51
|
Del Río Castillo AE, De León-Rodriguez A, Terrones M, Barba de la Rosa AP. Multi-walled carbon nanotubes enhance the genetic transformation of Bifidobacterium longum. CARBON 2021; 184:902-909. [DOI: 10.1016/j.carbon.2021.08.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
52
|
Probiotic and Antioxidant Properties of Lactic Acid Bacteria Isolated from Indigenous Fermented Tea Leaves (Miang) of North Thailand and Promising Application in Synbiotic Formulation. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030195] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Miang, a traditional fermented tea from Northern Thailand, potentially hosts beneficial probiotic bacteria. A total of 133 isolates of lactic acid bacteria (LAB) isolated from Miang were evaluated for probiotic potential. Among them, 5 strains showed high tolerance to bile and acidic conditions and were selected for further evaluation. All selected strains showed inhibitory activity against human pathogens, including Bacillus cereus, Staphylococcus aureus, and Salmonella ser. Typhimurium. Nucleotide sequences analysis of the 16S rRNA gene revealed that 3 isolates were identified as Lactobacillus pentosus; the remaining were L. plantarum and Pediococcus pentosaceus, respectively. All 5 strains showed a high survival rate of more than 90% when exposed to simulated gastrointestinal conditions and were also susceptible to antibiotics such as erythromycin, tetracycline, and gentamycin, and resistant to vancomycin, streptomycin, and polymycin. In addition, the selected isolates exhibited different degrees of cell surface hydrophobicity (58.3–92.9%) and auto-aggregation (38.9–46.0%). The antioxidant activity reflected in DPPH scavenging activities of viable cells and their cell-free culture supernatants (CFCS) were also found in selected LAB isolates. Moreover, selected LAB isolates showed ability to grow on commercial prebiotics (GOS, FOS or XOS). The preliminary study of spray-drying using cyclodextrin as thermoprotectant suggested that all strains can be designed as a powdered formulation. L. pentosus A14-6 was the best strain, with high tolerance against simulated gastrointestinal conditions, high cell surface hydrophobicity, effective response to tested commercial oligosaccharides, especially XOS, and the highest cell antioxidant properties. L. pentosus A14-6 was therefore targeted for further applications in food and synbiotic applications.
Collapse
|
53
|
Schlagenhauf U, Jockel-Schneider Y. Probiotics in the Management of Gingivitis and Periodontitis. A Review. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.708666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the management of intestinal health problems, the targeted use of probiotic microorganisms is a common therapeutic measure with a long-standing tradition. In clinical dentistry however, probiotics-based therapy is still a rather new and developing field, whose usefulness for the control of gingivitis and periodontitis has been questioned by recent meta-analyses and systematic reviews. The purpose of the subsequent descriptive review is to provide an introduction to the concept of probiotic microorganisms and their multifaceted health-promoting interactions with the human host and microbial competitors, followed by a detailed comparison of the results of available controlled clinical trials assessing the use of probiotics in the control of gingival and periodontal inflammations. It aims at contributing to a deeper understanding of the unique capabilities of probiotics to resolve chronic plaque-induced inflammation even in the absence of mechanical plaque control and will discuss how possible misconceptions about the rationale for using probiotics may have led to the present controversies about their usefulness as a therapeutic option.
Collapse
|
54
|
Agraib LM, Yamani MI, Rayyan YM, Abu-Sneineh AT, Tamimi TA, Tayyem RF. The probiotic supplementation role in improving the immune system among people with ulcerative colitis: a narrative review. Drug Metab Pers Ther 2021; 37:7-19. [PMID: 35385892 DOI: 10.1515/dmpt-2021-0150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/23/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES The purpose of this paper is to summarize the current evidence on probiotics' uses as an adjuvant for ulcerative colitis (UC) and provide an understanding of the effect of probiotics supplement on the immune system and inflammatory responses among UC patients and subsequent therapeutic benefits. CONTENT A narrative review of all the relevant published papers known to the author was conducted. SUMMARY UC is a chronic inflammatory bowel disease (IBD) that results in inflammation and ulceration of the colon and rectum. The primary symptoms of active disease are diarrhea, abdominal pain, and rectal bleeding. About 70% of the human immune system (mucosal-associated lymphoid tissue) originates in the intestine. Probiotics are live microorganisms that help in stabilizing the gut microbiota (nonimmunologic gut defense), restores normal flora, and enhance the humoral immune system. Probiotics especially Bifidobacterium, Saccharomyces boulardii, and lactic acid-producing bacteria have been used as an adjunct therapy for treating UC to ameliorate disease-related symptoms and reduce relapse rate. Probiotics, in general, modulate the immune system through their ability to enhance the mucosal barrier function, or through their interaction with the local immune system to enhance regulatory T cell responses, decrease the pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin 1 beta and increase anti-inflammatory factor interleukin 10. OUTLOOK More studies are needed to explore the properties of the various probiotic bacterial strains, their different uses, as well as the dosage of probiotics and duration for treating different disorders. Further clinical investigations on mechanisms of action and how probiotics modulate the immune system may lead to further advances in managing IBD.
Collapse
Affiliation(s)
- Lana M Agraib
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohammed I Yamani
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Yaser Mohammed Rayyan
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Awni Taleb Abu-Sneineh
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Tarek A Tamimi
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Reema Fayez Tayyem
- Department of Human Nutrition, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
55
|
Agraib LM, Yamani MI, Rayyan YM, Abu-Sneineh AT, Tamimi TA, Tayyem RF. The probiotic supplementation role in improving the immune system among people with ulcerative colitis: a narrative review. Drug Metab Pers Ther 2021; 0:dmdi-2021-0150. [PMID: 34428363 DOI: 10.1515/dmdi-2021-0150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The purpose of this paper is to summarize the current evidence on probiotics' uses as an adjuvant for ulcerative colitis (UC) and provide an understanding of the effect of probiotics supplement on the immune system and inflammatory responses among UC patients and subsequent therapeutic benefits. CONTENT A narrative review of all the relevant published papers known to the author was conducted. SUMMARY UC is a chronic inflammatory bowel disease (IBD) that results in inflammation and ulceration of the colon and rectum. The primary symptoms of active disease are diarrhea, abdominal pain, and rectal bleeding. About 70% of the human immune system (mucosal-associated lymphoid tissue) originates in the intestine. Probiotics are live microorganisms that help in stabilizing the gut microbiota (nonimmunologic gut defense), restores normal flora, and enhance the humoral immune system. Probiotics especially Bifidobacterium, Saccharomyces boulardii, and lactic acid-producing bacteria have been used as an adjunct therapy for treating UC to ameliorate disease-related symptoms and reduce relapse rate. Probiotics, in general, modulate the immune system through their ability to enhance the mucosal barrier function, or through their interaction with the local immune system to enhance regulatory T cell responses, decrease the pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin 1 beta and increase anti-inflammatory factor interleukin 10. OUTLOOK More studies are needed to explore the properties of the various probiotic bacterial strains, their different uses, as well as the dosage of probiotics and duration for treating different disorders. Further clinical investigations on mechanisms of action and how probiotics modulate the immune system may lead to further advances in managing IBD.
Collapse
Affiliation(s)
- Lana M Agraib
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohammed I Yamani
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Yaser Mohammed Rayyan
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Awni Taleb Abu-Sneineh
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Tarek A Tamimi
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Reema Fayez Tayyem
- Department of Human Nutrition, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
56
|
Pell LG, Horne RG, Huntley S, Rahman H, Kar S, Islam MS, Evans KC, Saha SK, Campigotto A, Morris SK, Roth DE, Sherman PM. Antimicrobial susceptibilities and comparative whole genome analysis of two isolates of the probiotic bacterium Lactiplantibacillus plantarum, strain ATCC 202195. Sci Rep 2021; 11:15893. [PMID: 34354117 PMCID: PMC8342526 DOI: 10.1038/s41598-021-94997-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
A synbiotic containing Lactiplantibacillus plantarum [American Type Culture Collection (ATCC) strain identifier 202195] and fructooligosaccharide was reported to reduce the risk of sepsis in young infants in rural India. Here, the whole genome of two isolates of L. plantarum ATCC 202195, which were deposited to the ATCC approximately 20 years apart, were sequenced and analyzed to verify their taxonomic and strain-level identities, identify potential antimicrobial resistant genes and virulence factors, and identify genetic characteristics that may explain the observed clinical effects of L. plantarum ATCC 202195. Minimum inhibitory concentrations for selected antimicrobial agents were determined using broth dilution and gradient strip diffusion techniques. The two L. plantarum ATCC 202195 isolates were genetically identical with only three high-quality single nucleotides polymorphisms identified, and with an average nucleotide identity of 99.99%. In contrast to previously published reports, this study determined that each isolate contained two putative plasmids. No concerning acquired or transferable antimicrobial resistance genes or virulence factors were identified. Both isolates were sensitive to several clinically important antibiotics including penicillin, ampicillin and gentamicin, but resistant to vancomycin. Genes involved in stress response, cellular adhesion, carbohydrate metabolism and vitamin biosynthesis are consistent with features of probiotic organisms.
Collapse
Affiliation(s)
- Lisa G Pell
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Rachael G Horne
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Stuart Huntley
- International Flavors & Fragrances Inc., Madison, WI, USA
| | | | - Sanchita Kar
- Child Health Research Foundation, Dhaka, Bangladesh
| | | | - Kara C Evans
- International Flavors & Fragrances Inc., Madison, WI, USA
| | - Samir K Saha
- Child Health Research Foundation, Dhaka, Bangladesh
| | - Aaron Campigotto
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Microbiology, Hospital for Sick Children, Toronto, ON, Canada
| | - Shaun K Morris
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Division of Infectious Diseases, Hospital for Sick Children, Toronto, ON, Canada
| | - Daniel E Roth
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
- Paediatric Medicine and Child Health Evaluative Sciences, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
| | - Philip M Sherman
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Gastroenterology, Hepatology and Nutrition, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
57
|
Choi Y, Park E, Kim S, Ha J, Oh H, Kim Y, Lee Y, Seo Y, Kang J, Lee S, Lee H, Yoon Y, Choi KH. Alleviation of periodontal disease using Lactobacillus curvatus SMFM2016-NK. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
58
|
Bourdichon F, Arias E, Babuchowski A, Bückle A, Bello FD, Dubois A, Fontana A, Fritz D, Kemperman R, Laulund S, McAuliffe O, Miks MH, Papademas P, Patrone V, Sharma DK, Sliwinski E, Stanton C, Von Ah U, Yao S, Morelli L. The forgotten role of food cultures. FEMS Microbiol Lett 2021; 368:fnab085. [PMID: 34223876 PMCID: PMC8397475 DOI: 10.1093/femsle/fnab085] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Fermentation is one of if not the oldest food processing technique, yet it is still an emerging field when it comes to its numerous mechanisms of action and potential applications. The effect of microbial activity on the taste, bioavailability and preservation of the nutrients and the different food matrices has been deciphered by the insights of molecular microbiology. Among those roles of fermentation in the food chain, biopreservation remains the one most debated. Presumably because it has been underestimated for quite a while, and only considered - based on a food safety and technological approach - from the toxicological and chemical perspective. Biopreservation is not considered as a traditional use, where it has been by design - but forgotten - as the initial goal of fermentation. The 'modern' use of biopreservation is also slightly different from the traditional use, due mainly to changes in cooling of food and other ways of preservation, Extending shelf life is considered to be one of the properties of food additives, classifying - from our perspective - biopreservation wrongly and forgetting the role of fermentation and food cultures. The present review will summarize the current approaches of fermentation as a way to preserve and protect the food, considering the different way in which food cultures and this application could help tackle food waste as an additional control measure to ensure the safety of the food.
