically-dissociated testes identified multiple mononuclear phagocyte subsets based on surface marker expression (CX3CR1, F4/80, CD11c). These cells comprised 80% of total intratesticular leukocytes, as identified by CD45 expression. The remaining leukocytes were CD3+ (T lymphocytes) and NK1.1+ (natural killer cells). Functional phenotype assessment using CD206 (an anti-inflammatory/M2 marker) and MHC class II (an activation marker) identified a potentially tolerogenic CD206+MHCII+ sub-population (12% of total CD45+ cells). Rare testicular subsets of CX3CR1 +CD11c+F4/80+ (4.3%) mononuclear phagocytes and CD3+NK1.1+ (3.1%) lymphocytes were also identified for the first time. In order to examine the potential for the immunoregulatory cytokine, activin A to modulate testicular immune cell populations, testes from adult mice with reduced activin A (Inhba+/-) or elevated activin A (Inha+/-) were assessed using flow cytometry. Although the proportion of F4/80+CD11b+ leukocytes (macrophages) was not affected, the frequency of CD206+MHCII+cells was significantly lower and CD206+MHCII- correspondingly higher in Inha+/- testes. This shift in expression of MHCII in CD206+ macrophages indicates that changes in circulating and/or local activin A influence resident macrophage activation and phenotype and, therefore, the immunological environment of the testis.
Collapse
Affiliation(s)
- S Indumathy
- Centre for Reproductive Health, Hudson Institute of Medical Research, Victoria, Australia; Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University, Giessen, Germany; Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Victoria, Australia.
| | - D Pueschl
- Centre for Reproductive Health, Hudson Institute of Medical Research, Victoria, Australia; Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University, Giessen, Germany; Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Victoria, Australia
| | - B Klein
- Centre for Reproductive Health, Hudson Institute of Medical Research, Victoria, Australia; Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University, Giessen, Germany
| | - D Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University, Giessen, Germany
| | - M Bergmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University, Giessen, Germany
| | - H-C Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - N Da Silva
- Ohana Biosciences, Cambridge, Massachusetts, United States
| | | | - M J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Victoria, Australia
| | - M P Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Victoria, Australia; Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Victoria, Australia
| | - K L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Victoria, Australia; Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Victoria, Australia.
| |
Collapse
|
73
|
Lokka E, Lintukorpi L, Cisneros-Montalvo S, Mäkelä JA, Tyystjärvi S, Ojasalo V, Gerke H, Toppari J, Rantakari P, Salmi M. Generation, localization and functions of macrophages during the development of testis. Nat Commun 2020; 11:4375. [PMID: 32873797 PMCID: PMC7463013 DOI: 10.1038/s41467-020-18206-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/09/2020] [Indexed: 01/01/2023] Open
Abstract
In the testis, interstitial macrophages are thought to be derived from the yolk sac during fetal development, and later replaced by bone marrow-derived macrophages. By contrast, the peritubular macrophages have been reported to emerge first in the postnatal testis and solely represent descendants of bone marrow-derived monocytes. Here, we define new monocyte and macrophage types in the fetal and postnatal testis using high-dimensional single-cell analyses. Our results show that interstitial macrophages have a dominant contribution from fetal liver-derived precursors, while peritubular macrophages are generated already at birth from embryonic precursors. We find that bone marrow-derived monocytes do not substantially contribute to the replenishment of the testicular macrophage pool even after systemic macrophage depletion. The presence of macrophages prenatally, but not postnatally, is necessary for normal spermatogenesis. Our multifaceted data thus challenge the current paradigms in testicular macrophage biology by delineating their differentiation, homeostasis and functions.
Collapse
Affiliation(s)
- Emmi Lokka
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FIN-20520, Finland.,MediCity Research Laboratory, University of Turku, Turku, FI-20520, Finland
| | - Laura Lintukorpi
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FIN-20520, Finland
| | | | - Juho-Antti Mäkelä
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland
| | - Sofia Tyystjärvi
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FIN-20520, Finland
| | - Venla Ojasalo
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FIN-20520, Finland
| | - Heidi Gerke
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FIN-20520, Finland
| | - Jorma Toppari
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland.,Department of Pediatrics, Turku University Hospital, Turku, FI-20520, Finland
| | - Pia Rantakari
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FIN-20520, Finland.
