51
|
Ma J, Wang Y, Liu J. Bioprinting of 3D tissues/organs combined with microfluidics. RSC Adv 2018; 8:21712-21727. [PMID: 35541704 PMCID: PMC9081268 DOI: 10.1039/c8ra03022g] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022] Open
Abstract
Accompanied by the increasing demand for organ transplants and personalized medicine, recent years have witnessed great developments in the regeneration of tissues/organs, which has benefited from various manufacturing technologies, especially 3D bioprinting. In 3D bioprinting, according to the morphogenesis, cellular microenvironment, and biological functions of the native tissues/organs, cells and biomaterials are printed by layer-by-layer assembly to form 3D bio-functional units. However, there are still substantial differences between existing 3D printed constructs and actual tissues and organs, especially in microscale structures such as vascular networks. By manipulating controllable fluids carrying biomolecules, cells, organisms, or chemical agents, microfluidic techniques aim to integrate biological or chemical functional units into a chip. With its features of biocompatibility, flexible manipulation, and scale integration on the micro/nanoscale, microfluidics has been a tool that has enabled the generation of micro-tissues/organs with precise configurations. With the inspiration of these two technologies, there have been efforts to fabricate functional living tissues and artificial organs with complex structures via a combination of 3D bioprinting and microfluidics, which may lead to unexpected effects. In this review, we discuss advances in microfluidics-assisted bioprinting in the engineering of tissues/organs and provide future perspectives for this combination in the generation of highly biomimetic tissues and organs in vitro.
Collapse
Affiliation(s)
- Jingyun Ma
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University Dalian 116011 China +86-411-83635963-2170
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Yachen Wang
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University Dalian 116011 China +86-411-83635963-2170
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University Dalian 116011 China
| | - Jing Liu
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University Dalian 116011 China +86-411-83635963-2170
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University Dalian 116011 China
| |
Collapse
|
52
|
Hassanzadeh P, Atyabi F, Dinarvand R. Tissue engineering: Still facing a long way ahead. J Control Release 2018; 279:181-197. [DOI: 10.1016/j.jconrel.2018.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023]
|
53
|
Centeno EGZ, Cimarosti H, Bithell A. 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Mol Neurodegener 2018; 13:27. [PMID: 29788997 PMCID: PMC5964712 DOI: 10.1186/s13024-018-0258-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), affect millions of people every year and so far, there are no therapeutic cures available. Even though animal and histological models have been of great aid in understanding disease mechanisms and identifying possible therapeutic strategies, in order to find disease-modifying solutions there is still a critical need for systems that can provide more predictive and physiologically relevant results. One possible avenue is the development of patient-derived models, e.g. by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), which can then be differentiated into any cell type for modelling. These systems contain key genetic information from the donors, and therefore have enormous potential as tools in the investigation of pathological mechanisms underlying disease phenotype, and progression, as well as in drug testing platforms. hiPSCs have been widely cultured in 2D systems, but in order to mimic human brain complexity, 3D models have been proposed as a more advanced alternative. This review will focus on the use of patient-derived hiPSCs to model AD, PD, HD and ALS. In brief, we will cover the available stem cells, types of 2D and 3D culture systems, existing models for neurodegenerative diseases, obstacles to model these diseases in vitro, and current perspectives in the field.
Collapse
Affiliation(s)
- Eduarda G Z Centeno
- Department of Biotechnology, Federal University of Pelotas, Campus Capão do Leão, Pelotas, RS, 96160-000, Brazil.,Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil.
| | - Angela Bithell
- School of Pharmacy, University of Reading, Whiteknights Campus, Reading, RG6 6UB, UK.
| |
Collapse
|
54
|
O'Grady BJ, Wang JX, Faley SL, Balikov DA, Lippmann ES, Bellan LM. A Customizable, Low-Cost Perfusion System for Sustaining Tissue Constructs. SLAS Technol 2018; 23:592-598. [PMID: 29787331 DOI: 10.1177/2472630318775059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The fabrication of engineered vascularized tissues and organs requiring sustained, controlled perfusion has been facilitated by the development of several pump systems. Currently, researchers in the field of tissue engineering require the use of pump systems that are in general large, expensive, and generically designed. Overall, these pumps often fail to meet the unique demands of perfusing clinically useful tissue constructs. Here, we describe a pumping platform that overcomes these limitations and enables scalable perfusion of large, three-dimensional hydrogels. We demonstrate the ability to perfuse multiple separate channels inside hydrogel slabs using a preprogrammed schedule that dictates pumping speed and time. The use of this pump system to perfuse channels in large-scale engineered tissue scaffolds sustained cell viability over several weeks.
Collapse
Affiliation(s)
- Brian J O'Grady
- 1 Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.,2 Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
| | - Jason X Wang
- 3 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Shannon L Faley
- 1 Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Daniel A Balikov
- 3 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- 3 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,4 Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Leon M Bellan
- 1 Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.,2 Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA.,3 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
55
|
Hayat Z, El Abed AI. High-Throughput Optofluidic Acquisition of Microdroplets in Microfluidic Systems. MICROMACHINES 2018; 9:E183. [PMID: 30424116 PMCID: PMC6187520 DOI: 10.3390/mi9040183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 12/24/2022]
Abstract
Droplet optofluidics technology aims at manipulating the tiny volume of fluids confined in micro-droplets with light, while exploiting their interaction to create "digital" micro-systems with highly significant scientific and technological interests. Manipulating droplets with light is particularly attractive since the latter provides wavelength and intensity tunability, as well as high temporal and spatial resolution. In this review study, we focus mainly on recent methods developed in order to monitor real-time analysis of droplet size and size distribution, active merging of microdroplets using light, or to use microdroplets as optical probes.
Collapse
Affiliation(s)
- Zain Hayat
- Laboratoire de Photonique Quantique et Moléculaire, UMR 8537, Ecole Normale Supérieure Paris Saclay, CentraleSupélec, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan, France.
| | - Abdel I El Abed
- Laboratoire de Photonique Quantique et Moléculaire, UMR 8537, Ecole Normale Supérieure Paris Saclay, CentraleSupélec, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan, France.
| |
Collapse
|
56
|
Kim D, Jo A, Imani KBC, Kim D, Chung JW, Yoon J. Microfluidic Fabrication of Multistimuli-Responsive Tubular Hydrogels for Cellular Scaffolds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4351-4359. [PMID: 29553747 DOI: 10.1021/acs.langmuir.8b00453] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Stimuli-responsive hydrogel microfibers and microtubes are in great demand for biomedical applications due to their similarity to the native extracellular matrix. In this study, we prepared pH- and temperature-responsive hydrogel microfibers and microtubes using a microfluidic device through alginate-templated photopolymerization. Hydrogel monomer solutions containing N-isopropylacrylamide (NIPAm) and sodium acrylate (SA) or allyl amine (AA) were irradiated with UV light to invoke in situ photopolymerization. A repulsive force between the ionized SA or AA groups caused by protonation/deprotonation of the acrylate or amine groups, respectively, led to changes in the diameters and wall thicknesses of the fibers and/or tubes depending on the pH of the medium. Poly(NIPAm) is a well-known thermally responsive polymer wherein the NIPAm-based copolymer microfibers exhibited a thermal behavior close to the lower critical solution temperature. We have demonstrated that these multistimuli-responsive volume changes are fully reversible and repeatable. Furthermore, the positively charged microfibers were shown to exhibit cell adhesion, and the number of cells attached to the microfibers could be further increased by supplying nutrients, presenting the possibility of their application in tissue engineering and other biomedical fields.