Collapse
Affiliation(s)
- François Bourdichon
- Food Safety, Microbiology, Hygiene, 16 Rue Gaston de Caillavet, 75015 Paris, France
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| | - Emmanuelle Arias
- AGROSCOPE, Food Microbial Systems, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | | | - Anne Bückle
- Milchprüfring Baden-Württemberg e.V., Marie-Curie-Straße 19, 73230 Kirchheim, u.T., Germany
| | | | - Aurélie Dubois
- International Dairy Federationiry Federation, 70 Boulevard Auguste Reyers, 1030 Brussels, Belgium
| | - Alessandra Fontana
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| | - Duresa Fritz
- International Flavors and Fragrances, 20 rue Brunel, Paris 75017, France
| | - Rober Kemperman
- Lesaffre International, 152 rue du Docteur Yersin, 59120 Loos, France
| | - Svend Laulund
- Chr. Hansen A/S, Agern Allé 24, 2970 Hoersholm, Denmark
| | | | - Marta Hanna Miks
- Glycom A/S, Kogle Allé 4, 2970 Hørsholm, Denmark
- Faculty of Food Science, Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10–726 Olsztyn, Poland
| | - Photis Papademas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Archiepiskopou Kyprianou, PO BOX 50329, Limassol, Cyprus
| | - Vania Patrone
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| | | | - Edward Sliwinski
- The European Federation of Food Science & Technology, Nieuwe Kanaal 9a, 6709 PA, Wageningen, The Netherlands
| | | | - Ueli Von Ah
- AGROSCOPE, Food Microbial Systems, Schwarzenburgstrasse 161, CH-3003 Bern, Switzerland
| | - Su Yao
- China National Research Institute of Food & Fermentation Industries, China Center of Industrial Culture Collection, Building 6, No.24, Jiuxianqiaozhong Road, Chaoyang District, Beijing 100015, PR China
| | - Lorenzo Morelli
- Facoltà di Scienze agrarie, alimentarie ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, Piacenza-Cremona, Italy
| |
Collapse
|
59
|
Li L, Fang Z, Lee YK, Zhao J, Zhang H, Lu W, Chen W. Prophylactic effects of oral administration of Lactobacillus casei on house dust mite-induced asthma in mice. Food Funct 2021; 11:9272-9284. [PMID: 33047743 DOI: 10.1039/d0fo01363c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study investigated the prophylactic effects of five Lactobacillus casei strains on house dust mite (HDM)-induced asthma in mice. BALB/c mice were orally administered with L. casei strains for one week before HDM treatment. Ketotifen and Lactobacillus rhamnosus GG were used as positive controls. All L. casei strains decreased the number of granulocytes and the levels of Th2 and Th17 inflammatory cytokines in the lungs, L. casei3 significantly decreased the airway inflammation score. Further studies showed that L. casei3, L. casei4, and L. casei5 decreased the chemokine levels, L. casei2, L. casei4, and L. casei5 promoted the secretion of secretory immunoglobulin A (sIgA), L. casei2 upregulated the interleukin (IL)-10 levels, and L. casei1 had no effect on these immune indices. L. casei1 and L. casei4 decreased the serum levels of total IgE and HDM-specific IgG1, respectively. L. casei3 and L. casei5 decreased both HDM-specific IgG1 and total IgE levels. L. casei2 did not affect the levels of these immunoglobulins. The gut microbiota analysis revealed that all five L. casei strains enhanced the richness of the gut microbiota mainly by increasing the abundance of Firmicutes, while there were differences at the genus level.Thus, the prophylactic effects of L. casei on HDM-induced mixed chronic airway inflammatory asthma exerted as they differentially affected the immune responses and gut microbiota composition. L. casei3, which exhibited the highest prophylactic effect, increased the acetate and propionate contents in a strain-dependent manner.
Collapse
Affiliation(s)
- Lingzhi Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China. and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China and Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
60
|
Wu C, Lin X, Tong L, Dai C, Lv H, Zhou X, Zhang J. In vitro evaluation of lactic acid bacteria with probiotic activity isolated from local pickled leaf mustard from Wuwei in Anhui as substitutes for chemical synthetic additives. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The extensive abuse of chemical synthetic additives has raised increased attention to food safety. As substitutes, probiotics play an important role in human health as they balance the intestinal microbes in host. This study was aimed to isolate and evaluate the potential probiotic activities of lactic acid bacteria (LAB) from a local pickled leaf mustard (PLM) from Wuwei city in Anhui province through in vitro experiments. A total of 17 LAB strains were obtained as probiotics. All the isolates were sensitive to chloramphenicol, tetracycline, erythromycin, and doxycycline but exhibited resistance to antibiotics (e.g., streptomycin, kanamycin, gentamicin, and vancomycin). Out of the 17 strains, 9 were sensitive to most of the antibiotics and had no cytotoxic activity on human colorectal adenocarcinoma cell line (HT-29) cells. The isolated AWP4 exhibited antibacterial activity against four indicator pathogen strains (ATCC8099: Escherichia coli, ATCC6538: Staphylococcus aureus, ATCC9120: Salmonella enteric, and BNCC192105: Shigella sonnei). Based on the phylogenetic analysis of the 16S rRNA gene, AWP4 belonged to Lactiplantibacillus plantarum. This study indicated that the Wuwei local PLM could be a potential resource to isolate beneficial LAB as probiotics. The data provide theoretical guidance for further animal experiments to estimate the probiotic effect and safety of Lpb. plantarum AWP4 in vivo.
Collapse
Affiliation(s)
- Changjun Wu
- Anhui Academy of Medical Sciences , No. 15, Yonghong Road, Luyang District , Hefei City , 230061 Anhui Province , China
| | - Xiaopei Lin
- Department of General Pediatrics, Women and Child Health Care Hospital affiliated to Anhui Medical University (Anhui Women and Child Health Care Hospital) , Hefei 230001 , Anhui Province , China
| | - Lin Tong
- Anhui Academy of Medical Sciences , No. 15, Yonghong Road, Luyang District , Hefei City , 230061 Anhui Province , China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences , No. 15, Yonghong Road, Luyang District , Hefei City , 230061 Anhui Province , China
| | - Han Lv
- Anhui Academy of Medical Sciences , No. 15, Yonghong Road, Luyang District , Hefei City , 230061 Anhui Province , China
| | - Xiuhong Zhou
- Anhui Academy of Medical Sciences , No. 15, Yonghong Road, Luyang District , Hefei City , 230061 Anhui Province , China
| | - Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences , Hefei 230031 , Anhui Province , China
| |
Collapse
|
61
|
Xu J, Wang R, Zhang H, Wu J, Zhu L, Zhan X. In vitro assessment of prebiotic properties of oligosaccharides derived from four microbial polysaccharides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
62
|
Lactobacillus Endocarditis Complicated by Presumed Vertebral Osteomyelitis and Embolic Stroke. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2021. [DOI: 10.1097/ipc.0000000000001040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
63
|
Kucharzik T, Ellul P, Greuter T, Rahier JF, Verstockt B, Abreu C, Albuquerque A, Allocca M, Esteve M, Farraye FA, Gordon H, Karmiris K, Kopylov U, Kirchgesner J, MacMahon E, Magro F, Maaser C, de Ridder L, Taxonera C, Toruner M, Tremblay L, Scharl M, Viget N, Zabana Y, Vavricka S. ECCO Guidelines on the Prevention, Diagnosis, and Management of Infections in Inflammatory Bowel Disease. J Crohns Colitis 2021; 15:879-913. [PMID: 33730753 DOI: 10.1093/ecco-jcc/jjab052] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- T Kucharzik
- Department of Gastroenterology, Klinikum Lüneburg, University of Hamburg, Lüneburg, Germany
| | - P Ellul
- Department of Medicine, Division of Gastroenterology, Mater Dei Hospital, Msida, Malta
| | - T Greuter
- University Hospital Zürich, Department of Gastroenterology and Hepatology, Zürich, Switzerland, and Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois CHUV, University Hospital Lausanne, Lausanne, Switzerland
| | - J F Rahier
- Department of Gastroenterology and Hepatology, CHU UCL Namur, Yvoir, Belgium
| | - B Verstockt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium, and Department of Chronic Diseases, Metabolism and Ageing, TARGID-IBD, KU Leuven, Leuven, Belgium
| | - C Abreu
- Infectious Diseases Service, Centro Hospitalar Universitário São João, Porto, Portugal
- Instituto de Inovação e Investigação em Saúde [I3s], Faculty of Medicine, Department of Medicine, University of Porto, Portugal
| | - A Albuquerque
- Gastroenterology Department, St James University Hospital, Leeds, UK
| | - M Allocca
- Humanitas Clinical and Research Center - IRCCS -, Rozzano [Mi], Italy
- Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - M Esteve
- Hospital Universitari Mútua Terrassa, Digestive Diseases Department, Terrassa, Catalonia, and Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas CIBERehd, Madrid, Spain
| | - F A Farraye
- Inflammatory Bowel Disease Center, Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - H Gordon
- Department of Gastroenterology, Barts Health NHS Trust, Royal London Hospital, London, UK
| | - K Karmiris
- Department of Gastroenterology, Venizeleio General Hospital, Heraklion, Greece
| | - U Kopylov
- Department of Gastroenterology, Sheba Medical Center, Ramat Gan, Israel, and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - J Kirchgesner
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Saint-Antoine, Department of Gastroenterology, Paris, France
| | - E MacMahon
- Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - F Magro
- Gastroenterology Department, Centro Hospitalar São João, Porto, Portugal
- Institute of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Portugal
| | - C Maaser
- Outpatient Department of Gastroenterology, Department of Geriatrics, Klinikum Lüneburg, University of Hamburg, Lüneburg, Germany
| | - L de Ridder
- Department of Paediatric Gastroenterology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - C Taxonera
- IBD Unit, Department of Gastroenterology, Hospital Clínico San Carlos and Instituto de Investigación del Hospital Clínico San Carlos [IdISSC], Madrid, Spain
| | - M Toruner
- Ankara University School of Medicine, Department of Gastroenterology, Ankara, Turkey
| | - L Tremblay
- Centre Hospitalier de l'Université de Montréal [CHUM] Pharmacy Department and Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
| | - M Scharl
- University Hospital Zürich, Department of Gastroenterology and Hepatology, Zürich, Switzerland
| | - N Viget
- Department of Infectious Diseases, Tourcoing Hospital, Tourcoing, France
| | - Y Zabana
- Hospital Universitari Mútua Terrassa, Digestive Diseases Department, Terrassa, Catalonia, and Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas CIBERehd, Madrid, Spain
| | - S Vavricka
- University Hospital Zürich, Department of Gastroenterology and Hepatology, Zürich, Switzerland
| |
Collapse
|
64
|
Dikeocha IJ, Al-Kabsi AM, Eid EEM, Hussin S, Alshawsh MA. Probiotics supplementation in patients with colorectal cancer: a systematic review of randomized controlled trials. Nutr Rev 2021; 80:22-49. [PMID: 34027974 DOI: 10.1093/nutrit/nuab006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CONTEXT Colorectal cancer (CRC) is a leading cause of cancer deaths. Recently, much attention has been given to the microbiome and probiotics as preventive and therapeutic approaches to CRC and the mechanisms involved. OBJECTIVES To interpret the findings of randomized controlled trials (RCTs) of probiotics relative to patients with CRC and to outline challenges of and future directions for using probiotics in the management and prevention of CRC. DATA SOURCES Web of Science, PubMed, ProQuest, Wile, y and Scopus databases were searched systematically from January 17-20, 2020, in accordance with PRISMA guidelines. STUDY SELECTION Primacy RCTs that reported the effects of administration to patients with CRC of a probiotic vs a placebo were eligible to be included. DATA EXTRACTION The studies were screened and selected independently by 2 authors on the basis of prespecified inclusion and exclusion criteria. The data extraction and risk-of-bias assessment were also performed independently by 2 authors. RESULTS A total of 23 RCTs were eligible for inclusion. Probiotics supplementation in patients with CRC improved their quality of life, enhanced gut microbiota diversity, reduced postoperative infection complications, and inhibited pro-inflammatory cytokine production. The use of certain probiotics in patients with CRC also reduced the side effects of chemotherapy, improved the outcomes of surgery, shortened hospital stays, and decreased the risk of death. Bifidobacteria and Lactobacillus were the common probiotics used across all studies. CONCLUSION Probiotics have beneficial effects in patients with CRC regardless of the stage of cancer. There is an opportunity for probiotics to be used in mainstream health care as a therapy in the fight against CRC, especially in early stages; however, larger clinical trialsof selected or a cocktail of probiotics are needed to confirm the efficacy, dosage, and interactions with chemotherapeutics agents. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020166865.