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland. .,MediCity Research Laboratory, University of Turku, Turku, FI-20520, Finland.
| |
Collapse
|
74
|
Abe T, Nishimura H, Sato T, Suzuki H, Ogawa T, Suzuki T. Transcriptome analysis reveals inadequate spermatogenesis and immediate radical immune reactions during organ culture in vitro spermatogenesis. Biochem Biophys Res Commun 2020; 530:732-738. [PMID: 32782148 DOI: 10.1016/j.bbrc.2020.06.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Cultivation of neonatal mouse testis tissue can induce spermatogenesis and produce fertile sperms. However, in vitro spermatogenesis mediated by the current organ culture method comes short in fully mimicking the in vivo counterpart, partly due to a lack of knowledge underlying molecular phenotypes of in vitro spermatogenesis. In this study, we investigated transcriptome of cultured testis tissues using microarray method. Principle component analysis of the transcriptome data revealed delay and/or arrest of spermatogenesis and immediate radical immune reactions in the cultured testis tissues. The delay/arrest of spermatogenesis occurred before and during early meiotic phase, resulting in inefficient progression of meiosis. The immune reaction, on the other hand, was drastic and overwhelming, in which TLR4-NF-kB signaling was speculated to be involved. Notably, treatment with TAK242, an inhibitor of TLR4-NF-kB signaling pathway, ameliorated the macrophage activation which otherwise would exacerbate the inflammation. Thus, the present study revealed for the first time at molecular level that the deficiency of germ cell differentiation and the immense immune reaction are major abnormalities in the cultured testis tissues.
Collapse
Affiliation(s)
- Takeru Abe
- Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan; Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Hajime Nishimura
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Takuya Sato
- Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Takehiko Ogawa
- Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.
| | - Takahiro Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Functional Genomics, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
75
|
Comparative testis structure and function in three representative mice strains. Cell Tissue Res 2020; 382:391-404. [DOI: 10.1007/s00441-020-03239-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
|
76
|
Bryan ER, Kim J, Beagley KW, Carey AJ. Testicular inflammation and infertility: Could chlamydial infections be contributing? Am J Reprod Immunol 2020; 84:e13286. [DOI: 10.1111/aji.13286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Emily R. Bryan
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Jay Kim
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Kenneth W. Beagley
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Alison J. Carey
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| |
Collapse
|
77
|
The Cellular Impact of the ZIKA Virus on Male Reproductive Tract Immunology and Physiology. Cells 2020; 9:cells9041006. [PMID: 32325652 PMCID: PMC7226248 DOI: 10.3390/cells9041006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Zika virus (ZIKV) has been reported by several groups as an important virus causing pathological damage in the male reproductive tract. ZIKV can infect and persist in testicular somatic and germ cells, as well as spermatozoa, leading to cell death and testicular atrophy. ZIKV has also been detected in semen samples from ZIKV-infected patients. This has huge implications for human reproduction. Global scientific efforts are being applied to understand the mechanisms related to arboviruses persistency, pathogenesis, and host cellular response to suggest a potential target to develop robust antiviral therapeutics and vaccines. Here, we discuss the cellular modulation of the immunologic and physiologic properties of the male reproductive tract environment caused by arboviruses infection, focusing on ZIKV. We also present an overview of the current vaccine effects and therapeutic targets against ZIKV infection that may impact the testis and male fertility.
