51
|
Duraivel S, Subramaniam V, Chisolm S, Scheutz GM, Sumerlin BS, Bhattacharjee T, Angelini TE. Leveraging ultra-low interfacial tension and liquid-liquid phase separation in embedded 3D bioprinting. BIOPHYSICS REVIEWS 2022; 3:031307. [PMID: 38505275 PMCID: PMC10903370 DOI: 10.1063/5.0087387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/23/2022] [Indexed: 03/21/2024]
Abstract
Many recently developed 3D bioprinting strategies operate by extruding aqueous biopolymer solutions directly into a variety of different support materials constituted from swollen, solvated, aqueous, polymer assemblies. In developing these 3D printing methods and materials, great care is often taken to tune the rheological behaviors of both inks and 3D support media. By contrast, much less attention has been given to the physics of the interfaces created when structuring one polymer phase into another in embedded 3D printing applications. For example, it is currently unclear whether a dynamic interfacial tension between miscible phases stabilizes embedded 3D bioprinted structures as they are shaped while in a liquid state. Interest in the physics of interfaces between complex fluids has grown dramatically since the discovery of liquid-liquid phase separation (LLPS) in living cells. We believe that many new insights coming from this burst of investigation into LLPS within biological contexts can be leveraged to develop new materials and methods for improved 3D bioprinting that leverage LLPS in mixtures of biopolymers, biocompatible synthetic polymers, and proteins. Thus, in this review article, we highlight work at the interface between recent LLPS research and embedded 3D bioprinting methods and materials, and we introduce a 3D bioprinting method that leverages LLPS to stabilize printed biopolymer inks embedded in a bioprinting support material.
Collapse
Affiliation(s)
- Senthilkumar Duraivel
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Vignesh Subramaniam
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Steven Chisolm
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Georg M. Scheutz
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Brent. S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Tapomoy Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, Karnataka, India
| | - Thomas E. Angelini
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
52
|
Ching T, Vasudevan J, Chang SY, Tan HY, Sargur Ranganath A, Lim CT, Fernandez JG, Ng JJ, Toh YC, Hashimoto M. Biomimetic Vasculatures by 3D-Printed Porous Molds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203426. [PMID: 35866462 DOI: 10.1002/smll.202203426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Despite recent advances in biofabrication, recapitulating complex architectures of cell-laden vascular constructs remains challenging. To date, biofabricated vascular models have not yet realized four fundamental attributes of native vasculatures simultaneously: freestanding, branching, multilayered, and perfusable. In this work, a microfluidics-enabled molding technique combined with coaxial bioprinting to fabricate anatomically relevant, cell-laden vascular models consisting of hydrogels is developed. By using 3D porous molds of poly(ethylene glycol) diacrylate as casting templates that gradually release calcium ions as a crosslinking agent, freestanding, and perfusable vascular constructs of complex geometries are fabricated. The bioinks can be tailored to improve the compatibility with specific vascular cells and to tune the mechanical modulus mimicking native blood vessels. Crucially, the integration of relevant vascular cells (such as smooth muscle cells and endothelial cells) in a multilayer and biomimetic configuration is highlighted. It is also demonstrated that the fabricated freestanding vessels are amenable for testing percutaneous coronary interventions (i.e., drug-eluting balloons and stents) under physiological mechanical states such as stretching and bending. Overall, a versatile fabrication technique with multifaceted possibilities of generating biomimetic vascular models that can benefit future research in mechanistic understanding of cardiovascular diseases and the development of therapeutic interventions is introduced.
Collapse
Affiliation(s)
- Terry Ching
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Jyothsna Vasudevan
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Shu-Yung Chang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| | - Hsih Yin Tan
- Institute for Health Innovation and Technology, National University of Singapore, 14 Medical Drive #14-01, Singapore, 117599, Singapore
| | - Anupama Sargur Ranganath
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, 14 Medical Drive #14-01, Singapore, 117599, Singapore
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Javier G Fernandez
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| | - Jun Jie Ng
- Division of Vascular and Endovascular Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore
- SingVaSC, Singapore Vascular Surgical Collaborative, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| |
Collapse
|
53
|
Peng X, Kong L. Development of a multi-sensor system for defects detection in additive manufacturing. OPTICS EXPRESS 2022; 30:30640-30665. [PMID: 36242164 DOI: 10.1364/oe.467451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Defects detection technology is essential for monitoring and hence maintaining the product quality of additive manufacturing (AM) processes; however, traditional detection methods based on single sensor have great limitations such as low accuracy and scarce information. In this study, a multi-sensor defect detection system (MSDDS) was proposed and developed for defect detection with the fusion of visible, infrared, and polarization detection information. The assessment criteria for imaging quality of the MSDDS have been optimized and evaluated. Meanwhile, the feasibility of processing and assembly of each sensor module has been demonstrated with tolerance sensitivity and the Monte Carlo analysis. Moreover, multi-sensor image fusion processing, super-resolution reconstruction, and feature extraction of defects are applied. Simulation and experimental studies indicate that the developed MSDDS can obtain high contrast and clear key information, and high-quality detected images of AM defects such as cracking, scratches, and porosity can be effectively extracted. The research provides a helpful and potential solution for defect detection and processing parameter optimization in AM processes such as Selective Laser Melting.
Collapse
|
54
|
Pruksawan S, Chee HL, Wang Z, Luo P, Chong YT, Thitsartarn W, Wang F. Toughened Hydrogels for 3D Printing of Soft Auxetic Structures. Chem Asian J 2022; 17:e202200677. [PMID: 35950549 DOI: 10.1002/asia.202200677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Indexed: 11/06/2022]
Abstract
Materials with negative Poisson's ratio have attracted considerable attention and offered high potential applications as biomedical devices due to their ability to expand in every direction when stretched. Although negative Poisson's ratio has been obtained in various base materials such as metals and polymers, there are very limited works on hydrogels due to their intrinsic brittleness. Herein, we report the use of methacrylated cellulose nanocrystals (CNCMAs) as a macro-cross-linking agent in poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels for 3D printing of auxetic structures. Our developed CNCMA-pHEMA hydrogels exhibit significant improvements in mechanical properties, which is attributed to the coexistence of multiple chemical and physical interactions between the pHEMA and CNCMAs. Structures printed by using CNCMA-pHEMA hydrogels show auxetic behavior with greatly enhanced toughness and stretchability compared to the hydrogel with a traditional cross-linking agent. Such strong and tough auxetic hydrogels would contribute toward establishing advanced flexible implantable devices such as biodegradable oesophageal self-expandable stents.
Collapse
Affiliation(s)
| | - Heng Li Chee
- Institute of Materials Research and Engineering, PMC, SINGAPORE
| | - Zizhen Wang
- National University of Singapore - Kent Ridge Campus: National University of Singapore, bioengineering, SINGAPORE
| | - Ping Luo
- Institute of Materials Research and Engineering, AMC, SINGAPORE
| | - Yi Ting Chong
- Institute of Materials Research and Engineering, PMC, SINGAPORE
| | | | - FuKe Wang
- Institute of Materiasl Research and Engineering, 3 Research Link, 117602, Singapore, SINGAPORE
| |
Collapse
|
55
|
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
56
|
Biofabrication of Sodium Alginate Hydrogel Scaffolds for Heart Valve Tissue Engineering. Int J Mol Sci 2022; 23:ijms23158567. [PMID: 35955704 PMCID: PMC9368972 DOI: 10.3390/ijms23158567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Every year, thousands of aortic valve replacements must take place due to valve diseases. Tissue-engineered heart valves represent promising valve substitutes with remodeling, regeneration, and growth capabilities. However, the accurate reproduction of the complex three-dimensional (3D) anatomy of the aortic valve remains a challenge for current biofabrication methods. We present a novel technique for rapid fabrication of native-like tricuspid aortic valve scaffolds made of an alginate-based hydrogel. Using this technique, a sodium alginate hydrogel formulation is injected into a mold produced using a custom-made sugar glass 3D printer. The mold is then dissolved using a custom-made dissolving module, revealing the aortic valve scaffold. To assess the reproducibility of the technique, three scaffolds were thoroughly compared. CT (computed tomography) scans showed that the scaffolds respect the complex native geometry with minimal variations. The scaffolds were then tested in a cardiac bioreactor specially designed to reproduce physiological flow and pressure (aortic and ventricular) conditions. The flow and pressure profiles were similar to the physiological ones for the three valve scaffolds, with small variabilities. These early results establish the functional repeatability of this new biofabrication method and suggest its application for rapid fabrication of ready-to-use cell-seeded sodium alginate scaffolds for heart valve tissue engineering.