Collapse
Affiliation(s)
- Ifeoma Julieth Dikeocha
- I.J. Dikeocha, A.M. Al-Kabsi, and S. Hussin are with the Faculty of Medicine, University of Cyberjaya, Cyberjaya, Selangor, Malaysia. E.E.M. Eid is with the Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia. M.A. Alshawsh is with the Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Abdelkodose Mohammed Al-Kabsi
- I.J. Dikeocha, A.M. Al-Kabsi, and S. Hussin are with the Faculty of Medicine, University of Cyberjaya, Cyberjaya, Selangor, Malaysia. E.E.M. Eid is with the Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia. M.A. Alshawsh is with the Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Eltayeb E M Eid
- I.J. Dikeocha, A.M. Al-Kabsi, and S. Hussin are with the Faculty of Medicine, University of Cyberjaya, Cyberjaya, Selangor, Malaysia. E.E.M. Eid is with the Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia. M.A. Alshawsh is with the Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Salasawati Hussin
- I.J. Dikeocha, A.M. Al-Kabsi, and S. Hussin are with the Faculty of Medicine, University of Cyberjaya, Cyberjaya, Selangor, Malaysia. E.E.M. Eid is with the Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia. M.A. Alshawsh is with the Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammed Abdullah Alshawsh
- I.J. Dikeocha, A.M. Al-Kabsi, and S. Hussin are with the Faculty of Medicine, University of Cyberjaya, Cyberjaya, Selangor, Malaysia. E.E.M. Eid is with the Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia. M.A. Alshawsh is with the Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
65
|
Ayyash MM, Abdalla AK, AlKalbani NS, Baig MA, Turner MS, Liu SQ, Shah NP. Invited review: Characterization of new probiotics from dairy and nondairy products-Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. J Dairy Sci 2021; 104:8363-8379. [PMID: 33934857 DOI: 10.3168/jds.2021-20398] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The selection of potential probiotic strains that possess the physiological capacity of performing successfully in the gastrointestinal tract (GIT) is a critical challenge. Probiotic microorganisms must tolerate the deleterious effects of various stresses to survive passage and function in the human GIT. Adhesion to the intestinal mucosa is also an important aspect. Recently, numerous studies have been performed concerning the selection and evaluation of novel probiotic microorganisms, mainly probiotic bacteria isolated from dairy and nondairy products. Therefore, it would be crucial to critically review the assessment methods employed to select the potential probiotics. This article aims to review and discuss the recent approaches, methods used for the selection, and outcomes of the evaluation of novel probiotic strains with the main purpose of supporting future probiotic microbial assessment studies. The findings and approaches used for assessing acid tolerance, bile metabolism and tolerance, and adhesion capability are the focus of this review. In addition, probiotic bile deconjugation and bile salt hydrolysis are explored. The selection of a new probiotic strain has mainly been based on the in vitro tolerance of physiologically related stresses including low pH and bile, to ensure that the potential probiotic microorganism can survive the harsh conditions of the GIT. However, the varied experimental conditions used in these studies (different types of media, bile, pH, and incubation time) hamper the comparison of the results of these investigations. Therefore, standardization of experimental conditions for characterizing and selecting probiotics is warranted.
Collapse
Affiliation(s)
- Mutamed M Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates.
| | - Abdelmoneim K Abdalla
- Food Science Department, College of Agriculture, South Valley University, 83523 Qena, Egypt
| | - Nadia S AlKalbani
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mohd Affan Baig
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mark S Turner
- School of Agriculture and Food Sciences, The University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2 117542, Singapore
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| |
Collapse
|
66
|
Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers. Int J Biol Macromol 2021; 183:423-434. [PMID: 33932415 DOI: 10.1016/j.ijbiomac.2021.04.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022]
Abstract
In this study, Lactobacillus reuteri B2 was isolated from the feces of C57BL/6 mice and assessed on probiotic activity. L. reuteri B2 was identified by 16S rDNA sequencing, which the cell viability in acidic conditions at pH 2.0 was 64% after 2 h, and in the presents of 0.30% of the bile salts, after 6 h, was 37%. Antimicrobial assay with L. reuteri B2 showed maximum diameters against Klebsiela oxytoca J7 (12.5 ± 0.71 mm). We further hypothesized if L. reuteri B2 strain in the free form can survive all conditions in the gastrointestinal tract (GIT) then the utilization of the appropriate biomaterials would ameliorate its stability and viability in GIT. L. reuteri B2 was microencapsulated into sodium alginate-(Na-alg) and different content of Na-alg and sodium maleate (SM) beads. Characterization materials enveloped their thermal characteristics (TGA/DTA analysis) and structure using: scanning electron microscopy (SEM), FTIR, and particle size distribution. The high survival rate of L. reuteri B2 at low pH from 2.0 to 4.0 and in the presence of the bile salts, at concentrations up to 0.30%, was obtained. L. reuteri B2 showed strong antimicrobial activity and the best protection microencapsulated with Na-alg + SM in simulated gastric juices (SGJ).
Collapse
|
67
|
A New Approach to Harness Probiotics Against Common Bacterial Skin Pathogens: Towards Living Antimicrobials. Probiotics Antimicrob Proteins 2021; 13:1557-1571. [PMID: 33855669 PMCID: PMC8578138 DOI: 10.1007/s12602-021-09783-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/14/2022]
Abstract
In this study, the potential of certain lactic acid bacteria—classified as probiotics and known to be antimicrobially active against pathogens or food-poisoning microorganisms—was evaluated with respect to their activity against bacterial skin pathogens. The aim of the study was to develop a plaster/bandage for the application of inhibitory substances produced by these probiotics when applied to diseased skin. For this purpose, two Streptococcus salivarius strains and one Lactobacillus plantarum were tested for production of antimicrobials (bacteriocin-like substances) active against Gram-positive and Gram-negative pathogens using established methods. A newly designed membrane test ensured that the probiotics produce antimicrobials diffusible through membranes. Target organisms used were Cutibacterium acnes, Staphylococcus aureus, and Pseudomonas aeruginosa. Moreover, the L. plantarum 8P-A3 strain was tested against additional bacteria involved in skin disorders. The Lactobacillales used were active against all potential skin pathogens tested. These probiotics could be enclosed between polymer membranes—one tight, the other permeable for their products, preserved by vacuum drying, and reactivated after at least three months storage. Importantly, the reactivated pads containing the probiotics demonstrated antibacterial activity on agar plates against all pathogens tested. This suggests that the probiotic containing pads may be topically applied for the treatment of skin disorders without the need for a regular antibiotic treatment or as an adjunctive therapy.
Collapse
|
68
|
Sinha AP, Gupta SS, Poluru R, Raut AV, Arora NK, Pandey RM, Sahu AR, Bethou A, Sazawal S, Parida S, Bavdekar A, Saili A, Gaind R, Kapil A, Garg BS, Maliye C, Jain M, Mahajan KS, Dhingra P, Pradhan KC, Kawade AS, Nangia S, Mukherjee A, Rasaily R, Sharma RS. Evaluating the efficacy of a multistrain probiotic supplementation for prevention of neonatal sepsis in 0-2-month-old low birth weight infants in India-the "ProSPoNS" Study protocol for a phase III, multicentric, randomized, double-blind, placebo-controlled trial. Trials 2021; 22:242. [PMID: 33794969 PMCID: PMC8017823 DOI: 10.1186/s13063-021-05193-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
Background Progress has been made in the reduction of under-five mortality in India; however, neonatal mortality is reducing at a slower rate. Efforts are required to bring down neonatal mortality in order to attain the Sustainable Development Goal-3. Prevention of sepsis among the high-risk, vulnerable low birth weight neonates by a newer intervention with probiotic supplementation is promising. Methods A phase III, multicenter, randomized, double-blind, placebo-controlled study is being conducted at six sites in India. A total of 6144 healthy low birth weight (LBW) infants fulfilling the eligibility criteria would be enrolled within the first week of life, after obtaining written informed consent from the parents of the infant. Randomization in 1:1 ratio, stratified by site, sex, and birth weight, would be done through an interactive web response system (IWRS) using a standard web browser and email service. Vivomixx®, a probiotic containing a mix of 8 strains of bacteria, in a suspension form standardized to deliver 10 billion CFU/ml, or an organoleptically similar placebo would be fed to enrolled infants in a 1-ml/day dose for 30 days. The follow-up of enrolled infants for 60 days would take place as per a pre-specified schedule for recording morbidities and outcome assessments at the six participating sites. Screening for morbidities would be conducted by trained field workers in the community, and sick infants would be referred to designated clinics/hospitals. A physician would examine the referred infants presenting with complaints and clinical signs, and blood samples would be collected from sick infants for diagnosis of neonatal sepsis by performing sepsis screen and blood culture. Appropriate treatment would be provided as per hospital protocol. The study would be implemented as per the MRC guideline for the management of Global Health Trials in accordance with ICH-GCP and Indian Regulatory guidelines. A contract research organization would be engaged for comprehensive monitoring and quality assurance. The final analysis would be conducted in a blinded manner as per the statistical analysis plan (SAP) to estimate the primary outcomes of sepsis, possible serious bacterial infection (PSBI), and secondary outcomes. The codes will be broken after DMC permission. The protocol has been reviewed by the Research Ethics Committee of the Liverpool School of Tropical Medicine (REC-LSTM), from Research Ethics Committees of the six subject recruitment participating sites. Discussion This adequately powered and well-designed trial would conclusively answer the question whether probiotics can prevent neonatal sepsis in the high-risk group of low birth weight infants as indicated by a pilot study in 1340 LBW infants, evidence from systematic reviews of hospital-based studies, and a primary study on healthy newborns in Orissa. Results of the study would be generalizable to India and other low–middle-income countries. Trial registration Clinical Trial Registry of India (CTRI) CTRI/2019/05/019197. Registered on 16 May 2019
Collapse
Affiliation(s)
- Anju Pradhan Sinha
- Division of Reproductive Biology, Maternal & Child Health (RBM&CH), Indian Council of Medical Research (ICMR) Headquarters, V Ramalingaswami Bhawan, Ansari Nagar, New Delhi, Delhi, 110029, India.