Collapse
|
78
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
79
|
Salei N, Rambichler S, Salvermoser J, Papaioannou NE, Schuchert R, Pakalniškytė D, Li N, Marschner JA, Lichtnekert J, Stremmel C, Cernilogar FM, Salvermoser M, Walzog B, Straub T, Schotta G, Anders HJ, Schulz C, Schraml BU. The Kidney Contains Ontogenetically Distinct Dendritic Cell and Macrophage Subtypes throughout Development That Differ in Their Inflammatory Properties. J Am Soc Nephrol 2020; 31:257-278. [PMID: 31932472 DOI: 10.1681/asn.2019040419] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mononuclear phagocytes (MPs), including macrophages, monocytes, and dendritic cells (DCs), are phagocytic cells with important roles in immunity. The developmental origin of kidney DCs has been highly debated because of the large phenotypic overlap between macrophages and DCs in this tissue. METHODS We used fate mapping, RNA sequencing, flow cytometry, confocal microscopy, and histo-cytometry to assess the origin and phenotypic and functional properties of renal DCs in healthy kidney and of DCs after cisplatin and ischemia reperfusion-induced kidney injury. RESULTS Adult kidney contains at least four subsets of MPs with prominent Clec9a-expression history indicating a DC origin. We demonstrate that these populations are phenotypically, functionally, and transcriptionally distinct from each other. We also show these kidney MPs exhibit unique age-dependent developmental heterogeneity. Kidneys from newborn mice contain a prominent population of embryonic-derived MHCIInegF4/80hiCD11blow macrophages that express T cell Ig and mucin domain containing 4 (TIM-4) and MER receptor tyrosine kinase (MERTK). These macrophages are replaced within a few weeks after birth by phenotypically similar cells that express MHCII but lack TIM-4 and MERTK. MHCII+F4/80hi cells exhibit prominent Clec9a-expression history in adulthood but not early life, indicating additional age-dependent developmental heterogeneity. In AKI, MHCIInegF4/80hi cells reappear in adult kidneys as a result of MHCII downregulation by resident MHCII+F4/80hi cells, possibly in response to prostaglandin E2 (PGE2). RNA sequencing further suggests MHCII+F4/80hi cells help coordinate the recruitment of inflammatory cells during renal injury. CONCLUSIONS Distinct developmental programs contribute to renal DC and macrophage populations throughout life, which could have important implications for therapies targeting these cells.
Collapse
Affiliation(s)
- Natallia Salei
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Stephan Rambichler
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Johanna Salvermoser
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Nikos E Papaioannou
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Ronja Schuchert
- Medical Clinic and Polyclinic I and.,DZHK (Deutsches Zentrum für Herz-Kreislaufforschung [German Center for Cardiovascular Research]), Partner Site Munich Heart Alliance, Munich, Germany; and
| | - Dalia Pakalniškytė
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Na Li
- Division of Nephrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shen Zhen, China.,Division of Nephrology, Medical Clinic and Polyclinic IV, University Hospital Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Julian A Marschner
- Division of Nephrology, Medical Clinic and Polyclinic IV, University Hospital Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Julia Lichtnekert
- Division of Nephrology, Medical Clinic and Polyclinic IV, University Hospital Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christopher Stremmel
- Medical Clinic and Polyclinic I and.,DZHK (Deutsches Zentrum für Herz-Kreislaufforschung [German Center for Cardiovascular Research]), Partner Site Munich Heart Alliance, Munich, Germany; and
| | | | - Melanie Salvermoser
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | - Barbara Walzog
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich.,Institute for Cardiovascular Physiology and Pathophysiology
| | | | - Gunnar Schotta
- Division of Molecular Biology.,Center for Integrated Protein Science Munich, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Medical Clinic and Polyclinic IV, University Hospital Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian Schulz
- Medical Clinic and Polyclinic I and.,DZHK (Deutsches Zentrum für Herz-Kreislaufforschung [German Center for Cardiovascular Research]), Partner Site Munich Heart Alliance, Munich, Germany; and
| | - Barbara U Schraml
- Walter Brendel Centre of Experimental Medicine, University Hospital Munich, .,Institute for Cardiovascular Physiology and Pathophysiology
| |
Collapse
|
80
|
Yahara Y, Barrientos T, Tang YJ, Puviindran V, Nadesan P, Zhang H, Gibson JR, Gregory SG, Diao Y, Xiang Y, Qadri YJ, Souma T, Shinohara ML, Alman BA. Erythromyeloid progenitors give rise to a population of osteoclasts that contribute to bone homeostasis and repair. Nat Cell Biol 2020; 22:49-59. [PMID: 31907410 PMCID: PMC6953622 DOI: 10.1038/s41556-019-0437-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 11/18/2019] [Indexed: 12/24/2022]
Abstract
