51
|
WHO/IVI global stakeholder consultation on group A Streptococcus vaccine development: Report from a meeting held on 12–13 December 2016. Vaccine 2018; 36:3397-3405. [DOI: 10.1016/j.vaccine.2018.02.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/02/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
|
52
|
Wozniak A, Scioscia N, García PC, Dale JB, Paillavil BA, Legarraga P, Salazar-Echegarai FJ, Bueno SM, Kalergis AM. Protective immunity induced by an intranasal multivalent vaccine comprising 10 Lactococcus lactis strains expressing highly prevalent M-protein antigens derived from Group A Streptococcus. Microbiol Immunol 2018; 62:395-404. [PMID: 29704396 PMCID: PMC6013395 DOI: 10.1111/1348-0421.12595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 11/28/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus) causes diseases ranging from mild pharyngitis to severe invasive infections. The N-terminal fragment of streptococcal M protein elicits protective antibodies and is an attractive vaccine target. However, this N- terminal fragment is hypervariable: there are more than 200 different M types. In this study, an intranasal live bacterial vaccine comprising 10 strains of Lactococcus lactis, each expressing one N-terminal fragment of M protein, has been developed. Live bacterial-vectored vaccines cost less to manufacture because the processes involved are less complex than those required for production of protein subunit vaccines. Moreover, intranasal administration does not require syringes or specialized personnel. Evaluation of individual vaccine types (M1, M2, M3, M4, M6, M9, M12, M22, M28 and M77) showed that most of them protected mice against challenge with virulent S. pyogenes. All 10 strains combined in a 10-valent vaccine (M×10) induced serum and bronchoalveolar lavage IgG titers that ranged from three- to 10-fold those of unimmunized mice. After intranasal challenge with M28 streptococci, survival of M×10-immunized mice was significantly higher than that of unimmunized mice. In contrast, when mice were challenged with M75 streptococci, survival of M×10-immunized mice did not differ significantly from that of unimmunized mice. Mx-10 immunized mice had significantly less S. pyogenes in oropharyngeal washes and developed less severe disease symptoms after challenge than did unimmunized mice. Our L. lactis-based vaccine may provide an alternative solution to development of broadly protective group A streptococcal vaccines.
Collapse
MESH Headings
- Administration, Intranasal/methods
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/classification
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Outer Membrane Proteins/classification
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Outer Membrane Proteins/metabolism
- Body Weight
- Carrier Proteins/classification
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Disease Models, Animal
- Female
- Immunity
- Immunization
- Immunoglobulin G/blood
- Lactococcus lactis/immunology
- Lactococcus lactis/pathogenicity
- Mice
- Mice, Inbred BALB C
- Streptococcal Infections/immunology
- Streptococcal Infections/microbiology
- Streptococcal Infections/prevention & control
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/immunology
- Streptococcus pyogenes/immunology
- Treatment Outcome
- Vaccination/methods
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Aniela Wozniak
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Natalia Scioscia
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Patricia C. García
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - James B. Dale
- Department of Medicine, University of Tennessee Health Science Center and the Department of Veterans Affairs Medical Center, Memphis, Tennessee, TN 38163, USA
| | - Braulio A. Paillavil
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Paulette Legarraga
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Francisco J. Salazar-Echegarai
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| |
Collapse
|
53
|
Gherardi G, Vitali LA, Creti R. Prevalent emm Types among Invasive GAS in Europe and North America since Year 2000. Front Public Health 2018; 6:59. [PMID: 29662874 PMCID: PMC5890186 DOI: 10.3389/fpubh.2018.00059] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Streptococcus pyogenes or group A streptococcus (GAS) is an important human pathogen responsible for a broad range of infections, from uncomplicated to more severe and invasive diseases with high mortality and morbidity. Epidemiological surveillance has been crucial to detect changes in the geographical and temporal variation of the disease pattern; for this purpose the M protein gene (emm) gene typing is the most widely used genotyping method, with more than 200 emm types recognized. Molecular epidemiological data have been also used for the development of GAS M protein-based vaccines. METHODS The aim of this paper was to provide an updated scenario of the most prevalent GAS emm types responsible for invasive infections in developed countries as Europe and North America (US and Canada), from 1st January 2000 to 31st May 2017. The search, performed in PubMed by the combined use of the terms ("emm") and ("invasive") retrieved 264 articles, of which 38 articles (31 from Europe and 7 from North America) met the inclusion criteria and were selected for this study. Additional five papers cited in the European articles but not retrieved by the search were included. RESULTS emm1 represented the dominant type in both Europe and North America, replaced by other emm types in only few occasions. The seven major emm types identified (emm1, emm28, emm89, emm3, emm12, emm4, and emm6) accounted for approximately 50-70% of the total isolates; less common emm types accounted for the remaining 30-50% of the cases. Most of the common emm types are included in either one or both the 26-valent and 30-valent vaccines, though some well-represented emm types found in Europe are not. CONCLUSION This study provided a picture of the prevalent emm types among invasive GAS (iGAS) in Europe and North America since the year 2000 onward. Continuous surveillance on the emm-type distribution among iGAS infections is strongly encouraged also to determine the potential coverage of the developing multivalent vaccines.
Collapse
Affiliation(s)
- Giovanni Gherardi
- Microbiology Unit, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | | | - Roberta Creti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
54
|
Raynes JM, Young PG, Proft T, Williamson DA, Baker EN, Moreland NJ. Protein adhesins as vaccine antigens for Group A Streptococcus. Pathog Dis 2018; 76:4919728. [DOI: 10.1093/femspd/fty016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- J M Raynes
- School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - P G Young
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, 5 Symonds Street, Auckland 1010, New Zealand
| | - T Proft
- School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - D A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - E N Baker
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, 5 Symonds Street, Auckland 1010, New Zealand
| | - N J Moreland
- School of Medical Sciences, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
55
|
Abstract
Safe and efficacious vaccines are arguably the most successful medical interventions of all time. Yet the ongoing discovery of new pathogens, along with emergence of antibiotic-resistant pathogens and a burgeoning population at risk of such infections, imposes unprecedented public health challenges. To meet these challenges, innovative strategies to discover and develop new or improved anti-infective vaccines are necessary. These approaches must intersect the most meaningful insights into protective immunity and advanced technologies with capabilities to deliver immunogens for optimal immune protection. This goal is considered through several recent advances in host-pathogen relationships, conceptual strides in vaccinology, and emerging technologies. Given a clear and growing risk of pandemic disease should the threat of infection go unmet, developing vaccines that optimize protective immunity against high-priority and antibiotic-resistant pathogens represents an urgent and unifying imperative.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90024.,Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509; .,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509.,Los Angeles Biomedical Research Institute, Torrance, California 90502
| | | |
Collapse
|
56
|
Physicochemical characterisation, immunogenicity and protective efficacy of a lead streptococcal vaccine: progress towards Phase I trial. Sci Rep 2017; 7:13786. [PMID: 29062085 PMCID: PMC5653875 DOI: 10.1038/s41598-017-14157-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022] Open
Abstract
Globally, group A streptococcal infections are responsible for over 500,000 deaths per year. A safe vaccine that does not induce autoimmune pathology and that affords coverage for most GAS serotypes is highly desired. We have previously demonstrated that a vaccine based on the conserved M-protein epitope, J8 was safe and immunogenic in a pilot Phase I study. We subsequently improved vaccine efficacy by incorporation of a B-cell epitope from the IL-8 protease, SpyCEP, which protected IL-8 and enhanced neutrophil ingress to the site of infection. We have now substituted the carrier protein, diphtheria toxoid with its superior analogue, CRM197 which provides better immunogenicity and is widely used in licenced human vaccines. The new vaccine was compared with the DT conjugate vaccine to confirm that these modifications have not altered the physicochemical properties of the vaccine. This vaccine, when tested in an animal model of GAS infection, demonstrated significant reduction in systemic and local GAS burden, with comparable efficacy to the DT conjugate vaccine. The vaccine was shown to be equally effective in the presence of human plasma and in the presence of pre-existing DT-specific antibodies, thus minimising concerns regarding its potential efficacy in humans.
Collapse
|
57
|
Makthal N, Kumaraswami M. Zinc'ing it out: zinc homeostasis mechanisms and their impact on the pathogenesis of human pathogen group A streptococcus. Metallomics 2017; 9:1693-1702. [PMID: 29043347 DOI: 10.1039/c7mt00240h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Group A Streptococccus (GAS) is a major human pathogen that causes significant morbidity and mortality. Zinc is an essential trace element required for GAS growth, however, zinc can be toxic at excess concentrations. The bacterial strategies to maintain zinc sufficiency without incurring zinc toxicity play a crucial role in host-GAS interactions and have a significant impact on GAS pathogenesis. The host deploys nutritional immune mechanisms to retard GAS growth by causing either zinc deprivation or zinc poisoning. However, GAS overcomes the zinc-dependent host defenses and survives in the hostile environment by employing complex adaptive strategies. In this review, we describe the different host immune strategies that employ either zinc limitation or zinc toxicity in different host environments to control GAS infection. We also discuss the molecular mechanisms and machineries used by GAS to evade host nutritional defenses and establish successful infection. Emerging evidence suggests that the metal transporters are major GAS virulence factors as they compete against host nutritional immune mechanisms to acquire or expel metals and promote bacterial survival in the host. Thus, identification of GAS molecules and elucidation of the mechanisms by which GAS combats host-mediated alterations in zinc availability may lead to novel interference strategies targeting GAS metal acquisition systems.