| | - Subodh S Gupta
- Department of Community Medicine, Dr. Sushila Nayar School of Public Health, Mahatma Gandhi Institute of Medical Sciences (MGIMS), Sewagram, Wardha, Maharashtra, 442102, India
| | - Ramesh Poluru
- The International Clinical Epidemiology Network (INCLEN) Trust International, F-1/5, 2nd Floor, Okhla Industrial Area Phase - 1, New Delhi, Delhi, 110019, India
| | - Abhishek V Raut
- Department of Community Medicine, Dr. Sushila Nayar School of Public Health, Mahatma Gandhi Institute of Medical Sciences (MGIMS), Sewagram, Wardha, Maharashtra, 442102, India
| | - Narendra Kumar Arora
- The International Clinical Epidemiology Network (INCLEN) Trust International, F-1/5, 2nd Floor, Okhla Industrial Area Phase - 1, New Delhi, Delhi, 110019, India
| | - Ravindra Mohan Pandey
- Department of Biostatistics, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Aditya Ranjan Sahu
- Next Gen Pharma India Pvt. Ltd., 331, Sector 15A, Noida, Uttar Pradesh, 201301, India
| | - Adhisivam Bethou
- Department of Neonatology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Dhanvantri Nagar, Gorimedu, Puducherry, 605006, India
| | - Sunil Sazawal
- Centre for Public Health Kinetics (CPHK), 214 A, Vinoba Puri, Lajpat Nagar-II, New Delhi, Delhi, 110024, India
| | - Sailajanandan Parida
- Neonatal Health & Human Nutrition, Asian Institute of Public Health (AIPH), 8A, Unit-6, Ganga Nagar (Near Raj Bhawan), Bhubaneswar, Odisha, 751001, India
| | - Ashish Bavdekar
- Department of Pediatrics, KEM Hospital Research Centre, 489 Rasta Peth, Sardar Moodliar Road, Pune, Maharashtra, 411011, India
| | - Arvind Saili
- Department of Neonatology, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital (KSCH), Near Gole Market, Central Dist., New Delhi, Delhi, 110001, India
| | - Rajni Gaind
- Department of Microbiology, Vardhaman Mahavir Medical College and Safdarjung Hospital (VMMC & SJH), Ansari Nagar (W), New Delhi, Delhi, 110029, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Bishan S Garg
- Department of Community Medicine, Dr. Sushila Nayar School of Public Health, Mahatma Gandhi Institute of Medical Sciences (MGIMS), Sewagram, Wardha, Maharashtra, 442102, India
| | - Chetna Maliye
- Department of Community Medicine, Dr. Sushila Nayar School of Public Health, Mahatma Gandhi Institute of Medical Sciences (MGIMS), Sewagram, Wardha, Maharashtra, 442102, India
| | - Manish Jain
- Department of Community Medicine, Dr. Sushila Nayar School of Public Health, Mahatma Gandhi Institute of Medical Sciences (MGIMS), Sewagram, Wardha, Maharashtra, 442102, India
| | - Kamlesh S Mahajan
- Department of Community Medicine, Dr. Sushila Nayar School of Public Health, Mahatma Gandhi Institute of Medical Sciences (MGIMS), Sewagram, Wardha, Maharashtra, 442102, India
| | - Pratibha Dhingra
- Centre for Public Health Kinetics (CPHK), 214 A, Vinoba Puri, Lajpat Nagar-II, New Delhi, Delhi, 110024, India
| | - Keshab C Pradhan
- Neonatal Health & Human Nutrition, Asian Institute of Public Health (AIPH), 8A, Unit-6, Ganga Nagar (Near Raj Bhawan), Bhubaneswar, Odisha, 751001, India
| | - Anand S Kawade
- Department of Pediatrics, KEM Hospital Research Centre, 489 Rasta Peth, Sardar Moodliar Road, Pune, Maharashtra, 411011, India
| | - Sushma Nangia
- Department of Neonatology, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital (KSCH), Near Gole Market, Central Dist., New Delhi, Delhi, 110001, India
| | - Ajit Mukherjee
- Division of Reproductive Biology, Maternal & Child Health (RBM&CH), Indian Council of Medical Research (ICMR) Headquarters, V Ramalingaswami Bhawan, Ansari Nagar, New Delhi, Delhi, 110029, India
| | - Reeta Rasaily
- Division of Reproductive Biology, Maternal & Child Health (RBM&CH), Indian Council of Medical Research (ICMR) Headquarters, V Ramalingaswami Bhawan, Ansari Nagar, New Delhi, Delhi, 110029, India
| | - Radhey Shyam Sharma
- Division of Reproductive Biology, Maternal & Child Health (RBM&CH), Indian Council of Medical Research (ICMR) Headquarters, V Ramalingaswami Bhawan, Ansari Nagar, New Delhi, Delhi, 110029, India
| | | |
Collapse
|
69
|
Wang Y, Liang Q, Lu B, Shen H, Liu S, Shi Y, Leptihn S, Li H, Wei J, Liu C, Xiao H, Zheng X, Liu C, Chen H. Whole-genome analysis of probiotic product isolates reveals the presence of genes related to antimicrobial resistance, virulence factors, and toxic metabolites, posing potential health risks. BMC Genomics 2021; 22:210. [PMID: 33761872 PMCID: PMC7988973 DOI: 10.1186/s12864-021-07539-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background Safety issues of probiotic products have been reported frequently in recent years. Ten bacterial strains isolated from seven commercial probiotic products on market were evaluated for their safety, by whole-genome analysis. Results We found that the bacterial species of three probiotic products were incorrectly labeled. Furthermore, six probiotic product isolates (PPS) contained genes for the production of toxic metabolites, while another three strains contained virulence genes, which might pose a potential health risk. In addition, three of them have drug-resistance genes, among which two strains potentially displayed multidrug resistance. One isolate has in silico predicted transferable genes responsible for toxic metabolite production, and they could potentially transfer to human gut microflora or environmental bacteria. Isolates of Lactobacillus rhamnosus and Bifidobacterium animalis subsp. lactis are associated with low risk for human consumption. Based on a comparative genome analysis, we found that the isolated Enterococcus faecium TK-P5D clustered with a well-defined probiotic strain, while E. faecalis TK-P4B clustered with a pathogenic strain. Conclusions Our work clearly illustrates that whole-genome analysis is a useful method to evaluate the quality and safety of probiotic products. Regulatory quality control and stringent regulations on probiotic products are needed to ensure safe consumption and protect human health. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07539-9.
Collapse
Affiliation(s)
- Ying Wang
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, Zhejiang, China
| | - Qian Liang
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, Zhejiang, China
| | - Bian Lu
- Xiaoshan Center for Disease Control and Prevention, Hangzhou, 311201, Zhejiang, China
| | - Hong Shen
- NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Biological Inspection Department, Zhejiang Institute for Food and Drug Control, Hangzhou, 310052, Zhejiang, China
| | - Shuyan Liu
- Dalian Customs District, Dalian, 116001, Liaoning, China
| | - Ya Shi
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, Zhejiang, China
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Hong Li
- China National Accreditation Institute for Conformity Assessment, Beijing, 100062, China
| | - Jin Wei
- Nordkapp Medical Group, Hangzhou, 311121, Zhejiang, China
| | - Chengzhi Liu
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, Zhejiang, China
| | - Hailong Xiao
- Hangzhou Institute for Food and Drug Control, Hangzhou, 310018, Zhejiang, China
| | - Xiaoling Zheng
- NMPA Key laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Biological Inspection Department, Zhejiang Institute for Food and Drug Control, Hangzhou, 310052, Zhejiang, China
| | - Chao Liu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.
| | - Huan Chen
- Key laboratory of Microbial technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, 310012, Zhejiang, China.
| |
Collapse
|
70
|
Mann S, Park MS, Johnston TV, Ji GE, Hwang KT, Ku S. Oral probiotic activities and biosafety of Lactobacillus gasseri HHuMIN D. Microb Cell Fact 2021; 20:75. [PMID: 33757506 PMCID: PMC7986493 DOI: 10.1186/s12934-021-01563-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022] Open
Abstract
Background Lactobacillus spp. have been researched worldwide and are used in probiotics, but due to difficulties with laboratory cultivation of and experimentation on oral microorganisms, there are few reports of Lactobacillus spp. being isolated from the oral cavity and tested against oral pathogens. This research sought to isolate and determine the safety and inhibitory capabilities of a Lactobacillus culture taken from the human body. Results One organism was isolated, named “L. gasseri HHuMIN D”, and evaluated for safety. A 5% dilution of L. gasseri HHuMIN D culture supernatant exhibited 88.8% inhibition against halitosis-producing anaerobic microorganisms and the organism itself exhibited powerful inhibitory effects on the growth of 11 oral bacteria. Hydrogen peroxide production reached 802 μmol/L after 12 h and gradually diminished until 24 h, it efficiently aggregated with P. catoniae and S. sanguinis, and it completely suppressed S. mutans-manufactured artificial dental plaque. L. gasseri HHuMIN D’s KB cell adhesion capacity was 4.41 cells per cell, and the cell adhesion of F. nucleatum and S. mutans diminished strongly in protection and displacement assays. Conclusion These results suggest that L. gasseri HHuMIN D is a safe, bioactive, lactobacterial food ingredient, starter culture, and/or probiotic microorganism for human oral health.
Collapse
Affiliation(s)
- Soyon Mann
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826, Korea
| | | | - Tony V Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Geun Eog Ji
- Research Center, BIFIDO Co., Ltd, Hongcheon, 25117, Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826, Korea.
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
71
|
Mann S, Park MS, Johnston TV, Ji GE, Hwang KT, Ku S. Isolation, Characterization and Biosafety Evaluation of Lactobacillus Fermentum OK with Potential Oral Probiotic Properties. Probiotics Antimicrob Proteins 2021; 13:1363-1386. [PMID: 33715113 DOI: 10.1007/s12602-021-09761-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 11/26/2022]
Abstract
It has been reported that certain probiotic bacteria have inhibitory effects against oral pathogens. Lactobacillus spp. have been studied and used as probiotics globally, but due to difficulties with laboratory cultivation and experimentation with oral microorganisms, there are few studies on Lactobacillus spp. isolated from the oral cavity being used against oral pathogens. The purpose of this study was to evaluate the biosafety and inhibitory effects of Lactobacillus fermentum OK as a potential oral biotherapeutic probiotic against oral pathogens. L. fermentum OK was evaluated based on microbial and genetic characteristics. A 5% dilution of L. fermentum OK culture supernatant showed that 60% inhibition against the growth of S. mutans and L. fermentum OK displayed significant inhibitory effects against the growth of Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus gordonii, and Streptococcus sanguinis. However, proliferation of L. fermentum OK, when co-cultured with harmful oral bacteria, was retarded. L. fermentum OK was shown to produce 1130 μmol/L hydrogen peroxide, aggregate efficiently with Streptococcus sobrinus, S. gordonii, S. mutans, S. sanguinis, and P. gingivalis, and reduce S. mutans that produced artificial dental plaque by 97.9%. The in vitro cell adhesion capacity of L. fermentum OK to an oral epithelial cell line was 3.1 cells per cell and the cell adhesion of F. nucleatum and S. mutans decreased strongly in protection and displacement assays. L. fermentum OK was evaluated for safety using ammonia production, biogenic amine production, hemolytic property, mucin degradation testing, antibiotic susceptibility, and whole genome sequencing (WGS). Based on this study, L. fermentum OK appears to be a safe and bioactive lactobacterial food ingredient, starter culture, and/or probiotic microorganism for human oral health.
Collapse
Affiliation(s)
- Soyon Mann
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826, Korea
| | | | - Tony V Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Geun Eog Ji
- Research Center, BIFIDO Co., Ltd, Hongcheon, 25117, Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826, Korea.
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
72
|
Abstract
In recent years, the consumption of over-the-counter probiotics to promote health has grown rapidly worldwide and become an independent industry. In medicine, various studies have demonstrated that probiotics can help improve the immune system and intestinal health. They are usually safe, but in some rare cases, they may cause concerning adverse reactions. Although the use of probiotics has been widely popularized in the public, the results of many probiotic clinical trials are contradictory. Particularly in cancer patients, the feasibility of probiotic management providing benefits by targeting cancer and lessening anticancer side effects requires further investigation. This review summarizes the interactions between probiotics and the host as well as current knowledge on the pros and cons of utilizing probiotics in cancer patients.
Collapse
Affiliation(s)
- Ke Lu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanwu Dong
- Department of Pediatrics, Wuhan Fourth Hospital, Wuhan, China.,Department of Pediatrics, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
73
|
Díaz-Montes E, Castro-Muñoz R. Edible Films and Coatings as Food-Quality Preservers: An Overview. Foods 2021; 10:249. [PMID: 33530469 PMCID: PMC7912451 DOI: 10.3390/foods10020249] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Food preservation technologies are currently facing important challenges at extending the shelf-life of perishable food products (e.g., meat, fish, milk, eggs, and many raw fruits and vegetables) that help to meet the daily nutrient requirement demand. In addition, food preservation has gone beyond only preservation; the current techniques are focused on the fulfillment of two additional objectives, the suitability of the used processes and generation of environmentally friendly products with non-presence of any side effect on health. Moreover, they are also looking for additional nutritional properties. One of these preservation protocols deals with the use of edible films and coatings. Therefore, this review shows an overview of synthetic materials (e.g., glass, aluminum, plastic, and paperboard), as well as the regulations that limit their application in food packaging. Further, this review releases the current-state-of-the-art of the use of films and edible coatings as an alternative to conventional packaging, providing the main features that these biodegradable packaging should meet towards specific uses for the conservation and improvement of various food products. Herein, particular attention has been paid to the main used components (e.g., biopolymers, additives, bioactive, and probiotic components), manufacturing methods (for edible films or coatings) and their application to specific products. In addition, an outlook of the application of edible films and coatings as quality indicators of perishable products is shown.
