51
|
Aoki FY, Allen UD, Mubareka S, Papenburg J, Stiver H, Evans GA. Use of antiviral drugs for seasonal influenza: Foundation document for practitioners-Update 2019. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2019; 4:60-82. [PMID: 36337743 PMCID: PMC9602959 DOI: 10.3138/jammi.2019.02.08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 06/16/2023]
Abstract
This document updates the previous AMMI Canada Foundation Guidance (2013) on the use of antiviral therapy for influenza.
Collapse
Affiliation(s)
- Fred Y Aoki
- Medical Microbiology and Pharmacology & Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Upton D Allen
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Division of Infectious Diseases, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Samira Mubareka
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jesse Papenburg
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Montreal Children’s Hospital, McGill University Health Centre, Montréal, Québec, Canada
- Division of Microbiology, Department of Clinical Laboratory Medicine, Montreal Children’s Hospital, McGill University Health Centre, Montréal, Québec, Canada
| | - H Grant Stiver
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gerald A Evans
- Division of Infectious Diseases, Department of Medicine, Kingston Health Sciences Centre, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
52
|
Holzer B, Martini V, Edmans M, Tchilian E. T and B Cell Immune Responses to Influenza Viruses in Pigs. Front Immunol 2019; 10:98. [PMID: 30804933 PMCID: PMC6371849 DOI: 10.3389/fimmu.2019.00098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/14/2019] [Indexed: 01/31/2023] Open
Abstract
Influenza viruses are an ongoing threat to humans and are endemic in pigs, causing considerable economic losses to farmers. Pigs are also a source of new viruses potentially capable of initiating human pandemics. Many tools including monoclonal antibodies, recombinant cytokines and chemokines, gene probes, tetramers, and inbred pigs allow refined analysis of immune responses against influenza. Recent advances in understanding of the pig innate system indicate that it shares many features with that of humans, although there is a larger gamma delta component. The fine specificity and mechanisms of cross-protective T cell immunity have yet to be fully defined, although it is clear that the local immune response is important. The repertoire of pig antibody response to influenza has not been thoroughly explored. Here we review current understanding of adaptive immune responses against influenza in pigs and the use of the pig as a model to study human disease.
Collapse
Affiliation(s)
- Barbara Holzer
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| | - Veronica Martini
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| | - Matthew Edmans
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| | - Elma Tchilian
- Department of Mucosal Immunology, The Pirbright Institute (BBSRC), Pirbright, United Kingdom
| |
Collapse
|
53
|
Francis ME, King ML, Kelvin AA. Back to the Future for Influenza Preimmunity-Looking Back at Influenza Virus History to Infer the Outcome of Future Infections. Viruses 2019; 11:v11020122. [PMID: 30704019 PMCID: PMC6410066 DOI: 10.3390/v11020122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
The influenza virus-host interaction is a classic arms race. The recurrent and evolving nature of the influenza virus family allows a single host to be infected several times. Locked in co-evolution, recurrent influenza virus infection elicits continual refinement of the host immune system. Here we give historical context of circulating influenza viruses to understand how the individual immune history is mirrored by the history of influenza virus circulation. Original Antigenic Sin was first proposed as the negative influence of the host’s first influenza virus infection on the next and Imprinting modernizes Antigenic Sin incorporating both positive and negative outcomes. Building on imprinting, we refer to preimmunity as the continual refinement of the host immune system with each influenza virus infection. We discuss imprinting and the interplay of influenza virus homology, vaccination, and host age establishing preimmunity. We outline host signatures and outcomes of tandem infection according to the sequence of virus and classify these relationships as monosubtypic homologous, monosubtypic heterologous, heterosubtypic, or heterotypic sequential infections. Finally, the preimmunity knowledge gaps are highlighted for future investigation. Understanding the effects of antigenic variable recurrent influenza virus infection on immune refinement will advance vaccination strategies, as well as pandemic preparedness.
Collapse
Affiliation(s)
- Magen Ellen Francis
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada.
| | - Morgan Leslie King
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada.
| | - Alyson Ann Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada.
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada.
- Canadian Centre for Vaccinology, IWK Health Centre, Halifax NS B3K 6R8, Canada.
| |
Collapse
|
54
|
Koutsakos M, Kedzierska K, Subbarao K. Immune Responses to Avian Influenza Viruses. THE JOURNAL OF IMMUNOLOGY 2019; 202:382-391. [DOI: 10.4049/jimmunol.1801070] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022]
|
55
|
Rudenko L, Kiseleva I, Krutikova E, Stepanova E, Rekstin A, Donina S, Pisareva M, Grigorieva E, Kryshen K, Muzhikyan A, Makarova M, Sparrow EG, Torelli G, Kieny MP. Rationale for vaccination with trivalent or quadrivalent live attenuated influenza vaccines: Protective vaccine efficacy in the ferret model. PLoS One 2018; 13:e0208028. [PMID: 30507951 PMCID: PMC6277076 DOI: 10.1371/journal.pone.0208028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIM The majority of seasonal influenza vaccines are trivalent, containing two A virus strains (H1N1 and H3N2) and one B virus strain. The co-circulation of two distinct lineages of B viruses can lead to mismatch between the influenza B virus strain recommended for the trivalent seasonal vaccine and the circulating B virus. This has led some manufacturers to produce quadrivalent influenza vaccines containing one strain from each B lineage in addition to H1N1 and H3N2 strains. However, it is also important to know whether vaccines containing a single influenza B strain can provide cross-protectivity against viruses of the antigenically distinct lineage. The aim of this study was to assess in naïve ferrets the potential cross-protective activity of trivalent live attenuated influenza vaccine (T-LAIV) against challenge with a heterologous wild-type influenza B virus belonging to the genetically different lineage and to compare this activity with effectiveness of quadrivalent LAIV (Q-LAIV) in the ferret model. METHODS AND RESULTS Ferrets were vaccinated with either one dose of trivalent LAIV containing B/Victoria or B/Yamagata lineage virus, or quadrivalent LAIV (containing both B lineages), or placebo. They were then challenged with B/Victoria or B/Yamagata lineage wild-type virus 28 days after vaccination. The ferrets were monitored for clinical signs and morbidity. Nasal swabs and lung tissue samples were analyzed for the presence of challenge virus. Antibody response to vaccination was assessed by routine hemagglutination inhibition assay. All LAIVs tested were found to be safe and effective against wild-type influenza B viruses based on clinical signs, and virological and histological data. The absence of interference between vaccine strains in trivalent and quadrivalent vaccine formulations was confirmed. Trivalent LAIVs were shown to have the potential to be cross-protective against infection with genetically different influenza B/Victoria and B/Yamagata lineages. CONCLUSIONS In this ferret model, quadrivalent vaccine provided higher protection to challenge against both B/Victoria and B/Yamagata lineage viruses. However, T-LAIV provided some cross-protection in the case of a mismatch between circulating and vaccine type B strains. Notably, B/Victoria-based T-LAIV was more protective compared to B/Yamagata-based T-LAIV.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Cross Protection/genetics
- Cross Protection/immunology
- Disease Models, Animal
- Female
- Ferrets
- Humans
- Immunogenicity, Vaccine
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza B virus/genetics
- Influenza B virus/immunology
- Influenza B virus/pathogenicity
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/blood
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Vaccination/methods
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
Collapse
Affiliation(s)
- Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Irina Kiseleva
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Elena Krutikova
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Ekaterina Stepanova
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Andrey Rekstin
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Svetlana Donina
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Maria Pisareva
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Elena Grigorieva
- Department of Virology, Institute of Experimental Medicine, St Petersburg, Russia
| | - Kirill Kryshen
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd, St Petersburg, Russia
| | - Arman Muzhikyan
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd, St Petersburg, Russia
| | - Marina Makarova
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd, St Petersburg, Russia
| | - Erin Grace Sparrow
- Universal Health Coverage and Health Systems, World Health Organization, Geneva, Switzerland
| | - Guido Torelli
- Universal Health Coverage and Health Systems, World Health Organization, Geneva, Switzerland
| | - Marie-Paule Kieny
- International Institutional Cooperation, Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| |
Collapse
|
56
|
Vaccine failure and serologic response to live attenuated and inactivated influenza vaccines in children during the 2013-2014 season. Vaccine 2018; 36:1214-1219. [PMID: 29395525 DOI: 10.1016/j.vaccine.2018.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/19/2017] [Accepted: 01/09/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Recent observational studies in the United States indicated live attenuated influenza vaccine (LAIV) was less effective in children against clinical influenza infection caused by A(H1N1)pdm09 relative to inactivated influenza vaccine (IIV). During the 2013-2014 influenza season, we conducted an observational study among children aged 5-17 years to compare serologic responses to LAIV and IIV and explore factors associated with vaccine failure. METHODS One hundred and sixty-one children received one dose of trivalent IIV or quadrivalent LAIV according to parental preference. Baseline and postvaccination serum samples were tested with hemagglutination inhibition (HI) assays against vaccine reference strains. Geometric mean titers (GMT), geometric mean fold rise (GMFR), seroconversion, and seroprotection (HI titer ≥ 40) were used to assess response to vaccine. Active surveillance for acute respiratory illness was conducted during the influenza season and influenza cases were confirmed by reverse transcription polymerase chain reaction (RT-PCR). Logistic regression was used to examine the association between vaccine type and vaccine failure. RESULTS LAIV and IIV recipients were similar with respect to demographics and baseline GMT for each vaccine strain. RT-PCR confirmed influenza (vaccine failure) occurred in 8 (13%) of 62 LAIV recipients and 3 (3%) of 99 IIV recipients (p = .02). Postvaccination GMFR for A(H1N1)pdm09 was higher for IIV vs LAIV receipt (GMFR 3.3 vs. 0.8, p < .0001). Postvaccination titers against A(H1N1)pdm09 were ≥40 for 91% and 44% of IIV and LAIV recipients, respectively (p < .0001). Among 13 IIV and 18 LAIV recipients with seronegative baseline titer against A(H1N1pdm09), 54% and 0% seroconverted, respectively. LAIV receipt was the only factor associated with A(H1N1)pdm09 vaccine failure in the age-adjusted multivariable model (odds ratio 4.5, 95% CI 1.1-18.2). CONCLUSION Receipt of LAIV generated minimal HI antibody response in children, including among those seronegative at baseline. LAIV recipients had significant increased risk of A(H1N1)pdm09 infection compared to IIV recipients.