Osteoclasts are multinucleated cells of the monocyte/macrophage lineage that degrade bone. Here, we used lineage tracing studies-labelling cells expressing Cx3cr1, Csf1r or Flt3-to identify the precursors of osteoclasts in mice. We identified an erythromyeloid progenitor (EMP)-derived osteoclast precursor population. Yolk-sac macrophages of EMP origin produced neonatal osteoclasts that can create a space for postnatal bone marrow haematopoiesis. Furthermore, EMPs gave rise to long-lasting osteoclast precursors that contributed to postnatal bone remodelling in both physiological and pathological settings. Our single-cell RNA-sequencing data showed that EMP-derived osteoclast precursors arose independently of the haematopoietic stem cell (HSC) lineage and the data from fate tracking of EMP and HSC lineages indicated the possibility of cell-cell fusion between these two lineages. Cx3cr1+ yolk-sac macrophage descendants resided in the adult spleen, and parabiosis experiments showed that these cells migrated through the bloodstream to the remodelled bone after injury.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomasa Barrientos
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
| | - Yuning J Tang
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Vijitha Puviindran
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
| | - Puviindran Nadesan
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
| | - Hongyuan Zhang
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
- Department of Cell Biology and Regeneration Next Initiative, Duke University School of Medicine, Durham, NC, USA
| | - Jason R Gibson
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Yarui Diao
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA
- Department of Cell Biology and Regeneration Next Initiative, Duke University School of Medicine, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology and Regeneration Next Initiative, Duke University School of Medicine, Durham, NC, USA
| | - Yawar J Qadri
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Benjamin A Alman
- Department of Orthopaedic Surgery and Regeneration Next Initiative, Duke University, Durham, NC, USA.
| |
Collapse
|
81
|
Ferrero G, Mahony CB, Dupuis E, Yvernogeau L, Di Ruggiero E, Miserocchi M, Caron M, Robin C, Traver D, Bertrand JY, Wittamer V. Embryonic Microglia Derive from Primitive Macrophages and Are Replaced by cmyb-Dependent Definitive Microglia in Zebrafish. Cell Rep 2019; 24:130-141. [PMID: 29972775 DOI: 10.1016/j.celrep.2018.05.066] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/17/2018] [Accepted: 05/18/2018] [Indexed: 12/20/2022] Open
Abstract
Microglia, the tissue-resident macrophages of the CNS, represent major targets for therapeutic intervention in a wide variety of neurological disorders. Efficient reprogramming protocols to generate microglia-like cells in vitro using patient-derived induced pluripotent stem cells will, however, require a precise understanding of the cellular and molecular events that instruct microglial cell fates. This remains a challenge since the developmental origin of microglia during embryogenesis is controversial. Here, using genetic tracing in zebrafish, we uncover primitive macrophages as the unique source of embryonic microglia. We also demonstrate that this initial population is transient, with primitive microglia later replaced by definitive microglia that persist throughout adulthood. The adult wave originates from cmyb-dependent hematopoietic stem cells. Collectively, our work challenges the prevailing model establishing erythro-myeloid progenitors as the sole and direct microglial precursor and provides further support for the existence of multiple waves of microglia, which originate from distinct hematopoietic precursors.
Collapse
Affiliation(s)
- Giuliano Ferrero
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; ULB Institute of Neuroscience (UNI), ULB, Brussels, Belgium; WELBIO, ULB, Brussels, Belgium
| | - Christopher B Mahony
- Department of Pathology and Immunology, University of Geneva, School of Medicine, Geneva, Switzerland
| | - Eléonore Dupuis
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurent Yvernogeau
- Hubrecht Institute-KNAW and University Medical Center, Utrecht, the Netherlands
| | - Elodie Di Ruggiero
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; ULB Institute of Neuroscience (UNI), ULB, Brussels, Belgium
| | - Magali Miserocchi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marianne Caron
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; ULB Institute of Neuroscience (UNI), ULB, Brussels, Belgium; WELBIO, ULB, Brussels, Belgium
| | - Catherine Robin
- Hubrecht Institute-KNAW and University Medical Center, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center, Utrecht, the Netherlands
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA; Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA.
| | - Julien Y Bertrand
- Department of Pathology and Immunology, University of Geneva, School of Medicine, Geneva, Switzerland.
| | - Valérie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium; ULB Institute of Neuroscience (UNI), ULB, Brussels, Belgium; WELBIO, ULB, Brussels, Belgium.