Collapse
Affiliation(s)
- Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n, Barrio La Laguna Ticoman, Ciudad de México 07340, Mexico;
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
| |
Collapse
|
74
|
Antimicrobial Resistance of Lactobacillus johnsonii and Lactobacillus zeae in Raw Milk. Processes (Basel) 2020. [DOI: 10.3390/pr8121627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lactobacillus johnsonii and Lactobacillus zeae are among the lactobacilli with probiotic properties, which occur in sour milk products, cheeses, and to a lesser extent in raw milk. Recently, resistant strains have been detected in various species of lactobacilli. The aim of the study was to determine the incidence of resistant Lactobacillus johnsonii and Lactobacillus zeae strains in various types of raw milk. A total of 245 isolates were identified by matrix-assisted laser desorption/ionization mass spectrometry and polymerase chain reaction methods as Lactobacillus sp., of which 23 isolates of Lactobacillus johnsonii and 18 isolates of Lactobacillus zeae were confirmed. Determination of susceptibility to selected antibiotics was performed using the E-test and broth dilution method, where 7.3% of lactobacilli strains were evaluated as ampicillin-resistant, 14.7% of isolates as erythromycin-resistant, and 4.9% of isolates as clindamycin-resistant. The genus Lactobacillus johnsonii had the highest resistance to erythromycin (34.8%), similar to Lactobacillus zeae (33.3%). Of the 41 isolates, the presence of the gene was confirmed in five Lactobacillus johnsonii strains and in two strains of Lactobacillus zeae. The presence of resistant strains of Lactobacillus johnsonii and Lactobacillus zeae is a potential risk in terms of spreading antimicrobial resistance through the food chain.
Collapse
|
75
|
Chandra H, Singh C, Kumari P, Yadav S, Mishra AP, Laishevtcev A, Brisc C, Brisc MC, Munteanu MA, Bungau S. Promising Roles of Alternative Medicine and Plant-Based Nanotechnology as Remedies for Urinary Tract Infections. Molecules 2020; 25:E5593. [PMID: 33260701 PMCID: PMC7731396 DOI: 10.3390/molecules25235593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Urinary tract infections (UTIs) are considered to be the most common infections worldwide, having an incidence rate of 40-60% in women. Moreover, the prevalence of this disorder in adult women is 30 times more than in men. UTIs are usually found in many hospitals and clinical practice; as disorders, they are complicated and uncomplicated; in uncomplicated cases, there is no structural or functional abnormality in the urogenital tract. However, obstruction, retention of urine flow and use of catheters increase the complexity. There are several bacteria (e.g., E. coli, Klebsiella pneumoniae, Proteus vulgaris, etc.) successfully residing in the tract. The diagnosis must not only be accurate but rapid, so early detection is an important step in the control of UTIs caused by uropathogens. The treatment of UTIs includes appropriate antimicrobial therapy to control the infection and kill the causal microbes inside the body. A long-time usage of antibiotics has resulted in multidrug resistance causing an impediment in treatment. Thus, alternative, combinatorial medication approaches have given some hope. Available treatments considered Homeopathic, Ayurvedic, Unani, and other herbal-based drugs. There are new upcoming roles of nanoparticles in combating UTIs which needs further validation. The role of medicinal plant-based nanotechnology approaches has shown promising results. Therefore, there must be active research in phyto-based therapies of UTIs, such as Ayurvedic Biology.
Collapse
Affiliation(s)
- Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, India;
| | - Chanchal Singh
- Department of Microbiology, Faculty of Science and Technology, Mewar University, Chittorgarh 312901, India;
| | - Pragati Kumari
- S-02, Scientist Hostel, Chauras Campus, Srinagar Garhwal, Uttarakhand 246174, India;
| | - Saurabh Yadav
- Department of Biotechnology, H.N.B. Garhwal University (A Central University), Srinagar (Garhwal) 246174, Uttarakhand, India
| | - Abhay P. Mishra
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh 247341, India
| | - Aleksey Laishevtcev
- Federal Research Center, Russian Scientific Research Institute of Experimental Veterinary Medicine Named after K. I. Skryabin and Y. R. Kovalenko of the Russian Academy of Sciences, 109428 Moscow, Russia;
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State University, Named after I. S. Turgenev, 302026 Orel, Russia
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| |
Collapse
|
76
|
Darb Emamie A, Rajabpour M, Ghanavati R, Asadolahi P, Farzi S, Sobouti B, Darbandi A. The effects of probiotics, prebiotics and synbiotics on the reduction of IBD complications, a periodic review during 2009-2020. J Appl Microbiol 2020; 130:1823-1838. [PMID: 33098703 DOI: 10.1111/jam.14907] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
AIMS To perform a systematic review on randomized controlled trials to examine the efficacy of probiotics, prebiotics and synbiotics in the treatment of IBD. METHODS AND RESULTS PubMed, Web of science, Scopus and Google Scholar were systematically searched from January 2009 to January 2020 using the following keywords: 'Inflammatory Bowel Disease', 'Probiotics' and 'Clinical trial'. The statistical analysis was performed using SPSS software version 24.0. A total of 1832 articles were found during the initial search and 21 clinical trials were eligible. Studies comparing the effects of probiotics and placebo among patients with active ulcerative colitis (UC) showed a significant difference in clinical outcomes. Moreover, probiotics improved the overall induction of remission rates among patients with Crohn's disease (CD). Probiotics significantly decreased the IL-1β, TNF-α and IL-8 levels. Also, the need for systemic steroids, hospitalization, surgery, as well as histological score and disease activity index significantly decreased in patients who used probiotic or pro-/synbiotics. CONCLUSIONS The use of probiotics, as food supplements, can induce anti-inflammatory reactions, balance the intestinal homeostasis and induce remission in IBD. The efficacy of probiotics on remission induction is more reported in UC rather than CD. Larger well-designed clinical trials are needed to further determine whether probiotics are of clear benefits for remission in IBD.
Collapse
Affiliation(s)
- A Darb Emamie
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - M Rajabpour
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - R Ghanavati
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - P Asadolahi
- Microbiology Department, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - S Farzi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - B Sobouti
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - A Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
77
|
Brasiel PGDA, Dutra Luquetti SCP, Peluzio MDCG, Novaes RD, Gonçalves RV. Preclinical Evidence of Probiotics in Colorectal Carcinogenesis: A Systematic Review. Dig Dis Sci 2020; 65:3197-3210. [PMID: 31960202 DOI: 10.1007/s10620-020-06062-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colorectal cancer, the second major cause of cancer deaths, imposes a major health burden worldwide. There is growing evidence that supports that the use of probiotics is effective against various diseases, especially in gastrointestinal diseases, including the colorectal cancer, but the differences between the strains, dose, and frequency used are not yet clear. AIMS To perform a systematic review to compile the results of studies carried out in animal models and investigated the effect of probiotics on colorectal carcinogenesis. METHODS Studies were selected in PubMed/MEDLINE and Scopus according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Search filters were developed using three parameters: probiotics, colorectal cancer, and animal model. RESULTS From a structured search, we discovered 34 original articles and submitted them to a risk of bias analysis using SYRCLE's tool. The studies show a great diversity of models, most were conducted in rats (55.8%) and used 1,2 dimethylhydrazine as the drug to induce colorectal carcinogenesis (61.7%). The vast majority of trials investigated Lactobacillus (64%) and Bifidobacterium (29.4%) strains. Twenty-six (86.6%) studies found significant reduction in lesions or tumors in the animals that received probiotics. The main methodological limitation was the insufficient amount of information for the adequate reproducibility of the trials, which indicated a high risk of bias due to incomplete characterization of the experimental design. CONCLUSIONS The different probiotics' strains showed anti-carcinogenic effect, reduced the development of lesions and intestinal tumors, antioxidant and immunomodulatory activity, and reduced fecal bacterial enzymes.
Collapse
Affiliation(s)
| | | | | | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas, MG, Brazil
| | | |
Collapse
|
78
|
Pillai A, Tan J, Paquette V, Panczuk J. Does probiotic bacteremia in premature infants impact clinically relevant outcomes? A case report and updated review of literature. Clin Nutr ESPEN 2020; 39:255-259. [PMID: 32859326 DOI: 10.1016/j.clnesp.2020.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 01/26/2023]
Abstract
Prophylactic use of probiotics decreases the incidence of necrotizing enterocolitis (NEC) in premature infants. However, there are ongoing concerns related to the routine use of probiotics including inconsistent literature regarding optimal dose and strain, lack of regulatory standards in production and reports regarding potential side effects. There is limited data regarding the incidence of probiotic bacteremia and its impact on relevant clinical outcomes in the premature population. We report the first case of Bifidobacterium longum bacteremia in our center since the routine introduction of probiotics. The neonate had NEC with perforation on day of life 7, which likely led to translocation of the probiotic strain to the blood stream. The neonate did not have any hemodynamic instability and the repeat blood culture was negative after starting antibiotic therapy. We also conducted a literature review and found 13 other cases of probiotic bacteremia in premature or very low birth weight neonates. Although the incidence of probiotic bacteremia is low, it can impact several clinical outcomes including prolonged exposure to antibiotics, removal of central lines and additional laboratory testing such as lumbar puncture. There has been no mortality attributable to probiotic bacteremia and there is no data regarding long term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Anish Pillai
- Division of Neonatology, Surya Mother and Child Super Specialty Hospital, Mumbai, Maharashtra, India.
| | - Jason Tan
- Department of Pharmacy, British Columbia Women's and Children's Hospital, Vancouver, BC, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Vanessa Paquette
- Department of Pharmacy, British Columbia Women's and Children's Hospital, Vancouver, BC, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Julia Panczuk
- Neonatal-Perinatal Medicine, Department of Pediatrics, British Columbia Women's Hospital and Health Centre, University of British Columbia, Vancouver, BC Canada.
| |
Collapse
|
79
|
Tavernese A, Stelitano M, Mauceri A, Mollace R, Uccello G, Romeo F, Cammalleri V. Progression of Lactobacillus plantarum prosthetic valve endocarditis followed by transesophageal echocardiogram. Int J Infect Dis 2020; 97:160-161. [DOI: 10.1016/j.ijid.2020.05.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 11/30/2022] Open
|
80
|
A critical review of antibiotic resistance in probiotic bacteria. Food Res Int 2020; 136:109571. [PMID: 32846610 DOI: 10.1016/j.foodres.2020.109571] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit upon the host. At present, probiotics are gaining popularity worldwide and are widely used in food and medicine. Consumption of probiotics is increasing with further in-depth research on the relationship between intestinal flora and host health. Most people pay more attention to the function of probiotics but ignore their potential risks, such as infection and antibiotic resistance transfer to pathogenic microbes. Physiological functions, effects and mechanisms of action of probiotics were covered in this review, as well as the antibiotic resistance phenotypes, mechanisms and genes found in probiotics. Typical cases of antibiotic resistance of probiotics were also highlighted, as well as the potential risks (including pathogenicity, infectivity and excessive immune response) and corresponding strategies (dosage, formulation, and administration route). This timely study provides an avenue for further research, development and application of probiotics.
Collapse
|
81
|
Pasala S, Singer L, Arshad T, Roach K. Lactobacillus endocarditis in a healthy patient with probiotic use. IDCases 2020; 22:e00915. [PMID: 33088710 PMCID: PMC7558031 DOI: 10.1016/j.idcr.2020.e00915] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
Lactobacilli are commensal anaerobic gram-positive rod organisms that are normal flora of the oral, genitourinary, and gastrointestinal tracts. Lactobacillus rhamnosus is now commonly found in probiotics. They are rarely pathogenic, but occasional cases of bacteremia and associated endocarditis have been noted in patients with pre-disposing factors. We describe a case of Lactobacillus endocarditis in an otherwise healthy patient with probiotic use and gingival laceration and present an accompanying discussion of the potential association of probiotic formulations containing lactobacilli and systemic infection.