Collapse
|
57
|
Lopez E, Shattock RJ, Kent SJ, Chung AW. The Multifaceted Nature of Immunoglobulin A and Its Complex Role in HIV. AIDS Res Hum Retroviruses 2018; 34:727-738. [PMID: 30056749 DOI: 10.1089/aid.2018.0099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IgA is the most abundant immunoglobulin in mucosal secretions, and understanding the role of IgA in both protection from HIV acquisition and modulation of HIV disease progression is a field of considerable controversy and renewed research interest. Analysis of the RV144 clinical trial associated plasma HIV envelope-specific monomeric IgA from vaccines with reduced vaccine efficacy. The RV144 trial, however, only assessed for plasma IgA, which was not further subclassed, and the role of mucosal IgA was not addressed as mucosal samples were not collected. On the other hand, several studies have detected envelope-specific IgA in mucosal secretions of highly exposed persistently seronegative cohorts, while recent macaque simian-HIV passive immunization studies have suggested a potentially protective role for mucosal IgA. It is well established that total IgA in serum appears to correlate with HIV disease progression. In contrast, a selective deficit of anti-HIV IgA responses in HIV infection is apparent, with a number of recent studies beginning to elucidate the mechanisms behind these dysfunctional IgA responses. In this review, we highlight the dichotomy that exists in the literature as to whether anti-HIV IgA is protective or harmful to the host. Herein, we emphasize the importance of distinguishing between monomeric, multimeric, and isoforms of IgA and review what is known about the complex and diverse interactions of various molecular forms of IgA with HIV in both the systemic circulation and mucosal compartments.
Collapse
Affiliation(s)
- Ester Lopez
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Robin J. Shattock
- Mucosal Infection and Immunity Group, Department of Medicine, Imperial College London, London, United Kingdom
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
- Infectious Diseases Department, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Melbourne, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| |
Collapse
|
58
|
Shcherbik S, Carney P, Pearce N, Stevens J, Dugan VG, Wentworth DE, Bousse T. Monoclonal antibody against N2 neuraminidase of cold adapted A/Leningrad/134/17/57 (H2N2) enables efficient generation of live attenuated influenza vaccines. Virology 2018; 522:65-72. [PMID: 30014859 DOI: 10.1016/j.virol.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 01/13/2023]
Abstract
Cold adapted influenza virus A/Leningrad/134/17/57 (H2N2) is a reliable master donor virus (Len/17-MDV) for preparing live attenuated influenza vaccines (LAIV). LAIVs are 6:2 reasortants that contain 6 segments of Len/17-MDV and the hemagglutinin (HA) and neuraminidase (NA) of contemporary circulating influenza A viruses. The problem with the classical reassortment procedure used to generate LAIVs is that there is limited selection pressure against NA of the Len/17-MDV resulting in 7:1 reassortants with desired HA only, which are not suitable LAIVs. The monoclonal antibodies (mAb) directed against the N2 of Len/17-MDV were generated. 10C4-8E7 mAb inhibits cell-to-cell spread of viruses containing the Len/17-MDV N2, but not viruses with the related N2 from contemporary H3N2 viruses. 10C4-8E7 antibody specifically inhibited the Len/17-MDV replication in vitro and in ovo but didn't inhibit replication of H3N2 or H1N1pdm09 reassortants. Our data demonstrate that addition of 10C4-8E7 in the classical reassortment improves efficiency of LAIV production.
Collapse
Affiliation(s)
- Svetlana Shcherbik
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Paul Carney
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | | | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Vivien G Dugan
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Tatiana Bousse
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States.
| |
Collapse
|
59
|
Valkenburg SA, Leung NHL, Bull MB, Yan LM, Li APY, Poon LLM, Cowling BJ. The Hurdles From Bench to Bedside in the Realization and Implementation of a Universal Influenza Vaccine. Front Immunol 2018; 9:1479. [PMID: 30013557 PMCID: PMC6036122 DOI: 10.3389/fimmu.2018.01479] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/14/2018] [Indexed: 12/23/2022] Open
Abstract
Influenza viruses circulate worldwide causing annual epidemics that have a substantial impact on public health. This is despite vaccines being in use for over 70 years and currently being administered to around 500 million people each year. Improvements in vaccine design are needed to increase the strength, breadth, and duration of immunity against diverse strains that circulate during regular epidemics, occasional pandemics, and from animal reservoirs. Universal vaccine strategies that target more conserved regions of the virus, such as the hemagglutinin (HA)-stalk, or recruit other cellular responses, such as T cells and NK cells, have the potential to provide broader immunity. Many pre-pandemic vaccines in clinical development do not utilize new vaccine platforms but use "tried and true" recombinant HA protein or inactivated virus strategies despite substantial leaps in fundamental research on universal vaccines. Significant hurdles exist for universal vaccine development from bench to bedside, so that promising preclinical data is not yet translating to human clinical trials. Few studies have assessed immune correlates derived from asymptomatic influenza virus infections, due to the scale of a study required to identity these cases. The realization and implementation of a universal influenza vaccine requires identification and standardization of set points of protective immune correlates, and consideration of dosage schedule to maximize vaccine uptake.
Collapse
Affiliation(s)
- Sophie A. Valkenburg
- HKU Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Nancy H. L. Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Maireid B. Bull
- HKU Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Li-meng Yan
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Athena P. Y. Li
- HKU Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Leo L. M. Poon
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| | - Benjamin J. Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
60
|
Mohn KGI, Smith I, Sjursen H, Cox RJ. Immune responses after live attenuated influenza vaccination. Hum Vaccin Immunother 2018; 14:571-578. [PMID: 28933664 PMCID: PMC5861782 DOI: 10.1080/21645515.2017.1377376] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/07/2017] [Accepted: 09/03/2017] [Indexed: 01/06/2023] Open
Abstract
Since 2003 (US) and 2012 (Europe) the live attenuated influenza vaccine (LAIV) has been used as an alternative to the traditional inactivated influenza vaccines (IIV). The immune responses elicted by LAIV mimic natural infection and have been found to provide broader clinical protection in children compared to the IIVs. However, our knowledge of the detailed immunological mechanisims induced by LAIV remain to be fully elucidated, and despite 14 years on the global market, there exists no correlate of protection. Recently, matters are further complicated by differing efficacy data from the US and Europe which are not understood. Better understanding of the immune responses after LAIV may aid in achieving the ultimate goal of a future "universal influenza vaccine". In this review we aim to cover the current understanding of the immune responses induced after LAIV.
Collapse
Affiliation(s)
| | - Ingrid Smith
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| | - Haakon Sjursen
- Medical Department, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Jane Cox
- The Influenza Center
- Department of Research and Development, Haukeland University Hospital, Bergen, Norway
- Jebsen Center for Influenza Vaccines, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
61
|
Trombetta CM, Gianchecchi E, Montomoli E. Influenza vaccines: Evaluation of the safety profile. Hum Vaccin Immunother 2018; 14:657-670. [PMID: 29297746 PMCID: PMC5861790 DOI: 10.1080/21645515.2017.1423153] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/30/2017] [Accepted: 12/23/2017] [Indexed: 12/15/2022] Open
Abstract
The safety of vaccines is a critical factor in maintaining public trust in national vaccination programs. Vaccines are recommended for children, adults and elderly subjects and have to meet higher safety standards, since they are administered to healthy subjects, mainly healthy children. Although vaccines are strictly monitored before authorization, the possibility of adverse events and/or rare adverse events cannot be totally eliminated. Two main types of influenza vaccines are currently available: parenteral inactivated influenza vaccines and intranasal live attenuated vaccines. Both display a good safety profile in adults and children. However, they can cause adverse events and/or rare adverse events, some of which are more prevalent in children, while others with a higher prevalence in adults. The aim of this review is to provide an overview of influenza vaccine safety according to target groups, vaccine types and production methods.
Collapse
Affiliation(s)
| | | | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- VisMederi srl, Siena, Italy
| |
Collapse
|
62
|
Jefferson T, Rivetti A, Di Pietrantonj C, Demicheli V, Cochrane Acute Respiratory Infections Group. Vaccines for preventing influenza in healthy children. Cochrane Database Syst Rev 2018; 2:CD004879. [PMID: 29388195 PMCID: PMC6491174 DOI: 10.1002/14651858.cd004879.pub5] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The consequences of influenza in children and adults are mainly absenteeism from school and work. However, the risk of complications is greatest in children and people over 65 years of age. This is an update of a review published in 2011. Future updates of this review will be made only when new trials or vaccines become available. Observational data included in previous versions of the review have been retained for historical reasons but have not been updated because of their lack of influence on the review conclusions. OBJECTIVES To assess the effects (efficacy, effectiveness, and harm) of vaccines against influenza in healthy children. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 12), which includes the Cochrane Acute Respiratory Infections Group Specialised Register, MEDLINE (1966 to 31 December 2016), Embase (1974 to 31 December 2016), WHO International Clinical Trials Registry Platform (ICTRP; 1 July 2017), and ClinicalTrials.gov (1 July 2017). SELECTION CRITERIA Randomised controlled trials comparing influenza vaccines with placebo or no intervention in naturally occurring influenza in healthy children under 16 years. Previous versions of this review included 19 cohort and 11 case-control studies. We are no longer updating the searches for these study designs but have retained the observational studies for historical purposes. DATA COLLECTION AND ANALYSIS Review authors independently assessed risk of bias and extracted data. We used GRADE to rate the certainty of evidence for the key outcomes of influenza, influenza-like illness (ILI), complications (hospitalisation, ear infection), and adverse events. Due to variation in control group risks for influenza and ILI, absolute effects are reported as the median control group risk, and numbers needed to vaccinate (NNVs) are reported accordingly. For other outcomes aggregate control group risks are used. MAIN RESULTS We included 41 clinical trials (> 200,000 children). Most of the studies were conducted in children over the age of two and compared live attenuated or inactivated vaccines with placebo or no vaccine. Studies were conducted over single influenza seasons in the USA, Western Europe, Russia, and Bangladesh between 1984 and 2013. Restricting analyses to studies at low risk of bias showed that influenza and otitis media were the only outcomes where the impact of bias was negligible. Variability in study design and reporting impeded meta-analysis of harms outcomes.Live attenuated vaccinesCompared with placebo or do nothing, live attenuated influenza vaccines probably reduce the risk of influenza infection in children aged 3 to 16 years from 18% to 4% (risk ratio (RR) 0.22, 95% confidence interval (CI) 0.11 to 0.41; 7718 children; moderate-certainty evidence), and they may reduce ILI by a smaller degree, from 17% to 12% (RR 0.69, 95% CI 0.60 to 0.80; 124,606 children; low-certainty evidence). Seven children would need to be vaccinated to prevent one case of influenza, and 20 children would need to be vaccinated to prevent one child experiencing an ILI. Acute otitis media is probably similar following vaccine or placebo during seasonal influenza, but this result comes from a single study with particularly high rates of acute otitis media (RR 0.98, 95% CI 0.95 to 1.01; moderate-certainty evidence). There was insufficient information available to determine the effect of vaccines on school absenteeism due to very low-certainty evidence from one study. Vaccinating children may lead to fewer parents taking time off work, although the CI includes no effect (RR 0.69, 95% CI 0.46 to 1.03; low-certainty evidence). Data on the most serious consequences of influenza complications leading to hospitalisation were not available. Data from four studies measuring fever following vaccination varied considerably, from 0.16% to 15% in children who had live vaccines, while in the placebo groups the proportions ranged from 0.71% to 22% (very low-certainty evidence). Data on nausea were not reported.Inactivated vaccinesCompared with placebo or no vaccination, inactivated vaccines reduce the risk of influenza in children aged 2 to 16 years from 30% to 11% (RR 0.36, 95% CI 0.28 to 0.48; 1628 children; high-certainty evidence), and they probably reduce ILI from 28% to 20% (RR 0.72, 95% CI 0.65 to 0.79; 19,044 children; moderate-certainty evidence). Five children would need to be vaccinated to prevent one case of influenza, and 12 children would need to be vaccinated to avoid one case of ILI. The risk of otitis media is probably similar between vaccinated children and unvaccinated children (31% versus 27%), although the CI does not exclude a meaningful increase in otitis media following vaccination (RR 1.15, 95% CI 0.95 to 1.40; 884 participants; moderate-certainty evidence). There was insufficient information available to determine the effect of vaccines on school absenteeism due to very low-certainty evidence from one study. We identified no data on parental working time lost, hospitalisation, fever, or nausea.We found limited evidence on secondary cases, requirement for treatment of lower respiratory tract disease, and drug prescriptions. One brand of monovalent pandemic vaccine was associated with a sudden loss of muscle tone triggered by the experience of an intense emotion (cataplexy) and a sleep disorder (narcolepsy) in children. Evidence of serious harms (such as febrile fits) was sparse. AUTHORS' CONCLUSIONS In children aged between 3 and 16 years, live influenza vaccines probably reduce influenza (moderate-certainty evidence) and may reduce ILI (low-certainty evidence) over a single influenza season. In this population inactivated vaccines also reduce influenza (high-certainty evidence) and may reduce ILI (low-certainty evidence). For both vaccine types, the absolute reduction in influenza and ILI varied considerably across the study populations, making it difficult to predict how these findings translate to different settings. We found very few randomised controlled trials in children under two years of age. Adverse event data were not well described in the available studies. Standardised approaches to the definition, ascertainment, and reporting of adverse events are needed. Identification of all global cases of potential harms is beyond the scope of this review.