Collapse
Affiliation(s)
- Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
58
|
Schulze K, Ebensen T, Chandrudu S, Skwarczynski M, Toth I, Olive C, Guzman CA. Bivalent mucosal peptide vaccines administered using the LCP carrier system stimulate protective immune responses against Streptococcus pyogenes infection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2463-2474. [PMID: 28887213 DOI: 10.1016/j.nano.2017.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022]
Abstract
Despite the broad knowledge about the pathogenicity of Streptococcus pyogenes there is still a controversy about the correlate of protection in GAS infections. We aimed in further improving the immune responses stimulated against GAS comparing different vaccine formulations including bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) and BPPCysMPEG, a derivative of the macrophage-activating lipopeptide (MALP-2), as adjuvants, respectively, to be administered with and without the universal T helper cell epitope P25 along with the optimized B cell epitope J14 of the M protein and B and T cell epitopes of SfbI. Lipopeptide based nano carrier systems (LCP) were used for efficient antigen delivery across the mucosal barrier. The stimulated immune responses were efficient in protecting mice against a respiratory challenge with a lethal dose of a heterologous S. pyogenes strain. Moreover, combination of the LCP based peptide vaccine with c-di-AMP allowed reduction of antigen dose at the same time maintaining vaccine efficacy.
Collapse
Affiliation(s)
- Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Saranya Chandrudu
- The University of Queensland, School of Chemistry & Molecular Biosciences, St Luc ia, QLD, Australia
| | - Mariusz Skwarczynski
- The University of Queensland, School of Chemistry & Molecular Biosciences, St Luc ia, QLD, Australia
| | - Istvan Toth
- The University of Queensland, School of Chemistry & Molecular Biosciences, St Luc ia, QLD, Australia; The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD, Australia; The University of Queensland, School of Pharmacy, Woolloongabba, QLD, Australia
| | - Colleen Olive
- Central Laboratory, Pathology Queensland, Health Support Queensland, Department of Health, Queensland Government, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
59
|
Ghosh P. Variation, Indispensability, and Masking in the M protein. Trends Microbiol 2017; 26:132-144. [PMID: 28867148 DOI: 10.1016/j.tim.2017.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/26/2017] [Accepted: 08/08/2017] [Indexed: 11/17/2022]
Abstract
The M protein is the major surface-associated virulence factor of group A Streptococcus (GAS) and an antigenically variable target of host immunity. How selection pressures to escape immune recognition, maintain indispensable functions, and mask vulnerabilities have shaped the sequences of the >220M protein types is unclear. Recent experiments have shed light on this question by showing that, hidden within the antigenic variability of many M protein types, are sequence patterns conserved for recruiting human C4b-binding protein (C4BP). Other host factors may be recruited in a similar manner by conserved but hidden sequence patterns in the M protein. The identification of such patterns may be applicable to the development of a GAS vaccine.
Collapse
Affiliation(s)
- Partho Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
60
|
Dalal A, Eskin‐Schwartz M, Mimouni D, Ray S, Days W, Hodak E, Leibovici L, Paul M. Interventions for the prevention of recurrent erysipelas and cellulitis. Cochrane Database Syst Rev 2017; 6:CD009758. [PMID: 28631307 PMCID: PMC6481501 DOI: 10.1002/14651858.cd009758.pub2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Erysipelas and cellulitis (hereafter referred to as 'cellulitis') are common bacterial skin infections usually affecting the lower extremities. Despite their burden of morbidity, the evidence for different prevention strategies is unclear. OBJECTIVES To assess the beneficial and adverse effects of antibiotic prophylaxis or other prophylactic interventions for the prevention of recurrent episodes of cellulitis in adults aged over 16. SEARCH METHODS We searched the following databases up to June 2016: the Cochrane Skin Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and LILACS. We also searched five trials registry databases, and checked reference lists of included studies and reviews for further references to relevant randomised controlled trials (RCTs). We searched two sets of dermatology conference proceedings, and BIOSIS Previews. SELECTION CRITERIA Randomised controlled trials evaluating any therapy for the prevention of recurrent cellulitis. DATA COLLECTION AND ANALYSIS Two authors independently carried out study selection, data extraction, assessment of risks of bias, and analyses. Our primary prespecified outcome was recurrence of cellulitis when on treatment and after treatment. Our secondary outcomes included incidence rate, time to next episode, hospitalisation, quality of life, development of resistance to antibiotics, adverse reactions and mortality. MAIN RESULTS We included six trials, with a total of 573 evaluable participants, who were aged on average between 50 and 70. There were few previous episodes of cellulitis in those recruited to the trials, ranging between one and four episodes per study.Five of the six included trials assessed prevention with antibiotics in participants with cellulitis of the legs, and one assessed selenium in participants with cellulitis of the arms. Among the studies assessing antibiotics, one study evaluated oral erythromycin (n = 32) and four studies assessed penicillin (n = 481). Treatment duration varied from six to 18 months, and two studies continued to follow up participants after discontinuation of prophylaxis, with a follow-up period of up to one and a half to two years. Four studies were single-centre, and two were multicentre; they were conducted in five countries: the UK, Sweden, Tunisia, Israel, and Austria.Based on five trials, antibiotic prophylaxis (at the end of the treatment phase ('on prophylaxis')) decreased the risk of cellulitis recurrence by 69%, compared to no treatment or placebo (risk ratio (RR) 0.31, 95% confidence interval (CI) 0.13 to 0.72; n = 513; P = 0.007), number needed to treat for an additional beneficial outcome (NNTB) six, (95% CI 5 to 15), and we rated the certainty of evidence for this outcome as moderate.Under prophylactic treatment and compared to no treatment or placebo, antibiotic prophylaxis reduced the incidence rate of cellulitis by 56% (RR 0.44, 95% CI 0.22 to 0.89; four studies; n = 473; P value = 0.02; moderate-certainty evidence) and significantly decreased the rate until the next episode of cellulitis (hazard ratio (HR) 0.51, 95% CI 0.34 to 0.78; three studies; n = 437; P = 0.002; moderate-certainty evidence).The protective effects of antibiotic did not last after prophylaxis had been stopped ('post-prophylaxis') for risk of cellulitis recurrence (RR 0.88, 95% CI 0.59 to 1.31; two studies; n = 287; P = 0.52), incidence rate of cellulitis (RR 0.94, 95% CI 0.65 to 1.36; two studies; n = 287; P = 0.74), and rate until next episode of cellulitis (HR 0.78, 95% CI 0.39 to 1.56; two studies; n = 287). Evidence was of low certainty.Effects are relevant mainly for people after at least two episodes of leg cellulitis occurring within a period up to three years.We found no significant differences in adverse effects or hospitalisation between antibiotic and no treatment or placebo; for adverse effects: RR 0.87, 95% CI 0.58 to 1.30; four studies; n = 469; P = 0.48; for hospitalisation: RR 0.77, 95% CI 0.37 to 1.57; three studies; n = 429; P = 0.47, with certainty of evidence rated low for these outcomes. The existing data did not allow us to fully explore its impact on length of hospital stay.The common adverse reactions were gastrointestinal symptoms, mainly nausea and diarrhoea; rash (severe cutaneous adverse reactions were not reported); and thrush. Three studies reported adverse effects that led to discontinuation of the assigned therapy. In one study (erythromycin), three participants reported abdominal pain and nausea, so their treatment was changed to penicillin. In another study, two participants treated with penicillin withdrew from treatment due to diarrhoea or nausea. In one study, around 10% of participants stopped treatment due to pain at the injection site (the active treatment group was given intramuscular injections of benzathine penicillin).None of the included studies assessed the development of antimicrobial resistance or quality-of-life measures.With regard to the risks of bias, two included studies were at low risk of bias and we judged three others as being at high risk of bias, mainly due to lack of blinding. AUTHORS' CONCLUSIONS In terms of recurrence, incidence, and time to next episode, antibiotic is probably an effective preventive treatment for recurrent cellulitis of the lower limbs in those under prophylactic treatment, compared with placebo or no treatment (moderate-certainty evidence). However, these preventive effects of antibiotics appear to diminish after they are discontinued (low-certainty evidence). Treatment with antibiotic does not trigger any serious adverse events, and those associated are minor, such as nausea and rash (low-certainty evidence). The evidence is limited to people with at least two past episodes of leg cellulitis within a time frame of up to three years, and none of the studies investigated other common interventions such as lymphoedema reduction methods or proper skin care. Larger, high-quality studies are warranted, including long-term follow-up and other prophylactic measures.