Collapse
Affiliation(s)
- Swetha Pasala
- Department of Medicine, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA, 20042, USA
| | - Lillian Singer
- VCU School of Medicine Inova Campus, 3300 Gallows Road, Falls Church, VA, 20042, USA
| | - Tamoore Arshad
- Department of Medicine, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA, 20042, USA
| | - Kenneth Roach
- Department of Medicine, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA, 20042, USA
| |
Collapse
|
82
|
Patra V, Gallais Sérézal I, Wolf P. Potential of Skin Microbiome, Pro- and/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure. Nutrients 2020; 12:E1795. [PMID: 32560310 PMCID: PMC7353315 DOI: 10.3390/nu12061795] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
The human skin hosts innumerable microorganisms and maintains homeostasis with the local immune system despite the challenges offered by environmental factors such as ultraviolet radiation (UVR). UVR causes cutaneous alterations such as acute (i.e., sunburn) and chronic inflammation, tanning, photoaging, skin cancer, and immune modulation. Phototherapy on the other hand is widely used to treat inflammatory skin diseases such as psoriasis, atopic dermatitis, polymorphic light eruption and graft-versus-host disease (GvHD), as well as neoplastic skin diseases such as cutaneous T cell lymphoma, among others. Previous work has addressed the use of pro- and pre-biotics to protect against UVR through anti-oxidative, anti-inflammatory, anti-aging, anti-carcinogenic and/or pro-and contra-melanogenic properties. Herein, we discuss and share perspectives of the potential benefits of novel treatment strategies using microbes and pro- and pre-biotics as modulators of the skin response to UVR, and how they could act both for protection against UVR-induced skin damage and as enhancers of the UVR-driven therapeutic effects on the skin.
Collapse
Affiliation(s)
- VijayKumar Patra
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria;
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| | - Irène Gallais Sérézal
- Department of Medicine, Unit of Rheumatology, Karolinska Institutet, 171 77 Solna, Sweden;
- Department of Dermatology, Besançon University Hospital, 25000 Besancon, France
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
83
|
Kwun SY, Bae YW, Yoon JA, Park EH, Kim MD. Isolation of acid tolerant lactic acid bacteria and evaluation of α-glucosidase inhibitory activity. Food Sci Biotechnol 2020; 29:1125-1130. [PMID: 32670666 DOI: 10.1007/s10068-020-00760-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
In this study, lactic acid bacteria strains (LABs) were isolated from Korean traditional fermented food and examined as potential probiotics using in vitro methods. Ten LAB strains survived in de Man, Rogosa and Sharpe broth adjusted to pH 2.5 were tested for resistance to acidic conditions and bile, antimicrobial activity, and α-glucosidase inhibitory activity. Among them, strain MBEL1397 showed antimicrobial activity against Bacillus cereus and exhibited survival rates of over 97% in acidic and bile conditions. The α-glucosidase inhibitory activity was 3.91 ± 0.25%, corresponding to approximately 2.3 times higher than that of acarbose. MBEL1397 was susceptible to ampicillin, erythromycin, and penicillin G and identified as Lactobacillus sakei. It was deposited to Korean Collection for Type Culture (KCTC) as KCTC14037BP. In conclusion, these results demonstrate that L. sakei MBEL1397 might be prominent probiotics with potential hypoglycemic effects.
Collapse
Affiliation(s)
- Se Young Kwun
- Division of Food Biotechnology and Biosystems Engineering, Kangwon National University, Chuncheon, 24341 Korea
| | - Young Woo Bae
- Division of Food Biotechnology and Biosystems Engineering, Kangwon National University, Chuncheon, 24341 Korea
| | - Jeong Ah Yoon
- Division of Food Biotechnology and Biosystems Engineering, Kangwon National University, Chuncheon, 24341 Korea
| | - Eun Hee Park
- Division of Food Biotechnology and Biosystems Engineering, Kangwon National University, Chuncheon, 24341 Korea
| | - Myoung Dong Kim
- Division of Food Biotechnology and Biosystems Engineering, Kangwon National University, Chuncheon, 24341 Korea
| |
Collapse
|
84
|
Won SM, Chen S, Park KW, Yoon JH. Isolation of lactic acid bacteria from kimchi and screening of Lactobacillus sakei ADM14 with anti-adipogenic effect and potential probiotic properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109296] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
85
|
Atabati H, Esmaeili SA, Saburi E, Akhlaghi M, Raoofi A, Rezaei N, Momtazi-Borojeni AA. Probiotics with ameliorating effects on the severity of skin inflammation in psoriasis: Evidence from experimental and clinical studies. J Cell Physiol 2020; 235:8925-8937. [PMID: 32346892 DOI: 10.1002/jcp.29737] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Experimental and clinical studies have confirmed safety and the medical benefits of probiotics as immunomodulatory medications. Recent advances have emphasized the critical effect of gastrointestinal bacteria in the pathology of inflammatory disorders, even, outside the gut. Probiotics have shown promising results for curing skin-influencing inflammatory disorders through modulating the immune response by manipulating the gut microbiome. Psoriasis is a complex inflammatory skin disease, which exhibits a microbiome distinct from the normal skin. In the present review, we considered the impact of gastrointestinal microbiota on the psoriasis pathogenesis, and through literature survey, attempted to explore probiotic species utilized for psoriasis treatment.
Collapse
Affiliation(s)
- Hadi Atabati
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Clinical Research Development Center, Imam Hasan Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maedeh Akhlaghi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Amir Raoofi
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology and Biology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amir Abbas Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
86
|
Tahmasebi S, Oryan S, Mohajerani HR, Akbari N, Palizvan MR. Probiotics and Nigella sativa extract supplementation improved behavioral and electrophysiological effects of PTZ-induced chemical kindling in rats. Epilepsy Behav 2020; 104:106897. [PMID: 32028126 DOI: 10.1016/j.yebeh.2019.106897] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/26/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Epilepsy is a most common neurological disorder that has negative effects on cognition. In the present study, we investigated the protective effect of Nigella sativa (NS) and probiotics on seizure activity, cognitive performance, and synaptic plasticity in pentylenetetrazole (PTZ) kindling model of epilepsy. METHODS One hundred and forty-four rats were divided into 2 experiments: In experiment 1, animals were grouped and treated as follows: 1) control (PTZ + saline), 2) NS treatment, 3) probiotic treatment, and 4) NS and probiotic treatment. Six weeks after the treatment, PTZ kindling were performed, and 48 h after kindling, spatial learning and memory were measured in Morris water maze (MWM) test. Animals in experiment 2 received the same treatment as experiment 1: in control nonkindled groups, control animals were treated with probiotics, NS, and probiotics + NS. Six weeks after the treatment, PTZ kindling were performed, and 48 h after kindling, field potentials were recorded from the dentate gyrus area of the hippocampus; synaptic transmission and long-term potentiation (LTP) was measured. RESULTS The results showed that the probiotic and NS supplementation significantly reduces kindling development so that animals in PTZ + NS + probiotic did not show full kindling. In MWM test, the escape latency and traveled path in the kindled group were significantly higher than the control group. In PTZ + NS + probiotics, these parameters were significantly lower than those in the PTZ + saline group. Adding probiotic and NS supplementation significantly reduced population spike (PS)-LTP as compared with the PTZ + saline group. CONCLUSION Probiotic and NS supplementation have some protection against seizure, seizure-induced cognitive impairment, and hippocampal LTP in kindled rats.
Collapse
Affiliation(s)
- Saeed Tahmasebi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahrbanoo Oryan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Biology, Faculty of Science, Kharazmy University, Tehran, Iran.
| | | | - Neda Akbari
- Department of Microbiology, Faculty of Science, Islamic Azad University, Arak, Iran
| | - Mohammad Reza Palizvan
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
87
|
Lazarenko L, Bubnov R, Babenko L, Melnykova O, Spivak M. Methodical approaches of estimation of probiotics` quality and rational principles of their usage in clinical practice. SCIENCERISE: BIOLOGICAL SCIENCE 2020. [DOI: 10.15587/2519-8025.2020.202216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
88
|
Effect of probiotics on obesity-related markers per enterotype: a double-blind, placebo-controlled, randomized clinical trial. EPMA J 2020; 11:31-51. [PMID: 32140184 DOI: 10.1007/s13167-020-00198-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Abstract
Background Prevention and improvement of disease symptoms are important issues, and probiotics are suggested as a good treatment for controlling the obesity. Human gut microbiota has different community structures. Because gut microbial composition is assumed to be linked to probiotic function, this study evaluated the efficacy of probiotics on obesity-related clinical markers according to gut microbial enterotype. Methods Fifty subjects with body mass index over 25 kg/m2 were randomly assigned to either the probiotic or placebo group. Each group received either unlabeled placebo or probiotic capsules for 12 weeks. Body weight, waist circumference, and body composition were measured every 3 weeks. Using computed tomography, total abdominal fat area and visceral fat area were measured. Blood and fecal samples were collected before and after the intervention for biochemical parameters and gut microbial compositions analysis. Results Gut microbial compositions of all the subjects were classified into two enterotypes according to Prevotella/Bacteroides ratio. The fat percentage, blood glucose, and insulin significantly increased in the Prevotella-rich enterotype of the placebo group. The obesity-related markers, such as waist circumference, total fat area, visceral fat, and ratio of visceral to subcutaneous fat area, were significantly reduced in the probiotic group. The decrease of obesity-related markers was greater in the Prevotella-rich enterotype than in the Bacteroides-rich enterotype. Conclusion Administration of probiotics improved obesity-related markers in obese people, and the efficacy of probiotics differed per gut microbial enterotype and greater responses were observed in the Prevotella-dominant enterotype.
Collapse
|
89
|
Louis-Jean S, Martirosyan D. Nutritionally Attenuating the Human Gut Microbiome To Prevent and Manage Metabolic Syndrome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12675-12684. [PMID: 31661963 DOI: 10.1021/acs.jafc.9b04879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metabolic syndrome (MSyn) constitutes a litany of pathophysiological conditions, such as central adiposity, hypertension, dyslipidemia, and hyperglycemia. As a result of the epidemic levels of MSyn, several efforts have been made to identify the etiologies of the condition and develop methods by which to reduce its prevalence. The attenuation of the gut microflora ratio of Firmicutes/Bacteroidetes through bioactive compounds found in the Mediterranean diet, dietary polysaccharides, and pre- and probiotics can be used as functional foods to improve derangements in cardiometabolic markers correlated with the development of MSyn. Although more studies are needed to understand the role of manipulating the gut microbiota in health and disease in human models, this review based on current data from epidemiologic studies and clinical trials will serve as a review to elucidate the role nutrition plays in attenuating the gut microbiota in preventing and managing MSyn.
Collapse
Affiliation(s)
- Scarlet Louis-Jean
- Functional Food Center , Functional Food Institute , Dallas , Texas 75254 , United States
| | - Danik Martirosyan
- Functional Food Center , Functional Food Institute , Dallas , Texas 75254 , United States
| |
Collapse
|
90
|
Yu HS, Jang HJ, Lee NK, Paik HD. Evaluation of the probiotic characteristics and prophylactic potential of Weissella cibaria strains isolated from kimchi. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
91
|
Abstract
Probiotic bacteria have been used as a health-promoting factor for a very long time. Nowadays, products containing probiotic bacteria are becoming more and more popular on the market. The term probiotics refers to the products belonging to the following groups: probiotic drugs (medicinal products – live biotherapeutic products for human use), medical devices, probiotic foods (e.g. foods, food ingredients, dietary supplements or food for special medical purposes), directly fed microorganisms (for animal use) and designer probiotics (genetically modified probiotics). Safety assessment of bacterial strains used as probiotics should be carefully studied. Even though probiotic bacteria have the generally recognized as safe (GRAS status), there are several reports about side effects triggered by the presence of these organisms. Microorganisms used as probiotics may cause systemic infections, stimulate the immune system, disturb metabolism and participate in horizontal gene transfer.