Collapse
Affiliation(s)
- Tom Jefferson
- University of OxfordCentre for Evidence Based MedicineOxfordUKOX2 6GG
| | - Alessandro Rivetti
- ASL CN2 Alba BraDipartimento di Prevenzione ‐ S.Pre.S.A.LVia Vida 10AlbaPiemonteItaly12051
| | - Carlo Di Pietrantonj
- Local Health Unit Alessandria‐ ASL ALRegional Epidemiology Unit SeREMIVia Venezia 6AlessandriaAlessandriaItaly15121
| | - Vittorio Demicheli
- Azienda Sanitaria Locale ASL ALServizio Regionale di Riferimento per l'Epidemiologia, SSEpi‐SeREMIVia Venezia 6AlessandriaPiemonteItaly15121
| | | |
Collapse
|
63
|
|
64
|
Argentova VV, Aliev TK, Zarubaev VV, Klotchenko SA, Shtro AA, Sergeeva MV, Toporova VA, Dolgikh DA, Sveshnikov PG, Vasin VA, Kirpichnikov MP. In vitro Antiviral Activity of Recombinant Antibodies of IgG and IgA Isotypes to Hemagglutinin of the Influenza A Virus. Mol Biol 2017. [DOI: 10.1134/s0026893317060024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
65
|
Smith AM, Huber VC. The Unexpected Impact of Vaccines on Secondary Bacterial Infections Following Influenza. Viral Immunol 2017; 31:159-173. [PMID: 29148920 DOI: 10.1089/vim.2017.0138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza virus infections remain a significant health burden worldwide, despite available vaccines. Factors that contribute to this include a lack of broad coverage by current vaccines and continual emergence of novel virus strains. Further complicating matters, when influenza viruses infect a host, severe infections can develop when bacterial pathogens invade. Secondary bacterial infections (SBIs) contribute to a significant proportion of influenza-related mortality, with Streptococcus pneumoniae, Staphylococcus aureus, Streptococcus pyogenes, and Haemophilus influenzae as major coinfecting pathogens. Vaccines against bacterial pathogens can reduce coinfection incidence and severity, but few vaccines are available and those that are, may have decreased efficacy in influenza virus-infected hosts. While some studies indicate a benefit of vaccine-induced immunity in providing protection against SBIs, a comprehensive understanding is lacking. In this review, we discuss the current knowledge of viral and bacterial vaccine availability, the generation of protective immunity from these vaccines, and the effectiveness in limiting influenza-associated bacterial infections.
Collapse
Affiliation(s)
- Amber M Smith
- 1 Department of Pediatrics, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Victor C Huber
- 2 Division of Basic Biomedical Sciences, University of South Dakota , Vermillion, South Dakota
| |
Collapse
|
66
|
Islam S, Mohn KGI, Krammer F, Sanne M, Bredholt G, Jul-Larsen Å, Tete SM, Zhou F, Brokstad KA, Cox RJ. Influenza A haemagglutinin specific IgG responses in children and adults after seasonal trivalent live attenuated influenza vaccination. Vaccine 2017; 35:5666-5673. [PMID: 28899626 DOI: 10.1016/j.vaccine.2017.08.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/07/2017] [Accepted: 08/19/2017] [Indexed: 11/18/2022]
Abstract
Influenza is a major respiratory pathogen and vaccination is the main method of prophylaxis. In 2012, the trivalent live attenuated influenza vaccine (LAIV3) was licensed in Europe for use in children. Vaccine-induced antibodies directed against the main viral surface glycoprotein, haemagglutinin (HA), play an important role in virus neutralization through different mechanism. The objective of this study was to dissect the HA specific antibody responses induced after LAIV3 immunization to the influenza A viruses in children and adults. Plasma was collected from 20 children and 20 adults pre- and post-LAIV3 vaccination (up to ayear) and analysed by the haemagglutination inhibition (HI) and ELISA assays. We found that LAIV3 boosted the HA specific IgG response against the head and the full-length of H3N2 in children, but not adults. Adults had higher levels of pre-existing stalk antibodies (towards H3N2 and H1N1), but these were not boosted by LAIV3. Importantly, we observed a trend in boosting of H1N1 HA stalk specific antibodies in children after LAIV3. Whereas, heterosubtypic H5 and H7 full-length HA specific antibodies were not boosted in either children or adults. In conclusion, LAIV3 elicited H3-head and low levels of H1 stalk specific antibody responses in children, supporting the prophylactic use of LAIV in children.
Collapse
Affiliation(s)
- Shahinul Islam
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristin Greve-Isdahl Mohn
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Mari Sanne
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Geir Bredholt
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Åsne Jul-Larsen
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sarah M Tete
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Research & Development, Haukeland University Hospital, Bergen, Norway
| | - Fan Zhou
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Karl Albert Brokstad
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Norway
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway; K.G. Jebsen Centre for Influenza Vaccine Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Research & Development, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
67
|
Modified Vaccinia Virus Ankara Preferentially Targets Antigen Presenting Cells In Vitro, Ex Vivo and In Vivo. Sci Rep 2017; 7:8580. [PMID: 28819261 PMCID: PMC5561217 DOI: 10.1038/s41598-017-08719-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/13/2017] [Indexed: 11/09/2022] Open
Abstract
Modified Vaccinia virus Ankara (MVA) is a promising vaccine vector with an excellent safety profile. However, despite extensive pre-clinical and clinical testing, surprisingly little is known about the cellular tropism of MVA, especially in relevant animal species. Here, we performed in vitro, ex vivo and in vivo experiments with recombinant MVA expressing green fluorescent protein (rMVA-GFP). In both human peripheral blood mononuclear cells and mouse lung explants, rMVA-GFP predominantly infected antigen presenting cells. Subsequent in vivo experiments performed in mice, ferrets and non-human primates indicated that preferential targeting of dendritic cells and alveolar macrophages was observed after respiratory administration, although subtle differences were observed between the respective animal species. Following intramuscular injection, rMVA-GFP was detected in interdigitating cells between myocytes, but also in myocytes themselves. These data are important in advancing our understanding of the basis for the immunogenicity of MVA-based vaccines and aid rational vaccine design and delivery strategies.
Collapse
|
68
|
Abstract
Influenza is a common respiratory illness in children and accounts for substantial morbidity and mortality on an annual basis. Inactivated and live influenza vaccines are approved for children and are safe and efficacious. The absolute effectiveness of vaccines varies by year and is influenced by several factors. The reason for recent reduced performance of live-attenuated influenza vaccines is poorly understood, and active research is ongoing. Vaccination programs are less common in tropical and subtropical countries, where unique logistical and feasibility challenges exist. Antiviral medications for prevention and treatment of influenza in children are an important adjunct to vaccines.
Collapse
Affiliation(s)
- Elizabeth T Rotrosen
- Center for Vaccine Development, University of Maryland, School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development, University of Maryland, School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, MD 21201, USA.
| |
Collapse
|
69
|
Korrelate für Infektionsschutz nach Impfung. Monatsschr Kinderheilkd 2017. [DOI: 10.1007/s00112-017-0313-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
70
|
Gould VMW, Francis JN, Anderson KJ, Georges B, Cope AV, Tregoning JS. Nasal IgA Provides Protection against Human Influenza Challenge in Volunteers with Low Serum Influenza Antibody Titre. Front Microbiol 2017; 8:900. [PMID: 28567036 PMCID: PMC5434144 DOI: 10.3389/fmicb.2017.00900] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/03/2017] [Indexed: 01/05/2023] Open
Abstract
In spite of there being a number of vaccines, influenza remains a significant global cause of morbidity and mortality. Understanding more about natural and vaccine induced immune protection against influenza infection would help to develop better vaccines. Virus specific IgG is a known correlate of protection, but other factors may help to reduce viral load or disease severity, for example IgA. In the current study we measured influenza specific responses in a controlled human infection model using influenza A/California/2009 (H1N1) as the challenge agent. Volunteers were pre-selected with low haemagglutination inhibition (HAI) titres in order to ensure a higher proportion of infection; this allowed us to explore the role of other immune correlates. In spite of HAI being uniformly low, there were variable levels of H1N1 specific IgG and IgA prior to infection. There was also a range of disease severity in volunteers allowing us to compare whether differences in systemic and local H1N1 specific IgG and IgA prior to infection affected disease outcome. H1N1 specific IgG level before challenge did not correlate with protection, probably due to the pre-screening for individuals with low HAI. However, the length of time infectious virus was recovered from the nose was reduced in patients with higher pre-existing H1N1 influenza specific nasal IgA or serum IgA. Therefore, IgA contributes to protection against influenza and should be targeted in vaccines.