Collapse
|
57
|
Khanna A, Ayan B, Undieh AA, Yang YP, Huang NF. Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration. J Mol Cell Cardiol 2022; 169:13-27. [PMID: 35569213 PMCID: PMC9385403 DOI: 10.1016/j.yjmcc.2022.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Three-dimensional (3D) bioprinting of cellular or biological components are an emerging field to develop tissue structures that mimic the spatial, mechanochemical and temporal characteristics of cardiovascular tissues. 3D multi-cellular and multi-domain organotypic biological constructs can better recapitulate in vivo physiology and can be utilized in a variety of applications. Such applications include in vitro cellular studies, high-throughput drug screening, disease modeling, biocompatibility analysis, drug testing and regenerative medicine. A major challenge of 3D bioprinting strategies is the inability of matrix molecules to reconstitute the complexity of the extracellular matrix and the intrinsic cellular morphologies and functions. An important factor is the inclusion of a vascular network to facilitate oxygen and nutrient perfusion in scalable and patterned 3D bioprinted tissues to promote cell viability and functionality. In this review, we summarize the new generation of 3D bioprinting techniques, the kinds of bioinks and printing materials employed for 3D bioprinting, along with the current state-of-the-art in engineered cardiovascular tissue models. We also highlight the translational applications of 3D bioprinting in engineering the myocardium cardiac valves, and vascular grafts. Finally, we discuss current challenges and perspectives of designing effective 3D bioprinted constructs with native vasculature, architecture and functionality for clinical translation and cardiovascular regeneration.
Collapse
|
58
|
Li J, Kim C, Pan CC, Babian A, Lui E, Young JL, Moeinzadeh S, Kim S, Yang YP. Hybprinting for musculoskeletal tissue engineering. iScience 2022; 25:104229. [PMID: 35494239 PMCID: PMC9051619 DOI: 10.1016/j.isci.2022.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review presents bioprinting methods, biomaterials, and printing strategies that may be used for composite tissue constructs for musculoskeletal applications. The printing methods discussed include those that are suitable for acellular and cellular components, and the biomaterials include soft and rigid components that are suitable for soft and/or hard tissues. We also present strategies that focus on the integration of cell-laden soft and acellular rigid components under a single printing platform. Given the structural and functional complexity of native musculoskeletal tissue, we envision that hybrid bioprinting, referred to as hybprinting, could provide unprecedented potential by combining different materials and bioprinting techniques to engineer and assemble modular tissues.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Carolyn Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Chi-Chun Pan
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Aaron Babian
- Department of Biological Sciences, University of California, Davis CA 95616, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey L Young
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Sungwoo Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| |
Collapse
|
59
|
Tafti MF, Aghamollaei H, Moghaddam MM, Jadidi K, Alio JL, Faghihi S. Emerging tissue engineering strategies for the corneal regeneration. J Tissue Eng Regen Med 2022; 16:683-706. [PMID: 35585479 DOI: 10.1002/term.3309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022]
Abstract
Cornea as the outermost layer of the eye is at risk of various genetic and environmental diseases that can damage the cornea and impair vision. Corneal transplantation is among the most applicable surgical procedures for repairing the defected tissue. However, the scarcity of healthy tissue donations as well as transplantation failure has remained as the biggest challenges in confront of corneal grafting. Therefore, alternative approaches based on stem-cell transplantation and classic regenerative medicine have been developed for corneal regeneration. In this review, the application and limitation of the recently-used advanced approaches for regeneration of cornea are discussed. Additionally, other emerging powerful techniques such as 5D printing as a new branch of scaffold-based technologies for construction of tissues other than the cornea are highlighted and suggested as alternatives for corneal reconstruction. The introduced novel techniques may have great potential for clinical applications in corneal repair including disease modeling, 3D pattern scheming, and personalized medicine.
Collapse
Affiliation(s)
- Mahsa Fallah Tafti
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Jorge L Alio
- Department of Research and Development, VISSUM, Alicante, Spain.,Cornea, Cataract and Refractive Surgery Department, VISSUM, Alicante, Spain.,Department of Pathology and Surgery, Division of Ophthalmology, Faculty of Medicine, Miguel Hernández University, Alicante, Spain
| | - Shahab Faghihi
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
60
|
Natural Polymers in Heart Valve Tissue Engineering: Strategies, Advances and Challenges. Biomedicines 2022; 10:biomedicines10051095. [PMID: 35625830 PMCID: PMC9139175 DOI: 10.3390/biomedicines10051095] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
In the history of biomedicine and biomedical devices, heart valve manufacturing techniques have undergone a spectacular evolution. However, important limitations in the development and use of these devices are known and heart valve tissue engineering has proven to be the solution to the problems faced by mechanical and prosthetic valves. The new generation of heart valves developed by tissue engineering has the ability to repair, reshape and regenerate cardiac tissue. Achieving a sustainable and functional tissue-engineered heart valve (TEHV) requires deep understanding of the complex interactions that occur among valve cells, the extracellular matrix (ECM) and the mechanical environment. Starting from this idea, the review presents a comprehensive overview related not only to the structural components of the heart valve, such as cells sources, potential materials and scaffolds fabrication, but also to the advances in the development of heart valve replacements. The focus of the review is on the recent achievements concerning the utilization of natural polymers (polysaccharides and proteins) in TEHV; thus, their extensive presentation is provided. In addition, the technological progresses in heart valve tissue engineering (HVTE) are shown, with several inherent challenges and limitations. The available strategies to design, validate and remodel heart valves are discussed in depth by a comparative analysis of in vitro, in vivo (pre-clinical models) and in situ (clinical translation) tissue engineering studies.
Collapse
|
61
|
Waterborne Polyurethane Acrylates Preparation towards 3D Printing for Sewage Treatment. MATERIALS 2022; 15:ma15093319. [PMID: 35591656 PMCID: PMC9104063 DOI: 10.3390/ma15093319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]
Abstract
Conventional immobilized nitrifying bacteria technologies are limited to fixed beds with regular shapes such as spheres and cubes. To achieve a higher mass transfer capacity, a complex-structured cultivate bed with larger specific surface areas is usually expected. Direct ink writing (DIW) 3D printing technology is capable of preparing fixed beds where nitrifying bacteria are embedded in without geometry limitations. Nevertheless, conventional bacterial carrier materials for sewage treatment tend to easily collapse during printing procedures. Here, we developed a novel biocompatible waterborne polyurethane acrylate (WPUA) with favorable mechanical properties synthesized by introducing amino acids. End-capped by hydroxyethyl acrylate and mixed with sodium alginate (SA), a dual stimuli-responsive ink for DIW 3D printers was prepared. A robust and insoluble crosslinking network was formed by UV-curing and ion-exchange curing. This dual-cured network with a higher crosslinking density provides better recyclability and protection for cryogenic preservation. The corresponding results show that the nitrification efficiency for printed bioreactors reached 99.9% in 72 h, which is faster than unprinted samples and unmodified WPUA samples. This work provides an innovative immobilization method for 3D printing bacterial active structures and has high potential for future sewage treatment.
Collapse
|
62
|
Chemically triggered life control of “smart” hydrogels through click and declick reactions. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
63
|
Rizzi S, Ragazzini S, Pesce M. Engineering Efforts to Refine Compatibility and Duration of Aortic Valve Replacements: An Overview of Previous Expectations and New Promises. Front Cardiovasc Med 2022; 9:863136. [PMID: 35509271 PMCID: PMC9058060 DOI: 10.3389/fcvm.2022.863136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 01/18/2023] Open
Abstract
The absence of pharmacological treatments to reduce or retard the progression of cardiac valve diseases makes replacement with artificial prostheses (mechanical or bio-prosthetic) essential. Given the increasing incidence of cardiac valve pathologies, there is always a more stringent need for valve replacements that offer enhanced performance and durability. Unfortunately, surgical valve replacement with mechanical or biological substitutes still leads to disadvantages over time. In fact, mechanical valves require a lifetime anticoagulation therapy that leads to a rise in thromboembolic complications, while biological valves are still manufactured with non-living tissue, consisting of aldehyde-treated xenograft material (e.g., bovine pericardium) whose integration into the host fails in the mid- to long-term due to unresolved issues regarding immune-compatibility. While various solutions to these shortcomings are currently under scrutiny, the possibility to implant fully biologically compatible valve replacements remains elusive, at least for large-scale deployment. In this regard, the failure in translation of most of the designed tissue engineered heart valves (TEHVs) to a viable clinical solution has played a major role. In this review, we present a comprehensive overview of the TEHVs developed until now, and critically analyze their strengths and limitations emerging from basic research and clinical trials. Starting from these aspects, we will also discuss strategies currently under investigation to produce valve replacements endowed with a true ability to self-repair, remodel and regenerate. We will discuss these new developments not only considering the scientific/technical framework inherent to the design of novel valve prostheses, but also economical and regulatory aspects, which may be crucial for the success of these novel designs.