| |
Collapse
|
82
|
Nelson DS, Marano RL, Joo Y, Tian SY, Patel B, Kaplan DH, Shlomchik MJ, Stevenson K, Bronson RT, Rollins BJ. BRAF V600E and Pten deletion in mice produces a histiocytic disorder with features of Langerhans cell histiocytosis. PLoS One 2019; 14:e0222400. [PMID: 31527903 PMCID: PMC6748438 DOI: 10.1371/journal.pone.0222400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is characterized by the accumulation of Langerin (CD207)-expressing histiocytes. Mutational activation of mitogen-activated protein kinase pathway genes, in particular BRAF, drives most cases. To test whether activated BRAF is sufficient for the development of LCH, we engineered mice to express BRAF V600E under the control of the human Langerin promoter. These mice have shortened survivals, smaller lymphoid organs, absent Leydig cells, and fewer epidermal LCs than controls, but do not accumulate histiocytes. To test whether the absence of histiocyte proliferation could be due to oncogene-induced senescence, we engineered homozygous Pten loss in the same cells that expressed BRAF V600E. Like mice with intact Pten, these mice have shortened survivals, smaller thymi, and absent Leydig cells. However, loss of Pten also leads to the accumulation of CD207+ histiocytes in spleen, thymus, and some lymph nodes. While many CD207+ histiocytes in the thymus are CD8-, reminiscent of LCH cells, the CD207+ histiocytes in the spleen and lymph nodes are CD8+. These mice also accumulate large numbers of CD207- cells in the lamina propria (LP) of the small intestine. Both the lymphoid and LP phenotypes are likely due to human Langerin promoter-driven BRAF V600E expression in resident CD8+ dendritic cells in the former and LP dendritic cells in the latter and confirm that Pten loss is required to overcome inhibitory pathways induced by BRAF V600E expression. The complex phenotype of these mice is a consequence of the multiple murine cell types in which the human Langerin promoter is active.
Collapse
Affiliation(s)
- David S. Nelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
| | - Ryan L. Marano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
| | - Yechaan Joo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
| | - Sara Y. Tian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
| | - Bhumi Patel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
| | - Daniel H. Kaplan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Mark J. Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Kristen Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Roderick T. Bronson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States of America
| | - Barrett J. Rollins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
83
|
Culemann S, Grüneboom A, Krönke G. Origin and function of synovial macrophage subsets during inflammatory joint disease. Adv Immunol 2019; 143:75-98. [PMID: 31607368 DOI: 10.1016/bs.ai.2019.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mononuclear phagocytes, including monocytes and macrophages, are a central component of the host's innate immune system designated to protect against invading pathogens. However, these cells do not only interact with various parts of the innate and adaptive immune system, but also fulfill indispensable duties during the control of tissue homeostasis and organ function. Moreover, macrophages are crucially involved in tissue remodeling and repair in response to damage. Simultaneously, mononuclear phagocytes might also contribute to the pathogenesis of various inflammatory and autoimmune diseases. In particular, their potential role in inflammatory joint diseases such as rheumatoid arthritis (RA) has drawn increasing attention and substantially shaped our general understanding of the role of monocytes and macrophages during health and disease. This review summarizes our current knowledge about the origin and function of mononuclear phagocytes within the joint and addresses their involvement in joint inflammation.
Collapse
Affiliation(s)
- Stephan Culemann
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.; Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anika Grüneboom
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.; Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.; Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
84
|
Abstract
Macrophages are a heterogeneous group of cells that are capable of carrying out distinct functions in different tissues, as well as in different locations within a given tissue. Some of these tissue macrophages lie on, or close to, the outer (abluminal) surface of blood vessels and perform several crucial activities at this interface between the tissue and the blood. In steady-state tissues, these perivascular macrophages maintain tight junctions between endothelial cells and limit vessel permeability, phagocytose potential pathogens before they enter tissues from the blood and restrict inappropriate inflammation. They also have a multifaceted role in diseases such as cancer, Alzheimer disease, multiple sclerosis and type 1 diabetes. Here, we examine the important functions of perivascular macrophages in various adult tissues and describe how these functions are perturbed in a broad array of pathological conditions.