Collapse
Affiliation(s)
- Victoria M W Gould
- Mucosal Infection and Immunity, Section of Virology, Imperial College LondonLondon, United Kingdom
| | - James N Francis
- Altimmune, London BioScience Innovation CentreLondon, United Kingdom
| | - Katie J Anderson
- Altimmune, London BioScience Innovation CentreLondon, United Kingdom
| | - Bertrand Georges
- Altimmune, London BioScience Innovation CentreLondon, United Kingdom
| | - Alethea V Cope
- Mucosal Infection and Immunity, Section of Virology, Imperial College LondonLondon, United Kingdom
| | - John S Tregoning
- Mucosal Infection and Immunity, Section of Virology, Imperial College LondonLondon, United Kingdom
| |
Collapse
|
71
|
Reasons for optimism in the search for new vaccines for tuberculosis. Epidemiol Infect 2017; 145:1750-1756. [PMID: 28414012 DOI: 10.1017/s095026881700067x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the development of vaccines for tuberculosis (TB), the combination of the will, funding, scientific rigor, new tools, refined animal models and improved clinical trial designs are all converging at an opportune moment. The lack of optimism that has surrounded the likelihood for finding novel TB vaccines has resulted from a lack of correlates of vaccine-induced protection, a lack of tool candidate vaccines to probe the immunologic space, which may be needed, and the negative result of one recent trial. A vaccine for TB that can be delivered at a reasonable cost to the marketplace will have greater impact on the incidence of new cases of TB than any intervention in world history. Now is the time to increase resources, both financial and human intellectual capacity, for a global tuberculosis vaccine effort.
Collapse
|
72
|
Yang J, Dai L, Yu Q, Yang Q. Histological and anatomical structure of the nasal cavity of Bama minipigs. PLoS One 2017; 12:e0173902. [PMID: 28339502 PMCID: PMC5365122 DOI: 10.1371/journal.pone.0173902] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/28/2017] [Indexed: 12/23/2022] Open
Abstract
Objective The nasal mucosa is equipped with abundant lymphatic tissues, serving as the first line of defense against invasion by microorganisms. In this study, we characterized the features of the nasal mucosa of Bama minipigs (Sus scrofa domestica) via histological analysis. Methods Five cross sections (I, II, III, IV, and V) were obtained from the distal end of the nasal cavity toward the pharynx (along the cavity axis) and examined. Specifically, CD3+ T cells, immunoglobulin A (IgA)+ cells, and M cells were detected by immunohistochemistry, while dendritic cells (DCs) were detected by immunofluorescence. The distribution of goblet cells was determined by periodic acid-Schiff (PAS) staining. Results The nasal cavity of Bama minipigs can be divided into three parts: the regio vestibularis (I, II), regio respiratoria (III, IV), and regio olfactoria (V). Lymphoid tissue was present at random locations in the nasal cavity. Abundant lymphoid tissue was located in the roof of the nasopharyngeal meatus and was continuous with the lymphoid tissue of the pharynx. The distribution of CD3+ T cells, IgA+ cells, M cells, and DCs increased distally in the nasal cavity. Conclusions The present work comprises a histological study of the nasal cavity of Bama minipigs, and will be beneficial for understanding the mechanisms of immunity in these animals after nasal vaccination.
Collapse
Affiliation(s)
- Jingjing Yang
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, PR China
| | - Lei Dai
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, PR China
| | - Qinghua Yu
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, PR China
| | - Qian Yang
- Veterinary College, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, PR China
- * E-mail:
| |
Collapse
|
73
|
Wang L, Chang TZ, He Y, Kim JR, Wang S, Mohan T, Berman Z, Tompkins SM, Tripp RA, Compans RW, Champion JA, Wang BZ. Coated protein nanoclusters from influenza H7N9 HA are highly immunogenic and induce robust protective immunity. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:253-262. [PMID: 27622321 PMCID: PMC5237404 DOI: 10.1016/j.nano.2016.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/05/2016] [Accepted: 09/01/2016] [Indexed: 01/08/2023]
Abstract
Recurring influenza viruses pose an annual threat to public health. A time-saving, cost-effective and egg-independent influenza vaccine approach is important particularly when responding to an emerging pandemic. We fabricated coated, two-layer protein nanoclusters from recombinant trimeric hemagglutinin from an avian-origin H7N9 influenza A virus as an approach for vaccine development in response to an emerging pandemic. Assessment of the virus-specific immune responses and protective efficacy in mice immunized with the nanoclusters demonstrated that the vaccine candidates were highly immunogenic, able to induce protective immunity and long-lasting humoral antibody responses to this virus without the use of adjuvants. Because the advantages of the highly immunogenic coated nanoclusters also include rapid productions in an egg-independent system, this approach has great potential for influenza vaccine production not only in response to an emerging pandemic, but also as a replacement for conventional seasonal influenza vaccines.
Collapse
Affiliation(s)
- Li Wang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Timothy Z Chang
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA.
| | - Yuan He
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Jong R Kim
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Shelly Wang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Teena Mohan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA; Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA.
| | - Zachary Berman
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA; Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA.
| | - S Mark Tompkins
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| | - Richard W Compans
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Julie A Champion
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA.
| | - Bao-Zhong Wang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA; Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, GA, USA.
| |
Collapse
|
74
|
Abstract
Pneumonia is of great global public health importance. Viral infections play both direct and indirect parts in its cause across the globe. Influenza is a leading cause of viral pneumonia in both children and adults, and respiratory syncytial virus is increasingly recognized as causing disease at both extremes of age. Vaccination offers the best prospect for prevention but current influenza vaccines do not provide universal and durable protection, and require yearly reformulation. In the future, it is hoped that influenza vaccines will give better and universal protection, and that new vaccines can be found for other causes of viral pneumonia.
Collapse
Affiliation(s)
- Clementine S Fraser
- Respiratory Sciences, National Heart and Lung Institute, Imperial College London (St Mary's Campus), Norfolk Place, Paddington, London W2 1PG, UK
| | - Akhilesh Jha
- Respiratory Sciences, National Heart and Lung Institute, Imperial College London (St Mary's Campus), Norfolk Place, Paddington, London W2 1PG, UK
| | - Peter J M Openshaw
- Respiratory Sciences, National Heart and Lung Institute, Imperial College London (St Mary's Campus), Norfolk Place, Paddington, London W2 1PG, UK.
| |
Collapse
|
75
|
Wiggs-Stayner KS, Purdy TR, Go GN, McLaughlin NC, Tryzynka PS, Sines JR, Hlaing T. The Impact of Mass School Immunization on School Attendance. J Sch Nurs 2016; 22:219-22. [PMID: 16856776 DOI: 10.1177/10598405050220040601] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this study was to assess the impact a free, on-site influenza immunization program could have on attendance in Title 1 schools. Four Title 1 elementary schools participated in the study. Students at 2 schools were offered free FluMist® immunizations on site, and students at 2 control schools were not. Compliance on receiving FluMist® was measured on the percentage of students participating after evaluating for medical exclusions. Documentation on the reason for absences at all 4 schools included self- or parent-reported influenza. Attendance rates for the year also were compared with the previous year for all 4 schools. A comparison was done of total days absent versus total days enrolled between schools receiving FluMist® and schools not receiving the vaccine. Despite the fact that FluMist® is a new vaccine and is not required for children, 57% of those medically eligible to receive it had parental permission and received the vaccine. The 2 schools receiving FluMist® increased their attendance rates from 95.3% and 93.9% to 96.1% and 95.8%. Previously, the comparison schools each had a 94.6% attendance rate; one fell to 94.4% and the other rose very slightly to 94.7%. The differences in self- or parent-reported influenza absences were not significant. However, the difference in days absent between individual vaccinated and nonvaccinated schools was statistically significant.
Collapse
Affiliation(s)
- Kathleen S Wiggs-Stayner
- Community Nursing, Pediatrics, Pediatric Intensive Care, Pediatric Specialty Clinics, Parkview Hospital, Fort Wayne, IN, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Edwards KM, Keitel WA. Challenges Remain for Influenza Vaccination of Children. J Infect Dis 2016; 214:1470-1472. [PMID: 27571903 DOI: 10.1093/infdis/jiw384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kathryn M Edwards
- Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, Tennessee
| | - Wendy A Keitel
- Department of Molecular Virology and Microbiology.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
77
|
Nogales A, Huang K, Chauché C, DeDiego ML, Murcia PR, Parrish CR, Martínez-Sobrido L. Canine influenza viruses with modified NS1 proteins for the development of live-attenuated vaccines. Virology 2016; 500:1-10. [PMID: 27750071 DOI: 10.1016/j.virol.2016.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 12/24/2022]
Abstract
Canine Influenza Virus (CIV) H3N8 is the causative agent of canine influenza, a common and contagious respiratory disease of dogs. Currently, only inactivated influenza vaccines (IIVs) are available for the prevention of CIV H3N8. However, live-attenuated influenza vaccines (LAIVs) are known to provide better immunogenicity and protection efficacy than IIVs. Influenza NS1 is a virulence factor that offers an attractive target for the preparation of attenuated viruses as LAIVs. Here we generated recombinant H3N8 CIVs containing truncated or a deleted NS1 protein to test their potential as LAIVs. All recombinant viruses were attenuated in mice and showed reduced replication in cultured canine tracheal explants, but were able to confer complete protection against challenge with wild-type CIV H3N8 after a single intranasal immunization. Immunogenicity and protection efficacy was better than that observed with an IIV. This is the first description of a LAIV for the prevention of H3N8 CIV in dogs.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Kai Huang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Caroline Chauché
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Marta L DeDiego
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA; Center for Vaccine Biology and Immunology (CVBI), University of Rochester, Rochester, NY, USA
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
78
|
Seasonal influenza vaccines and hurdles to mutual protection. Clin Microbiol Infect 2016; 22 Suppl 5:S113-S119. [PMID: 27568914 DOI: 10.1016/j.cmi.2016.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/19/2016] [Indexed: 11/22/2022]
Abstract
While vaccines against seasonal influenza are available, major hurdles still exist that prevent their use having any impact on epidemic spread. Recent epidemiologic data question the appropriateness of traditional vaccination timing (prior to the winter season) in many parts of the world. Furthermore, vaccine uptake in most countries even in high-risk populations does not reach the 75% target recommended by the World Health Organization. Influenza viruses continually undergo antigenic variation, and both inactivated and live attenuated influenza vaccines confer only short-lived strain-specific immunity, so annual revaccination is required. Improving vaccine-induced immunity is therefore an important goal. A vaccine that could confer durable protection against emerging influenza strains could significantly reduce onward transmission. Therefore, further understanding of protective immunity against influenza (including broadly cross-protective immune mechanisms such as haemagglutinin stem-binding antibodies and T cells) offers the hope of vaccines that can confer the long-lived heterosubtypic immune responses required for mutual protection.