Collapse
Affiliation(s)
| | | | - Kusuma Betha Cahaya Imani
- Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials , Pusan National University , 2 Busandaehak-ro 63 beon-gil , Geumjeong-gu, Busan , 46241 , Republic of Korea
| | - Dowan Kim
- Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials , Pusan National University , 2 Busandaehak-ro 63 beon-gil , Geumjeong-gu, Busan , 46241 , Republic of Korea
| | | | - Jinhwan Yoon
- Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials , Pusan National University , 2 Busandaehak-ro 63 beon-gil , Geumjeong-gu, Busan , 46241 , Republic of Korea
| |
Collapse
|
57
|
Lopa S, Mondadori C, Mainardi VL, Talò G, Costantini M, Candrian C, Święszkowski W, Moretti M. Translational Application of Microfluidics and Bioprinting for Stem Cell-Based Cartilage Repair. Stem Cells Int 2018; 2018:6594841. [PMID: 29535776 PMCID: PMC5838503 DOI: 10.1155/2018/6594841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells. Here, we discuss the use of microfluidics and bioprinting approaches for the translation of stem cell-based therapy for cartilage repair in clinics. In particular, we will focus on the optimization of hydrogel-based materials to mimic the articular cartilage triggered by their use as bioinks in 3D bioprinting applications, on the screening of biochemical and biophysical factors through microfluidic devices to enhance stem cell chondrogenesis, and on the use of microfluidic technology to generate implantable constructs with a complex geometry. Finally, we will describe some new bioprinting applications that pave the way to the clinical use of stem cell-based therapies, such as scaffold-free bioprinting and the development of a 3D handheld device for the in situ repair of cartilage defects.
Collapse
Affiliation(s)
- Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Carlotta Mondadori
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Valerio Luca Mainardi
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Laboratory of Biological Structures Mechanics-Chemistry, Material and Chemical Engineering Department “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Giuseppe Talò
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Marco Costantini
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Christian Candrian
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Unità di Traumatologia e Ortopedia-ORL, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| |
Collapse
|
58
|
Visser CW, Kamperman T, Karbaat LP, Lohse D, Karperien M. In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials. SCIENCE ADVANCES 2018; 4:eaao1175. [PMID: 29399628 PMCID: PMC5792224 DOI: 10.1126/sciadv.aao1175] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/03/2018] [Indexed: 05/18/2023]
Abstract
Microfluidic chips provide unparalleled control over droplets and jets, which have advanced all natural sciences. However, microfluidic applications could be vastly expanded by increasing the per-channel throughput and directly exploiting the output of chips for rapid additive manufacturing. We unlock these features with in-air microfluidics, a new chip-free platform to manipulate microscale liquid streams in the air. By controlling the composition and in-air impact of liquid microjets by surface tension-driven encapsulation, we fabricate monodisperse emulsions, particles, and fibers with diameters of 20 to 300 μm at rates that are 10 to 100 times higher than chip-based droplet microfluidics. Furthermore, in-air microfluidics uniquely enables module-based production of three-dimensional (3D) multiscale (bio)materials in one step because droplets are partially solidified in-flight and can immediately be printed onto a substrate. In-air microfluidics is cytocompatible, as demonstrated by additive manufacturing of 3D modular constructs with tailored microenvironments for multiple cell types. Its in-line control, high throughput and resolution, and cytocompatibility make in-air microfluidics a versatile platform technology for science, industry, and health care.
Collapse
Affiliation(s)
- Claas Willem Visser
- Physics of Fluids Group, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Tom Kamperman
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Lisanne P. Karbaat
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| |
Collapse
|
59
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
60
|
Mofrad AZ, Mashayekhan S, Bastani D. Simulation of the effects of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a channeled scaffold for engineering myocardium. Math Biosci 2017; 294:160-171. [PMID: 28919576 DOI: 10.1016/j.mbs.2017.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/02/2017] [Accepted: 09/11/2017] [Indexed: 11/17/2022]
Abstract
This study proposes a mathematical model to evaluate the impact of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a 3D cardiac construct using computational fluid dynamics (CFD). Flow equations, oxygen balance equation and cell balance equation were solved using special initial and boundary conditions. The modeling results revealed that 55% increase in cardiac cell density occurred by using 6.4% perfluorocarbon oxygen carrier (PFC) compared to pure culture medium without PFC supplementation. Moreover, the effects of the scaffold geometry on cell density were examined by changing the channel numbers and the construct length. A 30% increase in the average cells density was observed by increasing the channel numbers from 37 to 145. Furthermore, the average cell density was increased 23% by decreasing the scaffold length from 0.5 to 0.2 cm length. Overall, the average cell density of cardiac cells can be increased 2-fold by using PFC oxygen carrier and optimizing the scaffold's geometry, simultaneously.
Collapse
Affiliation(s)
- Alireza Zehi Mofrad
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, 11365-8639, Iran.
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, 11365-8639, Iran.
| | - Dariush Bastani
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, 11365-8639, Iran.
| |
Collapse
|
61
|
Tseng TC, Hsieh FY, Theato P, Wei Y, Hsu SH. Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs. Biomaterials 2017; 133:20-28. [DOI: 10.1016/j.biomaterials.2017.04.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/22/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022]
|
62
|
Blutt SE, Broughman JR, Zou W, Zeng XL, Karandikar UC, In J, Zachos NC, Kovbasnjuk O, Donowitz M, Estes MK. Gastrointestinal microphysiological systems. Exp Biol Med (Maywood) 2017; 242:1633-1642. [PMID: 28534432 DOI: 10.1177/1535370217710638] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gastrointestinal diseases are a significant health care and economic burden. Prevention and treatment of these diseases have been limited by the available human biologic models. Microphysiological systems comprise organ-specific human cultures that recapitulate many structural, biological, and functional properties of the organ in smaller scale including aspects of flow, shear stress and chemical gradients. The development of intestinal microphysiological system platforms represents a critical component in improving our understanding, prevention, and treatment of gastrointestinal diseases. This minireview discusses: shortcomings of classical cell culture models of the gastrointestinal tract; human intestinal enteroids as a new model and their advantages compared to cell lines; why intestinal microphysiological systems are needed; potential functional uses of intestinal microphysiological systems in areas of drug development and modeling acute and chronic diseases; and current challenges in the development of intestinal microphysiological systems. Impact statement The development of a gastrointestinal MPS has the potential to facilitate the understanding of GI physiology. An ultimate goal is the integration of the intestinal MPS with other organ MPS. The development and characterization of nontransformed human intestinal cultures for use in MPS have progressed significantly since the inception of the MPS program in 2012, and these cultures are a key component of advancing MPS. Continued efforts are needed to optimize MPS to comprehensively and accurately recapitulate the complexity of the intestinal epithelium within intestinal tissue. These systems will need to include peristalsis, flow, and oxygen gradients, with incorporation of vascular, immune, and nerve cells. Regional cellular organization of crypt and villus areas will also be necessary to better model complete intestinal structure.
Collapse
Affiliation(s)
- Sarah E Blutt
- 1 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Broughman
- 1 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Winnie Zou
- 1 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi-Lei Zeng
- 1 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Umesh C Karandikar
- 1 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julie In
- 2 Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nicholas C Zachos
- 2 Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Olga Kovbasnjuk
- 2 Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mark Donowitz
- 2 Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mary K Estes
- 1 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.,3 Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
63
|
Ugolini GS, Visone R, Redaelli A, Moretti M, Rasponi M. Generating Multicompartmental 3D Biological Constructs Interfaced through Sequential Injections in Microfluidic Devices. Adv Healthc Mater 2017; 6. [PMID: 28267277 DOI: 10.1002/adhm.201601170] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/02/2017] [Indexed: 01/09/2023]
Abstract
A novel technique is presented for molding and culturing composite 3D cellular constructs within microfluidic channels. The method is based on the use of removable molding polydimethylsiloxane (PDMS) inserts, which allow to selectively and incrementally generate composite 3D constructs featuring different cell types and/or biomaterials, with a high spatial control. The authors generate constructs made of either stacked hydrogels, with uniform horizontal interfaces, or flanked hydrogels with vertical interfaces. The authors also show how this technique can be employed to create custom-shaped endothelial barriers and monolayers directly interfaced with 3D cellular constructs. This method dramatically improves the significance of in vitro 3D biological models, enhancing mimicry and enabling for controlled studies of complex biological districts.