Collapse
Affiliation(s)
- Stefano Rizzi
- Tissue Engineering Unit, Centro Cardiologico Monzino, Istituto di ricovero e cura a carattere scientifico (IRCCS), Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
- Stefano Rizzi
| | - Sara Ragazzini
- Tissue Engineering Unit, Centro Cardiologico Monzino, Istituto di ricovero e cura a carattere scientifico (IRCCS), Milan, Italy
| | - Maurizio Pesce
- Tissue Engineering Unit, Centro Cardiologico Monzino, Istituto di ricovero e cura a carattere scientifico (IRCCS), Milan, Italy
- *Correspondence: Maurizio Pesce
| |
Collapse
|
64
|
Zheng W, Xie R, Liang X, Liang Q. Fabrication of Biomaterials and Biostructures Based On Microfluidic Manipulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105867. [PMID: 35072338 DOI: 10.1002/smll.202105867] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Biofabrication technologies are of importance for the construction of organ models and functional tissue replacements. Microfluidic manipulation, a promising biofabrication technique with micro-scale resolution, can not only help to realize the fabrication of specific microsized structures but also build biomimetic microenvironments for biofabricated tissues. Therefore, microfluidic manipulation has attracted attention from researchers in the manipulation of particles and cells, biochemical analysis, tissue engineering, disease diagnostics, and drug discovery. Herein, biofabrication based on microfluidic manipulation technology is reviewed. The application of microfluidic manipulation technology in the manufacturing of biomaterials and biostructures with different dimensions and the control of the microenvironment is summarized. Finally, current challenges are discussed and a prospect of microfluidic manipulation technology is given. The authors hope this review can provide an overview of microfluidic manipulation technologies used in biofabrication and thus steer the current efforts in this field.
Collapse
Affiliation(s)
- Wenchen Zheng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ruoxiao Xie
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaoping Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong, 510006, China
| | - Qionglin Liang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
65
|
Costa BL, Adão RMR, Maibohm C, Accardo A, Cardoso VF, Nieder JB. Cellular Interaction of Bone Marrow Mesenchymal Stem Cells with Polymer and Hydrogel 3D Microscaffold Templates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13013-13024. [PMID: 35282678 PMCID: PMC8949723 DOI: 10.1021/acsami.1c23442] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/03/2022] [Indexed: 05/05/2023]
Abstract
Biomimicking biological niches of healthy tissues or tumors can be achieved by means of artificial microenvironments, where structural and mechanical properties are crucial parameters to promote tissue formation and recreate natural conditions. In this work, three-dimensional (3D) scaffolds based on woodpile structures were fabricated by two-photon polymerization (2PP) of different photosensitive polymers (IP-S and SZ2080) and hydrogels (PEGDA 700) using two different 2PP setups, a commercial one and a customized one. The structures' properties were tuned to study the effect of scaffold dimensions (gap size) and their mechanical properties on the adhesion and proliferation of bone marrow mesenchymal stem cells (BM-MSCs), which can serve as a model for leukemic diseases, among other hematological applications. The woodpile structures feature gap sizes of 25, 50, and 100 μm and a fixed beam diameter of 25 μm, to systematically study the optimal cell colonization that promotes healthy cell growth and potential tissue formation. The characterization of the scaffolds involved scanning electron microscopy and mechanical nanoindenting, while their suitability for supporting cell growth was evaluated with live/dead cell assays and multistaining 3D confocal imaging. In the mechanical assays of the hydrogel material, we observed two different stiffness ranges depending on the indentation depth. Larger gap woodpile structures coated with fibronectin were identified as the most promising scaffolds for 3D BM-MSC cellular models, showing higher proliferation rates. The results indicate that both the design and the employed materials are suitable for further assays, where retaining the BM-MSC stemness and original features is crucial, including studies focused on BM disorders such as leukemia and others. Moreover, the combination of 3D scaffold geometry and materials holds great potential for the investigation of cellular behaviors in a co-culture setting, for example, mesenchymal and hematopoietic stem cells, to be further applied in medical research and pharmacological studies.
Collapse
Affiliation(s)
- Beatriz
N. L. Costa
- INL—International
Iberian Nanotechnology Laboratory, Ultrafast
Bio- and Nanophotonics Group, Av. Mestre José Veiga S/n, 4715-330 Braga, Portugal
- CMEMS-UMinho,
University of Minho, DEI, Campus de Azurém, Guimarães 4800-058, Portugal
- Faculty
of Mechanical, Maritime, and Materials Engineering (3mE), Department
of Precision and Microsystems Engineering (PME), Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands
| | - Ricardo M. R. Adão
- INL—International
Iberian Nanotechnology Laboratory, Ultrafast
Bio- and Nanophotonics Group, Av. Mestre José Veiga S/n, 4715-330 Braga, Portugal
| | - Christian Maibohm
- INL—International
Iberian Nanotechnology Laboratory, Ultrafast
Bio- and Nanophotonics Group, Av. Mestre José Veiga S/n, 4715-330 Braga, Portugal
| | - Angelo Accardo
- Faculty
of Mechanical, Maritime, and Materials Engineering (3mE), Department
of Precision and Microsystems Engineering (PME), Delft University of Technology, Mekelweg 2, Delft 2628 CD, The Netherlands
| | - Vanessa F. Cardoso
- CMEMS-UMinho,
University of Minho, DEI, Campus de Azurém, Guimarães 4800-058, Portugal
- CF-UM-UP,
Centro de Física das Universidades do Minho e Porto, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jana B. Nieder
- INL—International
Iberian Nanotechnology Laboratory, Ultrafast
Bio- and Nanophotonics Group, Av. Mestre José Veiga S/n, 4715-330 Braga, Portugal
| |
Collapse
|
66
|
3D Bioprinting of Novel κ-Carrageenan Bioinks: An Algae-Derived Polysaccharide. Bioengineering (Basel) 2022; 9:bioengineering9030109. [PMID: 35324798 PMCID: PMC8945127 DOI: 10.3390/bioengineering9030109] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Novel green materials not sourced from animals and with low environmental impact are becoming increasingly appealing for biomedical and cellular agriculture applications. Marine biomaterials are a rich source of structurally diverse compounds with various biological activities. Kappa-carrageenan (κ-c) is a potential candidate for tissue engineering applications due to its gelation properties, mechanical strength, and similar structural composition of glycosaminoglycans (GAGs), possessing several advantages when compared to other algae-based materials typically used in bioprinting such as alginate. For those reasons, this material was selected as the main polysaccharide component of the bioinks developed herein. In this work, pristine κ-carrageenan bioinks were successfully formulated for the first time and used to fabricate 3D scaffolds by bioprinting. Ink formulation and printing parameters were optimized, allowing for the manufacturing of complex 3D structures. Mechanical compression tests and dry weight determination revealed young’s modulus between 24.26 and 99.90 kPa and water contents above 97%. Biocompatibility assays, using a mouse fibroblast cell line, showed high cell viability and attachment. The bioprinted cells were spread throughout the scaffolds with cells exhibiting a typical fibroblast-like morphology similar to controls. The 3D bio-/printed structures remained stable under cell culture conditions for up to 11 days, preserving high cell viability values. Overall, we established a strategy to manufacture 3D bio-/printed scaffolds through the formulation of novel bioinks with potential applications in tissue engineering and cellular agriculture.
Collapse
|
67
|
Rackson CM, Toombs JT, De Beer MP, Cook CC, Shusteff M, Taylor HK, McLeod RR. Latent image volumetric additive manufacturing. OPTICS LETTERS 2022; 47:1279-1282. [PMID: 35230346 DOI: 10.1364/ol.449220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Volumetric additive manufacturing (VAM) enables rapid printing into a wide range of materials, offering significant advantages over other printing technologies, with a lack of inherent layering of particular note. However, VAM suffers from striations, similar in appearance to layers, and similarly limiting applications due to mechanical and refractive index inhomogeneity, surface roughness, etc. We hypothesize that these striations are caused by a self-written waveguide effect, driven by the gelation material nonlinearity upon which VAM relies, and that they are not a direct recording of non-uniform patterning beams. We demonstrate a simple and effective method of mitigating striations via a uniform optical exposure added to the end of any VAM printing process. We show this step to additionally shorten the period from initial gelation to print completion, mitigating the problem of partially gelled parts sinking before print completion, and expanding the range of resins printable in any VAM printer.
Collapse
|
68
|
Computer vision-aided bioprinting for bone research. Bone Res 2022; 10:21. [PMID: 35217642 PMCID: PMC8881598 DOI: 10.1038/s41413-022-00192-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023] Open
Abstract
Bioprinting is an emerging additive manufacturing technology that has enormous potential in bone implantation and repair. The insufficient accuracy of the shape of bioprinted parts is a primary clinical barrier that prevents widespread utilization of bioprinting, especially for bone design with high-resolution requirements. During the last five years, the use of computer vision for process control has been widely practiced in the manufacturing field. Computer vision can improve the performance of bioprinting for bone research with respect to various aspects, including accuracy, resolution, and cell survival rate. Hence, computer vision plays a substantial role in addressing the current defect problem in bioprinting for bone research. In this review, recent advances in the application of computer vision in bioprinting for bone research are summarized and categorized into three groups based on different defect types: bone scaffold process control, deep learning, and cell viability models. The collection of printing parameters, data processing, and feedback of bioprinting information, which ultimately improves printing capabilities, are further discussed. We envision that computer vision may offer opportunities to accelerate bioprinting development and provide a new perception for bone research.