Collapse
|
79
|
Wijnans L, Voordouw B. A review of the changes to the licensing of influenza vaccines in Europe. Influenza Other Respir Viruses 2016; 10:2-8. [PMID: 26439108 PMCID: PMC4687503 DOI: 10.1111/irv.12351] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 01/25/2023] Open
Abstract
In 2014, the European Committee for Medicinal Products for Human Use (CHMP) published a draft regulatory guideline for the evaluation of influenza vaccines. Following a public consultation round, the final guidance will be published in the near future. Here, we highlight the main changes in the clinical section in this guideline and discuss the background to these changes and whether the new consolidated guidance document can be expected to achieve a better understanding of the performance of seasonal, zoonotic and pandemic influenza vaccines during the regulatory licensing process. The new influenza guideline reflects a changed approach to the regulatory assessment of influenza vaccines, resulting in the abolition of serological criteria, known as the CHMP criteria, which have been the mainstay for evaluating the influenza vaccine immunogenicity for several decades. The new guideline adopts a more diversified approach to the measurement and reporting of the immune response to influenza vaccines and sets a requirement to conduct clinical outcome trials in young children. Importantly, more emphasis is placed on the post‐licensure monitoring of the benefit risk of influenza vaccines, including a request for continuous monitoring of efficacy and enhanced safety surveillance. Despite the improvements these new requirements will expectedly bring to the regulatory assessment of influenza vaccines, major challenges remain which cannot be overcome by new guidance alone. Ongoing initiatives in which academia, manufacturers, public health institutes and regulators work together to address these challenges are central to the development of robust tools to evaluate and monitor performance of influenza vaccines in the future.
Collapse
|
80
|
Zhang R, Alam SM, Yu JS, Scearce R, Lockwood B, Hwang KK, Parks R, Permar S, Brandtzaeg P, Haynes BF, Liao HX. Novel Monoclonal Antibodies for Studies of Human and Rhesus Macaque Secretory Component and Human J-Chain. Monoclon Antib Immunodiagn Immunother 2016; 35:217-26. [PMID: 27386924 DOI: 10.1089/mab.2016.0014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulin A (IgA) antibodies exist in monomeric, dimeric, and secretory forms. Dimerization of IgA depends on a 15-kD polypeptide termed "joining (J) chain," which is also part of the binding site for an epithelial glycoprotein called "secretory component (SC)," whether this after apical cleavage on secretory epithelia is ligand bound in secretory IgA (SIgA) or in a free form. Uncleaved membrane SC, also called the "polymeric Ig receptor," is thus crucial for transcytotic export of SIgA to mucosal surfaces, where it interacts with and modulates commensal bacteria and mediates protective immune responses against exogenous pathogens. To evaluate different forms of IgA, we have produced mouse monoclonal antibodies (MAbs) against human J-chain and free SC. We found that J-chain MAb 9A8 and SC MAb 9H7 identified human dimeric IgA and SIgA in enzyme-linked immunoassay and western blot analysis, as well as functioning in immunohistochemistry to identify cytoplasmic IgA of intestinal lamina propria plasmablasts/plasma cells and crypt epithelium of distal human intestine. Finally, we demonstrated that SC MAb 9H7 cross-reacted with rhesus macaque SIgA. These novel reagents should be of use in the study of the biology of various forms of IgA in humans and SIgA in macaques, as well as in monitoring the production and/or isolation of these forms of IgA.
Collapse
Affiliation(s)
- Ruijun Zhang
- 1 Duke Human Vaccine Institute, Duke University School of Medicine , Durham, North Carolina
| | - S Munir Alam
- 1 Duke Human Vaccine Institute, Duke University School of Medicine , Durham, North Carolina.,2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina
| | - Jae-Sung Yu
- 1 Duke Human Vaccine Institute, Duke University School of Medicine , Durham, North Carolina
| | - Richard Scearce
- 1 Duke Human Vaccine Institute, Duke University School of Medicine , Durham, North Carolina
| | - Bradley Lockwood
- 1 Duke Human Vaccine Institute, Duke University School of Medicine , Durham, North Carolina
| | - Kwan-Ki Hwang
- 1 Duke Human Vaccine Institute, Duke University School of Medicine , Durham, North Carolina
| | - Robert Parks
- 1 Duke Human Vaccine Institute, Duke University School of Medicine , Durham, North Carolina
| | - Sallie Permar
- 1 Duke Human Vaccine Institute, Duke University School of Medicine , Durham, North Carolina.,3 Department of Pediatrics, Duke University School of Medicine , Durham, North Carolina
| | - Per Brandtzaeg
- 4 Centre for Immune Regulation (CIR), University of Oslo , Oslo, Norway .,5 LIIPAT, Department Pathology, Oslo University Hospital Rikshospitalet , Oslo, Norway
| | - Barton F Haynes
- 1 Duke Human Vaccine Institute, Duke University School of Medicine , Durham, North Carolina.,2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina
| | - Hua-Xin Liao
- 1 Duke Human Vaccine Institute, Duke University School of Medicine , Durham, North Carolina.,2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina
| |
Collapse
|
81
|
Nogales A, Baker SF, Domm W, Martínez-Sobrido L. Development and applications of single-cycle infectious influenza A virus (sciIAV). Virus Res 2016; 216:26-40. [PMID: 26220478 PMCID: PMC4728073 DOI: 10.1016/j.virusres.2015.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 02/06/2023]
Abstract
The diverse host range, high transmissibility, and rapid evolution of influenza A viruses justify the importance of containing pathogenic viruses studied in the laboratory. Other than physically or mechanically changing influenza A virus containment procedures, modifying the virus to only replicate for a single round of infection similarly ensures safety and consequently decreases the level of biosafety containment required to study highly pathogenic members in the virus family. This biological containment is more ideal because it is less apt to computer, machine, or human error. With many necessary proteins that can be deleted, generation of single-cycle infectious influenza A viruses (sciIAV) can be achieved using a variety of approaches. Here, we review the recent burst in sciIAV generation and summarize the applications and findings on this important human pathogen using biocontained viral mimics.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - William Domm
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| |
Collapse
|
82
|
Weinberg A, Curtis D, Ning MF, Claypool DJ, Jalbert E, Patterson J, Frank DN, Ir D, Armon C. Immune Responses to Circulating and Vaccine Viral Strains in HIV-Infected and Uninfected Children and Youth Who Received the 2013/2014 Quadrivalent Live-Attenuated Influenza Vaccine. Front Immunol 2016; 7:142. [PMID: 27148262 PMCID: PMC4831981 DOI: 10.3389/fimmu.2016.00142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/01/2016] [Indexed: 11/13/2022] Open
Abstract
The live-attenuated influenza vaccine (LAIV) has generally been more efficacious than the inactivated vaccine in children. However, LAIV is not recommended for HIV-infected children because of insufficient data. We compared cellular, humoral, and mucosal immune responses to the 2013-2014 LAIV quadrivalent (LAIV4) in HIV-infected and uninfected children 2-25 years of age (yoa). We analyzed the responses to the vaccine H1N1 (H1N1-09), to the circulating H1N1 (H1N1-14), which had significant mutations compared to H1N1-09 and to B Yamagata (BY), which had the highest effectiveness in 2013-2014. Forty-six HIV-infected and 56 uninfected participants with prior influenza immunization had blood and nasal swabs collected before and after LAIV4 for IFNγ T and IgG/IgA memory B-cell responses (ELISPOT), plasma antibodies [hemagglutination inhibition (HAI) and microneutralization (MN)], and mucosal IgA (ELISA). The HIV-infected participants had median CD4+ T cells = 645 cells/μL and plasma HIV RNA = 20 copies/mL. Eighty-four percent were on combination anti-retroviral therapy. Regardless of HIV status, significant increases in T-cell responses were observed against BY, but not against H1N1-09. H1N1-09 T-cell immunity was higher than H1N1-14 both before and after vaccination. LAIV4 significantly increased memory IgG B-cell immunity against H1N1-14 and BY in uninfected, but not in HIV-infected participants. Regardless of HIV status, H1N1-09 memory IgG B-cell immunity was higher than H1N1-14 and lower than BY. There were significant HAI titer increases after vaccination in all groups and against all viruses. However, H1N1-14 MN titers were significantly lower than H1N1-09 before and after vaccination overall and in HIV-uninfected vaccinees. Regardless of HIV status, LAIV4 increased nasal IgA concentrations against all viruses. The fold-increase in H1N1-09 IgA was lower than BY. Overall, participants <9 yoa had decreased BY-specific HAI and nasal IgA responses to LAIV4. In conclusion, HIV-infected and uninfected children and youth had comparable responses to LAIV4. H1N1-09 immune responses were lower than BY and higher than H1N1-14, suggesting that both antigenic mismatches between circulating and vaccine H1N1 and lower immunogenicity of the H1N1 vaccine strain may have contributed to the decreased H1N1 effectiveness of 2013-2014 LAIV4.
Collapse
Affiliation(s)
- Adriana Weinberg
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - Donna Curtis
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - Mariangeli Freitas Ning
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - David Jeremy Claypool
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - Emilie Jalbert
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - Julie Patterson
- Department of Pediatrics, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - Daniel N Frank
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - Diana Ir
- Department of Medicine, Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - Carl Armon
- Children's Hospital of Colorado , Aurora, CO , USA
| |
Collapse
|
83
|
Hegde NR. Cell culture-based influenza vaccines: A necessary and indispensable investment for the future. Hum Vaccin Immunother 2016; 11:1223-34. [PMID: 25875691 DOI: 10.1080/21645515.2015.1016666] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The traditional platform of using embryonated chicken eggs for the production of influenza vaccines has several drawbacks including the inability to meet the volume of required doses in the case of widespread epidemics and pandemics. Cell culture platforms have therefore been explored in the last 2 decades, and have attracted further attention following the H1N1 pandemic outbreak. This platform, while not the most economical for large-scale production, has several advantages, and can supplement the vaccine requirement when needed. Recent developments in production technologies have contributed greatly to fine-tuning this platform. In combination with other technologies such as live attenuated and recombinant protein or virus-like particle vaccines, and different adjuvants and delivery systems, cell culture-based influenza vaccine platform can be used both for production of seasonal vaccine, and to mitigate vaccine shortages in pandemic situations.