Collapse
Affiliation(s)
- Giovanni Stefano Ugolini
- Department of Electronics; Information and Bioengineering; Politecnico di Milano; 20133 Milano Italy
| | - Roberta Visone
- Department of Electronics; Information and Bioengineering; Politecnico di Milano; 20133 Milano Italy
| | - Alberto Redaelli
- Department of Electronics; Information and Bioengineering; Politecnico di Milano; 20133 Milano Italy
| | - Matteo Moretti
- Cell and Tissue Engineering Lab; IRCCS Istituto Ortopedico Galeazzi; 20161 Milano Italy
- Regenerative Medicine Technologies Lab; Ente Ospedaliero Cantonale; 6900 Lugano Switzerland
- Swiss Institute for Regenerative Medicine; 6900 Lugano Switzerland
- Cardiocentro Ticino; 6900 Lugano Switzerland
| | - Marco Rasponi
- Department of Electronics; Information and Bioengineering; Politecnico di Milano; 20133 Milano Italy
| |
Collapse
|
64
|
Ugolini GS, Cruz-Moreira D, Visone R, Redaelli A, Rasponi M. Microfabricated Physiological Models for In Vitro Drug Screening Applications. MICROMACHINES 2016; 7:E233. [PMID: 30404405 PMCID: PMC6189704 DOI: 10.3390/mi7120233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
Microfluidics and microfabrication have recently been established as promising tools for developing a new generation of in vitro cell culture microdevices. The reduced amounts of reagents employed within cell culture microdevices make them particularly appealing to drug screening processes. In addition, latest advancements in recreating physiologically relevant cell culture conditions within microfabricated devices encourage the idea of using such advanced biological models in improving the screening of drug candidates prior to in vivo testing. In this review, we discuss microfluidics-based models employed for chemical/drug screening and the strategies to mimic various physiological conditions: fine control of 3D extra-cellular matrix environment, physical and chemical cues provided to cells and organization of co-cultures. We also envision future directions for achieving multi-organ microfluidic devices.
Collapse
Affiliation(s)
- Giovanni Stefano Ugolini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Daniela Cruz-Moreira
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy.
| |
Collapse
|
65
|
Three-dimensional cell culture models for investigating human viruses. Virol Sin 2016; 31:363-379. [PMID: 27822716 PMCID: PMC7090760 DOI: 10.1007/s12250-016-3889-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.
Collapse
|
66
|
4D Bioprinting for Biomedical Applications. Trends Biotechnol 2016; 34:746-756. [DOI: 10.1016/j.tibtech.2016.03.004] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 11/23/2022]
|
67
|
Bersini S, Yazdi IK, Talò G, Shin SR, Moretti M, Khademhosseini A. Cell-microenvironment interactions and architectures in microvascular systems. Biotechnol Adv 2016; 34:1113-1130. [PMID: 27417066 DOI: 10.1016/j.biotechadv.2016.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/02/2016] [Accepted: 07/09/2016] [Indexed: 02/06/2023]
Abstract
In the past decade, significant advances have been made in the design and optimization of novel biomaterials and microfabrication techniques to generate vascularized tissues. Novel microfluidic systems have facilitated the development and optimization of in vitro models for exploring the complex pathophysiological phenomena that occur inside a microvascular environment. To date, most of these models have focused on engineering of increasingly complex systems, rather than analyzing the molecular and cellular mechanisms that drive microvascular network morphogenesis and remodeling. In fact, mutual interactions among endothelial cells (ECs), supporting mural cells and organ-specific cells, as well as between ECs and the extracellular matrix, are key driving forces for vascularization. This review focuses on the integration of materials science, microengineering and vascular biology for the development of in vitro microvascular systems. Various approaches currently being applied to study cell-cell/cell-matrix interactions, as well as biochemical/biophysical cues promoting vascularization and their impact on microvascular network formation, will be identified and discussed. Finally, this review will explore in vitro applications of microvascular systems, in vivo integration of transplanted vascularized tissues, and the important challenges for vascularization and controlling the microcirculatory system within the engineered tissues, especially for microfabrication approaches. It is likely that existing models and more complex models will further our understanding of the key elements of vascular network growth, stabilization and remodeling to translate basic research principles into functional, vascularized tissue constructs for regenerative medicine applications, drug screening and disease models.
Collapse
Affiliation(s)
- Simone Bersini
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Iman K Yazdi
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Giuseppe Talò
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Su Ryon Shin
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale, Lugano, Switzerland; Swiss Institute for Regenerative Medicine, Lugano, Switzerland; Cardiocentro Ticino, Lugano, Switzerland.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia; College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
68
|
Schuster E, Sott K, Ström A, Altskär A, Smisdom N, Gebäck T, Lorén N, Hermansson AM. Interplay between flow and diffusion in capillary alginate hydrogels. SOFT MATTER 2016; 12:3897-3907. [PMID: 27021649 DOI: 10.1039/c6sm00294c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Alginate gels with naturally occurring macroscopic capillaries have been used as a model system to study the interplay between laminar flow and diffusion of nanometer-sized solutes in real time. Calcium alginate gels that contain homogeneously distributed parallel-aligned capillary structures were formed by external addition of crosslinking ions to an alginate sol. The effects of different flow rates (0, 1, 10, 50 and 100 μl min(-1)) and three different probes (fluorescein, 10 kDa and 500 kDa fluorescein isothiocyanate-dextran) on the diffusion rates of the solutes across the capillary wall and in the bulk gel in between the capillaries were investigated using confocal laser scanning microscopy. The flow in the capillaries was produced using a syringe pump that was connected to the capillaries via a tube. Transmission electron microscopy revealed an open aggregated structure close to the capillary wall, followed by an aligned network layer and the isotropic network of the bulk gel. The most pronounced effect was observed for the 1 nm-diameter fluorescein probe, for which an increase in flow rate increased the mobility of the probe in the gel. Fluorescence recovery after photobleaching confirmed increased mobility close to the channel, with increasing flow rate. Mobility maps derived using raster image correlation spectroscopy showed that the layer with the lowest mobility corresponded to the anisotropic layer of ordered network chains. The combination of microscopy techniques used in the present study elucidates the flow and diffusion behaviors visually, qualitatively and quantitatively, and represents a promising tool for future studies of mass transport in non-equilibrium systems.
Collapse
Affiliation(s)
- Erich Schuster
- Food and Bioscience, SP - Technical Research Institute of Sweden, Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Fan Y, Nguyen DT, Akay Y, Xu F, Akay M. Engineering a Brain Cancer Chip for High-throughput Drug Screening. Sci Rep 2016; 6:25062. [PMID: 27151082 PMCID: PMC4858657 DOI: 10.1038/srep25062] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/05/2016] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant of all human primary brain cancers, in which drug treatment is still one of the most effective treatments. However, existing drug discovery and development methods rely on the use of conventional two-dimensional (2D) cell cultures, which have been proven to be poor representatives of native physiology. Here, we developed a novel three-dimensional (3D) brain cancer chip composed of photo-polymerizable poly(ethylene) glycol diacrylate (PEGDA) hydrogel for drug screening. This chip can be produced after a few seconds of photolithography and requires no silicon wafer, replica molding, and plasma bonding like microfluidic devices made of poly(dimethylsiloxane) (PDMS). We then cultured glioblastoma cells (U87), which formed 3D brain cancer tissues on the chip, and used the GBM chip to perform combinatorial treatment of Pitavastatin and Irinotecan. The results indicate that this chip is capable of high-throughput GBM cancer spheroids formation, multiple-simultaneous drug administration, and a massive parallel testing of drug response. Our approach is easily reproducible, and this chip has the potential to be a powerful platform in cases such as high-throughput drug screening and prolonged drug release. The chip is also commercially promising for other clinical applications, including 3D cell culture and micro-scale tissue engineering.