Collapse
|
69
|
Han X, Kang D, Liu B, Zhang H, Wang Z, Gao X, Zheng A. Feasibility of developing hospital preparation by Semisolid extrusion 3D printing: Personalized Amlodipine Besylate chewable tablets. Pharm Dev Technol 2022; 27:164-174. [PMID: 35007187 DOI: 10.1080/10837450.2022.2027965] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Semisolid extrusion (SSE) 3D printing is an emerging technology in personalized medicine. To address clinical multi-dose requirements, SSE has been explored to manufacture new preparations. In this study, amlodipine besylate (AMB) was the model drug, and SSE was the pharmaceutical strategy. We developed semisolids suitable for SSE and AMB chewable tablets with six strengths (1.5-5 mg) to meet the needs of 2-16-year-old patients. First, the semisolid extrudability was evaluated by texture analyzer, and then the amounts of carboxymethyl cellulose sodium, sodium starch glycolate, and glycerin were optimized by full factorial design. Then, rheological tests were performed to evaluate the properties of the semisolid and the effect of starch sodium glycolate on printability. Finally, the amount of corrigents was optimized using an electronic tongue. Laboratory amplified semisolids and 3D printed tablets can be stored for a few months, and the whole SSE process had no effect on crystal type. This study validated the feasibility of SSE 3D printing, and tablets with appropriate taste and cartoon appearance can meet or even exceed the traditional preparations. Our study provides a new strategy for multi-dose solid preparations and effectively addresses the need for personalized amlodipine medicine.
Collapse
Affiliation(s)
- Xiaolu Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,Troops 32104 of People's Liberation Army, Inner Mongolia 735400, China
| | - Dongzhou Kang
- Pharmaceutical experiment center College of Pharmacy, Yanji 133002, China
| | - Boshi Liu
- The 93152 Military Hospital of People's Liberation Army, Jilin, 135300, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
70
|
Mani MP, Sadia M, Jaganathan SK, Khudzari AZ, Supriyanto E, Saidin S, Ramakrishna S, Ismail AF, Faudzi AAM. A review on 3D printing in tissue engineering applications. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
In tissue engineering, 3D printing is an important tool that uses biocompatible materials, cells, and supporting components to fabricate complex 3D printed constructs. This review focuses on the cytocompatibility characteristics of 3D printed constructs, made from different synthetic and natural materials. From the overview of this article, inkjet and extrusion-based 3D printing are widely used methods for fabricating 3D printed scaffolds for tissue engineering. This review highlights that scaffold prepared by both inkjet and extrusion-based 3D printing techniques showed significant impact on cell adherence, proliferation, and differentiation as evidenced by in vitro and in vivo studies. 3D printed constructs with growth factors (FGF-2, TGF-β1, or FGF-2/TGF-β1) enhance extracellular matrix (ECM), collagen I content, and high glycosaminoglycan (GAG) content for cell growth and bone formation. Similarly, the utilization of 3D printing in other tissue engineering applications cannot be belittled. In conclusion, it would be interesting to combine different 3D printing techniques to fabricate future 3D printed constructs for several tissue engineering applications.
Collapse
Affiliation(s)
- Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Madeeha Sadia
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering , NED University of Engineering and Technology , Karachi , Pakistan
| | - Saravana Kumar Jaganathan
- Department of Engineering, Faculty of Science and Engineering , University of Hull , Hull HU6 7RX , UK
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia , Kuala Lumpur 54100 , Malaysia
- School of Electrical Engineering, Faculty of Engineering , Universiti Teknologi Malaysia , Johor Bahru 81310 , Malaysia
| | - Ahmad Zahran Khudzari
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Eko Supriyanto
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Syafiqah Saidin
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering , Center for Nanofibers & Nanotechnology Initiative, National University of Singapore , Singapore , Singapore
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia , Johor Bahru 81310 , Malaysia
| | - Ahmad Athif Mohd Faudzi
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia , Kuala Lumpur 54100 , Malaysia
- School of Electrical Engineering, Faculty of Engineering , Universiti Teknologi Malaysia , Johor Bahru 81310 , Malaysia
| |
Collapse
|
71
|
Ma N, Cheung DY, Butcher JT. Incorporating nanocrystalline cellulose into a multifunctional hydrogel for heart valve tissue engineering applications. J Biomed Mater Res A 2022; 110:76-91. [PMID: 34254733 PMCID: PMC9437634 DOI: 10.1002/jbm.a.37267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 01/21/2023]
Abstract
Functional tissue engineered heart valves (TEHV) have been an elusive goal for nearly 30 years. Among the persistent challenges are the requirements for engineered valve leaflets that possess nonlinear elastic tissue biomechanical properties, support quiescent fibroblast phenotype, and resist osteogenic differentiation. Nanocellulose is an attractive tunable biological material that has not been employed to this application. In this study, we fabricated a series of photocrosslinkable composite hydrogels mNCC-MeGel (mNG) by conjugating TEMPO-modified nanocrystalline cellulose (mNCC) onto the backbone of methacrylated gelatin (MeGel). Their structures were characterized by FTIR, 1 HNMR and uniaxial compression testing. Human adipose-derived mesenchymal stem cells (HADMSC) were encapsulated within the material and evaluated for valve interstitial cell phenotypes over 14 days culture in both normal and osteogenic media. Compared to the MeGel control group, the HADMSC encapsulated within mNG showed decreased alpha smooth muscle actin (αSMA) expression and increased vimentin and aggrecan expression, suggesting the material supports a quiescent fibroblastic phenotype. Under osteogenic media conditions, HADMSC within mNG hydrogels showed lower expression of osteogenic genes, including Runx2 and osteocalcin, indicating resistance toward calcification. As a proof of principle, the mNG hydrogel, combined with a viscosity enhancing agent, was used to 3D bioprint a tall, self-standing tubular structure that sustained cell viability. Together, these results identify mNG as an attractive biomaterial for TEHV applications.
Collapse
Affiliation(s)
- Nianfang Ma
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
- Institute of Bioengineering, Guangdong Academy of Sciences; Guangdong Provincial Engineering Technology Research Center of Biomaterials, Guangzhou 510316, China
| | - Daniel Y. Cheung
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Jonathan T. Butcher
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
72
|
Taghizadeh M, Taghizadeh A, Yazdi MK, Zarrintaj P, Stadler FJ, Ramsey JD, Habibzadeh S, Hosseini Rad S, Naderi G, Saeb MR, Mozafari M, Schubert US. Chitosan-based inks for 3D printing and bioprinting. GREEN CHEMISTRY 2022; 24:62-101. [DOI: 10.1039/d1gc01799c] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
3D printing gave biomedical engineering great potential to mimic native tissues, accelerated regenerative medicine, and enlarged capacity of drug delivery systems; thus, advanced biomimetic functional biomaterial developed by 3D-printing for tissue engineering demands.
Collapse
Affiliation(s)
- Mohsen Taghizadeh
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, PR China
| | - Ali Taghizadeh
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, PR China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Florian J. Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, PR China
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15916-39675, Iran
| | - Somayeh Hosseini Rad
- Department of Mechanical Engineering, Polytechnique Montreal, Montreal, QC, H3C 3A7, Canada
| | - Ghasem Naderi
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11, /12 80-233, Gdańsk, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
73
|
Pang JKS, Ho BX, Chan WK, Soh BS. Insights to Heart Development and Cardiac Disease Models Using Pluripotent Stem Cell Derived 3D Organoids. Front Cell Dev Biol 2021; 9:788955. [PMID: 34926467 PMCID: PMC8675211 DOI: 10.3389/fcell.2021.788955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Medical research in the recent years has achieved significant progress due to the increasing prominence of organoid technology. Various developed tissue organoids bridge the limitations of conventional 2D cell culture and animal models by recapitulating in vivo cellular complexity. Current 3D cardiac organoid cultures have shown their utility in modelling key developmental hallmarks of heart organogenesis, but the complexity of the organ demands a more versatile model that can investigate more fundamental parameters, such as structure, organization and compartmentalization of a functioning heart. This review will cover the prominence of cardiac organoids in recent research, unpack current in vitro 3D models of the developing heart and look into the prospect of developing physiologically appropriate cardiac organoids with translational applicability. In addition, we discuss some of the limitations of existing cardiac organoid models in modelling embryonic development of the heart and manifestation of cardiac diseases.