Collapse
Affiliation(s)
- Nagendra R Hegde
- a Ella Foundation; Genome Valley; Turkapally , Shameerpet Mandal , Hyderabad , India
| |
Collapse
|
84
|
Human papillomavirus vaccination induces neutralising antibodies in oral mucosal fluids. Br J Cancer 2016; 114:409-16. [PMID: 26867163 PMCID: PMC4815771 DOI: 10.1038/bjc.2015.462] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/15/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022] Open
Abstract
Background: Mucosal human papillomaviruses (HPV) are a major cause of cancers and papillomas of the anogenital and oropharyngeal tract. HPV-vaccination elicits neutralising antibodies in sera and cervicovaginal secretions and protects uninfected individuals from persistent anogenital infection and associated diseases caused by the vaccine-targeted HPV types. Whether immunisation can prevent oropharyngeal infection and diseases and whether neutralising antibodies represent the correlate of protection, is still unclear. Methods: We determined IgG and neutralising antibodies against low-risk HPV6 and high-risk HPV16/18 in sera and oral fluids from healthy females (n=20) before and after quadrivalent HPV-vaccination and compared the results with non-vaccinated controls. Results: HPV-vaccination induced type-specific antibodies in sera and oral fluids of the vaccinees. Importantly, the antibodies in oral fluids were capable of neutralising HPV pseudovirions in vitro, indicating protection from infection. The increased neutralising antibody levels against HPV16/18 in sera and oral fluids post-vaccination correlated significantly within an individual. Conclusions: We provide experimental proof that HPV-vaccination elicits neutralising antibodies to the vaccine-targeted types in oral fluids. Hence, immunisation may confer direct protection against type-specific HPV infection and associated diseases of the oropharyngeal tract. Measurement of antibodies in oral fluids represents a suitable tool to assess vaccine-induced protection within the mucosal milieu of the orophayrynx.
Collapse
|
85
|
Nogales A, Rodríguez-Sánchez I, Monte K, Lenschow DJ, Perez DR, Martínez-Sobrido L. Replication-competent fluorescent-expressing influenza B virus. Virus Res 2016; 213:69-81. [PMID: 26590325 PMCID: PMC5003614 DOI: 10.1016/j.virusres.2015.11.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/10/2015] [Indexed: 12/22/2022]
Abstract
Influenza B viruses (IBVs) cause annual outbreaks of respiratory illness in humans and are increasingly recognized as a major cause of influenza-associated morbidity and mortality. Studying influenza viruses requires the use of secondary methodologies to identify virus-infected cells. To this end, replication-competent influenza A viruses (IAVs) expressing easily traceable fluorescent proteins have been recently developed. In contrast, similar approaches for IBV are mostly lacking. In this report, we describe the generation and characterization of replication-competent influenza B/Brisbane/60/2008 viruses expressing fluorescent mCherry or GFP fused to the C-terminal of the viral non-structural 1 (NS1) protein. Fluorescent-expressing IBVs display similar growth kinetics and plaque phenotype to wild-type IBV, while fluorescent protein expression allows for the easy identification of virus-infected cells. Without the need of secondary approaches to monitor viral infection, fluorescent-expressing IBVs represent an ideal approach to study the biology of IBV and an excellent platform for the rapid identification and characterization of antiviral therapeutics or neutralizing antibodies using high-throughput screening approaches. Lastly, fluorescent-expressing IBVs can be combined with the recently described reporter-expressing IAVs for the identification of novel therapeutics to combat these two important human respiratory pathogens.
Collapse
Affiliation(s)
- Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Irene Rodríguez-Sánchez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Kristen Monte
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deborah J Lenschow
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel R Perez
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA 30603, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
86
|
Enhanced humoral response to influenza vaccine in aged mice with a novel adjuvant, rOv-ASP-1. Vaccine 2016; 34:887-92. [PMID: 26795365 PMCID: PMC4731280 DOI: 10.1016/j.vaccine.2016.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
Influenza-specific antibody levels were significantly increased after immunization with TIV + rOv-ASP-1 in aged mice. rOv-ASP-1 was superior to the conventional adjuvant alum in inducing specific IgG after TIV immunization in aged mice. Co-administration of rOv-ASP-1 induced cross-reactive antibody and enhanced cross-protection.
Immunization is the best way to prevent seasonal epidemics and pandemics of influenza. There are two kinds of influenza vaccines available in the United States: an inactivated vaccine (TIV) and an attenuated vaccine; however, only TIV is approved for immunization of the elderly population. While the aged population has the highest rate of influenza vaccination, the protective efficacy is low as evidenced by elderly individuals having the highest mortality associated with influenza. Recently, we reported that an adjuvant derived from the helminth parasite Onchocerca volvulus, named O. volvulus activation-associated secreted protein-1 (Ov-ASP-1), can significantly enhance the protective efficacy of an inactivated vaccine (TIV) in young adult mice. In the current study, we examined whether this recombinant Ov-ASP-1 (rOv-ASP-1) can enhance the efficacy of TIV in aged mice as well. While primary immunization with TIV alone produced only a low level of influenza-specific antibodies (total IgG, IgG1, and IgG2c) in aged mice, the antibody levels were significantly increased after immunization with TIV + rOv-ASP-1. More importantly, the level of the total IgG in aged mice administered TIV + rOv-ASP-1 was comparable to that of young adult mice immunized with TIV alone. Co-administration of rOv-ASP-1 induced a low level of cross-reactive antibody and enhanced the protective efficacy of TIV in aged mice, reflected by significantly increased survival after challenge with a heterologous influenza virus. rOv-ASP-1 was also superior to the conventional adjuvant alum in inducing specific IgG after TIV immunization in aged mice, and in conferring protection after challenge. These results demonstrate that rOv-ASP-1 may serve as a potential adjuvant for influenza vaccine to improve the efficacy of protection in the elderly.
Collapse
|
87
|
Weinberg A, Muresan P, Richardson K, Fenton T, Dominguez T, Bloom A, Watts DH, Abzug MJ, Nachman SA, Levin MJ. Heterogeneity of T Cell Responses to Pandemic pH1N1 Monovalent Vaccine in HIV-Infected Pregnant Women. AIDS Res Hum Retroviruses 2015; 31:1170-7. [PMID: 26322930 PMCID: PMC4651022 DOI: 10.1089/aid.2015.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the Th1 protective and regulatory T and B cell (Treg and Breg) responses to pH1N1 monovalent influenza vaccine (IIV1) in HIV-infected pregnant women on combination antiretroviral therapy (cART). Peripheral blood mononuclear cells (PBMCs) from 52 study participants were cryopreserved before and after vaccination and analyzed by flow cytometry. pH1N1-specific Th1, Treg, and Breg responses were measured in PBMCs after in vitro stimulation with pH1N1 and control antigen. The cohort analysis did not detect changes in pH1N1-Th1, Treg, or Breg subsets postvaccination. However, individual analyses distinguished subjects who mounted vigorous Th1 responses postvaccination from others who did not. Postvaccination, high pH1N1-Th1 correlated with high pH1N1-Treg and Breg responses, suggesting that low influenza effector responses did not result from excessive vaccine-induced immune regulation. High postvaccination pH1N1-Th1 responses correlated with baseline high PHA- and pH1N1-IFN-γ ELISpot and circulating CD4+CD39+% and CD8+CD39+% Treg, with low CD8+ cell numbers and CD19+FOXP3+% Breg, but not with CD4+ cell numbers or HIV viral load. These data highlight the heterogeneity of T cell responses to vaccines in HIV-infected individuals on cART. Predictors of robust Th1 responses to IIV include CD8+ cell numbers, T cell functionality, and circulating Breg and Treg.
Collapse
Affiliation(s)
- Adriana Weinberg
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Petronella Muresan
- Statistical and Data Analysis Center, Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, Massachusetts
| | - Kelly Richardson
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Terence Fenton
- Statistical and Data Analysis Center, Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, Massachusetts
| | - Teresa Dominguez
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony Bloom
- Frontier Science and Technology Research Foundation, Buffalo, New York
| | - D. Heather Watts
- Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Mark J. Abzug
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sharon A. Nachman
- State University of New York Health Science Center at Stony Brook, Stony Brook, New York
| | - Myron J. Levin
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | |
Collapse
|
88
|
Abstract
Currently available human papillomavirus (HPV) vaccines are very successful at preventing persistent HPV infection and premalignant cervical lesions. In part due to the unique aspects of HPV immunogenicity and high levels of efficacy no immune correlate has been identified for HPV vaccination. Serum neutralizing antibodies are used to measure vaccine response, but their role as a correlate has not been verified, and this theory fails to explain the prevention of HPV related non-mucosal lesions. Identifying a true correlate would aid in future work in this area but will be difficult in the setting of a highly efficacious vaccine.
Collapse
Affiliation(s)
- Taylor B Turner
- a Division of Gynecologic Oncology, Department of Obstetrics and Gynecology , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Warner K Huh
- a Division of Gynecologic Oncology, Department of Obstetrics and Gynecology , University of Alabama at Birmingham , Birmingham , AL , USA
| |
Collapse
|
89
|
Shcherbik S, Pearce N, Kiseleva I, Larionova N, Rudenko L, Xu X, Wentworth DE, Bousse T. Implementation of new approaches for generating conventional reassortants for live attenuated influenza vaccine based on Russian master donor viruses. J Virol Methods 2015; 227:33-9. [PMID: 26519883 PMCID: PMC4773654 DOI: 10.1016/j.jviromet.2015.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 12/20/2022]
Abstract
Cold-adapted influenza strains A/Leningrad/134/17/57 (H2N2) and B/USSR/60/69, originally developed in Russia, have been reliable master donors of attenuation for preparing live attenuated influenza vaccines (LAIV). The classical strategy for generating LAIV reassortants is robust, but has some disadvantages. The generation of reassortants requires at least 3 passages under selective conditions after co-infection; each of these selective passages takes six days. Screening the reassortants for a genomic composition traditionally starts after a second limiting dilution cloning procedure, and the number of suitable reassortants is limited. We developed a new approach to shorten process of preparing LAIV seed viruses. Introducing the genotyping of reassortants by pyrosequencing and monitoring sequence integrity of surface antigens starting at the first selective passage allowed specific selection of suitable reassortants for the next cloning procedure and also eliminate one of the group selective passage in vaccine candidate generation. Homogeneity analysis confirmed that reducing the number of selective passages didn't affect the quality of LAIV seed viruses. Finally, the two-way hemagglutination inhibition test, implemented for all the final seed viruses, confirmed that any amino acid substitutions acquired by reassortants during egg propagation didn't affect antigenicity of the vaccine. Our new strategy reduces the time required to generate a vaccine and was used to generate seasonal LAIVs candidates for the 2012/2013, 2014/2015, and 2015/2016 seasons more rapidly.