Collapse
Affiliation(s)
- Adam Dalal
- Beilinson Hospital, Rabin Medical CenterDepartment of Dermatology39 Jabotinski StreetPetah TikvaIsrael49100
- Tel Aviv UniversityThe Sackler School of MedicineTel AvivIsrael
| | - Marina Eskin‐Schwartz
- Beilinson Hospital, Rabin Medical CenterDepartment of Dermatology39 Jabotinski StreetPetah TikvaIsrael49100
- Tel Aviv UniversityThe Sackler School of MedicineTel AvivIsrael
| | - Daniel Mimouni
- Beilinson Hospital, Rabin Medical CenterDepartment of Dermatology39 Jabotinski StreetPetah TikvaIsrael49100
- Tel Aviv UniversityThe Sackler School of MedicineTel AvivIsrael
| | - Sujoy Ray
- St. John's Medical College and HospitalDepartment of PsychiatrySarjapur RoadBangaloreKarnatakaIndia560008
| | - Walford Days
- The University of Nottinghamc/o Cochrane Skin GroupA103, King's Meadow CampusLenton LaneNottinghamUKNG7 2NR
| | - Emmilia Hodak
- Beilinson Hospital, Rabin Medical CenterDepartment of Dermatology39 Jabotinski StreetPetah TikvaIsrael49100
- Tel Aviv UniversityThe Sackler School of MedicineTel AvivIsrael
| | - Leonard Leibovici
- Beilinson Hospital, Rabin Medical CenterDepartment of Medicine EKaplan StreetPetah TikvaIsrael49100
| | - Mical Paul
- Rambam Health Care CampusDivision of Infectious DiseasesHa‐aliya 8 StHaifaIsrael33705
| | | |
Collapse
|
61
|
Shulman ST, Tanz RR. Strep: Where Do We Go From Here? J Pediatric Infect Dis Soc 2017; 6:197-198. [PMID: 28204577 DOI: 10.1093/jpids/piw067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/23/2017] [Indexed: 11/14/2022]
Affiliation(s)
- Stanford T Shulman
- Anne & Robert H. Lurie Children's Hospital of Chicago Department of Pediatrics, Northwestern Feinberg School of Medicine, Chicago
| | - Robert R Tanz
- Anne & Robert H. Lurie Children's Hospital of Chicago Department of Pediatrics, Northwestern Feinberg School of Medicine, Chicago
| |
Collapse
|
62
|
Schödel F, Moreland NJ, Wittes JT, Mulholland K, Frazer I, Steer AC, Fraser JD, Carapetis J. Clinical development strategy for a candidate group A streptococcal vaccine. Vaccine 2017; 35:2007-2014. [DOI: 10.1016/j.vaccine.2017.02.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/30/2022]
|
63
|
Kuo CF, Tsao N, Hsieh IC, Lin YS, Wu JJ, Hung YT. Immunization with a streptococcal multiple-epitope recombinant protein protects mice against invasive group A streptococcal infection. PLoS One 2017; 12:e0174464. [PMID: 28355251 PMCID: PMC5371370 DOI: 10.1371/journal.pone.0174464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/09/2017] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) causes clinical diseases, including pharyngitis, scarlet fever, impetigo, necrotizing fasciitis and streptococcal toxic shock syndrome. A number of group A streptococcus vaccine candidates have been developed, but only one 26-valent recombinant M protein vaccine has entered clinical trials. Differing from the design of a 26-valent recombinant M protein vaccine, we provide here a vaccination using the polyvalence epitope recombinant FSBM protein (rFSBM), which contains four different epitopes, including the fibronectin-binding repeats domain of streptococcal fibronectin binding protein Sfb1, the C-terminal immunogenic segment of streptolysin S, the C3-binding motif of streptococcal pyrogenic exotoxin B, and the C-terminal conserved segment of M protein. Vaccination with the rFSBM protein successfully prevented mortality and skin lesions caused by several emm strains of GAS infection. Anti-FSBM antibodies collected from the rFSBM-immunized mice were able to opsonize at least six emm strains and can neutralize the hemolytic activity of streptolysin S. Furthermore, the internalization of GAS into nonphagocytic cells is also reduced by anti-FSBM serum. These findings suggest that rFSBM can be applied as a vaccine candidate to prevent different emm strains of GAS infection.
Collapse
Affiliation(s)
- Chih-Feng Kuo
- Department of Nursing, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Nina Tsao
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - I-Chen Hsieh
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Hung
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
64
|
Courtney HS, Niedermeyer SE, Penfound TA, Hohn CM, Greeley A, Dale JB. Trivalent M-related protein as a component of next generation group A streptococcal vaccines. Clin Exp Vaccine Res 2017; 6:45-49. [PMID: 28168173 PMCID: PMC5292357 DOI: 10.7774/cevr.2017.6.1.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 11/15/2022] Open
Abstract
PURPOSE There is a need to broaden protective coverage of M protein-based vaccines against group A streptococci (GAS) because coverage of the current 30-valent M protein vaccine does not extend to all emm types. An additional GAS antigen and virulence factor that could potentially extend vaccine coverage is M-related protein (Mrp). Previous work indicated that there are three structurally related families of Mrp (MrpI, MrpII, and MrpIII) and peptides of all three elicited bactericidal antibodies against multiple emm types. The purpose of this study was to determine if a recombinant form containing Mrp from the three families would evoke bactericidal antiserum and to determine if this antiserum could enhance the effectiveness of antisera to the 30-valent M protein vaccine. MATERIALS AND METHODS A trivalent recombinant Mrp (trMrp) protein containing N-terminal fragments from the three families (trMrp) was constructed, purified and used to immunize rabbits. Anti-trMrp sera contained high titers of antibodies against the trMrp immunogen and recombinant forms representing MrpI, MrpII, and MrpIII. RESULTS The antisera opsonized emm types of GAS representing each Mrp family and also opsonized emm types not covered by the 30-valent M protein-based vaccine. Importantly, a combination of trMrp and 30-valent M protein antiserum resulted in higher levels of opsonization of GAS than either antiserum alone. CONCLUSION These findings suggest that trMrp may be an effective addition to future constructs of GAS vaccines.
Collapse
Affiliation(s)
- Harry S Courtney
- Department of Medicine, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA.; Department of Medicine, Veterans Affairs Medical Center, Memphis, TN, USA
| | - Shannon E Niedermeyer
- Department of Medicine, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA.; Department of Medicine, Veterans Affairs Medical Center, Memphis, TN, USA
| | - Thomas A Penfound
- Department of Medicine, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA.; Department of Medicine, Veterans Affairs Medical Center, Memphis, TN, USA
| | - Claudia M Hohn
- Department of Medicine, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA.; Department of Medicine, Veterans Affairs Medical Center, Memphis, TN, USA
| | - Adam Greeley
- Department of Medicine, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA.; Department of Medicine, Veterans Affairs Medical Center, Memphis, TN, USA
| | - James B Dale
- Department of Medicine, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA.; Department of Medicine, Veterans Affairs Medical Center, Memphis, TN, USA.; Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
65
|
Li H, Wang S, Zhao Y, Chen Z, Gu G, Guo Z. Mutagenesis and immunological evaluation of group A streptococcal C5a peptidase as an antigen for vaccine development and as a carrier protein for glycoconjugate vaccine design. RSC Adv 2017. [DOI: 10.1039/c7ra07923k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A non-enzymatic recombinant ScpA mutant (H193A) was prepared and investigated to probe its application potential in the development of GAS vaccines and as a carrier protein of glycoconjugate vaccines.
Collapse
Affiliation(s)
- Hui Li
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Subo Wang
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Yisheng Zhao
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Zonggang Chen
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Guofeng Gu
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Zhongwu Guo
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
- Department of Chemistry
| |
Collapse
|
66
|
Zhang X, Song Y, Li Y, Cai M, Meng Y, Zhu H. Immunization with Streptococcal Heme Binding Protein (Shp) Protects Mice Against Group A Streptococcus Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 973:115-124. [PMID: 28190144 DOI: 10.1007/5584_2016_198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Streptococcal heme binding protein (Shp) is a surface protein of the heme acquisition system that is an essential iron nutrient in Group A Streptococcus (GAS). Here, we tested whether Shp immunization protects mice from subcutaneous infection. Mice were immunized subcutaneously with recombinant Shp and then challenged with GAS. The protective effects against GAS challenge were evaluated two weeks after the last immunization. Immunization with Shp elicited a robust IgG response, resulting in high anti-Shp IgG titers in the serum. Immunized mice had a higher survival rate and smaller skin lesions than adjuvant control mice. Furthermore, immunized mice had lower GAS numbers at the skin lesions and in the liver, spleen and lung. Histological analysis with Gram staining showed that GAS invaded the surrounding area of the inoculation sites in the skin in control mice, but not in immunized mice. Thus, Shp immunization enhances GAS clearance and reduces GAS skin invasion and systemic dissemination. These findings indicate that Shp is a protective antigen.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China
| | - Yingli Song
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuanmeng Li
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China
| | - Minghui Cai
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuan Meng
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China
| | - Hui Zhu
- Department of Physiology, the college of Basic, Medical Sciences, Harbin Medical University, Harbin, China.
| |
Collapse
|
67
|
Dale JB, Smeesters PR, Courtney HS, Penfound TA, Hohn CM, Smith JC, Baudry JY. Structure-based design of broadly protective group a streptococcal M protein-based vaccines. Vaccine 2016; 35:19-26. [PMID: 27890396 DOI: 10.1016/j.vaccine.2016.11.065] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/10/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND A major obstacle to the development of broadly protective M protein-based group A streptococcal (GAS) vaccines is the variability within the N-terminal epitopes that evoke potent bactericidal antibodies. The concept of M type-specific protective immune responses has recently been challenged based on the observation that multivalent M protein vaccines elicited cross-reactive bactericidal antibodies against a number of non-vaccine M types of GAS. Additionally, a new "cluster-based" typing system of 175M proteins identified a limited number of clusters containing closely related M proteins. In the current study, we used the emm cluster typing system, in combination with computational structure-based peptide modeling, as a novel approach to the design of potentially broadly protective M protein-based vaccines. METHODS M protein sequences (AA 16-50) from the E4 cluster containing 17 emm types of GAS were analyzed using de novo 3-D structure prediction tools and the resulting structures subjected to chemical diversity analysis to identify sequences that were the most representative of the 3-D physicochemical properties of the M peptides in the cluster. Five peptides that spanned the range of physicochemical attributes of all 17 peptides were used to formulate synthetic and recombinant vaccines. Rabbit antisera were assayed for antibodies that cross-reacted with E4 peptides and whole bacteria by ELISA and for bactericidal activity against all E4GAS. RESULTS The synthetic vaccine rabbit antisera reacted with all 17 E4M peptides and demonstrated bactericidal activity against 15/17 E4GAS. A recombinant hybrid vaccine containing the same E4 peptides also elicited antibodies that cross-reacted with all E4M peptides. CONCLUSIONS Comprehensive studies using structure-based design may result in a broadly protective M peptide vaccine that will elicit cluster-specific and emm type-specific antibody responses against the majority of clinically relevant emm types of GAS.