Collapse
Affiliation(s)
- Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Woon-Khiong Chan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
74
|
Babi M, Riesco R, Boyer L, Fatona A, Accardo A, Malaquin L, Moran-Mirabal J. Tuning the Nanotopography and Chemical Functionality of 3D Printed Scaffolds through Cellulose Nanocrystal Coatings. ACS APPLIED BIO MATERIALS 2021; 4:8443-8455. [PMID: 35005920 DOI: 10.1021/acsabm.1c00970] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In nature, cells exist in three-dimensional (3D) microenvironments with topography, stiffness, surface chemistry, and biological factors that strongly dictate their phenotype and behavior. The cellular microenvironment is an organized structure or scaffold that, together with the cells that live within it, make up living tissue. To mimic these systems and understand how the different properties of a scaffold, such as adhesion, proliferation, or function, influence cell behavior, we need to be able to fabricate cellular microenvironments with tunable properties. In this work, the nanotopography and functionality of scaffolds for cell culture were modified by coating 3D printed materials (DS3000 and poly(ethylene glycol)diacrylate, PEG-DA) with cellulose nanocrystals (CNCs). This general approach was demonstrated on a variety of structures designed to incorporate macro- and microscale features fabricated using photopolymerization and 3D printing techniques. Atomic force microscopy was used to characterize the CNC coatings and showed the ability to tune their density and in turn the surface nanoroughness from isolated nanoparticles to dense surface coverage. The ability to tune the density of CNCs on 3D printed structures could be leveraged to control the attachment and morphology of prostate cancer cells. It was also possible to introduce functionalization onto the surface of these scaffolds, either by directly coating them with CNCs grafted with the functionality of interest or with a more general approach of functionalizing the CNCs after coating using biotin-streptavidin coupling. The ability to carefully tune the nanostructure and functionalization of different 3D-printable materials is a step forward to creating in vitro scaffolds that mimic the nanoscale features of natural microenvironments, which are key to understanding their impact on cells and developing artificial tissues.
Collapse
Affiliation(s)
- Mouhanad Babi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Roberto Riesco
- LAAS-CNRS, Université Toulouse III─Paul Sabatier, 31400 Toulouse, France
| | - Louisa Boyer
- LAAS-CNRS, Université Toulouse III─Paul Sabatier, 31400 Toulouse, France
| | - Ayodele Fatona
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
| | - Laurent Malaquin
- LAAS-CNRS, Université Toulouse III─Paul Sabatier, 31400 Toulouse, France
| | - Jose Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Centre for Advanced Light Microscopy, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
75
|
Xu R, Zhao X, Ma S, Ma Z, Wang R, Cai M, Zhou F. Hydrogen bonding induced enhancement for constructing anisotropic sugarcane composite hydrogels. J Appl Polym Sci 2021. [DOI: 10.1002/app.51374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rongnian Xu
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou China
- High‐end Equipment Lubrication Protection and Surface Engineering Technology and Materials Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Yantai China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou China
| | - Meirong Cai
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou China
| |
Collapse
|
76
|
Rackson CM, Champley KM, Toombs JT, Fong EJ, Bansal V, Taylor HK, Shusteff M, McLeod RR. Object-Space Optimization of Tomographic Reconstructions for Additive Manufacturing. ADDITIVE MANUFACTURING 2021; 48:102367. [PMID: 34900610 PMCID: PMC8656269 DOI: 10.1016/j.addma.2021.102367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Volumetric 3D printing motivated by computed axial lithography enables rapid printing of homogeneous parts but requires a high dimensionality gradient-descent optimization to calculate image sets. Here we introduce a new, simpler approach to image-computation that algebraically optimizes a model of the printed object, significantly improving print accuracy of complex parts under imperfect material and optical precision by improving optical dose contrast between the target and surrounding regions. Quality metrics for volumetric printing are defined and shown to be significantly improved by the new algorithm. The approach is extended beyond binary printing to grayscale control of conversion to enable functionally graded materials. The flexibility of the technique is digitally demonstrated with realistic projector point spread functions, printing around occluding structures, printing with restricted angular range, and incorporation of materials chemistry such as inhibition. Finally, simulations show that the method facilitates new printing modalities such as printing into flat, rather than cylindrical packages to extend the applications of volumetric printing.
Collapse
Affiliation(s)
- Charles M. Rackson
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Kyle M. Champley
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Joseph T. Toombs
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erika J. Fong
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Vishal Bansal
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maxim Shusteff
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Robert R. McLeod
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
77
|
Potjewyd G, Kellett K, Hooper N. 3D hydrogel models of the neurovascular unit to investigate blood-brain barrier dysfunction. Neuronal Signal 2021; 5:NS20210027. [PMID: 34804595 PMCID: PMC8579151 DOI: 10.1042/ns20210027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
The neurovascular unit (NVU), consisting of neurons, glial cells, vascular cells (endothelial cells, pericytes and vascular smooth muscle cells (VSMCs)) together with the surrounding extracellular matrix (ECM), is an important interface between the peripheral blood and the brain parenchyma. Disruption of the NVU impacts on blood-brain barrier (BBB) regulation and underlies the development and pathology of multiple neurological disorders, including stroke and Alzheimer's disease (AD). The ability to differentiate induced pluripotent stem cells (iPSCs) into the different cell types of the NVU and incorporate them into physical models provides a reverse engineering approach to generate human NVU models to study BBB function. To recapitulate the in vivo situation such NVU models must also incorporate the ECM to provide a 3D environment with appropriate mechanical and biochemical cues for the cells of the NVU. In this review, we provide an overview of the cells of the NVU and the surrounding ECM, before discussing the characteristics (stiffness, functionality and porosity) required of hydrogels to mimic the ECM when incorporated into in vitro NVU models. We summarise the approaches available to measure BBB functionality and present the techniques in use to develop robust and translatable models of the NVU, including transwell models, hydrogel models, 3D-bioprinting, microfluidic models and organoids. The incorporation of iPSCs either without or with disease-specific genetic mutations into these NVU models provides a platform in which to study normal and disease mechanisms, test BBB permeability to drugs, screen for new therapeutic targets and drugs or to design cell-based therapies.
Collapse
Affiliation(s)
- Geoffrey Potjewyd
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Katherine A.B. Kellett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, U.K
| |
Collapse
|
78
|
Nguyen N, Thurgood P, Sekar NC, Chen S, Pirogova E, Peter K, Baratchi S, Khoshmanesh K. Microfluidic models of the human circulatory system: versatile platforms for exploring mechanobiology and disease modeling. Biophys Rev 2021; 13:769-786. [PMID: 34777617 DOI: 10.1007/s12551-021-00815-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The human circulatory system is a marvelous fluidic system, which is very sensitive to biophysical and biochemical cues. The current animal and cell culture models do not recapitulate the functional properties of the human circulatory system, limiting our ability to fully understand the complex biological processes underlying the dysfunction of this multifaceted system. In this review, we discuss the unique ability of microfluidic systems to recapitulate the biophysical, biochemical, and functional properties of the human circulatory system. We also describe the remarkable capacity of microfluidic technologies for exploring the complex mechanobiology of the cardiovascular system, mechanistic studying of cardiovascular diseases, and screening cardiovascular drugs with the additional benefit of reducing the need for animal models. We also discuss opportunities for further advancement in this exciting field.
Collapse
Affiliation(s)
- Ngan Nguyen
- School of Engineering, RMIT University, Melbourne, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Australia
| | - Nadia Chandra Sekar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Sheng Chen
- School of Engineering, RMIT University, Melbourne, Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Melbourne, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Parkville, Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | | |
Collapse
|
79
|
Jana S, Morse D, Lerman A. Leaflet Tissue Generation from Microfibrous Heart Valve Leaflet Scaffolds with Native Characteristics. ACS APPLIED BIO MATERIALS 2021; 4:7836-7847. [PMID: 35006765 DOI: 10.1021/acsabm.1c00768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mechanical and bioprosthetic valves that are currently applied for replacing diseased heart valves are not fully efficient. Heart valve tissue engineering may solve the issues faced by the prosthetic valves in heart valve replacement. The leaflets of native heart valves have a trilayered structure with layer-specific orientations; thus, it is imperative to develop functional leaflet tissue constructs with a native trilayered, oriented structure. Its key solution is to develop leaflet scaffolds with a native morphology and structure. In this study, microfibrous leaflet scaffolds with a native trilayered and oriented structure were developed in an electrospinning system. The scaffolds were implanted for 3 months in rats subcutaneously to study the scaffold efficiencies in generating functional tissue-engineered leaflet constructs. These in vivo tissue-engineered leaflet constructs had a trilayered, oriented structure similar to native leaflets. The tensile properties of constructs indicated that they were able to endure the hydrodynamic load of the native heart valve. Collagen, glycosaminoglycans, and elastin─the predominant extracellular matrix components of native leaflets─were found sufficiently in the leaflet tissue constructs. The residing cells in the leaflet tissue constructs showed vimentin and α-smooth muscle actin expression, i.e., the constructs were in a growing state. Thus, the trilayered, oriented fibrous leaflet scaffolds produced in this study could be useful to develop heart valve scaffolds for successful heart valve replacements.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States.,Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - David Morse
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States
| |
Collapse
|
80
|
Malekmohammadi S, Sedghi Aminabad N, Sabzi A, Zarebkohan A, Razavi M, Vosough M, Bodaghi M, Maleki H. Smart and Biomimetic 3D and 4D Printed Composite Hydrogels: Opportunities for Different Biomedical Applications. Biomedicines 2021; 9:1537. [PMID: 34829766 PMCID: PMC8615087 DOI: 10.3390/biomedicines9111537] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/10/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, smart/stimuli-responsive hydrogels have drawn tremendous attention for their varied applications, mainly in the biomedical field. These hydrogels are derived from different natural and synthetic polymers but are also composite with various organic and nano-organic fillers. The basic functions of smart hydrogels rely on their ability to change behavior; functions include mechanical, swelling, shaping, hydrophilicity, and bioactivity in response to external stimuli such as temperature, pH, magnetic field, electromagnetic radiation, and biological molecules. Depending on the final applications, smart hydrogels can be processed in different geometries and modalities to meet the complicated situations in biological media, namely, injectable hydrogels (following the sol-gel transition), colloidal nano and microgels, and three dimensional (3D) printed gel constructs. In recent decades smart hydrogels have opened a new horizon for scientists to fabricate biomimetic customized biomaterials for tissue engineering, cancer therapy, wound dressing, soft robotic actuators, and controlled release of bioactive substances/drugs. Remarkably, 4D bioprinting, a newly emerged technology/concept, aims to rationally design 3D patterned biological matrices from synthesized hydrogel-based inks with the ability to change structure under stimuli. This technology has enlarged the applicability of engineered smart hydrogels and hydrogel composites in biomedical fields. This paper aims to review stimuli-responsive hydrogels according to the kinds of external changes and t recent applications in biomedical and 4D bioprinting.