Collapse
|
85
|
Schultze JL, Mass E, Schlitzer A. Emerging Principles in Myelopoiesis at Homeostasis and during Infection and Inflammation. Immunity 2019; 50:288-301. [PMID: 30784577 DOI: 10.1016/j.immuni.2019.01.019] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022]
Abstract
Myelopoiesis ensures the steady state of the myeloid cell compartment. Technological advances in fate mapping and genetic engineering, as well as the advent of single cell RNA-sequencing, have highlighted the heterogeneity of the hematopoietic system and revealed new concepts in myeloid cell ontogeny. These technologies are also shedding light on mechanisms of myelopoiesis at homeostasis and at different phases of infection and inflammation, illustrating important feedback loops between affected tissues and the bone marrow. We review these findings here and revisit principles in myelopoiesis in light of the evolving understanding of myeloid cell ontogeny and heterogeneity. We argue for the importance of system-wide evaluation of changes in myelopoiesis and discuss how even after the resolution of inflammation, long-lasting alterations in myelopoiesis may play a role in innate immune memory or trained immunity.
Collapse
Affiliation(s)
- Joachim L Schultze
- Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, 53175 Bonn, Germany; Genomics & Immunoregulation, LIMES Institute, University of Bonn, 53115 Bonn, Germany.
| | - Elvira Mass
- Developmental Biology of the Innate Immune System, LIMES Institute, University of Bonn, 53115 Bonn, Germany.
| | - Andreas Schlitzer
- Myeloid Cell Biology, LIMES Institute, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
86
|
Mäkelä JA, Koskenniemi JJ, Virtanen HE, Toppari J. Testis Development. Endocr Rev 2019; 40:857-905. [PMID: 30590466 DOI: 10.1210/er.2018-00140] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
Abstract
Production of sperm and androgens is the main function of the testis. This depends on normal development of both testicular somatic cells and germ cells. A genetic program initiated from the Y chromosome gene sex-determining region Y (SRY) directs somatic cell specification to Sertoli cells that orchestrate further development. They first guide fetal germ cell differentiation toward spermatogenic destiny and then take care of the full service to spermatogenic cells during spermatogenesis. The number of Sertoli cells sets the limits of sperm production. Leydig cells secrete androgens that determine masculine development. Testis development does not depend on germ cells; that is, testicular somatic cells also develop in the absence of germ cells, and the testis can produce testosterone normally to induce full masculinization in these men. In contrast, spermatogenic cell development is totally dependent on somatic cells. We herein review germ cell differentiation from primordial germ cells to spermatogonia and development of the supporting somatic cells. Testicular descent to scrota is necessary for normal spermatogenesis, and cryptorchidism is the most common male birth defect. This is a mild form of a disorder of sex differentiation. Multiple genetic reasons for more severe forms of disorders of sex differentiation have been revealed during the last decades, and these are described along with the description of molecular regulation of testis development.
Collapse
Affiliation(s)
- Juho-Antti Mäkelä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jaakko J Koskenniemi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| |
Collapse
|
87
|
Kierdorf K, Masuda T, Jordão MJC, Prinz M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat Rev Neurosci 2019; 20:547-562. [PMID: 31358892 DOI: 10.1038/s41583-019-0201-x] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Abstract
The segregation and limited regenerative capacity of the CNS necessitate a specialized and tightly regulated resident immune system that continuously guards the CNS against invading pathogens and injury. Immunity in the CNS has generally been attributed to neuron-associated microglia in the parenchyma, whose origin and functions have recently been elucidated. However, there are several other specialized macrophage populations at the CNS borders, including dural, leptomeningeal, perivascular and choroid plexus macrophages (collectively known as CNS-associated macrophages (CAMs)), whose origins and roles in health and disease have remained largely uncharted. CAMs are thought to be involved in regulating the fine balance between the proper segregation of the CNS, on the one hand, and the essential exchange between the CNS parenchyma and the periphery, on the other. Recent studies that have been empowered by major technological advances have shed new light on these cells and suggest central roles for CAMs in CNS physiology and in the pathogenesis of diseases.