Collapse
Affiliation(s)
- James B Dale
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States; Department of Veterans Affairs Medical Center, Memphis, TN, United States.
| | - Pierre R Smeesters
- Department of Pediatrics, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium; Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, Belgium; Group A Streptococcus Research Group, Murdoch Childrens Research Institute, Melbourne, Australia; Centre for International Child Health, University of Melbourne, Melbourne, Australia
| | - Harry S Courtney
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Thomas A Penfound
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Claudia M Hohn
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Oak Ridge, TN, United States; University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Jerome Y Baudry
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Oak Ridge, TN, United States; University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| |
Collapse
|
68
|
Excler JL, Kim JH. Accelerating the development of a group A Streptococcus vaccine: an urgent public health need. Clin Exp Vaccine Res 2016; 5:101-7. [PMID: 27489799 PMCID: PMC4969273 DOI: 10.7774/cevr.2016.5.2.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 11/23/2022] Open
Abstract
Group A Streptococcus (GAS) infections cause substantial worldwide morbidity and mortality, mostly associated with suppurative complications such as pharyngitis, impetigo, and non-suppurative immune syndromes such as acute rheumatic fever, rheumatic heart disease, and acute post-streptococcal glomerulonephritis. Deaths occur mostly in children, adolescents, and young adults in particular pregnant women in low- and middle-income countries. GAS strains are highly variable, and a GAS vaccine would need to overcome the issue of multiple strains. Several approaches have been used multivalent vaccines using N-terminal polypeptides of different M protein; conserved M protein vaccines with antigens from the conserved C-repeat portion of the M protein; incorporation selected T- and B-cell epitopes from the C-repeat region in a synthetic polypeptide or shorter single minimal B-cell epitopes from this same region; and non-M protein approaches utilizing highly conserved motives of streptococcal C5a peptidase, GAS carbohydrate and streptococcal fibronectin-binding proteins. A GAS vaccine represents urgent need for this neglected disease and should therefore deserve the greatest attention of international organizations, donors, and vaccine manufacturers.
Collapse
|
69
|
Differing Efficacies of Lead Group A Streptococcal Vaccine Candidates and Full-Length M Protein in Cutaneous and Invasive Disease Models. mBio 2016; 7:mBio.00618-16. [PMID: 27302756 PMCID: PMC4916377 DOI: 10.1128/mbio.00618-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A Streptococcus (GAS) is an important human pathogen responsible for both superficial infections and invasive diseases. Autoimmune sequelae may occur upon repeated infection. For this reason, development of a vaccine against GAS represents a major challenge, since certain GAS components may trigger autoimmunity. We formulated three combination vaccines containing the following: (i) streptolysin O (SLO), interleukin 8 (IL-8) protease (Streptococcus pyogenes cell envelope proteinase [SpyCEP]), group A streptococcal C5a peptidase (SCPA), arginine deiminase (ADI), and trigger factor (TF); (ii) the conserved M-protein-derived J8 peptide conjugated to ADI; and (iii) group A carbohydrate lacking the N-acetylglucosamine side chain conjugated to ADI. We compared these combination vaccines to a “gold standard” for immunogenicity, full-length M1 protein. Vaccines were adjuvanted with alum, and mice were immunized on days 0, 21, and 28. On day 42, mice were challenged via cutaneous or subcutaneous routes. High-titer antigen-specific antibody responses with bactericidal activity were detected in mouse serum samples for all vaccine candidates. In comparison with sham-immunized mice, all vaccines afforded protection against cutaneous challenge. However, only full-length M1 protein provided protection in the subcutaneous invasive disease model. This set of experiments demonstrates the inherent variability of mouse models for the characterization of GAS vaccine candidate protective efficacy. Such variability poses an important challenge for GAS vaccine development, as advancement of candidates to human clinical trials requires strong evidence of efficacy. This study highlights the need for an open discussion within the field regarding standardization of animal models for GAS vaccine development.
Collapse
|
70
|
Status of research and development of vaccines for Streptococcus pyogenes. Vaccine 2016; 34:2953-2958. [DOI: 10.1016/j.vaccine.2016.03.073] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 03/09/2016] [Indexed: 11/23/2022]
|
71
|
Why Don't We Have a Vaccine Against……….? Part 3. Bacteria, Too. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2016. [DOI: 10.1097/ipc.0000000000000363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
72
|
Nelson GE, Pondo T, Toews KA, Farley MM, Lindegren ML, Lynfield R, Aragon D, Zansky SM, Watt JP, Cieslak PR, Angeles K, Harrison LH, Petit S, Beall B, Van Beneden CA. Epidemiology of Invasive Group A Streptococcal Infections in the United States, 2005-2012. Clin Infect Dis 2016; 63:478-86. [PMID: 27105747 DOI: 10.1093/cid/ciw248] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/14/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Invasive group A Streptococcus (GAS) infections are associated with significant morbidity and mortality rates. We report the epidemiology and trends of invasive GAS over 8 years of surveillance. METHODS From January 2005 through December 2012, we collected data from the Centers for Disease Control and Prevention's Active Bacterial Core surveillance, a population-based network of 10 geographically diverse US sites (2012 population, 32.8 million). We defined invasive GAS as isolation of GAS from a normally sterile site or from a wound in a patient with necrotizing fasciitis (NF) or streptococcal toxic shock syndrome (STSS). Available isolates were emm typed. We calculated rates and made age- and race-adjusted national projections using census data. RESULTS We identified 9557 cases (3.8 cases per 100 000 persons per year) with 1116 deaths (case-fatality rate, 11.7%). The case-fatality rates for septic shock, STSS, and NF were 45%, 38%, and 29%, respectively. The annual incidence was highest among persons aged ≥65 years (9.4/100 000) or <1 year (5.3) and among blacks (4.7/100 000). National rates remained steady over 8 years of surveillance. Factors independently associated with death included increasing age, residence in a nursing home, recent surgery, septic shock, NF, meningitis, isolated bacteremia, pneumonia, emm type 1 or 3, and underlying chronic illness or immunosuppression. An estimated 10 649-13 434 cases of invasive GAS infections occur in the United States annually, resulting in 1136-1607 deaths. In a 30-valent M-protein vaccine, emm types accounted for 91% of isolates. CONCLUSIONS The burden of invasive GAS infection in the United States remains substantial. Vaccines under development could have a considerable public health impact.
Collapse
Affiliation(s)
- George E Nelson
- Epidemic Intelligence Service National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention Vanderbilt University, Nashville, Tennessee
| | - Tracy Pondo
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention
| | - Karrie-Ann Toews
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention
| | - Monica M Farley
- Emory University School of Medicine and the VA Medical Center, Atlanta, Georgia
| | | | | | - Deborah Aragon
- Colorado Department of Public Health and Environment, Denver
| | | | - James P Watt
- California Department of Public Health, Richmond
| | | | - Kathy Angeles
- New Mexico Emerging Infections Program, University of New Mexico, Las Cruces
| | - Lee H Harrison
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Susan Petit
- Connecticut Department of Public Health, Hartford
| | - Bernard Beall
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention
| | - Chris A Van Beneden
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention
| |
Collapse
|
73
|
Abstract
There is concern of global resurgence of invasive group A Streptococcus (iGAS) infections. We compared the clinical and molecular epidemiology of patients admitted with iGAS over two time periods, 2008 and 2010, in Western Sydney, Australia. The annual incidence was 19 cases per 100,000 admissions in 2008, compared to 33 per 100,000 in 2010. An increasing proportion of patients died (0% versus 13%), had an APACHE II score ≥30 (0% versus 19%), and had no known risk-factors (12% versus 25%). A potential skin source was identified as a trigger in fewer cases in 2010 (36% versus 11%). In total, there were 27 different emm types and 11 different emm clusters. There were some new emm types/clusters in 2010 that were not present in 2008. However, the study was not adequately powered to detect statistically significant differences in the distribution of emm types (p = 0.06) and emm clusters (p = 0.16) between the two years. There were also no clear associations between emm types/clusters and severity and clinical manifestations of iGAS infections. Although the proposed 30-valent M protein vaccine encompasses only 47% of our isolates, it will likely provide coverage for at least 71% of iGAS infections due to cross-opsonisation.
Collapse
|
74
|
Sheel M, Moreland NJ, Fraser JD, Carapetis J. Development of Group A streptococcal vaccines: an unmet global health need. Expert Rev Vaccines 2015; 15:227-38. [DOI: 10.1586/14760584.2016.1116946] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Meru Sheel
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Nicole J Moreland
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - John D Fraser
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Jonathan Carapetis
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
- Princess Margaret Hospital for Children, Perth, Australia
| |
Collapse
|
75
|
Epidemiology of Invasive Group A Streptococcal Disease in Alaska, 2001 to 2013. J Clin Microbiol 2015; 54:134-41. [PMID: 26560536 DOI: 10.1128/jcm.02122-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/20/2015] [Indexed: 12/14/2022] Open
Abstract
The Arctic Investigations Program (AIP) began surveillance for invasive group A streptococcal (GAS) infections in Alaska in 2000 as part of the invasive bacterial diseases population-based laboratory surveillance program. Between 2001 and 2013, there were 516 cases of GAS infection reported, for an overall annual incidence of 5.8 cases per 100,000 persons with 56 deaths (case fatality rate, 10.7%). Of the 516 confirmed cases of invasive GAS infection, 422 (82%) had isolates available for laboratory analysis. All isolates were susceptible to penicillin, cefotaxime, and levofloxacin. Resistance to tetracycline, erythromycin, and clindamycin was seen in 11% (n = 8), 5.8% (n = 20), and 1.2% (n = 4) of the isolates, respectively. A total of 51 emm types were identified, of which emm1 (11.1%) was the most prevalent, followed by emm82 (8.8%), emm49 (7.8%), emm12 and emm3 (6.6% each), emm89 (6.2%), emm108 (5.5%), emm28 (4.7%), emm92 (4%), and emm41 (3.8%). The five most common emm types accounted for 41% of isolates. The emm types in the proposed 26-valent and 30-valent vaccines accounted for 56% and 78% of all cases, respectively. GAS remains an important cause of invasive bacterial disease in Alaska. Continued surveillance of GAS infections will help improve understanding of the epidemiology of invasive disease, with an impact on disease control, notification of outbreaks, and vaccine development.