Collapse
Affiliation(s)
- Svetlana Shcherbik
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-G16, 1600 Clifton Road, Atlanta, GA 30333, United States; Battelle, Atlanta, GA 30329, United States
| | - Nicholas Pearce
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-G16, 1600 Clifton Road, Atlanta, GA 30333, United States; Battelle, Atlanta, GA 30329, United States
| | - Irina Kiseleva
- Institute of Experimental Medicine, Department of Virology, St. Petersburg, Russia
| | - Natalie Larionova
- Institute of Experimental Medicine, Department of Virology, St. Petersburg, Russia
| | - Larisa Rudenko
- Institute of Experimental Medicine, Department of Virology, St. Petersburg, Russia
| | - Xiyan Xu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-G16, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - David E Wentworth
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-G16, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Tatiana Bousse
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS-G16, 1600 Clifton Road, Atlanta, GA 30333, United States.
| |
Collapse
|
90
|
Safety, immunogenicity and shedding of LAIV4 in HIV-infected and uninfected children. Vaccine 2015; 33:4790-7. [PMID: 26241950 DOI: 10.1016/j.vaccine.2015.07.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/25/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVES HIV-infected children have poor responses to inactivated influenza vaccines. Live vaccines (LAIVs) are highly efficacious in children, but they are not used in HIV-infected children du e to limited information. We investigated the safety, immunogenicity and viral shedding of LAIV4 in HIV-infected compared with uninfected children. DESIGN Forty-six HIV-infected and 56 uninfected children 2 to 25 years old, who had been previously vaccinated against influenza, consented to receive a single dose of LAIV4. All grade adverse events (AEs) were recorded in the first month post-vaccination and serious AEs (SAEs) throughout the influenza season. Nasopharyngeal swabs for influenza PCR and IgA ELISA and blood for hemagglutination inhibition antibody (HAI) measurements were collected at entry, 2-5, 7-10 and 21-28 days post-vaccination. RESULTS The HIV-infected subjects had median CD4+ cells of 649 cells/μL and plasma HIV RNA of 20 copies/mL. AEs were similar in the two groups. There were no vaccine-related SAEs. Shedding of ≥1 vaccine virus was detected in 67% HIV-infected and 50% uninfected participants (p=0.14). HAI titers did not appreciably change, but mucosal IgA antibodies significantly increased post-vaccination in both groups. High baseline HAI and IgA antibody concentrations were associated with decreased viral shedding in controls, but not in HIV-infected subjects. Similar proportions of HIV-infected vaccinees and controls reported influenza-like illnesses (12% and 6%) throughout the season. CONCLUSIONS LAIV4 was equally safe and immunogenic and caused similar viral shedding in HIV-infected and uninfected children. A correlate of protection against vaccine viral shedding was not identified in HIV-infected participants, although both circulating and mucosal antibodies correlated with protection in controls.
Collapse
|
91
|
Darton TC, Blohmke CJ, Moorthy VS, Altmann DM, Hayden FG, Clutterbuck EA, Levine MM, Hill AVS, Pollard AJ. Design, recruitment, and microbiological considerations in human challenge studies. THE LANCET. INFECTIOUS DISEASES 2015; 15:840-51. [PMID: 26026195 DOI: 10.1016/s1473-3099(15)00068-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 12/26/2022]
Abstract
Since the 18th century a wealth of knowledge regarding infectious disease pathogenesis, prevention, and treatment has been accumulated from findings of infection challenges in human beings. Partly because of improvements to ethical and regulatory guidance, human challenge studies-involving the deliberate exposure of participants to infectious substances-have had a resurgence in popularity in the past few years, in particular for the assessment of vaccines. To provide an overview of the potential use of challenge models, we present historical reports and contemporary views from experts in this type of research. A range of challenge models and practical approaches to generate important data exist and are used to expedite vaccine and therapeutic development and to support public health modelling and interventions. Although human challenge studies provide a unique opportunity to address complex research questions, participant and investigator safety is paramount. To increase the collaborative effort and future success of this area of research, we recommend the development of consensus frameworks and sharing of best practices between investigators. Furthermore, standardisation of challenge procedures and regulatory guidance will help with the feasibility for using challenge models in clinical testing of new disease intervention strategies.
Collapse
Affiliation(s)
- Thomas C Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK.
| | - Vasee S Moorthy
- Department of Immunisation, Vaccines and Biologicals, WHO, Geneva, Switzerland
| | | | - Frederick G Hayden
- Department of Medicine, University of Virginia School of Medicine, Charlottesville VA, USA
| | - Elizabeth A Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | - Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Adrian V S Hill
- The Jenner Institute Laboratories, University of Oxford, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
92
|
Weinberg A, Muresan P, Richardson KM, Fenton T, Dominguez T, Bloom A, Watts DH, Abzug MJ, Nachman SA, Levin MJ, for the P1086 team. Determinants of vaccine immunogenicity in HIV-infected pregnant women: analysis of B and T cell responses to pandemic H1N1 monovalent vaccine. PLoS One 2015; 10:e0122431. [PMID: 25874544 PMCID: PMC4395240 DOI: 10.1371/journal.pone.0122431] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/11/2015] [Indexed: 11/19/2022] Open
Abstract
Influenza infections have high frequency and morbidity in HIV-infected pregnant women, underscoring the importance of vaccine-conferred protection. To identify the factors that determine vaccine immunogenicity in this group, we characterized the relationship of B- and T-cell responses to pandemic H1N1 (pH1N1) vaccine with HIV-associated immunologic and virologic characteristics. pH1N1 and seasonal-H1N1 (sH1N1) antibodies were measured in 119 HIV-infected pregnant women after two double-strength pH1N1 vaccine doses. pH1N1-IgG and IgA B-cell FluoroSpot, pH1N1- and sH1N1-interferon γ (IFNγ) and granzyme B (GrB) T-cell FluoroSpot, and flow cytometric characterization of B- and T-cell subsets were performed in 57 subjects. pH1N1-antibodies increased after vaccination, but less than previously described in healthy adults. pH1N1-IgG memory B cells (Bmem) increased, IFNγ-effector T-cells (Teff) decreased, and IgA Bmem and GrB Teff did not change. pH1N1-antibodies and Teff were significantly correlated with each other and with sH1N1-HAI and Teff, respectively, before and after vaccination. pH1N1-antibody responses to the vaccine significantly increased with high proportions of CD4+, low CD8+ and low CD8+HLADR+CD38+ activated (Tact) cells. pH1N1-IgG Bmem responses increased with high proportions of CD19+CD27+CD21- activated B cells (Bact), high CD8+CD39+ regulatory T cells (Treg), and low CD19+CD27-CD21- exhausted B cells (Bexhaust). IFNγ-Teff responses increased with low HIV plasma RNA, CD8+HLADR+CD38+ Tact, CD4+FoxP3+ Treg and CD19+IL10+ Breg. In conclusion, pre-existing antibody and Teff responses to sH1N1 were associated with increased responses to pH1N1 vaccination in HIV-infected pregnant women suggesting an important role for heterosubtypic immunologic memory. High CD4+% T cells were associated with increased, whereas high HIV replication, Tact and Bexhaust were associated with decreased vaccine immunogenicity. High Treg increased antibody responses but decreased Teff responses to the vaccine. The proportions of immature and transitional B cells did not affect the responses to vaccine. Increased Bact were associated with high Bmem responses to the vaccine.
Collapse
Affiliation(s)
- Adriana Weinberg
- University of Colorado Anschutz Medical Center, Aurora, Colorado, United States of America
- * E-mail:
| | - Petronella Muresan
- Statistical and Data Analysis Center, Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Kelly M. Richardson
- University of Colorado Anschutz Medical Center, Aurora, Colorado, United States of America
| | - Terence Fenton
- Statistical and Data Analysis Center, Center for Biostatistics in AIDS Research, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Teresa Dominguez
- University of Colorado Anschutz Medical Center, Aurora, Colorado, United States of America
| | - Anthony Bloom
- Frontier Science and Technology Research Foundation, Buffalo, New York, United States of America
| | - D. Heather Watts
- Maternal and Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Mark J. Abzug
- University of Colorado Anschutz Medical Center, Aurora, Colorado, United States of America
| | - Sharon A. Nachman
- State University of New York Health Science Center at Stony Brook, Stony Brook, New York, United States of America
| | - Myron J. Levin
- University of Colorado Anschutz Medical Center, Aurora, Colorado, United States of America
| | | |
Collapse
|
93
|
Prospects of HA-based universal influenza vaccine. BIOMED RESEARCH INTERNATIONAL 2015; 2015:414637. [PMID: 25785268 PMCID: PMC4345066 DOI: 10.1155/2015/414637] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 12/23/2014] [Indexed: 12/02/2022]
Abstract
Current influenza vaccines afford substantial protection in humans by inducing strain-specific neutralizing antibodies (Abs). Most of these Abs target highly variable immunodominant epitopes in the globular domain of the viral hemagglutinin (HA). Therefore, current vaccines may not be able to induce heterosubtypic immunity against the divergent influenza subtypes. The identification of broadly neutralizing Abs (BnAbs) against influenza HA using recent technological advancements in antibody libraries, hybridoma, and isolation of single Ab-secreting plasma cells has increased the interest in developing a universal influenza vaccine as it could provide life-long protection. While these BnAbs can serve as a source for passive immunotherapy, their identification represents an important step towards the design of such a universal vaccine. This review describes the recent advances and approaches used in the development of universal influenza vaccine based on highly conserved HA regions identified by BnAbs.
Collapse
|
94
|
Shoji K, Takahashi T, Kurohane K, Iwata K, Matsuoka T, Tsuruta S, Sugino T, Miyake M, Suzuki T, Imai Y. Recombinant immunoglobulin A specific for influenza A virus hemagglutinin: production, functional analysis, and formation of secretory immunoglobulin A. Viral Immunol 2015; 28:170-8. [PMID: 25658886 DOI: 10.1089/vim.2014.0098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Secretory immunoglobulin (Ig) A (SIgA), comprised of dimeric IgA and secretory component (SC), is believed to provide a defense mechanism on the mucosal surface. Influenza A virus (IAV) hemagglutinin (HA)-specific SIgA is thought to play an important role in the prevention of IAV infection. However, the topical application of preformed IAV-specific SIgA has not been shown to prevent IAV infection. This is due to the difficulty in the production of antigen-specific IgA monoclonal antibodies (mAbs) and monoclonal SIgA. Here, a recombinant hybrid IgA (HIgA) was established that utilizes variable regions of an HA-specific mouse IgG mAb and the heavy chain constant region of a mouse IgA mAb. We expressed the dimeric HIgA in Chinese hamster ovary-K1 (CHO-K1) cells. When in vitro IAV infection of Madin-Darby canine kidney (MDCK) cells was tested, 10 times lower concentrations of HIgA were able to inhibit it as compared with an HA-specific IgG with the same variable regions. A functional hybrid secretory IgA (HSIgA) was also produced through incubation of the dimeric HIgA with recombinant mouse SC in vitro. It was demonstrated that HSIgA could be separated from the dimeric HIgA on size exclusion chromatography. This study provides a basic strategy for investigating the role of SIgA upon IAV infection on the mucosal surface.