Collapse
Affiliation(s)
- Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany. .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
88
|
Meinhardt A, Wang M, Schulz C, Bhushan S. Microenvironmental signals govern the cellular identity of testicular macrophages. J Leukoc Biol 2019; 104:757-766. [PMID: 30265772 DOI: 10.1002/jlb.3mr0318-086rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022] Open
Abstract
Testicular macrophages (TM) comprise the largest immune cell population in the mammalian testis. They are characterized by a subdued proinflammatory response upon adequate stimulation, and a polarization toward the immunoregulatory and immunotolerant M2 phenotype. This enables them to play a relevant role in supporting the archetypical functions of the testis, namely spermatogenesis and steroidogenesis. During infection, the characteristic blunted immune response of TM reflects the need for a delicate balance between a sufficiently strong reaction to counteract invading pathogens, and the prevention of excessive proinflammatory cytokine levels with the potential to disturb or destroy spermatogenesis. Local microenvironmental factors that determine the special phenotype of TM have just begun to be unraveled, and are discussed in this review.
Collapse
Affiliation(s)
- Andreas Meinhardt
- Unit of Reproductive Biology, Institute of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Ming Wang
- Unit of Reproductive Biology, Institute of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sudhanshu Bhushan
- Unit of Reproductive Biology, Institute of Anatomy and Cell Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
89
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
90
|
The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
91
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
92
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
93
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
94
|
The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
95
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
96
|
Mossadegh-Keller N, Sieweke MH. Characterization of Mouse Adult Testicular Macrophage Populations by Immunofluorescence Imaging and Flow Cytometry. Bio Protoc 2019; 9:e3178. [PMID: 30931348 DOI: 10.21769/bioprotoc.3178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Testicular macrophages (tMΦ) are the most abundant immune cells residing in the testis, an immune-privileged organ. TMΦ are known to exhibit different functions, such as protecting spermatozoa from auto-immune attack by producing immunosuppressive cytokines and trophic roles in supporting spermatogenesis and male sex hormone production. They also contribute to fetal testicular development. Recently, we characterized two distinct tMΦ populations based on their morphology, localization, cell surface markers, and gene expression profiling. Here, we focus and describe in detail the phenotypical distinction of these two tMΦ populations by fluorescence-activated cell sorting (FACS) using multicolor panel antibodies combining with high-resolution immunofluorescence (IF) imaging. These two techniques enable to classify two tMΦ populations: interstitial tMΦ and peritubular tMΦ.
Collapse
Affiliation(s)
| | - Michael H Sieweke
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, France.,Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany.,CRTD-Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenTU Dresden, Dresden, Germany
| |
Collapse
|
97
|
Guazzone VA. Exploring the role of antigen presenting cells in male genital tract. Andrologia 2018; 50:e13120. [DOI: 10.1111/and.13120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/25/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Vanesa A. Guazzone
- Universidad de Buenos Aires; Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II.; Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires; Instituto de Investigaciones Biomédicas (INBIOMED); Buenos Aires Argentina
| |
Collapse
|
98
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2018; 40:98-112. [PMID: 30579704 DOI: 10.1016/j.it.2018.11.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/18/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
Abstract
The mononuclear phagocyte system (MPS) is defined as a cell lineage in which committed marrow progenitors give rise to blood monocytes and tissue macrophages. Here, we discuss the concept of self-proscribed macrophage territories and homeostatic regulation of tissue macrophage abundance through growth factor availability. Recent studies have questioned the validity of the MPS model and argued that tissue-resident macrophages are a separate lineage seeded during development and maintained by self-renewal. We address this issue; discuss the limitations of inbred mouse models of monocyte-macrophage homeostasis; and summarize the evidence suggesting that during postnatal life, monocytes can replace resident macrophages in all major organs and adopt their tissue-specific gene expression. We conclude that the MPS remains a valid and accurate framework for understanding macrophage development and homeostasis.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
99
|
Meng P, Tang X, Jiang X, Tang Q, Bai L, Xia Y, Zou Z, Qin X, Cao X, Chen C, Cheng S. Maternal exposure to traffic pollutant causes impairment of spermatogenesis and alterations of genome-wide mRNA and microRNA expression in F2 male mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:1-10. [PMID: 30265862 DOI: 10.1016/j.etap.2018.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Male spermatogenesis dysfunctions are associated with environmental pollutants, but the detailed mechanisms remain poorly understood. In this study, healthy C57BL/6 J mice were used to establish an animal model of maternal exposure to traffic pollutant during pregnancy, and the toxic effects on the reproductive system of F2 male mice were analysed using mRNA and miRNA microarray. Our results showed that 54 miRNAs and 1927 mRNAs were significantly altered in the exposed group. Gene Ontology (GO) analysis revealed that the most significant GO terms for biological process, molecular function and cellular component were myeloid cell differentiation, growth factor binding and main axon. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that the biosynthesis of amino acids was the most significant pathway and that the cytokine-cytokine receptor interaction was the most abundant pathway (37 genes). Protein-protein interaction (PPI) and the miRNA-mRNA network were constructed with Cytoscape. The hub genes, Tnf, Il10 and Gapdh, were closely related to immuno-regulation and their miRNA regulators were reversely changed. Together, our results indicate that maternal exposure to traffic pollutant can cause spermatogenesis damage in F2 male mice possibly through the destroyed immunoprivileged environment in testis mediated by the aberrant expression of miRNA and mRNA.