Collapse
Affiliation(s)
- Samira Malekmohammadi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran;
| | - Negar Sedghi Aminabad
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Amin Sabzi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Amir Zarebkohan
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran;
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran; (N.S.A.); (A.S.)
| | - Mehdi Razavi
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Massoud Vosough
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Hajar Maleki
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, 50939 Cologne, Germany
| |
Collapse
|
81
|
Applications of 3D Bioprinting in Tissue Engineering and Regenerative Medicine. J Clin Med 2021; 10:jcm10214966. [PMID: 34768485 PMCID: PMC8584432 DOI: 10.3390/jcm10214966] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is an emerging field that centers on the restoration and regeneration of functional components of damaged tissue. Tissue engineering is an application of regenerative medicine and seeks to create functional tissue components and whole organs. Using 3D printing technologies, native tissue mimics can be created utilizing biomaterials and living cells. Recently, regenerative medicine has begun to employ 3D bioprinting methods to create highly specialized tissue models to improve upon conventional tissue engineering methods. Here, we review the use of 3D bioprinting in the advancement of tissue engineering by describing the process of 3D bioprinting and its advantages over other tissue engineering methods. Materials and techniques in bioprinting are also reviewed, in addition to future clinical applications, challenges, and future directions of the field.
Collapse
|
82
|
Jana S, Franchi F, Lerman A. Fibrous heart valve leaflet substrate with native-mimicked morphology. APPLIED MATERIALS TODAY 2021; 24:101112. [PMID: 34485682 PMCID: PMC8415466 DOI: 10.1016/j.apmt.2021.101112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tissue-engineered heart valves are a promising alternative solution to prosthetic valves. However, long-term functionalities of tissue-engineered heart valves depend on the ability to mimic the trilayered, oriented structure of native heart valve leaflets. In this study, using electrospinning, we developed trilayered microfibrous leaflet substrates with morphological characteristics similar to native leaflets. The substrates were implanted subcutaneously in rats to study the effect of their trilayered oriented structure on in vivo tissue engineering. The tissue constructs showed a well-defined structure, with a circumferentially oriented layer, a randomly oriented layer and a radially oriented layer. The extracellular matrix, produced during in vivo tissue engineering, consisted of collagen, glycosaminoglycans, and elastin, all major components of native leaflets. Moreover, the anisotropic tensile properties of the constructs were sufficient to bear the valvular physiological load. Finally, the expression of vimentin and α-smooth muscle actin, at the gene and protein level, was detected in the residing cells, revealing their growing state and their transdifferentiation to myofibroblasts. Our data support a critical role for the trilayered structure and anisotropic properties in functional leaflet tissue constructs, and indicate that the leaflet substrates have the potential for the development of valve scaffolds for heart valve replacements.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri,
Columbia, MO 65211, USA
- Department of Cardiovascular Medicine, Mayo Clinic, 200
First Street SW, Rochester, MN 55905, USA
| | - Federico Franchi
- Department of Cardiovascular Medicine, Mayo Clinic, 200
First Street SW, Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, 200
First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
83
|
Chu X, Wang M, Qiu X, Huang Y, Li T, Otieno E, Li N, Luo L, Xiao X. Strategies for constructing pluripotent stem cell- and progenitor cell-derived three-dimensional cardiac micro-tissues. J Biomed Mater Res A 2021; 110:488-503. [PMID: 34397148 DOI: 10.1002/jbm.a.37298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) cardiac micro-tissue is a promising model for simulating the structural and functional features of heart in vitro. This scientific achievement provides a platform for exploration about the mechanisms on the development, damage, and regeneration of tissue, hence, paving a way toward development of novel therapies for heart diseases. However, 3D micro-tissue technology is still in its infant stages faced with many challenges such as incompleteness of the tissue microarchitecture, loss of the resident immune cells, poor reproducibility, and deficiencies in continuously feeding the nutrients and removing wastes during micro-tissue culturing. There is an urgent need to optimize the construction of 3D cardiac micro-tissue and improve functions of the involved cells. Therefore, scaffolds and cell resources for building 3D cardiac micro-tissues, strategies for inducing the maturation and functionalization of pluripotent stem cell- or cardiac progenitor cell-derived cardiomyocytes, and the major challenges were reviewed in this writing to enable future fabrication of 3D cardiac micro-tissues or organoids for drug screening, disease modeling, regeneration treatment, and so on.
Collapse
Affiliation(s)
- Xinyue Chu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mingyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China.,Institute of Laboratory Animals Science, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiaoyan Qiu
- Department of Animal Husbandry Engineering, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yun Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Tong Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Edward Otieno
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Na Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Li Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiong Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
84
|
Elalouf A. Immune response against the biomaterials used in 3D bioprinting of organs. Transpl Immunol 2021; 69:101446. [PMID: 34389430 DOI: 10.1016/j.trim.2021.101446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/26/2022]
Abstract
Regenerative medicine has developed promising approaches for healing and replacing defective and damaged organs or tissues with functional ones. Three-dimensional (3D) bioprinting innovation has integrated a potential to design organs or tissues specific to the patient with the capability of rapid construction to fulfill the storage of organs and the need for transplantation. 3D bioprinting of organs has the main goal to develop a structural and functional organ or tissue mimic to the original one. The highly complex fabrication of tissue engineering scaffolds containing biomaterials, tissue models, and biomedical devices has made it possible to print small blood vessels to mimic organs to reduce organ or tissue rejection. 3D bioprinting has the concept of bioinks containing biomaterials that may trigger the immune responses in the body. Nevertheless, foreign body response (FBR) is mediated by various cell types such as B-cells, dendritic cells, macrophages, natural killer cells, neutrophils, and T-cells, and molecular signals such as antibodies (Abs), cytokines, and reactive radical species. Typically, the biomaterial is shielded by the fibrous encapsulation that is regulated by molecular signals. This review explored the progress in 3D bioprinting of vital organs and basic immune response against the biomaterials used in this approach. Thus, evaluating immune response against biomaterials used in 3D printed organs is necessary to mitigate tissue rejection after the transplantation.