Collapse
Affiliation(s)
- Anna Zawistowska-Rojek
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland ; Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland ; Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
92
|
Guo Q, Goldenberg JZ, Humphrey C, El Dib R, Johnston BC, Cochrane IBD Group. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev 2019; 4:CD004827. [PMID: 31039287 PMCID: PMC6490796 DOI: 10.1002/14651858.cd004827.pub5] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Antibiotics alter the microbial balance commonly resulting in antibiotic-associated diarrhea (AAD). Probiotics may prevent AAD via providing gut barrier, restoration of the gut microflora, and other potential mechanisms of action. OBJECTIVES The primary objectives were to assess the efficacy and safety of probiotics (any specified strain or dose) used for the prevention of AAD in children. SEARCH METHODS MEDLINE, Embase, CENTRAL, CINAHL, and the Web of Science (inception to 28 May 2018) were searched along with registers including the ISRCTN and Clinicaltrials.gov. We also searched the NICE Evidence Services database as well as reference lists from relevant articles. SELECTION CRITERIA Randomized, parallel, controlled trials in children (0 to 18 years) receiving antibiotics, that compare probiotics to placebo, active alternative prophylaxis, or no treatment and measure the incidence of diarrhea secondary to antibiotic use were considered for inclusion. DATA COLLECTION AND ANALYSIS Study selection, data extraction, and risk of bias assessment were conducted independently by two authors. Dichotomous data (incidence of AAD, adverse events) were combined using a pooled risk ratio (RR) or risk difference (RD), and continuous data (mean duration of diarrhea) as mean difference (MD), along with corresponding 95% confidence interval (95% CI). We calculated the number needed to treat for an additional beneficial outcome (NNTB) where appropriate. For studies reporting on microbiome characteristics using heterogeneous outcomes, we describe the results narratively. The certainty of the evidence was evaluated using GRADE. MAIN RESULTS Thirty-three studies (6352 participants) were included. Probiotics assessed included Bacillus spp., Bifidobacterium spp., Clostridium butyricum, Lactobacilli spp., Lactococcus spp., Leuconostoc cremoris, Saccharomyces spp., orStreptococcus spp., alone or in combination. The risk of bias was determined to be high in 20 studies and low in 13 studies. Complete case (patients who did not complete the studies were not included in the analysis) results from 33 trials reporting on the incidence of diarrhea show a precise benefit from probiotics compared to active, placebo or no treatment control.After 5 days to 12 weeks of follow-up, the incidence of AAD in the probiotic group was 8% (259/3232) compared to 19% (598/3120) in the control group (RR 0.45, 95% CI 0.36 to 0.56; I² = 57%, 6352 participants; NNTB 9, 95% CI 7 to 13; moderate certainty evidence). Nineteen studies had loss to follow-up ranging from 1% to 46%. After making assumptions for those lost, the observed benefit was still statistically significant using an extreme plausible intention-to-treat (ITT) analysis, wherein the incidence of AAD in the probiotic group was 12% (436/3551) compared to 19% (664/3468) in the control group (7019 participants; RR 0.61; 95% CI 0.49 to 0.77; P <0.00001; I² = 70%). An a priori available case subgroup analysis exploring heterogeneity indicated that high dose (≥ 5 billion CFUs per day) is more effective than low probiotic dose (< 5 billion CFUs per day), interaction P value = 0.01. For the high dose studies the incidence of AAD in the probiotic group was 8% (162/2029) compared to 23% (462/2009) in the control group (4038 participants; RR 0.37; 95% CI 0.30 to 0.46; P = 0.06; moderate certainty evidence). For the low dose studies the incidence of AAD in the probiotic group was 8% (97/1155) compared to 13% (133/1059) in the control group (2214 participants; RR 0.68; 95% CI 0.46 to 1.01; P = 0.02). Again, assumptions for loss to follow-up using an extreme plausible ITT analysis was statistically significant. For high dose studies the incidence of AAD in the probiotic group was 13% (278/2218) compared to 23% (503/2207) in control group (4425 participants; RR 0.54; 95% CI 0.42 to 0.70; P <0.00001; I² = 68%; moderate certainty evidence).None of the 24 trials (4415 participants) that reported on adverse events reported any serious adverse events attributable to probiotics. Adverse event rates were low. After 5 days to 4 weeks follow-up, 4% (86/2229) of probiotics participants had an adverse event compared to 6% (121/2186) of control participants (RD 0.00; 95% CI -0.01 to 0.01; P < 0.00001; I² = 75%; low certainty evidence). Common adverse events included rash, nausea, gas, flatulence, abdominal bloating, and constipation.After 10 days to 12 weeks of follow-up, eight studies recorded data on our secondary outcome, the mean duration of diarrhea; with probiotics reducing diarrhea duration by almost one day (MD -0.91; 95% CI -1.38 to -0.44; P <0.00001; low certainty evidence). One study reported on microbiome characteristics, reporting no difference in changes with concurrent antibiotic and probiotic use. AUTHORS' CONCLUSIONS The overall evidence suggests a moderate protective effect of probiotics for preventing AAD (NNTB 9, 95% CI 7 to 13). Using five criteria to evaluate the credibility of the subgroup analysis on probiotic dose, the results indicate the subgroup effect based on high dose probiotics (≥ 5 billion CFUs per day) was credible. Based on high-dose probiotics, the NNTB to prevent one case of diarrhea is 6 (95% CI 5 to 9). The overall certainty of the evidence for the primary endpoint, incidence of AAD based on high dose probiotics was moderate due to the minor issues with risk of bias and inconsistency related to a diversity of probiotic agents used. Evidence also suggests that probiotics may moderately reduce the duration of diarrhea, a reduction by almost one day. The benefit of high dose probiotics (e.g. Lactobacillus rhamnosus orSaccharomyces boulardii) needs to be confirmed by a large well-designed multi-centered randomized trial. It is premature to draw firm conclusions about the efficacy and safety of 'other' probiotic agents as an adjunct to antibiotics in children. Adverse event rates were low and no serious adverse events were attributable to probiotics. Although no serious adverse events were observed among inpatient and outpatient children, including small studies conducted in the intensive care unit and in the neonatal unit, observational studies not included in this review have reported serious adverse events in severely debilitated or immuno-compromised children with underlying risk factors including central venous catheter use and disorders associated with bacterial/fungal translocation.
Collapse
Affiliation(s)
- Qin Guo
- West China Second University Hospital, West China Women's and Children's HospitalDepartment of PediatricsChengduChina
| | - Joshua Z Goldenberg
- National University of Natural MedicineHelfgott Research Institute2220 SW 1st AvePortlandORUSA97102
| | | | - Regina El Dib
- Institute of Science and Technology, UNESP ‐ Univ Estadual PaulistaDepartment of Biosciences and Oral DiagnosisSão José dos CamposSPBrazil
| | - Bradley C Johnston
- Dalhousie UniversityDepartment of Community Health and Epidemiology5790 University AvenueHalifaxNSCanadaB3H 1V7
| | | |
Collapse
|
93
|
Byakika S, Mukisa IM, Byaruhanga YB, Muyanja C. A Review of Criteria and Methods for Evaluating the Probiotic Potential of Microorganisms. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1584815] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Stellah Byakika
- Department of Food Technology and Nutrition, School of Food Technology Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Ivan Muzira Mukisa
- Department of Food Technology and Nutrition, School of Food Technology Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Yusuf Byenkya Byaruhanga
- Department of Food Technology and Nutrition, School of Food Technology Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Charles Muyanja
- Department of Food Technology and Nutrition, School of Food Technology Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
94
|
Abstract
PURPOSE OF REVIEW Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality among premature neonates. Although randomized trials have shown that probiotics may be efficacious in the prevention of NEC, their use has not been universally adopted in the neonatal intensive care unit (NICU). Caveats regarding routine probiotic supplementation for the prevention of NEC are summarized in this review. RECENT FINDINGS Accumulating evidence indicates that prophylactic probiotic supplementation in preterm infants can reduce the incidence of NEC. However, substantial knowledge gaps, regulatory issues, and implementation challenges should be addressed before probiotics are introduced as standard of care for all preterm neonates. Limitations of published trial data have made it challenging to define regimens that optimize efficacy and safety in specific patient subgroups. Moreover, the current probiotic market lacks rigorous regulatory oversight, which could raise concerns about the quality and safety of probiotic products. Finally, implementation pitfalls include risks of cross-colonization and resource requirements to monitor and mitigate potential adverse events. SUMMARY Probiotics have shown promise in the prevention of NEC. However, there is insufficient evidence to guide the selection of optimal regimens. Furthermore, issues related to regulatory and institutional oversight should be addressed before supplementation is routinely implemented in NICUs.
Collapse
|
95
|
Evaluation of Probiotic Potential of Bacteriocinogenic Lactic Acid Bacteria Strains Isolated from Meat Products. Probiotics Antimicrob Proteins 2019; 10:762-774. [PMID: 29396844 DOI: 10.1007/s12602-018-9388-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, the probiotic potential of five bacteriocin-producing lactic acid bacteria (LAB) strains, isolated from meat products, was investigated. They were presumptively identified as Lactococcus lactis subsp. cremoris CTC 204 and CTC 483, L. lactis subsp. hordinae CTC 484, and Lactobacillus plantarum CTC 368 and CTC 469 according to morphological, biochemical, and physiological characteristics. Analysis of genetic variability (random amplified polymorphic (RAPD)-PCR) and whole-cell proteins (SDS-PAGE) revealed similarity between Lactobacillus strains and variability among Lactococcus strains. The evaluation of the probiotic potential showed that the five LAB strains were tolerant to pH 2.0, and only strain CTC 469 was tolerant to the lowest concentration of the bile salts evaluated (0.1%). All strains showed survival or growth ability at 4, 25, and 37 °C, and tolerance at - 20 °C. Although strain CTC 204 in TSB Broth supplemented with MgSO4 showed the highest intensity of biofilm production, this compound was produced by all of them. The safety assessment showed that no thermonuclease, hemolytic, or gelatinase activities were detected. All strains were resistant to erythromycin and sensitive to amoxicillin and phenoxymethylpenicillin; furthermore, CTC 204 was resistant to chloramphenicol, CTC 368 and CTC 469 to chloramphenicol and vancomycin, CTC 483 to tetracycline and vancomycin, and CTC 484 to clindamycin and chloramphenicol. The evaluated strains showed biogenic amine production; the lowest levels were produced by CTC 204 and CTC 368 strains. It was concluded that CTC 204 and CTC 368 strains have the greatest potential for becoming probiotics.
Collapse
|
96
|
Razmpoosh E, Javadi A, Ejtahed HS, Mirmiran P, Javadi M, Yousefinejad A. The effect of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: A randomized placebo controlled trial. Diabetes Metab Syndr 2019; 13:175-182. [PMID: 30641692 DOI: 10.1016/j.dsx.2018.08.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/09/2018] [Indexed: 01/06/2023]
Abstract
AIMS The role of gut microbiota in the pathogenesis of diabetes is increasing; this study investigates the effect of multi-strain probiotics on fasting plasma glucose (FPG), plasma insulin and lipid profile among patients. METHODS This randomized double blind controlled trial was performed among 60 patients; individuals were randomly assigned into 2 groups of 30 participants in order to take either probiotic supplements or placebo for 6 weeks. The probiotic supplement consisted of 7 viable strains Lactobacillus, Bifidobacterium and Streptococcus. Nutrient intakes were estimated using a 3-day and 24 hour-dietary recall at the beginning and end of study. Fasting blood samples were taken before and after intervention to measure the levels of FPG, plasma insulin and lipid profiles. RESULTS Within group comparisons showed significant decrease and increase in the levels of FPG (P = 0.001) and HDL-C (P = 0.002) in probiotic group, respectively. No significant alterations were observed for within and between group comparisons in the levels of insulin, triglycerides, total cholesterol, insulin resistance and anthropometric measurements, including weight, waist circumference and body mass index (all P > 0.05). CONCLUSIONS This study showed a significant decrease in FPG level by multi-strain probiotic supplements in within group comparison; though, further studies are needed to confirm results. (IRCT Code: IRCT2013100714925N1).