Collapse
Affiliation(s)
- Kentaro Shoji
- 1 Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka , Shizuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Ilyushina NA, Haynes BC, Hoen AG, Khalenkov AM, Housman ML, Brown EP, Ackerman ME, Treanor JJ, Luke CJ, Subbarao K, Wright PF. Live attenuated and inactivated influenza vaccines in children. J Infect Dis 2015; 211:352-60. [PMID: 25165161 PMCID: PMC4296173 DOI: 10.1093/infdis/jiu458] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/07/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Live attenuated influenza vaccine (LAIV) and inactivated influenza vaccine (IIV) are available for children. Local and systemic immunity induced by LAIV followed a month later by LAIV and IIV followed by LAIV were investigated with virus recovery after LAIV doses as surrogates for protection against influenza on natural exposure. METHODS Fifteen children received IIV followed by LAIV, 13 an initial dose of LAIV, and 11 a second dose of LAIV. The studies were done during autumn 2009 and autumn 2010 with the same seasonal vaccine (A/California/07/09 [H1N1], A/Perth/16/09 [H3N2], B/Brisbane/60/08). RESULTS Twenty-eight of 39 possible influenza viral strains were recovered after the initial dose of LAIV. When LAIV followed IIV, 21 of 45 viral strains were identified. When compared to primary LAIV infection, the decreased frequency of shedding with the IIV-LAIV schedule was significant (P = .023). With LAIV-LAIV, the fewest viral strains were recovered (3/33)--numbers significantly lower (P < .001) than shedding after initial LAIV and after IIV-LAIV (P < .001). Serum hemagglutination inhibition antibody responses were more frequent after IIV than LAIV (P = .02). In contrast, more mucosal immunoglobulin A responses were seen with LAIV. CONCLUSIONS LAIV priming induces greater inhibition of virus recovery on LAIV challenge than IIV priming. The correlate(s) of protection are the subject of ongoing analysis. CLINICAL TRIALS REGISTRATION NCT01246999.
Collapse
Affiliation(s)
| | | | | | | | - Molly L. Housman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth
| | - Eric P. Brown
- Department of Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| | | | - John J. Treanor
- Department of Medicine, University of Rochester Medical Center, New York
| | - Catherine J. Luke
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
96
|
Chiu C, Openshaw PJ. Antiviral B cell and T cell immunity in the lungs. Nat Immunol 2015; 16:18-26. [PMID: 25521681 PMCID: PMC7097128 DOI: 10.1038/ni.3056] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/14/2014] [Indexed: 12/13/2022]
Abstract
Respiratory viruses are frequent causes of repeated common colds, bronchitis and pneumonia, which often occur unpredictably as epidemics and pandemics. Despite those decimating effects on health and decades of intensive research, treatments remain largely supportive. The only commonly available vaccines are against influenza virus, and even these need improvement. The lung shares some features with other mucosal sites, but preservation of its especially delicate anatomical structures necessitates a fine balance of pro- and anti-inflammatory responses; well-timed, appropriately placed and tightly regulated T cell and B cell responses are essential for protection from infection and limitation of symptoms, whereas poorly regulated inflammation contributes to tissue damage and disease. Recent advances in understanding adaptive immunity should facilitate vaccine development and reduce the global effect of respiratory viruses.
Collapse
Affiliation(s)
- Christopher Chiu
- Centre for Respiratory Infection, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter J Openshaw
- Centre for Respiratory Infection, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
97
|
|
98
|
Isakova-Sivak I, Stukova M, Erofeeva M, Naykhin A, Donina S, Petukhova G, Kuznetsova V, Kiseleva I, Smolonogina T, Dubrovina I, Pisareva M, Nikiforova A, Power M, Flores J, Rudenko L. H2N2 live attenuated influenza vaccine is safe and immunogenic for healthy adult volunteers. Hum Vaccin Immunother 2015; 11:970-82. [PMID: 25831405 PMCID: PMC4514355 DOI: 10.1080/21645515.2015.1010859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/23/2014] [Accepted: 01/05/2015] [Indexed: 10/23/2022] Open
Abstract
H2N2 influenza viruses have not circulated in the human population since 1968, but they are still being regularly detected in the animal reservoir, suggesting their high pandemic potential. To prepare for a possible H2N2 pandemic, a number of H2N2 vaccine candidates have been generated and tested in preclinical and clinical studies. Here we describe the results of a randomized, double-blind placebo-controlled phase 1 clinical trial of an H2N2 live attenuated influenza vaccine (LAIV) candidate prepared from a human influenza virus isolated in 1966. The vaccine candidate was safe and well-tolerated by healthy adults, and did not cause serious adverse events or an increased rate of moderate or severe reactogenicities. The H2N2 vaccine virus was infectious for Humans. It was shed by 78.6% and 74.1% volunteers after the first and second dose, respectively, most probably due to the human origin of the virus. Importantly, no vaccine virus transmission to unvaccinated subjects was detected during the study. We employed multiple immunological tests to ensure the adequate assessment of the H2N2 pandemic LAIV candidate and demonstrated that the majority (92.6%) of the vaccinated subjects responded to the H2N2 LAIV in one or more immunological tests, including 85.2% of subjects with antibody responses and 55.6% volunteers with cell-mediated immune responses. In addition, we observed strong correlation between the H2N2 LAIV virus replication in the upper respiratory tract and the development of antibody responses.
Collapse
Affiliation(s)
| | - Marina Stukova
- Research Institute of Influenza; Saint Petersburg, Russia
| | | | - Anatoly Naykhin
- Institute of Experimental Medicine RAMS; Saint Petersburg, Russia
| | - Svetlana Donina
- Institute of Experimental Medicine RAMS; Saint Petersburg, Russia
| | - Galina Petukhova
- Institute of Experimental Medicine RAMS; Saint Petersburg, Russia
| | | | - Irina Kiseleva
- Institute of Experimental Medicine RAMS; Saint Petersburg, Russia
| | | | - Irina Dubrovina
- Institute of Experimental Medicine RAMS; Saint Petersburg, Russia
| | - Maria Pisareva
- Research Institute of Influenza; Saint Petersburg, Russia
| | | | | | | | - Larisa Rudenko
- Institute of Experimental Medicine RAMS; Saint Petersburg, Russia
| |
Collapse
|
99
|
Mohn KGI, Bredholt G, Brokstad KA, Pathirana RD, Aarstad HJ, Tøndel C, Cox RJ. Longevity of B-cell and T-cell responses after live attenuated influenza vaccination in children. J Infect Dis 2014; 211:1541-9. [PMID: 25425696 PMCID: PMC4407761 DOI: 10.1093/infdis/jiu654] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 11/11/2014] [Indexed: 12/31/2022] Open
Abstract
Background. The live attenuated influenza vaccine (LAIV) is the preferred vaccine for children, but the mechanisms behind protective immune responses are unclear, and the duration of immunity remains to be elucidated. This study reports on the longevity of B-cell and T-cell responses elicited by the LAIV. Methods. Thirty-eight children (3–17 years old) were administered seasonal LAIV. Blood samples were collected before vaccination with sequential sampling up to 1 year after vaccination. Humoral responses were evaluated by a hemagglutination inhibition assay, and memory B-cell responses were evaluated by an enzyme-linked immunosorbent spot assay (ELISpot). T-cell responses were evaluated by interferon γ (IFN-γ) ELISpot analysis, and intracellular cytokine staining of CD4+ T cells for detection of IFN-γ, interleukin 2, and tumor necrosis factor α was performed using flow cytometry. Results. LAIV induced significant increases in B-cell and T-cell responses, which were sustained at least 1 year after vaccination. Strain variations were observed, in which the B strain elicited stronger responses. IFN-γ–expressing T cell counts increased significantly, and remained higher than prevaccination levels 1 year later. Expression of T-helper type 1 intracellular cytokines (interleukin 2, IFN-γ, and tumor necrosis factor α) increased after 1 dose and were boosted after the second dose. Hemagglutination inhibition titers were sustained for 1 year. Vaccine-induced memory B cell counts were significantly increased, and the response persisted for one year. Conclusions. LAIV elicited B-cell and T-cell responses that persisted for at least 1 year in children. This is a novel finding that will aid future vaccine policy.
Collapse
Affiliation(s)
| | - Geir Bredholt
- Influenza Center K. G. Jebsen Center for Influenza Vaccines
| | - Karl A Brokstad
- Broegelman Research Laboratory, Department of Clinical Science
| | | | - Hans J Aarstad
- Department of Clinical Medicine, University of Bergen Department of Otolaryngology/Head and Neck Surgery
| | - Camilla Tøndel
- Department of Clinical Medicine, University of Bergen Department of Pediatrics
| | - Rebecca J Cox
- Influenza Center K. G. Jebsen Center for Influenza Vaccines Department of Research and Development, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
100
|
Hemagglutination inhibiting antibodies and protection against seasonal and pandemic influenza infection. J Infect 2014; 70:187-96. [PMID: 25224643 PMCID: PMC4309889 DOI: 10.1016/j.jinf.2014.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 01/24/2023]
Abstract
Objectives Hemagglutination inhibiting (HI) antibodies correlate with influenza vaccine protection but their association with protection induced by natural infection has received less attention and was studied here. Methods 940 people from 270 unvaccinated households participated in active ILI surveillance spanning 3 influenza seasons. At least 494 provided paired blood samples spanning each season. Influenza infection was confirmed by RT-PCR on nose/throat swabs or serum HI assay conversion. Results Pre-season homologous HI titer was associated with a significantly reduced risk of infection for H3N2 (OR 0.61, 95%CI 0.44–0.84) and B (0.65, 95%CI 0.54–0.80) strains, but not H1N1 strains, whether re-circulated (OR 0.90, 95%CI 0.71–1.15), new seasonal (OR 0.86, 95%CI 0.54–1.36) or pandemic H1N1-2009 (OR 0.77, 95%CI 0.40–1.49). The risk of seasonal and pandemic H1N1 decreased with increasing age (both p < 0.0001), and the risk of pandemic H1N1 decreased with prior seasonal H1N1 (OR 0.23, 95%CI 0.08–0.62) without inducing measurable A/California/04/2009-like titers. Conclusions While H1N1 immunity was apparent with increasing age and prior infection, the effect of pre-season HI titer was at best small, and weak for H1N1 compared to H3N2 and B. Antibodies targeting non-HI epitopes may have been more important mediators of infection-neutralizing immunity for H1N1 compared to other subtypes in this setting. The determinants of influenza immunity were examined in an unvaccinated cohort. The risk of H3N2 and B infection decreased with increasing pre-season HI titer. Pre-season HI titer had less effect on H1N1 infection. H1N1 immunity increased with age and seasonal H1N1 induced pandemic H1N1 immunity. The contribution of non-HI antibodies to immunity may be relatively high for H1N1.
Collapse
|