Collapse
Affiliation(s)
- Amir Elalouf
- Bar-Ilan University, Department of Management, Ramat Gan 5290002, Israel.
| |
Collapse
|
85
|
Piluso S, Skvortsov GA, Altunbek M, Afghah F, Khani N, Koç B, Patterson J. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments. Biofabrication 2021; 13. [PMID: 34192670 DOI: 10.1088/1758-5090/ac0ff0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022]
Abstract
Three-dimensional (3D) bioprinting is an additive manufacturing process in which the combination of biomaterials and living cells, referred to as a bioink, is deposited layer-by-layer to form biologically active 3D tissue constructs. Recent advancements in the field show that the success of this technology requires the development of novel biomaterials or the improvement of existing bioinks. Polyethylene glycol (PEG) is one of the well-known synthetic biomaterials and has been commonly used as a photocrosslinkable bioink for bioprinting; however, other types of cell-friendly crosslinking mechanisms to form PEG hydrogels need to be explored for bioprinting and tissue engineering. In this work, we proposed micro-capillary based bioprinting of a novel molecularly engineered PEG-based bioink that transiently incorporates low molecular weight gelatin (LMWG) fragments. The rheological properties and release profile of the LMWG fragments were characterized, and their presence during hydrogel formation had no effect on the swelling ratio or sol fraction when compared to PEG hydrogels formed without the LMWG fragments. For bioprinting, PEG was first functionalized with cell-adhesive RGD ligands and was then crosslinked using protease-sensitive peptides via a Michael-type addition reaction inside the micro-capillary. The printability was assessed by the analysis of extrudability, shape fidelity, and printing accuracy of the hydrogel filaments after the optimization of the gelation conditions of the PEG-based bioink. The LMWG fragments supplemented into the bioink allowed the extrusion of smooth and uniform cylindrical strands of the hydrogel and improved shape fidelity and printing accuracy. Encapsulated cells in both bioprinted and non-bioprinted PEG-based hydrogels showed high viability and continued to proliferate over time in culture with a well-defined cell morphology depending on the presence of the cell adhesive peptide RGD. The presented micro-capillary based bioprinting process for a novel PEG-based bioink can be promising to construct complex 3D structures with micro-scale range and spatiotemporal variations without using any cytotoxic photoinitiator, UV light, or polymer support.
Collapse
Affiliation(s)
- Susanna Piluso
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813, 3000 Leuven, Belgium.,Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Box 2450, 3001 Leuven, Belgium.,SentryX, Yalelaan 54, 3584 CM Utrecht, The Netherlands
| | - Gözde Akdeniz Skvortsov
- 3D Bioprinting Laboratory, Nanotechnology Research and Application Center, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey
| | - Mine Altunbek
- 3D Bioprinting Laboratory, Nanotechnology Research and Application Center, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey
| | - Ferdows Afghah
- 3D Bioprinting Laboratory, Nanotechnology Research and Application Center, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey
| | - Navid Khani
- 3D Bioprinting Laboratory, Nanotechnology Research and Application Center, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey
| | - Bahattin Koç
- 3D Bioprinting Laboratory, Nanotechnology Research and Application Center, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, Istanbul 34956, Turkey.,Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Istanbul 34906, Turkey
| | - Jennifer Patterson
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813, 3000 Leuven, Belgium.,Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Box 2450, 3001 Leuven, Belgium.,Biomaterials and Regenerative Medicine Group, IMDEA Materials Institute, C/ Eric Kandel 2, Getafe, Madrid 28906, Spain
| |
Collapse
|
86
|
Mei Q, Rao J, Bei HP, Liu Y, Zhao X. 3D Bioprinting Photo-Crosslinkable Hydrogels for Bone and Cartilage Repair. Int J Bioprint 2021; 7:367. [PMID: 34286152 PMCID: PMC8287509 DOI: 10.18063/ijb.v7i3.367] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
Three-dimensional (3D) bioprinting has become a promising strategy for bone manufacturing, with excellent control over geometry and microarchitectures of the scaffolds. The bioprinting ink for bone and cartilage engineering has thus become the key to developing 3D constructs for bone and cartilage defect repair. Maintaining the balance of cellular viability, drugs or cytokines' function, and mechanical integrity is critical for constructing 3D bone and/or cartilage scaffolds. Photo-crosslinkable hydrogel is one of the most promising materials in tissue engineering; it can respond to light and induce structural or morphological transition. The biocompatibility, easy fabrication, as well as controllable mechanical and degradation properties of photo-crosslinkable hydrogel can meet various requirements of the bone and cartilage scaffolds, which enable it to serve as an effective bio-ink for 3D bioprinting. Here, in this review, we first introduce commonly used photo-crosslinkable hydrogel materials and additives (such as nanomaterials, functional cells, and drugs/cytokine), and then discuss the applications of the 3D bioprinted photo-crosslinkable hydrogel scaffolds for bone and cartilage engineering. Finally, we conclude the review with future perspectives about the development of 3D bioprinting photo-crosslinkable hydrogels in bone and cartilage engineering.
Collapse
Affiliation(s)
- Quanjing Mei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jingdong Rao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ho Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | | | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
87
|
Shao Z, Tao T, Xu H, Chen C, Lee I, Chung S, Dong Z, Li W, Ma L, Bai H, Chen Q. Recent progress in biomaterials for heart valve replacement: Structure, function, and biomimetic design. VIEW 2021. [DOI: 10.1002/viw.20200142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ziyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou 310006 China
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Tingting Tao
- Department of Cardiovascular Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China
| | - Hongfei Xu
- Department of Cardiovascular Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China
| | - Cen Chen
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou China
| | - In‐Seop Lee
- College of Life Sciences and Medicine Zhejiang Sci‐Tech University Hangzhou China
- Institute of Natural Sciences Yonsei University Seoul Republic of Korea
| | - Sungmin Chung
- Biomaterials R&D Center GENOSS Co., Ltd. Suwon‐si Republic of Korea
| | - Zhihui Dong
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Weidong Li
- Department of Cardiovascular Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China
| | - Liang Ma
- Department of Cardiovascular Surgery The First Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province China
| | - Hao Bai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou 310006 China
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine & Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University Hangzhou 310006 China
| |
Collapse
|
88
|
Lin X, Fu H, Hou Z, Si Y, Shan W, Yang Y. Three-dimensional printing of gastro-floating tablets using polyethylene glycol diacrylate-based photocurable printing material. Int J Pharm 2021; 603:120674. [PMID: 33964341 DOI: 10.1016/j.ijpharm.2021.120674] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
Extruded three-dimensional (3D) printing based on photocurable materials has shown good application prospects in the medical field. This has been attributed to the operational aspect that can be performed at room temperature and the high mechanical strength of the extrudate and final product. However, the commonly used photocurable polymer, polyethylene glycol diacrylate (PEGDA), has a low viscosity and exhibits a long crosslinking time. Therefore, additives are added to improve the printability of the extrudate. In this study, various hydrogels were used to improve the mixing uniformity and rheological behavior of PEGDA-based printing materials. Printing accuracy and mechanical strength were evaluated to optimize print material composition and process parameters. Hydroxypropyl methylcellulose K100M was found to improve the shear thinning and self-supporting properties of printing materials, which were essential for printability. Although the storage modulus of the photocured material proportionally increased with curing time in the range of 20-80 s, the minimal layer time of the 3D samples remained at 65 s, ensuring interlayer adhesion. Gastro-floating tablets with different infill densities were printed to illustrate the application of 3D extrusion printing in personalized medicine. The weight, crushing strength, and floating time were regulated by the infill density of the models. Overall, this study demonstrates that extrusion printing with a photocurable material is an easy way to prepare customized oral preparations with complex internal structures and tunable properties.
Collapse
Affiliation(s)
- Xiao Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhenhai Hou
- No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, China
| | - Youliang Si
- No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, China
| | - Weiguang Shan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Yan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
89
|
Zhang J, Wehrle E, Rubert M, Müller R. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors. Int J Mol Sci 2021; 22:ijms22083971. [PMID: 33921417 PMCID: PMC8069718 DOI: 10.3390/ijms22083971] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
The field of tissue engineering has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes for regenerative medicine and pharmaceutical research. Conventional scaffold-based approaches are limited in their capacity to produce constructs with the functionality and complexity of native tissue. Three-dimensional (3D) bioprinting offers exciting prospects for scaffolds fabrication, as it allows precise placement of cells, biochemical factors, and biomaterials in a layer-by-layer process. Compared with traditional scaffold fabrication approaches, 3D bioprinting is better to mimic the complex microstructures of biological tissues and accurately control the distribution of cells. Here, we describe recent technological advances in bio-fabrication focusing on 3D bioprinting processes for tissue engineering from data processing to bioprinting, mainly inkjet, laser, and extrusion-based technique. We then review the associated bioink formulation for 3D bioprinting of human tissues, including biomaterials, cells, and growth factors selection. The key bioink properties for successful bioprinting of human tissue were summarized. After bioprinting, the cells are generally devoid of any exposure to fluid mechanical cues, such as fluid shear stress, tension, and compression, which are crucial for tissue development and function in health and disease. The bioreactor can serve as a simulator to aid in the development of engineering human tissues from in vitro maturation of 3D cell-laden scaffolds. We then describe some of the most common bioreactors found in the engineering of several functional tissues, such as bone, cartilage, and cardiovascular applications. In the end, we conclude with a brief insight into present limitations and future developments on the application of 3D bioprinting and bioreactor systems for engineering human tissue.