Collapse
Affiliation(s)
- Yantao Fan
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Room 2027, Houston, TX, USA
| | - Duong Thanh Nguyen
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Room 2027, Houston, TX, USA
| | - Yasemin Akay
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Room 2027, Houston, TX, USA
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an 710049, China
| | - Metin Akay
- Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Room 2027, Houston, TX, USA
| |
Collapse
|
70
|
Leijten J, Rouwkema J, Zhang YS, Nasajpour A, Dokmeci MR, Khademhosseini A. Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2130-45. [PMID: 27101419 PMCID: PMC4895865 DOI: 10.1002/smll.201501798] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/16/2015] [Indexed: 05/19/2023]
Abstract
Tissue engineering has the potential to revolutionize the health care industry. Delivering on this promise requires the generation of efficient, controllable and predictable implants. The integration of nano- and microtechnologies into macroscale regenerative biomaterials plays an essential role in the generation of such implants, by enabling spatiotemporal control of the cellular microenvironment. Here we review the role, function and progress of a wide range of nano- and microtechnologies that are driving the advancements in the field of tissue engineering.
Collapse
Affiliation(s)
- Jeroen Leijten
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jeroen Rouwkema
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Yu Shrike Zhang
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Amir Nasajpour
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Mehmet Remzi Dokmeci
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Ali Khademhosseini
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia
| |
Collapse
|
71
|
High-throughput screening approaches and combinatorial development of biomaterials using microfluidics. Acta Biomater 2016; 34:1-20. [PMID: 26361719 DOI: 10.1016/j.actbio.2015.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022]
Abstract
From the first microfluidic devices used for analysis of single metabolic by-products to highly complex multicompartmental co-culture organ-on-chip platforms, efforts of many multidisciplinary teams around the world have been invested in overcoming the limitations of conventional research methods in the biomedical field. Close spatial and temporal control over fluids and physical parameters, integration of sensors for direct read-out as well as the possibility to increase throughput of screening through parallelization, multiplexing and automation are some of the advantages of microfluidic over conventional, 2D tissue culture in vitro systems. Moreover, small volumes and relatively small cell numbers used in experimental set-ups involving microfluidics, can potentially decrease research cost. On the other hand, these small volumes and numbers of cells also mean that many of the conventional molecular biology or biochemistry assays cannot be directly applied to experiments that are performed in microfluidic platforms. Development of different types of assays and evidence that such assays are indeed a suitable alternative to conventional ones is a step that needs to be taken in order to have microfluidics-based platforms fully adopted in biomedical research. In this review, rather than providing a comprehensive overview of the literature on microfluidics, we aim to discuss developments in the field of microfluidics that can aid advancement of biomedical research, with emphasis on the field of biomaterials. Three important topics will be discussed, being: screening, in particular high-throughput and combinatorial screening; mimicking of natural microenvironment ranging from 3D hydrogel-based cellular niches to organ-on-chip devices; and production of biomaterials with closely controlled properties. While important technical aspects of various platforms will be discussed, the focus is mainly on their applications, including the state-of-the-art, future perspectives and challenges. STATEMENT OF SIGNIFICANCE Microfluidics, being a technology characterized by the engineered manipulation of fluids at the submillimeter scale, offers some interesting tools that can advance biomedical research and development. Screening platforms based on microfluidic technologies that allow high-throughput and combinatorial screening may lead to breakthrough discoveries not only in basic research but also relevant to clinical application. This is further strengthened by the fact that reliability of such screens may improve, since microfluidic systems allow close mimicking of physiological conditions. Finally, microfluidic systems are also very promising as micro factories of a new generation of natural or synthetic biomaterials and constructs, with finely controlled properties.
Collapse
|
72
|
Zhao S, Chen Y, Partlow BP, Golding AS, Tseng P, Coburn J, Applegate MB, Moreau JE, Omenetto FG, Kaplan DL. Bio-functionalized silk hydrogel microfluidic systems. Biomaterials 2016; 93:60-70. [PMID: 27077566 DOI: 10.1016/j.biomaterials.2016.03.041] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/05/2016] [Accepted: 03/28/2016] [Indexed: 12/16/2022]
Abstract
Bio-functionalized microfluidic systems were developed based on a silk protein hydrogel elastomeric materials. A facile multilayer fabrication method using gelatin sacrificial molding and layer-by-layer assembly was implemented to construct interconnected, three dimensional (3D) microchannel networks in silk hydrogels at 100 μm minimum feature resolution. Mechanically activated valves were implemented to demonstrate pneumatic control of microflow. The silk hydrogel microfluidics exhibit controllable mechanical properties, long-term stability in various environmental conditions, tunable in vitro and in vivo degradability in addition to optical transparency, providing unique features for cell/tissue-related applications than conventional polydimethylsiloxane (PDMS) and existing hydrogel-based microfluidic options. As demonstrated in the work here, the all aqueous-based fabrication process at ambient conditions enabled the incorporation of active biological substances in the bulk phase of these new silk microfluidic systems during device fabrication, including enzymes and living cells, which are able to interact with the fluid flow in the microchannels. These silk hydrogel-based microfluidic systems offer new opportunities in engineering active diagnostic devices, tissues and organs that could be integrated in vivo, and for on-chip cell sensing systems.
Collapse
Affiliation(s)
- Siwei Zhao
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Benjamin P Partlow
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Anne S Golding
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Peter Tseng
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Jeannine Coburn
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Matthew B Applegate
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Jodie E Moreau
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA.
| |
Collapse
|
73
|
Development of Poly(ɛ-caprolactone) Scaffold Loaded with Simvastatin and Beta-Cyclodextrin Modified Hydroxyapatite Inclusion Complex for Bone Tissue Engineering. Polymers (Basel) 2016; 8:polym8020049. [PMID: 30979140 PMCID: PMC6432564 DOI: 10.3390/polym8020049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/26/2016] [Accepted: 02/05/2016] [Indexed: 11/16/2022] Open
Abstract
In this study, we developed poly(ɛ-caprolactone) (PCL) 3D scaffolds using a solid free form fabrication (SFF) technique. β-cyclodextrin (βCD) was grafted to hydroxyapatite (HAp) and this βCD grafted HAp was coated onto the PCL scaffold surface, followed by drug loading through an inclusion complex interaction between the βCD and adamantane (AD) or between βCD and simvastatin (SIM). The scaffold structure was characterized by scanning electron microscopy (SEM). The release profile of simvastatin in the β-CD grafted HAp was also evaluated. Osteogenic differentiation of adipose-derived stromal cells (ADSCs) was examined using an alkaline phosphatase activity (ALP) assay. The results suggest that drug loaded PCL-HAp 3-D scaffolds enhances osteogenic differentiation of ADSCs.