Collapse
|
76
|
Pan P, Wang Y, Zhu Y, Gao X, Ju Z, Qiu P, Wang L, Mao C. Nontoxic virus nanofibers improve the detection sensitivity for the anti-p53 antibody, a biomarker in cancer patients. NANO RESEARCH 2015; 8:3562-3570. [PMID: 27818740 PMCID: PMC5091656 DOI: 10.1007/s12274-015-0856-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The presence of anti-p53 antibody in serum is a biomarker for cancer. However, its high sensitivity detection is still an issue in cancer diagnosis. To tackle this challenge, we used fd phage, a human-safe bacteria-specific virus nanofiber that can be mass-produced by infecting host bacteria in an error-free manner, and genetically engineered it to display a peptide capable of recognizing and capturing anti-p53 antibody on its side wall. We employed the resultant phage nanofibers as a capture probe to develop a modified version of the enzyme-linked immunosorbent assay (ELISA) method, termed phage-ELISA. We compared it to the traditional ELISA method for the detection of anti-p53 antibody, p53-ELISA, which uses recombinant wild-type p53 protein to capture anti-p53 antibody. We applied phage-ELISA to detect anti-p53 antibody in an experimental group of 316 patients with various types of malignant tumors. We found that a detection rate of 17.7% (56 positive cases) was achieved by phage-ELISA, which was comparable to the detection rate of 20.6% for p53-ELISA (65 positive cases). However, when both phage and p53 were combined to form antibody-capturing probes for phage/p53-ELISA, a detection rate of 30.4% (96 positive cases) was achieved. Our work showed that owing to the combined capture of the anti-p53 antibody by both phage nanofibers and p53, the phage/p53-ELISA achieved the highest diagnostic accuracy and detection efficiency for the anti-p53 antibody in patients with various types of cancers. Our work suggests that a combination of nanofibers and antigens, both of which capture antibody, could lead to increased detection sensitivity, which is useful for applications in the life sciences, clinical medicine, and environmental sciences.
Collapse
Affiliation(s)
- Pengtao Pan
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yicun Wang
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Xiang Gao
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Zhigang Ju
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Penghe Qiu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Li Wang
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
77
|
Good MF, Pandey M, Batzloff MR, Tyrrell GJ. Strategic development of the conserved region of the M protein and other candidates as vaccines to prevent infection with group A streptococci. Expert Rev Vaccines 2015; 14:1459-70. [DOI: 10.1586/14760584.2015.1081817] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
78
|
Pan PT, Zou FY, Mao XF, Cao DH, Wei SL, Gao X, Wang L. WITHDRAWN: Dual display bacteriophage as a platform for high sensitive detection of serum p53 antibodies in breast cancer patients. Clin Chim Acta 2015:S0009-8981(15)30003-6. [PMID: 26434550 DOI: 10.1016/j.cca.2015.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Peng-Tao Pan
- School of Life Sciences and Technology, Xinxiang University, 191 Jinsui Road, Xinxiang, Henan Province, PR China
| | - Fan-Yu Zou
- School of Life Sciences and Technology, Xinxiang University, 191 Jinsui Road, Xinxiang, Henan Province, PR China
| | - Xue-Fei Mao
- School of Life Sciences and Technology, Xinxiang University, 191 Jinsui Road, Xinxiang, Henan Province, PR China
| | - Dong-Hui Cao
- First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin Province, PR China
| | - Shi-Lin Wei
- JiLin Brother Medical Immune Products Co., Ltd, Jilin, Jilin Province, PR China
| | - Xiang Gao
- Institute of Genetics and Cytology, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, PR China.
| | - Li Wang
- Institute of Genetics and Cytology, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, PR China.
| |
Collapse
|
79
|
Freschi de Barros S, De Amicis KM, Alencar R, Smeesters PR, Trunkel A, Postól E, Almeida Junior JN, Rossi F, Pignatari ACC, Kalil J, Guilherme L. Streptococcus pyogenes strains in Sao Paulo, Brazil: molecular characterization as a basis for StreptInCor coverage capacity analysis. BMC Infect Dis 2015; 15:308. [PMID: 26243278 PMCID: PMC4525746 DOI: 10.1186/s12879-015-1052-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/22/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several human diseases are caused by Streptococcus pyogenes, ranging from common infections to autoimmunity. Characterization of the most prevalent strains worldwide is a useful tool for evaluating the coverage capacity of vaccines under development. In this study, a collection of S. pyogenes strains from Sao Paulo, Brazil, was analyzed to describe the diversity of strains and assess the vaccine coverage capacity of StreptInCor. METHODS Molecular epidemiology of S. pyogenes strains was performed by emm-genotyping the 229 isolates from different clinical sites, and PCR was used for superantigen profile analysis. The emm-pattern and tissue tropism for these M types were also predicted and compared based on the emm-cluster classification. RESULTS The strains were fit into 12 different emm-clusters, revealing a diverse phylogenetic origin and, consequently, different mechanisms of infection and escape of the host immune system. Forty-eight emm-types were distinguished in 229 samples, and the 10 most frequently observed types accounted for 69 % of all isolates, indicating a diverse profile of circulating strains comparable to other countries under development. A similar proportion of E and A-C emm-patterns were observed, whereas pattern D was less frequent, indicating that the strains of this collection primarily had a tissue tropism for the throat. In silico analysis of the coverage capacity of StreptInCor, an M protein-conserved regionally based vaccine candidate developed by our group, had a range of 94.5 % to 59.7 %, with a mean of 71.0 % identity between the vaccine antigen and the predicted amino acid sequence of the emm-types included here. CONCLUSIONS This is the first report of S. pyogenes strain characterization in Sao Paulo, one of the largest cities in the world; thus, the strain panel described here is a representative sample for vaccine coverage capacity analysis. Our results enabled evaluation of StreptInCor candidate vaccine coverage capacity against diverse M-types, indicating that the vaccine candidate likely would induce protection against the diverse strains worldwide.
Collapse
Affiliation(s)
- Samar Freschi de Barros
- Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
- Institute for Immunology Investigation, National Institute of Science and Technology, Sao Paulo, 01246-000, Brazil.
| | - Karine Marafigo De Amicis
- Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
- Institute for Immunology Investigation, National Institute of Science and Technology, Sao Paulo, 01246-000, Brazil.
| | - Raquel Alencar
- Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
- Institute for Immunology Investigation, National Institute of Science and Technology, Sao Paulo, 01246-000, Brazil.
| | - Pierre Robert Smeesters
- Laboratoire de Génétique et Physiologie Bactérienne, Institute de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, 1050, Belgium.
- Murdoch Childrens Research Institute, Parkville, 3052, Australia.
| | - Ariel Trunkel
- Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
- Institute for Immunology Investigation, National Institute of Science and Technology, Sao Paulo, 01246-000, Brazil.
| | - Edilberto Postól
- Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
- Institute for Immunology Investigation, National Institute of Science and Technology, Sao Paulo, 01246-000, Brazil.
| | - João Nóbrega Almeida Junior
- Microbiology Laboratory of Clinical Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
| | - Flavia Rossi
- Microbiology Laboratory of Clinical Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
| | | | - Jorge Kalil
- Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
- Institute for Immunology Investigation, National Institute of Science and Technology, Sao Paulo, 01246-000, Brazil.
- Clinical Immunology and Allergy Division, School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
| | - Luiza Guilherme
- Heart Institute (InCor), School of Medicine, University of Sao Paulo, Sao Paulo, 01246-000, Brazil.
- Institute for Immunology Investigation, National Institute of Science and Technology, Sao Paulo, 01246-000, Brazil.
- Laboratory of Immunology, Clinical Hospital, Heart Institute (HC-FMUSP), Av. Dr. Enéas de Carvalho Aguiar, 44, Sao Paulo, 05403-000, Brazil.
| |
Collapse
|
80
|
Abstract
BACKGROUND Group A streptococci (GAS) and other β-hemolytic streptococci (BHS) cause pharyngitis, severe invasive disease and serious nonsuppurative sequelae including rheumatic heart disease and post streptococcal glomerulonephritis. The aim of this study was to assess carriage rates and anti-streptococcal C5a peptidase (anti-SCP) IgG levels and identify epidemiologic factors related to carriage or seropositivity in Australian children. METHODS A throat swab and blood sample were collected for microbiological and serological analysis (anti-SCP IgG) in 542 healthy children aged 0-10 years. Sequence analysis of the SCP gene was performed. Serological analysis used a competitive Luminex Immunoassay designed to preferentially detect functional antibody. RESULTS GAS-positive culture prevalence in throat swabs was 5.0% (range 0-10%), with the highest rate in 5 and 9 years old children. The rate of non-GAS BHS carriage was low (<1%). The scp gene was present in all 22 isolates evaluated. As age of child increased, the rate of carriage increased; odds ratio, 1.14 (1.00, 1.29); P = 0.50. Geometric mean anti-SCP titers increased with each age-band from 2 to 7 years, then plateaued. Age, geographic location and number of children within the household were significantly associated with the presence of anti-SCP antibodies. CONCLUSIONS Children are exposed to GAS and other BHS at a young age, which is important for determining the target age for vaccination to protect before the period of risk.
Collapse
|
81
|
Mortensen R, Nissen TN, Blauenfeldt T, Christensen JP, Andersen P, Dietrich J. Adaptive Immunity against Streptococcus pyogenes in Adults Involves Increased IFN-γ and IgG3 Responses Compared with Children. THE JOURNAL OF IMMUNOLOGY 2015; 195:1657-64. [PMID: 26163588 DOI: 10.4049/jimmunol.1500804] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/18/2015] [Indexed: 12/24/2022]
Abstract
Each year, millions of people are infected with Streptococcus pyogenes, leading to an estimated 500,000 annual deaths worldwide. For unknown reasons, school-aged children have substantially higher infection rates than adults. The goal for this study was to provide, to our knowledge, the first detailed characterization of the human adaptive immune response against S. pyogenes in both children and adults. We report that all adults in our study, as well as most children, showed immunity against the two conserved group A streptococci (GAS) Ags, streptococcal C5a peptidase and immunogenic secreted protein. The response primarily consisted of three subsets of Th1 T cells, in which the TNF-α(+) and IL-2(+)TNF-α(+) subsets were most frequent. Humoral immunity was dominated by IgG1 and IgG3, whereas the Th2-associated IgG4 isotype was only detected at very low amounts. IgG3 levels correlated significantly with IFN-γ, but not with IL-5, IL-13, IL-17, or TNF-α. Interestingly, children showed a similar pattern of Ag-specific cytokine release, but displayed significantly lower levels of IgG3 and IFN-γ compared with adults. Thus, human immune responses against S. pyogenes consist of a robust Th1 cellular memory response in combination with IgG1/IgG3-dominated humoral immunity that increase with age. The significance of these data regarding both the increased GAS infection rate in children and the development of protective GAS vaccines is discussed.