Collapse
Affiliation(s)
- Pan Meng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China; Department of Public Surveillance, Chenghua District Center for Control and Prevention, Sichuan, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China; Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - LuLu Bai
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xianqing Cao
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China; Post-doctoral Research Stations of Nursing Science, School of Nursing, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
100
|
Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, Kular L, Needhamsen M, Espinosa A, Nilsson E, Överby AK, Butovsky O, Jagodic M, Zhang XM, Harris RA. Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun 2018; 9:4845. [PMID: 30451869 PMCID: PMC6242869 DOI: 10.1038/s41467-018-07295-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 10/23/2018] [Indexed: 11/10/2022] Open
Abstract
Circulating monocytes can compete for virtually any tissue macrophage niche and become long-lived replacements that are phenotypically indistinguishable from their embryonic counterparts. As the factors regulating this process are incompletely understood, we studied niche competition in the brain by depleting microglia with >95% efficiency using Cx3cr1CreER/+R26DTA/+ mice and monitored long-term repopulation. Here we show that the microglial niche is repopulated within weeks by a combination of local proliferation of CX3CR1+F4/80lowClec12a– microglia and infiltration of CX3CR1+F4/80hiClec12a+ macrophages that arise directly from Ly6Chi monocytes. This colonization is independent of blood brain barrier breakdown, paralleled by vascular activation, and regulated by type I interferon. Ly6Chi monocytes upregulate microglia gene expression and adopt microglia DNA methylation signatures, but retain a distinct gene signature from proliferating microglia, displaying altered surface marker expression, phagocytic capacity and cytokine production. Our results demonstrate that monocytes are imprinted by the CNS microenvironment but remain transcriptionally, epigenetically and functionally distinct. Brain microglial cells can be replenished by blood-derived monocytes, but many aspects of this repopulation remain unclear. Here the authors show that the brain microglial niche can be replaced both by proliferating, residential microglia as well as differentiated Ly6Chi monocytes, with the latter having overlapping but distinct characteristics.
Collapse
Affiliation(s)
- Harald Lund
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital Solna, Stockholm, 17176, Sweden
| | - Melanie Pieber
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital Solna, Stockholm, 17176, Sweden
| | - Roham Parsa
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital Solna, Stockholm, 17176, Sweden
| | - Jinming Han
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital Solna, Stockholm, 17176, Sweden
| | - David Grommisch
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital Solna, Stockholm, 17176, Sweden
| | - Ewoud Ewing
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital Solna, Stockholm, 17176, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital Solna, Stockholm, 17176, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital Solna, Stockholm, 17176, Sweden
| | - Alexander Espinosa
- Unit of Rheumatology, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital Solna, Stockholm, 17176, Sweden
| | - Emma Nilsson
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, 90185, Sweden
| | - Anna K Överby
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, 90185, Sweden
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA.,Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital Solna, Stockholm, 17176, Sweden
| | - Xing-Mei Zhang
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital Solna, Stockholm, 17176, Sweden
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital Solna, Stockholm, 17176, Sweden.
| |
Collapse
|