Collapse
|
74
|
Hydrodynamic loading in concomitance with exogenous cytokine stimulation modulates differentiation of bovine mesenchymal stem cells towards osteochondral lineages. BMC Biotechnol 2016; 16:10. [PMID: 26830345 PMCID: PMC4736240 DOI: 10.1186/s12896-016-0240-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 01/18/2016] [Indexed: 02/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) are viewed as a having significant potential for tissue engineering and regenerative medicine therapies. Clinical implementation of MSCs, however, demands that their preparation be stable and reproducible. Given that environmental and bioprocessing parameters such as substrate stiffness, seeding densities, culture medium composition, and mechanical loading can result in undirected differentiation of the MSC population, the objective of this study was to systematically investigate how hydrodynamic loading influences the differentiation of bone marrow-derived mesenchymal stem cells (MSCs) towards the osteochondral lineages both in the presence and absence of exogenous, inductive factors. Methods Expanded bovine MSCs were suspended in 2.5 % agarose, cast in a custom mold, and placed into either static or one of two dynamic culture environments consisting of “high” and “low” magnitude shear conditions. Constructs were supplemented with varying concentrations (0, 1, 10, 100 ng/mL) of either TGF-β3 or BMP-2 throughout cultivation with tissue samples being collected following each week of culture. Results In the absence of exogenous supplementation, hydrodynamic loading had little effect on cell phenotype at either magnitude of stimulation. When cultures were supplemented with BMP-2 and TGF-β3, MSCs gene expression progressed towards the osteogenic and chondrogenic pathways, respectively. This progression was enhanced by the presence of hydrodynamic loading, particularly under high shear conditions, but may point the chondrogenic cultures down a hypertrophic path toward osteogenesis reminiscent of endochondral ossification if TGF-β3 supplementation is insufficient. Conclusions Moving forward, these results suggest bioprocessing conditions which minimize exposure of chondrogenic cultures to fluid shear stress to avoid undesirable differentiation of the MSC population. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0240-6) contains supplementary material, which is available to authorized users.
Collapse
|
75
|
Ozdemir T, Sozmen F. BODIPY based self-healing fluorescent gel formation via acylhydrazone linkage. RSC Adv 2016. [DOI: 10.1039/c5ra22993f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polymeric BODIPY derivatives with reactive functional groups undergo reversible formation of covalent bonds leading to self-healing properties.
Collapse
Affiliation(s)
- Tugba Ozdemir
- UNAM-National Nanotechnology Research Center
- Bilkent University
- 06800 Ankara
- Turkey
- Department of Chemistry
| | - Fazli Sozmen
- Department of Nanotechnology Engineering
- Cumhuriyet University
- Sivas 58140
- Turkey
| |
Collapse
|
76
|
|
77
|
Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2015; 76:321-43. [PMID: 26561931 DOI: 10.1016/j.biomaterials.2015.10.076] [Citation(s) in RCA: 808] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 02/06/2023]
Abstract
Extrusion-based bioprinting (EBB) is a rapidly growing technology that has made substantial progress during the last decade. It has great versatility in printing various biologics, including cells, tissues, tissue constructs, organ modules and microfluidic devices, in applications from basic research and pharmaceutics to clinics. Despite the great benefits and flexibility in printing a wide range of bioinks, including tissue spheroids, tissue strands, cell pellets, decellularized matrix components, micro-carriers and cell-laden hydrogels, the technology currently faces several limitations and challenges. These include impediments to organ fabrication, the limited resolution of printed features, the need for advanced bioprinting solutions to transition the technology bench to bedside, the necessity of new bioink development for rapid, safe and sustainable delivery of cells in a biomimetically organized microenvironment, and regulatory concerns to transform the technology into a product. This paper, presenting a first-time comprehensive review of EBB, discusses the current advancements in EBB technology and highlights future directions to transform the technology to generate viable end products for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, The Pennsylvania State University, University Park, PA, 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Monika Hospodiuk
- Engineering Science and Mechanics Department, The Pennsylvania State University, University Park, PA, 16802, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
78
|
Haigh JN, Chuang YM, Farrugia B, Hoogenboom R, Dalton PD, Dargaville TR. Hierarchically Structured Porous Poly(2-oxazoline) Hydrogels. Macromol Rapid Commun 2015; 37:93-99. [DOI: 10.1002/marc.201500495] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 09/11/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Jodie N. Haigh
- Nanotechnology and Molecular Science Discipline; Science and Engineering Faculty; Queensland University of Technology; Queensland 4001 Australia
| | - Ya-mi Chuang
- Nanotechnology and Molecular Science Discipline; Science and Engineering Faculty; Queensland University of Technology; Queensland 4001 Australia
| | - Brooke Farrugia
- Graduate School of Biomedical Engineering; Faculty of Engineering; University of New South Wales; Sydney 2052 Australia
| | - Richard Hoogenboom
- Supramolecular Chemistry Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 B-9000 Ghent Belgium
| | - Paul D. Dalton
- Department for Functional Materials in Medicine and Dentistry; Universität Würzburg; Pleicherwall 2 D97070 Germany
| | - Tim R. Dargaville
- Nanotechnology and Molecular Science Discipline; Science and Engineering Faculty; Queensland University of Technology; Queensland 4001 Australia
| |
Collapse
|
79
|
Choi J, Lee EK, Choo J, Yuh J, Hong JW. Micro 3D cell culture systems for cellular behavior studies: Culture matrices, devices, substrates, and in-situ sensing methods. Biotechnol J 2015; 10:1682-8. [PMID: 26358782 DOI: 10.1002/biot.201500092] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/19/2015] [Accepted: 07/08/2015] [Indexed: 02/01/2023]
Abstract
Microfabricated systems equipped with 3D cell culture devices and in-situ cellular biosensing tools can be a powerful bionanotechnology platform to investigate a variety of biomedical applications. Various construction substrates such as plastics, glass, and paper are used for microstructures. When selecting a construction substrate, a key consideration is a porous microenvironment that allows for spheroid growth and mimics the extracellular matrix (ECM) of cell aggregates. Various bio-functionalized hydrogels are ideal candidates that mimic the natural ECM for 3D cell culture. When selecting an optimal and appropriate microfabrication method, both the intended use of the system and the characteristics and restrictions of the target cells should be carefully considered. For highly sensitive and near-cell surface detection of excreted cellular compounds, SERS-based microsystems capable of dual modal imaging have the potential to be powerful tools; however, the development of optical reporters and nanoprobes remains a key challenge. We expect that the microsystems capable of both 3D cell culture and cellular response monitoring would serve as excellent tools to provide fundamental cellular behavior information for various biomedical applications such as metastasis, wound healing, high throughput screening, tissue engineering, regenerative medicine, and drug discovery and development.
Collapse
Affiliation(s)
- Jonghoon Choi
- Department of Bionanotechnology, Graduate School, Hanyang University - ERICA, Ansan, Korea
| | - Eun Kyu Lee
- Department of Bionanotechnology, Graduate School, Hanyang University - ERICA, Ansan, Korea
| | - Jaebum Choo
- Department of Bionanotechnology, Graduate School, Hanyang University - ERICA, Ansan, Korea
| | - Junhan Yuh
- New Technology Department, Corporate Technology Division, POSCO, Seoul, Korea
| | - Jong Wook Hong
- Department of Bionanotechnology, Graduate School, Hanyang University - ERICA, Ansan, Korea.
| |
Collapse
|
80
|
DeSimone E, Schacht K, Jungst T, Groll J, Scheibel T. Biofabrication of 3D constructs: fabrication technologies and spider silk proteins as bioinks. PURE APPL CHEM 2015. [DOI: 10.1515/pac-2015-0106] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractDespite significant investment in tissue engineering over the past 20 years, few tissue engineered products have made it to market. One of the reasons is the poor control over the 3D arrangement of the scaffold’s components. Biofabrication is a new field of research that exploits 3D printing technologies with high spatial resolution for the simultaneous processing of cells and biomaterials into 3D constructs suitable for tissue engineering. Cell-encapsulating biomaterials used in 3D bioprinting are referred to as bioinks. This review consists of: (1) an introduction of biofabrication, (2) an introduction of 3D bioprinting, (3) the requirements of bioinks, (4) existing bioinks, and (5) a specific example of a recombinant spider silk bioink. The recombinant spider silk bioink will be used as an example because its unmodified hydrogel format fits the basic requirements of bioinks: to be printable and at the same time cytocompatible. The bioink exhibited both cytocompatible (self-assembly, high cell viability) and printable (injectable, shear-thinning, high shape fidelity) qualities. Although improvements can be made, it is clear from this system that, with the appropriate bioink, many of the existing faults in tissue-like structures produced by 3D bioprinting can be minimized.