Collapse
Affiliation(s)
- Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen S, Denmark; Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; and
| | | | - Thomas Blauenfeldt
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen S, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; and
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen S, Denmark
| | - Jes Dietrich
- Department of Infectious Disease Immunology, Statens Serum Institut, DK-2300 Copenhagen S, Denmark;
| |
Collapse
|
82
|
Comparative epidemiology of Streptococcus pyogenes emm-types causing invasive and noninvasive infections in French children by use of high-resolution melting-polymerase chain reaction. Pediatr Infect Dis J 2015; 34:557-61. [PMID: 25973933 DOI: 10.1097/inf.0000000000000677] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study aims to analyze the epidemiology of Group A streptococci (GAS) emm-types causing invasive and noninvasive infections in French children. METHODS From September 2009 to May 2011, we analyzed GAS isolates from 585 pharyngitis, 125 invasive infections and, for the first time in France, 32 healthy carriers. M protein gene (emm) typing of the isolates was carried out by a new rapid technique, combining 3 multiplex-polymerase chain reactions (PCRs) coupled to high-resolution melting (HRM) curves, able to detect 13 major emm-types (emm 1, 3, 4, 6, 11, 12, 22, 28, 75, 77, 87, 89 and 102). RESULTS GAS belonging to emm-type 1 were more frequently found among invasive infections than among pharyngitis (24.0% vs. 11.5%, P < 0.001); emm 4 and 89 were more common in pharyngitis than in invasive infections (emm-type 4, 17.4% vs. 6.4%, P = 0.002 and emm-type 89, 9.9% vs. 2.4%, P = 0.006, respectively) and emm 3 and 4 were more common in cases of pharyngitis associated with scarlet fever (21.6% vs. 6.0%, P < 0.001 and 29.3% vs. 14.5%, P < 0.001, respectively). CONCLUSION HRM method enables the rapid emm-typing of a large number of isolates in epidemiological studies. Comparison of GAS causing invasive and noninvasive infections in the same population of children displays an unbalanced repartition of emm-types.
Collapse
|
83
|
Correlates of Protection for M Protein-Based Vaccines against Group A Streptococcus. J Immunol Res 2015; 2015:167089. [PMID: 26101780 PMCID: PMC4458553 DOI: 10.1155/2015/167089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/28/2015] [Accepted: 05/03/2015] [Indexed: 11/17/2022] Open
Abstract
Group A streptococcus (GAS) is known to cause a broad spectrum of illness, from pharyngitis and impetigo, to autoimmune sequelae such as rheumatic heart disease, and invasive diseases. It is a significant cause of infectious disease morbidity and mortality worldwide, but no efficacious vaccine is currently available. Progress in GAS vaccine development has been hindered by a number of obstacles, including a lack of standardization in immunoassays and the need to define human correlates of protection. In this review, we have examined the current immunoassays used in both GAS and other organisms, and explored the various challenges in their implementation in order to propose potential future directions to identify a correlate of protection and facilitate the development of M protein-based vaccines, which are currently the main GAS vaccine candidates.
Collapse
|
84
|
Abstract
BACKGROUND Group A streptococcus (GAS) pharyngitis is associated with high rates of rheumatic heart disease in developing countries. We sought to identify guidelines for empiric treatment of pharyngitis in low-resource settings. To inform the design of GAS vaccines, we determined the emm types associated with pharyngitis among African schoolchildren. METHODS Surveillance for pharyngitis was conducted among children 5-16 years of age attending schools in Bamako, Mali. Students were encouraged to visit a study clinician when they had a sore throat. Enrollees underwent evaluation and throat swab for isolation of GAS. Strains were emm typed by standard methods. RESULTS GAS was isolated from 449 (25.5%) of the 1,759 sore throat episodes. Painful cervical adenopathy was identified in 403 children (89.8%) with GAS infection and was absent in 369 uninfected children (28.2%). Emm type was determined in 396 (88.2%) of the 449 culture-positive children; 70 types were represented and 14 types accounted for 49% of isolates. Based on the proportion of the 449 isolates bearing emm types included in the 30-valent vaccine (31.0%) plus nonvaccine types previously shown to react to vaccine-induced bactericidal antibodies (44.1%), the vaccine could protect against almost 75% of GAS infections among Bamako schoolchildren. CONCLUSIONS Two promising strategies could reduce rheumatic heart disease in low-resource settings. Administering antibiotics to children with sore throat and tender cervical adenopathy could treat most GAS-positive children while reducing use of unnecessary antibiotics for uninfected children. Broad coverage against M types associated with pharyngitis in Bamako schoolchildren might be achieved with the 30-valent GAS vaccine under development.
Collapse
|
85
|
Dale JB, Niedermeyer SE, Agbaosi T, Hysmith ND, Penfound TA, Hohn CM, Pullen M, Bright MI, Murrell DS, Shenep LE, Courtney HS. Protective immunogenicity of group A streptococcal M-related proteins. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:344-50. [PMID: 25630406 PMCID: PMC4340887 DOI: 10.1128/cvi.00795-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/17/2015] [Indexed: 01/30/2023]
Abstract
Many previous studies have focused on the surface M proteins of group A streptococci (GAS) as virulence determinants and protective antigens. However, the majority of GAS isolates express M-related protein (Mrp) in addition to M protein, and both have been shown to be required for optimal virulence. In the current study, we evaluated the protective immunogenicity of Mrp to determine its potential as a vaccine component that may broaden the coverage of M protein-based vaccines. Sequence analyses of 33 mrp genes indicated that there are three families of structurally related Mrps (MrpI, MrpII, and MrpIII). N-terminal peptides of Mrps were cloned, expressed, and purified from M type 2 (M2) (MrpI), M4 (MrpII), and M49 (MrpIII) GAS. Rabbit antisera against the Mrps reacted at high titers with the homologous Mrp, as determined by enzyme-linked immunosorbent assay, and promoted bactericidal activity against GAS emm types expressing Mrps within the same family. Mice passively immunized with rabbit antisera against MrpII were protected against challenge infections with M28 GAS. Assays for Mrp antibodies in serum samples from 281 pediatric subjects aged 2 to 16 indicated that the Mrp immune response correlated with increasing age of the subjects. Affinity-purified human Mrp antibodies promoted bactericidal activity against a number of GAS representing different emm types that expressed an Mrp within the same family but showed no activity against emm types expressing an Mrp from a different family. Our results indicate that Mrps have semiconserved N-terminal sequences that contain bactericidal epitopes which are immunogenic in humans. These findings may have direct implications for the development of GAS vaccines.
Collapse
Affiliation(s)
- James B Dale
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Microbiology, Immunology and Biochemistry, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Shannon E Niedermeyer
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Tina Agbaosi
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Nicholas D Hysmith
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas A Penfound
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Claudia M Hohn
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Matthew Pullen
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Michael I Bright
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Daniel S Murrell
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Lori E Shenep
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | - Harry S Courtney
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA Department of Veterans Affairs Medical Center, Memphis, Tennessee, USA
| |
Collapse
|
86
|
Kuo CF, Tsao N, Cheng MH, Yang HC, Wang YC, Chen YP, Lin KJ. Application of the C3-binding motif of streptococcal pyrogenic exotoxin B to protect mice from invasive group a streptococcal infection. PLoS One 2015; 10:e0117268. [PMID: 25629609 PMCID: PMC4309557 DOI: 10.1371/journal.pone.0117268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/22/2014] [Indexed: 12/27/2022] Open
Abstract
Group A streptococcus (GAS) is an important human pathogen that produces several extracellular exotoxins to facilitate invasion and infection. Streptococcal pyrogenic exotoxin B (SPE B) has been demonstrated to be an important virulence factor of GAS. Our previous studies indicate that SPE B cleaves complement 3 (C3) and inhibits the activation of complement pathways. In this study, we constructed and expressed recombinant fragments of SPE B to examine the C3-binding site of SPE B. Using enzyme-linked immunosorbent assays and pull-down assays, we found that the C-terminal domain, containing amino-acid residues 345–398, of SPE B was the major binding site of human serum C3. We further identified a major, Ala376-Pro398, and a minor C3-binding motif, Gly346-Gly360, that both mediated the binding of C3 complement. Immunization with the C3-binding motifs protected mice against challenge with a lethal dose of non-invasive M49 strain GAS but not invasive M1 strains. To achieve higher efficiency against invasive M1 GAS infection, a combination of synthetic peptides derived from C-terminal epitope of streptolysin S (SLSpp) and from the major C3-binding motif of SPE B (PP6, Ala376-Pro398) was used to elicit specific immune response to those two important streptococcal exotoxins. Death rates and the severity of skin lesions decreased significantly in PP6/SLSpp-immunized mice that were infected with invasive M1 strains of GAS. These results indicate a combination of the C3-binding motif of SPE B and the protective epitope of SLS could be used as a subunit vaccine against invasive M1 strains group A streptococcal infection.