Collapse
Affiliation(s)
- Elham Razmpoosh
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Javadi
- Department of Social Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hanieh Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Javadi
- Children Growth Research Center, Qazvin University of Medical Sciences, Qazvin 34197-59811, Iran; Department of Nutrition, School of Health, Qazvin University of Medical Sciences, Qazvin 34159-14595, Iran.
| | - Abbas Yousefinejad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
97
|
Lin YC, Chen YT, Chen MJ. Lack of mutagenicity, genotoxicity and developmental toxicity in safety assessment tests of Lactobacillus mali APS1. PLoS One 2018; 13:e0208881. [PMID: 30543670 PMCID: PMC6292621 DOI: 10.1371/journal.pone.0208881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 11/27/2018] [Indexed: 01/20/2023] Open
Abstract
Lactobacillus (L.) mali APS1 isolated from sugary kefir grains has been proven to affect energy and glucose homeostasis. However, without proper safety assessment it cannot be recommended as probiotics for human consumption. For genotoxicity, the Ames test showed no mutagenic effect of L. mali APS1 in the presence or absence of S9 mix metabolic activation. In-vitro mammalian chromosomal aberration test showed that the number of Chinese hamster ovary cells with abnormal chromosomes was <5% after L. mali APS1 treatment. Moreover, L. mali APS1 showed no risk of genotoxicity potential compared to the control. L. mali APS1 administration did not cause significant (p>0.05) changes in body weight, the number of reticulocytes, or in the occurrence percentage of micronucleus in Imprinting Control Region (ICR) mice. Based on the absence of maternal or fetal effects at any dosage level investigated, the teratogenicity could be defined as greater than 1,670 mg/kg b.w./day for maternal general toxicity and fetal development when L. mali APS1 was orally administered by gavage to pregnant SD rats during gestation days 6 to 15.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yung-Tsung Chen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ming-Ju Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
98
|
Nath A, Molnár MA, Csighy A, Kőszegi K, Galambos I, Huszár KP, Koris A, Vatai G. Biological Activities of Lactose-Based Prebiotics and Symbiosis with Probiotics on Controlling Osteoporosis, Blood-Lipid and Glucose Levels. ACTA ACUST UNITED AC 2018; 54:medicina54060098. [PMID: 30513975 PMCID: PMC6306850 DOI: 10.3390/medicina54060098] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
Lactose-based prebiotics are synthesized by enzymatic- or microbial- biotransformation of lactose and have unique functional values. In this comprehensive review article, the biochemical mechanisms of controlling osteoporosis, blood-lipid, and glucose levels by lactose-based prebiotics and symbiosis with probiotics are reported along with the results of clinical investigations. Interaction between lactose-based prebiotics and probiotics reduces osteoporosis by (a) transforming insoluble inorganic salts to soluble and increasing their absorption to gut wall; (b) maintaining and protecting mineral absorption surface in the intestine; (c) increasing the expression of calcium-binding proteins in the gut wall; (d) remodeling osteoclasts and osteoblasts formation; (e) releasing bone modulating factors; and (f) degrading mineral complexing phytic acid. Lactose-based prebiotics with probiotics control lipid level in the bloodstream and tissue by (a) suppressing the expressions of lipogenic- genes and enzymes; (b) oxidizing fatty acids in muscle, liver, and adipose tissue; (c) binding cholesterol with cell membrane of probiotics and subsequent assimilation by probiotics; (d) enzymatic-transformations of bile acids; and (e) converting cholesterol to coprostanol and its defecation. Symbiosis of lactose-based prebiotics with probiotics affect plasma glucose level by (a) increasing the synthesis of gut hormones plasma peptide-YY, glucagon-like peptide-1 and glucagon-like peptide-2 from entero-endocrine L-cells; (b) altering glucose assimilation and metabolism; (c) suppressing systematic inflammation; (d) reducing oxidative stress; and (e) producing amino acids. Clinical investigations show that lactose-based prebiotic galacto-oligosaccharide improves mineral absorption and reduces hyperlipidemia. Another lactose-based prebiotic, lactulose, improves mineral absorption, and reduces hyperlipidemia and hyperglycemia. It is expected that this review article will be of benefit to food technologists and medical practitioners.
Collapse
Affiliation(s)
- Arijit Nath
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Üllő út., H-3 Nagykanizsa, Hungary.
| | - Máté András Molnár
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
| | - Attila Csighy
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
| | - Kornélia Kőszegi
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
| | - Ildikó Galambos
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Üllő út., H-3 Nagykanizsa, Hungary.
| | - Klára Pásztorné Huszár
- Department of Refrigeration and Livestock Product Technology, Faculty of Food Science, Szent István University, Ménesi st 43⁻45, HU-1118 Budapest, Hungary.
| | - András Koris
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
| | - Gyula Vatai
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
| |
Collapse
|
99
|
Economic potential of probiotic supplementation in institutionalized elderly with chronic constipation. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
100
|
Makrgeorgou A, Leonardi‐Bee J, Bath‐Hextall FJ, Murrell DF, Tang MLK, Roberts A, Boyle RJ, Cochrane Skin Group. Probiotics for treating eczema. Cochrane Database Syst Rev 2018; 11:CD006135. [PMID: 30480774 PMCID: PMC6517242 DOI: 10.1002/14651858.cd006135.pub3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Eczema is a common chronic skin condition. Probiotics have been proposed as an effective treatment for eczema; their use is increasing, as numerous clinical trials are under way. This is an update of a Cochrane Review first published in 2008, which suggested that probiotics may not be an effective treatment for eczema but identified areas in which evidence was lacking. OBJECTIVES To assess the effects of probiotics for treating patients of all ages with eczema. SEARCH METHODS We updated our searches of the following databases to January 2017: the Cochrane Skin Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), in the Cochrane Library, the Global Resource of Eczema Trials (GREAT) database, MEDLINE, Embase, PsycINFO, the Allied and Complementary Medicine Database (AMED), and Latin American Caribbean Health Sciences Literature (LILACS). We searched five trials registers and checked the reference lists of included studies and relevant reviews for further references to relevant randomised controlled trials (RCTs). We also handsearched a number of conference proceedings. We updated the searches of the main databases in January 2018 and of trials registries in March 2018, but we have not yet incorporated these results into the review. SELECTION CRITERIA Randomised controlled trials of probiotics (live orally ingested micro-organisms) compared with no treatment, placebo, or other active intervention with no probiotics for the treatment of eczema diagnosed by a doctor. DATA COLLECTION AND ANALYSIS We used standard methodological procedures as expected by Cochrane. We recorded adverse events from the included studies and from a separate adverse events search conducted for the first review. We formally assessed reporting bias by preparing funnel plots, and we performed trial sequential analysis for the first primary outcome - eczema symptoms at the end of active treatment.We used GRADE to assess the quality of the evidence for each outcome (in italic font). MAIN RESULTS We included 39 randomised controlled trials involving 2599 randomised participants. We included participants of either gender, aged from the first year of life through to 55 years (only six studies assessed adults), who had mild to severe eczema. Trials were undertaken in primary and secondary healthcare settings, mainly in Europe or Asia. Duration of treatment ranged from four weeks to six months, and duration of follow-up after end of treatment ranged from zero to 36 months. We selected no standard dose: researchers used a variety of doses and concentrations of probiotics. The probiotics used were bacteria of the Lactobacillus and Bifidobacteria species, which were taken alone or combined with other probiotics, and were given with or without prebiotics. Comparators were no treatment, placebo, and other treatments with no probiotics.For all results described in this abstract, the comparator was no probiotics. Active treatment ranged from six weeks to three months for all of the following results, apart from the investigator-rated eczema severity outcome, for which the upper limit of active treatment was 16 weeks. With regard to score, the higher the score, the more severe were the symptoms. All key results reported in this abstract were measured at the end of active treatment, except for adverse events, which were measured during the active treatment period.Probiotics probably make little or no difference in participant- or parent-rated symptoms of eczema (13 trials; 754 participants): symptom severity on a scale from 0 to 20 was 0.44 points lower after probiotic treatment (95% confidence interval (CI) -1.22 to 0.33; moderate-quality evidence). Trial sequential analysis shows that target sample sizes of 258 and 456, which are necessary to demonstrate a minimum mean difference of -2 and -1.5, respectively, with 90% power, have been exceeded, suggesting that further trials with similar probiotic strains for this outcome at the end of active treatment may be futile.We found no evidence suggesting that probiotics make a difference in QoL for patients with eczema (six studies; 552 participants; standardised mean difference (SMD) 0.03, 95% CI -0.36 to 0.42; low-quality evidence) when measured by the participant or the parent using validated disease-specific QoL instruments.Probiotics may slightly reduce investigator-rated eczema severity scores (24 trials; 1596 participants). On a scale of 0 to 103 for total Severity Scoring of Atopic Dermatitis (SCORAD), a score combining investigator-rated eczema severity score and participant scoring for eczema symptoms of itch and sleep loss was 3.91 points lower after probiotic treatment than after no probiotic treatment (95% CI -5.86 to -1.96; low-quality evidence). The minimum clinically important difference for SCORAD has been estimated to be 8.7 points.We noted significant to extreme levels of unexplainable heterogeneity between the results of individual studies. We judged most studies to be at unclear risk of bias; six studies had high attrition bias, and nine were at low risk of bias overall.We found no evidence to show that probiotics make a difference in the risk of adverse events during active treatment (risk ratio (RR) 1.54, 95% CI 0.90 to 2.63; seven trials; 402 participants; low-quality evidence). Studies in our review that reported adverse effects described gastrointestinal symptoms. AUTHORS' CONCLUSIONS Evidence suggests that, compared with no probiotic, currently available probiotic strains probably make little or no difference in improving patient-rated eczema symptoms. Probiotics may make little or no difference in QoL for people with eczema nor in investigator-rated eczema severity score (combined with participant scoring for eczema symptoms of itch and sleep loss); for the latter, the observed effect was small and of uncertain clinical significance. Therefore, use of probiotics for the treatment of eczema is currently not evidence-based. This update found no evidence of increased adverse effects with probiotic use during studies, but a separate adverse events search from the first review revealed that probiotic treatment carries a small risk of adverse events.Results show significant, unexplainable heterogeneity between individual trial results. Only a small number of studies measured some outcomes.Future studies should better measure QoL scores and adverse events, and should report on new probiotics. Researchers should also consider studying subgroups of patients (e.g. patients with atopy or food allergies, adults) and standardising doses/concentrations of probiotics given.
Collapse
Affiliation(s)
- Areti Makrgeorgou
- West Ambulatory Care HospitalDepartment of DermatologyDalnair StreetGlasgowUKG3 8SJ
| | - Jo Leonardi‐Bee
- The University of NottinghamDivision of Epidemiology and Public HealthClinical Sciences BuildingNottingham City Hospital NHS Trust Campus, Hucknall RoadNottinghamUKNG5 1PB
| | - Fiona J Bath‐Hextall
- University of NottinghamSchool of Health SciencesB Floor, South Block LinkQueens Medical CentreNottinghamUKNG7 2HA
| | - Dedee F Murrell
- St George Hospital & University of New South WalesDepartment of DermatologyBelgrave StKogarahSydneyNSWAustralia2217
| | - Mimi LK Tang
- Royal Children's HospitalDepartment of Allergy and ImmunologyFlemington RoadMelbourneVictoriaAustralia3052
- Murdoch Childrens Research InstituteAllergy and Immune DisordersFlemington RoadParkvilleMelbourneVictoriaAustralia3052
- The University of MelbourneDepartment of PaediatricsMelbourneAustralia
| | - Amanda Roberts
- Nottingham Support Group for Carers of Children with EczemaNottinghamUKNG5 4FG
| | - Robert J Boyle
- Imperial College LondonSection of Paediatrics, Division of Infectious Diseases, Department of MedicineWright Fleming BuildingNorfolk PlaceLondonUKW2 1PG
| | | |
Collapse
|