Collapse
Affiliation(s)
- Elise DeSimone
- 1Lehrstuhl Biomaterialien, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Kristin Schacht
- 1Lehrstuhl Biomaterialien, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Tomasz Jungst
- 2Lehrstuhl für Funktionswerkstoffe der Medizin und der Zahnheilkunde, Universität Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Jürgen Groll
- 2Lehrstuhl für Funktionswerkstoffe der Medizin und der Zahnheilkunde, Universität Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | | |
Collapse
|
81
|
Barreto-Ortiz SF, Fradkin J, Eoh J, Trivero J, Davenport M, Ginn B, Mao HQ, Gerecht S. Fabrication of 3-dimensional multicellular microvascular structures. FASEB J 2015; 29:3302-14. [PMID: 25900808 PMCID: PMC4511194 DOI: 10.1096/fj.14-263343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/05/2015] [Indexed: 12/12/2022]
Abstract
Despite current advances in engineering blood vessels over 1 mm in diameter and the existing wealth of knowledge regarding capillary bed formation, studies for the development of microvasculature, the connecting bridge between them, have been extremely limited so far. Here, we evaluate the use of 3-dimensional (3D) microfibers fabricated by hydrogel electrospinning as templates for microvascular structure formation. We hypothesize that 3D microfibers improve extracellular matrix (ECM) deposition from vascular cells, enabling the formation of freestanding luminal multicellular microvasculature. Compared to 2-dimensional cultures, we demonstrate with confocal microscopy and RT-PCR that fibrin microfibers induce an increased ECM protein deposition by vascular cells, specifically endothelial colony-forming cells, pericytes, and vascular smooth muscle cells. These ECM proteins comprise different layers of the vascular wall including collagen types I, III, and IV, as well as elastin, fibronectin, and laminin. We further demonstrate the achievement of multicellular microvascular structures with an organized endothelium and a robust multicellular perivascular tunica media. This, along with the increased ECM deposition, allowed for the creation of self-supporting multilayered microvasculature with a distinct circular lumen following fibrin microfiber core removal. This approach presents an advancement toward the development of human microvasculature for basic and translational studies.
Collapse
Affiliation(s)
- Sebastian F Barreto-Ortiz
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jamie Fradkin
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joon Eoh
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jacqueline Trivero
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Matthew Davenport
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Brian Ginn
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hai-Quan Mao
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sharon Gerecht
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
82
|
van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T. Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 2015; 35:118-26. [PMID: 26094109 DOI: 10.1016/j.copbio.2015.05.002] [Citation(s) in RCA: 327] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/17/2015] [Accepted: 05/12/2015] [Indexed: 12/23/2022]
Abstract
The transition from 2D to 3D cell culture techniques is an important step in a trend towards better biomimetic tissue models. Microfluidics allows spatial control over fluids in micrometer-sized channels has become a valuable tool to further increase the physiological relevance of 3D cell culture by enabling spatially controlled co-cultures, perfusion flow and spatial control over of signaling gradients. This paper reviews most important developments in microfluidic 3D culture since 2012. Most efforts were exerted in the field of vasculature, both as a tissue on its own and as part of cancer models. We observe that the focus is shifting from tool building to implementation of specific tissue models. The next big challenge for the field is the full validation of these models and subsequently the implementation of these models in drug development pipelines of the pharmaceutical industry and ultimately in personalized medicine applications.
Collapse
Affiliation(s)
- Vincent van Duinen
- Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | - Sebastiaan J Trietsch
- Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands; Mimetas BV, Leiden, The Netherlands
| | | | - Paul Vulto
- Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands; Mimetas BV, Leiden, The Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands.
| |
Collapse
|
83
|
Zhan Y, Niu X. Tuning methods and mechanical modelling of hydrogels. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2015. [DOI: 10.1680/bbn.14.00029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
84
|
Abstract
The clinical applications of tissue engineering are still limited by the lack of a functional vascular supply in tissue-engineered constructs. In order to improve the pre-vascularization of tissue-engineered scaffold during in vitro culture, in this study, based on three-dimensional (3D) printing technology, using the crosslinking effect of coaxial fluids (sodium alginate and CaCl2) to prepare vessel-like hollow gel fibers, then layer by layer overlapping into 3D scaffold. The biological 3D printing platform was successfully developed and a coaxial nozzle module was introduced to generate a CaCl2-in-Alginate coaxial microfluidic. The inner core diameters of the prepared hollow gel fibers were 220~380 micrometers. In addition, the influence of materials concentration and dispensing rates on hollow fiber dimension were investigated, the cell-encapsulated in the printed hollow fibers was realized and the viability of endothelial cells (ECs) was studied with Laser scanning confocal microscopy (LSCM) and Live-Dead cell staining. The 3D scaffold built by hollow fibers could improve the phenomenon of diffusion constrain and enhance the survival rate of those ECs growing at a greater depth in the construct. This study provides a new theoretical basis for the vascularization of bone scaffold.
Collapse
|
85
|
Wieduwild R, Krishnan S, Chwalek K, Boden A, Nowak M, Drechsel D, Werner C, Zhang Y. Noncovalent Hydrogel Beads as Microcarriers for Cell Culture. Angew Chem Int Ed Engl 2015; 54:3962-6. [DOI: 10.1002/anie.201411400] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 12/11/2022]
|
86
|
Wieduwild R, Krishnan S, Chwalek K, Boden A, Nowak M, Drechsel D, Werner C, Zhang Y. Noncovalent Hydrogel Beads as Microcarriers for Cell Culture. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
87
|
Wang L, Li Y, Huang G, Zhang X, Pingguan-Murphy B, Gao B, Lu TJ, Xu F. Hydrogel-based methods for engineering cellular microenvironment with spatiotemporal gradients. Crit Rev Biotechnol 2015; 36:553-65. [PMID: 25641330 DOI: 10.3109/07388551.2014.993588] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Natural cellular microenvironment consists of spatiotemporal gradients of multiple physical (e.g. extracellular matrix stiffness, porosity and stress/strain) and chemical cues (e.g. morphogens), which play important roles in regulating cell behaviors including spreading, proliferation, migration, differentiation and apoptosis, especially for pathological processes such as tumor formation and progression. Therefore, it is essential to engineer cellular gradient microenvironment incorporating various gradients for the fabrication of normal and pathological tissue models in vitro. In this article, we firstly review the development of engineering cellular physical and chemical gradients with cytocompatible hydrogels in both two-dimension and three-dimension formats. We then present current advances in the application of engineered gradient microenvironments for the fabrication of disease models in vitro. Finally, concluding remarks and future perspectives for engineering cellular gradients are given.