Collapse
Affiliation(s)
- Chih-Feng Kuo
- Department of Nursing, I-Shou University, Kaohsiung City, Taiwan
- * E-mail:
| | - Nina Tsao
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City, Taiwan
| | - Miao-Hui Cheng
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City, Taiwan
| | - Hsiu-Chen Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City, Taiwan
| | - Yu-Chieh Wang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City, Taiwan
| | - Ying-Pin Chen
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City, Taiwan
| | - Kai-Jen Lin
- Department of Pathology, E-DA Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
87
|
Arêas GP, Schuab RBB, Neves FPG, Barros RR. Antimicrobial susceptibility patterns, emm type distribution and genetic diversity of Streptococcus pyogenes recovered in Brazil. Mem Inst Oswaldo Cruz 2014; 109:935-9. [PMID: 25410998 PMCID: PMC4296499 DOI: 10.1590/0074-0276140231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/25/2014] [Indexed: 11/22/2022] Open
Abstract
Streptococcus pyogenes is responsible for a variety of infectious diseases and immunological complications. In this study, 91 isolates of S. pyogenes recovered from oropharynx secretions were submitted to antimicrobial susceptibility testing, emm typing and pulsed-field gel electrophoresis (PFGE) analysis. All isolates were susceptible to ceftriaxone, levofloxacin, penicillin G and vancomycin. Resistance to erythromycin and clindamycin was 15.4%, which is higher than previous reports from this area, while 20.9% of the isolates were not susceptible to tetracycline. The macrolide resistance phenotypes were cMLSB (10) and iMLSB (4). The ermB gene was predominant, followed by the ermA gene. Thirty-two emm types and subtypes were found, but five (emm1, emm4, emm12, emm22, emm81) were detected in 48% of the isolates. Three new emm subtypes were identified (emm1.74, emm58.14, emm76.7). There was a strong association between emm type and PFGE clustering. A variety of PFGE profiles as well as emm types were found among tetracycline and erythromycin-resistant isolates, demonstrating that antimicrobial resistant strains do not result from the expansion of one or a few clones. This study provides epidemiological data that contribute to the development of suitable strategies for the prevention and treatment of such infections in a poorly studied area.
Collapse
Affiliation(s)
| | | | | | - Rosana R Barros
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico,
Universidade Federal Fluminense, Niterói, RJ, Brasil
| |
Collapse
|
88
|
Pan P, Han X, Li F, Fu Q, Gao X, Sun H, Wang L. Detection of serum p53 antibodies from Chinese patients with papillary thyroid carcinoma using phage-SP-ELISA: correlation with clinical parameters. Endocrine 2014; 47:543-9. [PMID: 24682740 DOI: 10.1007/s12020-014-0243-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/13/2014] [Indexed: 01/30/2023]
Abstract
The goal of the present study was to investigate whether p53 antibodies (Abs) could be a relevant marker for papillary thyroid carcinoma (PTC). Three types of enzyme-linked immunosorbent assay (ELISA) methods were developed for the detection of p53 Abs, including p53-ELISA, phage-SS-ELISA, and phage-SP-ELISA. A total of 304 patients, including 117 cases with thyroid adenoma and 187 PTC patients, were enrolled in this study. Expression of p53 protein and mutation in BRAF gene were evaluated in paraffin-embedded tissue from 44 patients with PTC, in order to elucidate their correlations with the presence of p53 Abs. Compared with p53-ELISA and phage-SS-ELISA, phage-SP-ELISA presented the highest detection efficiency of p53 Abs in patients with PTC, and a combination of these three ELISA systems could make the detection of p53 Abs more sensitive than using each of the individual ELISA methods. Furthermore, p53 Abs was positively associated with clinical stage (P = 0.044), node metastasis (P = 0.010), and p53 protein accumulation (P = 0.019). These results indicate that serum p53 Abs could be a useful marker for PTC.
Collapse
Affiliation(s)
- Pengtao Pan
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | | | | | | | | | | | | |
Collapse
|
89
|
Yeaman MR, Filler SG, Schmidt CS, Ibrahim AS, Edwards JE, Hennessey JP. Applying Convergent Immunity to Innovative Vaccines Targeting Staphylococcus aureus. Front Immunol 2014; 5:463. [PMID: 25309545 PMCID: PMC4176462 DOI: 10.3389/fimmu.2014.00463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/10/2014] [Indexed: 12/22/2022] Open
Abstract
Recent perspectives forecast a new paradigm for future “third generation” vaccines based on commonalities found in diverse pathogens or convergent immune defenses to such pathogens. For Staphylococcus aureus, recurring infections and a limited success of vaccines containing S. aureus antigens imply that native antigens induce immune responses insufficient for optimal efficacy. These perspectives exemplify the need to apply novel vaccine strategies to high-priority pathogens. One such approach can be termed convergent immunity, where antigens from non-target organisms that contain epitope homologs found in the target organism are applied in vaccines. This approach aims to evoke atypical immune defenses via synergistic processes that (1) afford protective efficacy; (2) target an epitope from one organism that contributes to protective immunity against another; (3) cross-protect against multiple pathogens occupying a common anatomic or immunological niche; and/or (4) overcome immune subversion or avoidance strategies of target pathogens. Thus, convergent immunity has a potential to promote protective efficacy not usually elicited by native antigens from a target pathogen. Variations of this concept have been mainstays in the history of viral and bacterial vaccine development. A more far-reaching example is the pre-clinical evidence that specific fungal antigens can induce cross-kingdom protection against bacterial pathogens. This trans-kingdom protection has been demonstrated in pre-clinical studies of the recombinant Candida albicans agglutinin-like sequence 3 protein (rAls3) where it was shown that a vaccine containing rAls3 provides homologous protection against C. albicans, heterologous protection against several other Candida species, and convergent protection against several strains of S. aureus. Convergent immunity reflects an intriguing new approach to designing and developing vaccine antigens and is considered here in the context of vaccines to target S. aureus.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; Division of Molecular Medicine, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | - Scott G Filler
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | | | - Ashraf S Ibrahim
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | - John E Edwards
- Department of Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA ; Division of Infectious Diseases, Harbor-UCLA Medical Center , Torrance, CA , USA ; St. John's Cardiovascular Research Center, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , USA
| | | |
Collapse
|
90
|
Williamson DA, Morgan J, Hope V, Fraser JD, Moreland NJ, Proft T, Mackereth G, Lennon D, Baker MG, Carter PE. Increasing incidence of invasive group A streptococcus disease in New Zealand, 2002-2012: a national population-based study. J Infect 2014; 70:127-34. [PMID: 25246363 DOI: 10.1016/j.jinf.2014.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/04/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To analyse the incidence, demographics and molecular epidemiology of invasive group A streptococcal (GAS) disease in New Zealand between 2002 and 2012. METHODS Using laboratory-based surveillance data, invasive GAS isolates were identified from the Institute of Environmental Science and Research, New Zealand. Hospitalization and mortality data were obtained from the New Zealand Ministry of Health. Molecular typing was performed by sequence analysis of the emm gene. RESULTS The incidence of invasive GAS infections increased from 3.9 per 100,000 population in 2002 to 7.9 per 100,000 population (P < 0.001) in 2012. The incidence was highest in the over 75-year age group, and in Pacific peoples. There was temporal variation in emm types associated with invasive GAS disease, with emm1 being the overall predominant emm type. The diversity of emm types varied significantly according to ethnicity. Overall, 59% of GAS isolates were theoretically covered by an experimental M-protein vaccine. CONCLUSIONS Our study provides valuable data on the epidemiology of invasive GAS disease in New Zealand, and represents one of the few studies to assess such longitudinal data across an entire nation. The increase in invasive GAS disease is concerning, and reasons for this should be explored further.
Collapse
Affiliation(s)
- Deborah A Williamson
- Institute of Environmental Science and Research, Wellington, New Zealand; University of Auckland, Auckland, New Zealand.
| | - Julie Morgan
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Virginia Hope
- Institute of Environmental Science and Research, Wellington, New Zealand
| | | | | | | | - Graham Mackereth
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Diana Lennon
- Institute of Environmental Science and Research, Wellington, New Zealand
| | | | - Philip E Carter
- Institute of Environmental Science and Research, Wellington, New Zealand
| |
Collapse
|
91
|
Vaccination with Streptococcus pyogenes nuclease A stimulates a high antibody response but no protective immunity in a mouse model of infection. Med Microbiol Immunol 2014; 204:185-91. [DOI: 10.1007/s00430-014-0353-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/04/2014] [Indexed: 12/26/2022]
|
92
|
Baroux N, D'Ortenzio E, Amédéo N, Baker C, Ali Alsuwayyid B, Dupont-Rouzeyrol M, O'Connor O, Steer A, Smeesters PR. The emm-cluster typing system for Group A Streptococcus identifies epidemiologic similarities across the Pacific region. Clin Infect Dis 2014; 59:e84-92. [PMID: 24965347 DOI: 10.1093/cid/ciu490] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Group A Streptococcus (GAS)-related disease is responsible for high mortality and morbidity in the Pacific region. The high diversity of circulating strains in this region has hindered vaccine development due to apparently low vaccine coverage of type-specific vaccines. METHOD Prospective passive surveillance of all GAS isolates in New Caledonia was undertaken in 2012 using emm typing and emm-cluster typing. Molecular data were compared with the results from a prior study undertaken in the same country and with data from 2 other Pacific countries, Fiji and Australia. RESULTS A high incidence of invasive infection was demonstrated at 43 cases per 100 000 inhabitants (95% confidence interval, 35-52 cases per 100 000 inhabitants). Three hundred eighteen GAS isolates belonging to 47 different emm types were collected. In Noumea, only 30% of the isolates recovered in 2012 belonged to an emm type that was present in the same city in 2006, whereas 69% of the isolates collected in 2012 belonged to an emm cluster present in 2006. When comparing New Caledonian, Australian, and Fijian data, very few common emm types were found, but 79%-86% of the isolates from each country belonged to an emm cluster present in all 3 countries. A vaccine that could protect against the 10 most frequent emm clusters in the Pacific region would potentially provide coverage ranging from 83% to 92%. CONCLUSIONS This study confirms the high disease burden of GAS infection in New Caledonia and supports the added value of the emm-cluster typing system to analyze GAS epidemiology and to help inform global GAS vaccine formulation.