Collapse
Affiliation(s)
- Lin Wang
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Yuhui Li
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Guoyou Huang
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Xiaohui Zhang
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Belinda Pingguan-Murphy
- c Department of Biomedical Engineering , Faculty of Engineering, University of Malaya , Kuala Lumpur , Malaysia , and
| | - Bin Gao
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China .,d Department of Endocrinology and Metabolism , Xijing Hospital, Fourth Military Medical University , Xi'an , China
| | - Tian Jian Lu
- b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| | - Feng Xu
- a MOE Key Laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , China .,b Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
88
|
Cosson S, Otte EA, Hezaveh H, Cooper-White JJ. Concise review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine. Stem Cells Transl Med 2015; 4:156-64. [PMID: 25575526 PMCID: PMC4303362 DOI: 10.5966/sctm.2014-0203] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/10/2014] [Indexed: 01/16/2023] Open
Abstract
The potential for the clinical application of stem cells in tissue regeneration is clearly significant. However, this potential has remained largely unrealized owing to the persistent challenges in reproducibly, with tight quality criteria, and expanding and controlling the fate of stem cells in vitro and in vivo. Tissue engineering approaches that rely on reformatting traditional Food and Drug Administration-approved biomedical polymers from fixation devices to porous scaffolds have been shown to lack the complexity required for in vitro stem cell culture models or translation to in vivo applications with high efficacy. This realization has spurred the development of advanced mimetic biomaterials and scaffolds to increasingly enhance our ability to control the cellular microenvironment and, consequently, stem cell fate. New insights into the biology of stem cells are expected to eventuate from these advances in material science, in particular, from synthetic hydrogels that display physicochemical properties reminiscent of the natural cell microenvironment and that can be engineered to display or encode essential biological cues. Merging these advanced biomaterials with high-throughput methods to systematically, and in an unbiased manner, probe the role of scaffold biophysical and biochemical elements on stem cell fate will permit the identification of novel key stem cell behavioral effectors, allow improved in vitro replication of requisite in vivo niche functions, and, ultimately, have a profound impact on our understanding of stem cell biology and unlock their clinical potential in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Steffen Cosson
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia; Commonwealth Scientific and Industrial Research Organization, Material Science and Engineering, Clayton, Victoria, Australia; University of Queensland School of Chemical Engineering, St. Lucia, Queensland, Australia
| | - Ellen A Otte
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia; Commonwealth Scientific and Industrial Research Organization, Material Science and Engineering, Clayton, Victoria, Australia; University of Queensland School of Chemical Engineering, St. Lucia, Queensland, Australia
| | - Hadi Hezaveh
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia; Commonwealth Scientific and Industrial Research Organization, Material Science and Engineering, Clayton, Victoria, Australia; University of Queensland School of Chemical Engineering, St. Lucia, Queensland, Australia
| | - Justin J Cooper-White
- Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Queensland, Australia; Commonwealth Scientific and Industrial Research Organization, Material Science and Engineering, Clayton, Victoria, Australia; University of Queensland School of Chemical Engineering, St. Lucia, Queensland, Australia
| |
Collapse
|
89
|
Tocchio A, Tamplenizza M, Martello F, Gerges I, Rossi E, Argentiere S, Rodighiero S, Zhao W, Milani P, Lenardi C. Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor. Biomaterials 2015; 45:124-31. [PMID: 25662502 DOI: 10.1016/j.biomaterials.2014.12.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/10/2014] [Accepted: 12/20/2014] [Indexed: 12/31/2022]
Abstract
Despite significant progresses were achieved in tissue engineering over the last 20 years, a number of unsolved problems still remain. One of the most relevant issues is the lack of a proper vascularization that is limiting the size of the engineered tissues to smaller than clinically relevant dimensions. Sacrificial molding holds great promise to engineered construct with perfusable vascular architectures, but there is still the need to develop more versatile approaches able to be independent of the nature and dimensions of the construct. In this work we developed a versatile sacrificial molding technique for fabricating bulk, cell-laden and porous scaffolds with embedded vascular fluidic networks. These branched fluidic architectures are created by highly resistant thermoplastic sacrificial templates, made of poly(vinyl alcohol), representing a remarkable progress in manufacturability and scalability. The obtained architecture, when perfused in bioreactor, has shown to prevent the formation of a necrotic core in thick cell-laden constructs and enabled the rapid fabrication of hierarchically branched endothelium. In conclusion we demonstrate a novel strategy towards the engineering of vascularized thick tissues through the integration of the PVA-based microfabrication sacrificial approach and perfusion bioreactors. This approach may be able to scale current engineered tissues to clinically relevant dimensions, opening the way to their widespread clinical applications.
Collapse
Affiliation(s)
- Alessandro Tocchio
- SEMM, European School of Molecular Medicine, Campus IFOM-IEO, Via Adamello 16, 20139 Milano, Italy; Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy
| | | | | | - Irini Gerges
- Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy
| | - Eleonora Rossi
- SEMM, European School of Molecular Medicine, Campus IFOM-IEO, Via Adamello 16, 20139 Milano, Italy
| | | | | | - Weiwei Zhao
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, PR China
| | - Paolo Milani
- Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy; CIMaINa, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy.
| | - Cristina Lenardi
- Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy; CIMaINa, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy.
| |
Collapse
|
90
|
Finosh GT, Jayabalan M. Hybrid amphiphilic bimodal hydrogels having mechanical and biological recognition characteristics for cardiac tissue engineering. RSC Adv 2015. [DOI: 10.1039/c5ra04448k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tissue engineering strategies rely on the favourable microniche scaffolds for 3D cell growth.
Collapse
Affiliation(s)
- G. T. Finosh
- Sree Chitra Tirunal Institute for Medical Sciences and Technology
- Polymer Science Division
- Thiruvananthapuram-695 012
- India
| | - M. Jayabalan
- Sree Chitra Tirunal Institute for Medical Sciences and Technology
- Polymer Science Division
- Thiruvananthapuram-695 012
- India
| |
Collapse
|
91
|
Ruedinger F, Lavrentieva A, Blume C, Pepelanova I, Scheper T. Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice. Appl Microbiol Biotechnol 2014; 99:623-36. [DOI: 10.1007/s00253-014-6253-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/21/2022]
|
92
|
Muehleder S, Ovsianikov A, Zipperle J, Redl H, Holnthoner W. Connections matter: channeled hydrogels to improve vascularization. Front Bioeng Biotechnol 2014; 2:52. [PMID: 25453032 PMCID: PMC4231943 DOI: 10.3389/fbioe.2014.00052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/27/2014] [Indexed: 11/13/2022] Open
Abstract
The use of cell-laden hydrogels to engineer soft tissue has been emerging within the past years. Despite, several newly developed and sophisticated techniques to encapsulate different cell types the importance of vascularization of the engineered constructs is often underestimated. As a result, cell death within a construct leads to impaired function and inclusion of the implant. Here, we discuss the fabrication of hollow channels within hydrogels as a promising strategy to facilitate vascularization. Furthermore, we present an overview on the feasible use of removable spacers, 3D laser-, and planar processing strategies to create channels within hydrogels. The implementation of these structures promotes control over cell distribution and increases oxygen transport and nutrient supply in vitro. However, many studies lack the use of endothelial cells in their approaches leaving out an important factor to enhance vessel ingrowth and anastomosis formation upon implantation. In addition, the adequate endothelial cell type needs to be considered to make these approaches bridge the gap to in vivo applications.