Collapse
Affiliation(s)
- Noémie Baroux
- Epidemiology of Infectious Diseases Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Eric D'Ortenzio
- Epidemiology of Infectious Diseases Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Nathalie Amédéo
- Epidemiology of Infectious Diseases Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Ciara Baker
- Centre for International Child Health, University of Melbourne Group A Streptococcus Research Group, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Barakat Ali Alsuwayyid
- Group A Streptococcus Research Group, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Myrielle Dupont-Rouzeyrol
- Dengue and Other Arboviruses Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Olivia O'Connor
- Dengue and Other Arboviruses Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Andrew Steer
- Centre for International Child Health, University of Melbourne Group A Streptococcus Research Group, Murdoch Childrens Research Institute, Melbourne, Australia Department of General Medicine, Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Pierre R Smeesters
- Centre for International Child Health, University of Melbourne Group A Streptococcus Research Group, Murdoch Childrens Research Institute, Melbourne, Australia Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
93
|
Moreland NJ, Waddington CS, Williamson DA, Sriskandan S, Smeesters PR, Proft T, Steer AC, Walker MJ, Baker EN, Baker MG, Lennon D, Dunbar R, Carapetis J, Fraser JD. Working towards a Group A Streptococcal vaccine: Report of a collaborative Trans-Tasman workshop. Vaccine 2014; 32:3713-20. [DOI: 10.1016/j.vaccine.2014.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/01/2014] [Indexed: 11/25/2022]
|
94
|
Characterization of immunological cross-reactivity between enterotoxigenic Escherichia coli heat-stable toxin and human guanylin and uroguanylin. Infect Immun 2014; 82:2913-22. [PMID: 24778111 DOI: 10.1128/iai.01749-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) expressing the heat-stable toxin (ST) (human-type [STh] and porcine-type [STp] variants) is among the five most important enteric pathogens in young children living in low- and middle-income countries. ST mediates diarrheal disease through activation of the guanylate cyclase C (GC-C) receptor and is an attractive vaccine target with the potential to confer protection against a wide range of ETEC strains. However, immunological cross-reactivity to the endogenous GC-C ligands guanylin and uroguanylin is a major concern because of the similarities to ST in amino acid sequence, structure, and function. We have investigated the presence of similar epitopes on STh, STp, guanylin, and uroguanylin by analyzing these peptides in eight distinct competitive enzyme-linked immunosorbent assays (ELISAs). A fraction (27%) of a polyclonal anti-STh antibody and an anti-STh monoclonal antibody (MAb) cross-reacted with uroguanylin, the latter with a 73-fold-lower affinity. In contrast, none of the antibodies raised against STp, one polyclonal antibody and three MAbs, cross-reacted with the endogenous peptides. Antibodies raised against guanylin and uroguanylin showed partial cross-reactivity with the ST peptides. Our results demonstrate, for the first time, that immunological cross-reactions between ST and the endogenous peptides can occur. However, the partial nature and low affinity of the observed cross-reactions suggest that the risk of adverse effects from a future ST vaccine may be low. Furthermore, our results suggest that this risk may be reduced or eliminated by basing an ST immunogen on STp or a selectively mutated variant of STh.
Collapse
|
95
|
Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014. [PMID: 24696436 DOI: 10.1128/cmr.00101-13)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
|
96
|
Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML, Nizet V. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014; 27:264-301. [PMID: 24696436 PMCID: PMC3993104 DOI: 10.1128/cmr.00101-13] [Citation(s) in RCA: 566] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
Affiliation(s)
- Mark J. Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Timothy C. Barnett
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Jason D. McArthur
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jason N. Cole
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Anna Henningham
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - K. S. Sriprakash
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Martina L. Sanderson-Smith
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
97
|
Tamayo E, Montes M, García-Arenzana JM, Pérez-Trallero E. Streptococcus pyogenes emm-types in northern Spain; population dynamics over a 7-year period. J Infect 2014; 68:50-7. [DOI: 10.1016/j.jinf.2013.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 11/24/2022]
|
98
|
Chuan YP, Wibowo N, Connors NK, Wu Y, Hughes FK, Batzloff MR, Lua LH, Middelberg AP. Microbially synthesized modular virus-like particles and capsomeres displaying group A streptococcus hypervariable antigenic determinants. Biotechnol Bioeng 2013; 111:1062-70. [DOI: 10.1002/bit.25172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/28/2013] [Accepted: 12/02/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Yap P. Chuan
- Australian Institute for Bioengineering and Nanotechnology; Centre for Biomolecular Engineering; University of Queensland; St. Lucia QLD 4072 Australia
| | - Nani Wibowo
- Australian Institute for Bioengineering and Nanotechnology; Centre for Biomolecular Engineering; University of Queensland; St. Lucia QLD 4072 Australia
| | - Natalie K. Connors
- Australian Institute for Bioengineering and Nanotechnology; Centre for Biomolecular Engineering; University of Queensland; St. Lucia QLD 4072 Australia
| | - Yang Wu
- Australian Institute for Bioengineering and Nanotechnology; Centre for Biomolecular Engineering; University of Queensland; St. Lucia QLD 4072 Australia
| | - Fiona K. Hughes
- Australian Institute for Bioengineering and Nanotechnology; Centre for Biomolecular Engineering; University of Queensland; St. Lucia QLD 4072 Australia
| | - Michael R. Batzloff
- Institute for Glycomics, Gold Coast Campus, Griffith University; Gold Coast QLD Australia
| | - Linda H.L. Lua
- Protein Expression Facility; University of Queensland; St. Lucia QLD Australia
| | - Anton P.J. Middelberg
- Australian Institute for Bioengineering and Nanotechnology; Centre for Biomolecular Engineering; University of Queensland; St. Lucia QLD 4072 Australia
| |
Collapse
|
99
|
Lin JN, Chang LL, Lai CH, Lin HH, Chen YH. Emergence of Streptococcus pyogenes emm102 causing toxic shock syndrome in Southern Taiwan during 2005-2012. PLoS One 2013; 8:e81700. [PMID: 24349115 PMCID: PMC3857779 DOI: 10.1371/journal.pone.0081700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/15/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Streptococcal toxic shock syndrome (STSS) is an uncommon but life-threatening disease caused by Streptococcus pyogenes. METHODS To understand the clinical and molecular characteristics of STSS, we analyzed clinical data and explored the emm types, superantigen genes, and pulsed-field gel electrophoresis of causative S. pyogenes isolates obtained between 2005 and 2012. RESULTS In total, 53 patients with STSS were included in this study. The median age of the patients was 57 years (range: 9-83 years), and 81.1% were male. The most prevalent underlying disease was diabetes mellitus (45.3%). Skin and soft-tissue infection accounted for 86.8% of STSS. The overall mortality rate was 32.1%. Underlying diseases had no statistical impact on mortality. A total of 19 different emm types were identified. The most prevalent emm type was emm102 (18.9%), followed by emm11 (17%), emm1 (11.3%), emm87 (9.4%), and emm89 (7.5%). There was no statistically significant association between emm type and a fatal outcome. Among the superantigen genes, speB was the most frequently detected one (92.5%), followed by smeZ (90.6%), speG (81.1%), speC (39.6%), and speF (39.6%). The majority of emm102 strains were found to have speB, speC, speG, and smeZ. The presence of speG was negatively associated with a fatal outcome (P = 0.045). CONCLUSIONS Our surveillance revealed the emergence of uncommon emm types, particularly emm102, causing STSS in southern Taiwan. Characterization of clinical, epidemiological, and molecular characteristics of STSS will improve our understanding of this life-threatening disease.
Collapse
Affiliation(s)
- Jiun-Nong Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Lin-Li Chang
- Department of Microbiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hsu Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hsi-Hsun Lin
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Hsu Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
100
|
Guilherme L, Postol E, Ferreira FM, DeMarchi LMF, Kalil J. StreptInCor: a model of anti-Streptococcus pyogenes vaccine reviewed. AUTO- IMMUNITY HIGHLIGHTS 2013; 4:81-5. [PMID: 26000146 PMCID: PMC4389027 DOI: 10.1007/s13317-013-0053-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 07/13/2013] [Indexed: 11/25/2022]
Abstract
Streptococcus pyogenes infections remain a health problem in multiple countries because of poststreptococcal sequelae, such as rheumatic fever and rheumatic heart disease. The epidemiological growth of streptococcal diseases in undeveloped and developing countries has encouraged many groups to study vaccine candidates for preventing group A streptococcus infections. We developed a vaccine epitope (StreptInCor) composed of 55 amino acid residues of the C-terminal portion of the M protein that encompasses both T and B cell protective epitopes. Using human blood samples, we showed that the StreptInCor epitope is recognized by individuals bearing different HLA class II molecules and could be considered a universal vaccine epitope. In addition, the StreptInCor molecular structure was solved by nuclear magnetic resonance spectroscopy, and a series of structural stability experiments was performed to elucidate its folding/unfolding mechanism. Using BALB-c and HLA class II transgenic mice, we evaluated the immune response over an extended period and found that StreptInCor was able to induce a robust immune response in both models. No cross-reaction was observed against cardiac proteins. The safety of the vaccine epitope was evaluated by analyzing histopathology, and no autoimmune or pathological reactions were observed in the heart or other organs. Vaccinated BALB/c mice challenged with a virulent strain of S. pyogenes had 100 % survival over 30 days. Taking all results into account, StreptInCor could be a safe and effective vaccine against streptococcus-induced disease.
Collapse
Affiliation(s)
- Luiza Guilherme
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Immunology Investigation, National Institute of Science and Technology, University of São Paulo, São Paulo, Brazil
- Laboratório de Imunologia, Instituto do Coração (HC-FMUSP), Av. Dr. Eneas de Carvalho Aguiar, 44, São Paulo, SP 05403–903 Brazil
| | - Edilberto Postol
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Immunology Investigation, National Institute of Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Frederico Moraes Ferreira
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Immunology Investigation, National Institute of Science and Technology, University of São Paulo, São Paulo, Brazil
| | - Lea M. F. DeMarchi
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Immunology Investigation, National Institute of Science and Technology, University of São Paulo, São Paulo, Brazil
- Clinical Immunology and Allergy Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|