Collapse
Affiliation(s)
- Severin Muehleder
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center , Vienna , Austria ; Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Aleksandr Ovsianikov
- Austrian Cluster for Tissue Regeneration , Vienna , Austria ; Institute of Material Science and Technology, Vienna University of Technology , Vienna , Austria
| | - Johannes Zipperle
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center , Vienna , Austria ; Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center , Vienna , Austria ; Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center , Vienna , Austria ; Austrian Cluster for Tissue Regeneration , Vienna , Austria
| |
Collapse
|
93
|
Goldman SM, Barabino GA. Cultivation of agarose-based microfluidic hydrogel promotes the development of large, full-thickness, tissue-engineered articular cartilage constructs. J Tissue Eng Regen Med 2014; 11:572-581. [DOI: 10.1002/term.1954] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/23/2014] [Accepted: 07/16/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Stephen M. Goldman
- Interdisciplinary Bioengineering Graduate Program; Georgia Institute of Technology; Atlanta GA USA
- George W. Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta GA USA
| | - Gilda A. Barabino
- Interdisciplinary Bioengineering Graduate Program; Georgia Institute of Technology; Atlanta GA USA
- Department of Biomedical Engineering; City College of New York; NY USA
| |
Collapse
|
94
|
Lee H, Kim G. Enhanced cellular activities of polycaprolactone/alginate-based cell-laden hierarchical scaffolds for hard tissue engineering applications. J Colloid Interface Sci 2014; 430:315-25. [DOI: 10.1016/j.jcis.2014.05.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
|
95
|
Xiong B, Ren K, Shu Y, Chen Y, Shen B, Wu H. Recent developments in microfluidics for cell studies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5525-32. [PMID: 24536032 DOI: 10.1002/adma.201305348] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/09/2013] [Indexed: 05/23/2023]
Abstract
As a technique for precisely manipulating fluid at the micrometer scale, the field of microfluidics has experienced an explosive growth over the past two decades, particularly owing to the advances in device design and fabrication. With the inherent advantages associated with its scale of operation, and its flexibility in being incorporated with other microscale techniques for manipulation and detection, microfluidics has become a major enabling technology, which has introduced new paradigms in various fields involving biological cells. A microfluidic device is able to realize functions that are not easily imaginable in conventional biological analysis, such as highly parallel, sophisticated high-throughput analysis, single-cell analysis in a well-defined manner, and tissue engineering with the capability of manipulation at the single-cell level. Major advancements in microfluidic device fabrication and the growing trend of implementing microfluidics in cell studies are presented, with a focus on biological research and clinical diagnostics.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
96
|
Qi H, Huang G, Han YL, Lin W, Li X, Wang S, Lu TJ, Xu F. In vitro spatially organizing the differentiation in individual multicellular stem cell aggregates. Crit Rev Biotechnol 2014; 36:20-31. [PMID: 25025275 DOI: 10.3109/07388551.2014.922917] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With significant potential as a robust source to produce specific somatic cells for regenerative medicine, stem cells have attracted increasing attention from both academia and government. In vivo, stem cell differentiation is a process under complicated regulations to precisely build tissue with unique spatial structures. Since multicellular spheroidal aggregates of stem cells, commonly called as embryoid bodies (EBs), are considered to be capable of recapitulating the events in early stage of embryonic development, a variety of methods have been developed to form EBs in vitro for studying differentiation of embryonic stem cells. The regulation of stem cell differentiation is crucial in directing stem cells to build tissue with the correct spatial architecture for specific functions. However, stem cells within the three-dimensional multicellular aggregates undergo differentiation in a less unpredictable and spatially controlled manner in vitro than in vivo. Recently, various microengineering technologies have been developed to manipulate stem cells in vitro in a spatially controlled manner. Herein, we take the spotlight on these technologies and researches that bring us the new potential for manipulation of stem cells for specific purposes.
Collapse
Affiliation(s)
- Hao Qi
- a MOE Key laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China .,b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China .,c Department of Medical Genome Sciences , Graduate School of Frontier Sciences, University of Tokyo , Kashiwa , Chiba , Japan
| | - Guoyou Huang
- a MOE Key laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China .,b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Yu Long Han
- a MOE Key laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China .,b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Wang Lin
- a MOE Key laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China .,b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Xiujun Li
- d Department of Chemistry , University of Texas at EI Paso , EI Paso , TX , USA , and
| | - Shuqi Wang
- e Brigham Women's Hospital, Harvard Medical School , Boston , MA , USA
| | - Tian Jian Lu
- b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Feng Xu
- a MOE Key laboratory of Biomedical Information Engineering , School of Life Science and Technology, Xi'an Jiaotong University , Xi'an , People's Republic of China .,b Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University , Xi'an , People's Republic of China
| |
Collapse
|
97
|
Esquirol AL, Sarazin P, Virgilio N. Tunable Porous Hydrogels from Cocontinuous Polymer Blends. Macromolecules 2014. [DOI: 10.1021/ma402603b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Anne-Laure Esquirol
- CREPEC,
Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079 Succursale
Centre-Ville, Montréal, Québec H3C 3A7, Canada
| | - Pierre Sarazin
- Trampoline Innovations, Montréal, Québec H2G 2L3, Canada
| | - Nick Virgilio
- CREPEC,
Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079 Succursale
Centre-Ville, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
98
|
Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G. Lab-on-a-chip technologies for stem cell analysis. Trends Biotechnol 2014; 32:245-53. [PMID: 24726257 DOI: 10.1016/j.tibtech.2014.03.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/20/2014] [Accepted: 03/05/2014] [Indexed: 01/21/2023]
Abstract
The combination of microfabrication-based technologies with cell biology has laid the foundation for the development of advanced in vitro diagnostic systems capable of analyzing cell cultures under physiologically relevant conditions. In the present review, we address recent lab-on-a-chip developments for stem cell analysis. We highlight in particular the tangible advantages of microfluidic devices to overcome most of the challenges associated with stem cell identification, expansion and differentiation, with the greatest advantage being that lab-on-a-chip technology allows for the precise regulation of culturing conditions, while simultaneously monitoring relevant parameters using embedded sensory systems. State-of-the-art lab-on-a-chip platforms for in vitro assessment of stem cell cultures are presented and their potential future applications discussed.
Collapse
Affiliation(s)
- Peter Ertl
- BioSensor Technologies, AIT Austrian Institute of Technology GmbH, Vienna, Austria.
| | - Drago Sticker
- BioSensor Technologies, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Verena Charwat
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cornelia Kasper
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | |
Collapse
|
99
|
HE JIANKANG, XU FENG, LIU YAXIONG, JIN ZHONGMIN, LI DICHEN. ADVANCED TISSUE ENGINEERING STRATEGIES FOR VASCULARIZED PARENCHYMAL CONSTRUCTS. J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414300014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fabrication of vascularized parenchymal organs to alleviate donor shortage in organ transplantation is the holy grail of tissue engineering. However, conventional tissue-engineering strategies have encountered huge challenges in recapitulating complex structural organization of native organs (e.g., orderly arrangement of multiple cell types and vascular network), which plays an important role in engineering functional vascularized parenchymal constructs in vitro. Recent developments of various advanced tissue-engineering strategies have exhibited great promise in replicating organ-specific architectures into artificial constructs. Here, we review the recent advances in top-down and bottom-up strategies for the fabrication of vascularized parenchymal constructs. We highlight the fabrication of microfluidic scaffolds potential for nutrient transport or vascularization as well as the controlled multicellular arrangement. The advantages as well as the limitations associated with these strategies will be discussed. It is envisioned that the combination of microfluidic concept in top-down strategies and multicellular arrangement concept in bottom-up strategies could potentially generate new insights for the fabrication of vascularized parenchymal organs.
Collapse
Affiliation(s)
- JIANKANG HE
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - FENG XU
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - YAXIONG LIU
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - ZHONGMIN JIN
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - DICHEN LI
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
100
|
Evans SM, Litzenberger AL, Ellenberger AE, Maneval JE, Jablonski EL, Vogel BM. A microfluidic method to measure small molecule diffusion in hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 35:322-34. [DOI: 10.1016/j.msec.2013.10.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/25/2013] [Accepted: 10/29/2013] [Indexed: 01/04/2023]
|