Collapse
|
90
|
Mirani B, Parvin Nejad S, Simmons CA. Recent Progress Toward Clinical Translation of Tissue-Engineered Heart Valves. Can J Cardiol 2021; 37:1064-1077. [PMID: 33839245 DOI: 10.1016/j.cjca.2021.03.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 01/02/2023] Open
Abstract
Surgical replacement remains the primary option to treat the rapidly growing number of patients with severe valvular heart disease. Although current valve replacements-mechanical, bioprosthetic, and cryopreserved homograft valves-enhance survival and quality of life for many patients, the ideal prosthetic heart valve that is abundantly available, immunocompatible, and capable of growth, self-repair, and life-long performance has yet to be developed. These features are essential for pediatric patients with congenital defects, children and young adult patients with rheumatic fever, and active adult patients with valve disease. Heart valve tissue engineering promises to address these needs by providing living valve replacements that function similarly to their native counterparts. This is best evidenced by the long-term clinical success of decellularised pulmonary and aortic homografts, but the supply of homografts cannot meet the demand for replacement valves. A more abundant and consistent source of replacement valves may come from cellularised valves grown in vitro or acellular off-the-shelf biomaterial/tissue constructs that recellularise in situ, but neither tissue engineering approach has yet achieved long-term success in preclinical testing. Beyond the technical challenges, heart valve tissue engineering faces logistical, economic, and regulatory challenges. In this review, we summarise recent progress in heart valve tissue engineering, highlight important outcomes from preclinical and clinical testing, and discuss challenges and future directions toward clinical translation.
Collapse
Affiliation(s)
- Bahram Mirani
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shouka Parvin Nejad
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Craig A Simmons
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
91
|
Um E, Cho YK, Jeong J. Spontaneous Wrinkle Formation on Hydrogel Surfaces Using Photoinitiator Diffusion from Oil-Water Interface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15837-15846. [PMID: 33689266 DOI: 10.1021/acsami.1c00449] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Patterning wrinkles on three-dimensional curved or enclosed surfaces can be challenging due to difficulties in application of uniform films and stresses on such structures. In this study, we demonstrate a simple one-step wrinkle-formation method on various hydrogel structures utilizing the oil-water interfaces. By diffusion of the photoinitiator from the oil phase to the prepolymer solution in water through the interface, a characteristic cross-linking gradient is set up in the hydrogel. Then, after photopolymerization, we observe diverse patterns of wrinkles upon changing the concentration of the hydrogel or photoinitiator. As the wrinkle formation via photoinitiator diffusion through the interface requires only UV exposure for polymerization, while taking advantage of the oil-water interfacial tension, wrinkles can be developed easily on various curved structures. In addition, we illustrate the formation of wrinkles on surfaces underneath another layer of polymer or on completely enclosed surfaces, which is difficult with conventional methods. We expect that our results will lead to production of novel microstructures and provide a platform for studying the morphogenesis of wrinkles found in nature such as in curved substrates and multilayers.
Collapse
Affiliation(s)
- Eujin Um
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Joonwoo Jeong
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
92
|
Tamay DG, Hasirci N. Bioinks-materials used in printing cells in designed 3D forms. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1072-1106. [PMID: 33720806 DOI: 10.1080/09205063.2021.1892470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Use of materials to activate non-functional or damaged organs and tissues goes back to early ages. The first materials used for this purpose were metals, and in time, novel materials such as ceramics, polymers and composites were introduced to the field to serve in medical applications. In the last decade, the advances in material sciences, cell biology, technology and engineering made 3D printing of living tissues or organ models in the designed structure and geometry possible by using cells alone or together with hydrogels through additive manufacturing. This review aims to give a brief information about the chemical structures and properties of bioink materials and their applications in the production of 3D tissue constructs.
Collapse
Affiliation(s)
- Dilara Goksu Tamay
- BIOMATEN - Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey.,Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey
| | - Nesrin Hasirci
- BIOMATEN - Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey.,Department of Biomedical Engineering, Middle East Technical University, Ankara, Turkey.,Department of Chemistry, Middle East Technical University, Ankara, Turkey.,Tissue Engineering and Biomaterial Research Center, Near East University, TRNC, Mersin 10, Turkey
| |
Collapse
|
93
|
Sedlakova V, McTiernan C, Cortes D, Suuronen EJ, Alarcon EI. 3D Bioprinted Cardiac Tissues and Devices for Tissue Maturation. Cells Tissues Organs 2021; 211:406-419. [PMID: 33677445 DOI: 10.1159/000512792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/27/2020] [Indexed: 11/19/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Given the limited endogenous regenerative capabilities of cardiac tissue, patient-specific anatomy, challenges in treatment options, and shortage of donor tissues for transplantation, there is an urgent need for novel approaches in cardiac tissue repair. 3D bioprinting is a technology based on additive manufacturing which allows for the design of precisely controlled and spatially organized structures, which could possibly lead to solutions in cardiac tissue repair. In this review, we describe the basic morphological and physiological specifics of the heart and cardiac tissues and introduce the readers to the fundamental principles underlying 3D printing technology and some of the materials/approaches which have been used to date for cardiac repair. By summarizing recent progress in 3D printing of cardiac tissue and valves with respect to the key features of cardiovascular tissue (such as contractility, conductivity, and vascularization), we highlight how 3D printing can facilitate surgical planning and provide custom-fit implants and properties that match those from the native heart. Finally, we also discuss the suitability of this technology in the design and fabrication of custom-made devices intended for the maturation of the cardiac tissue, a process that has been shown to increase the viability of implants. Altogether this review shows that 3D printing and bioprinting are versatile and highly modulative technologies with wide applications in cardiac regeneration and beyond.
Collapse
Affiliation(s)
- Veronika Sedlakova
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Christopher McTiernan
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - David Cortes
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Erik J Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Emilio I Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada, .,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada,
| |
Collapse
|
94
|
3D printed agar/ calcium alginate hydrogels with high shape fidelity and tailorable mechanical properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123238] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
95
|
Naghieh S, Chen X. Printability–A key issue in extrusion-based bioprinting. J Pharm Anal 2021; 11:564-579. [PMID: 34765269 PMCID: PMC8572712 DOI: 10.1016/j.jpha.2021.02.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
- Corresponding author.
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
- Corresponding author. Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada.
| |
Collapse
|
96
|
Yin Chin S, Cheung Poh Y, Kohler AC, Compton JT, Hsu LL, Lau KM, Kim S, Lee BW, Lee FY, Sia SK. Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices. Sci Robot 2021; 2. [PMID: 31289767 DOI: 10.1126/scirobotics.aah6451] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Implantable microdevices often have static components rather than moving parts, and exhibit limited biocompatibility. This paper demonstrates a fast manufacturing method which can produce features in biocompatible materials down to tens of microns in scale, with intricate and composite patterns in each layer. By exploiting unique mechanical properties of hydrogels, we developed a "locking mechanism" for precise actuation and movement of freely moving parts, which can provide functions such as valves, manifolds, rotors, pumps, and delivery of payloads. Hydrogel components could be tuned within a wide range of mechanical and diffusive properties, and can be controlled after implantation without a sustained power supply. In a mouse model of osteosarcoma, triggering of release of doxorubicin from the device over ten days showed high treatment efficacy and low toxicity, at one-tenth of a standard systemic chemotherapy dose. Overall, this platform, called "iMEMS", enables development of biocompatible implantable microdevices with a wide range of intricate moving components that can be wirelessly controlled on demand, in a manner that solves issues of device powering and biocompatibility.
Collapse
Affiliation(s)
- Sau Yin Chin
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Yukkee Cheung Poh
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Anne-Céline Kohler
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Jocelyn T Compton
- Department of Orthopedic Surgery, Columbia University Medical Center, 622 West 168 Street, New York, New York 10032, USA
| | - Lauren L Hsu
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Kathryn M Lau
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Sohyun Kim
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Benjamin W Lee
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Francis Y Lee
- Department of Orthopedic Surgery, Columbia University Medical Center, 622 West 168 Street, New York, New York 10032, USA
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
97
|
Zhang Y. Manufacture of complex heart tissues: technological advancements and future directions. AIMS BIOENGINEERING 2021. [DOI: 10.3934/bioeng.2021008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
98
|
Budharaju H, Subramanian A, Sethuraman S. Recent advancements in cardiovascular bioprinting and bioprinted cardiac constructs. Biomater Sci 2021; 9:1974-1994. [DOI: 10.1039/d0bm01428a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three-dimensionally bioprinted cardiac constructs with biomimetic bioink helps to create native-equivalent cardiac tissues to treat patients with myocardial infarction.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab
- Centre for Nanotechnology & Advanced Biomaterials
- ACBDE Innovation Centre
- School of Chemical & Biotechnology
- SASTRA Deemed to be University
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Lab
- Centre for Nanotechnology & Advanced Biomaterials
- ACBDE Innovation Centre
- School of Chemical & Biotechnology
- SASTRA Deemed to be University
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab
- Centre for Nanotechnology & Advanced Biomaterials
- ACBDE Innovation Centre
- School of Chemical & Biotechnology
- SASTRA Deemed to be University
| |
Collapse
|
99
|
House A, Atalla I, Lee EJ, Guvendiren M. Designing Biomaterial Platforms for Cardiac Tissue and Disease Modeling. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000022. [PMID: 33709087 PMCID: PMC7942203 DOI: 10.1002/anbr.202000022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heart disease is one of the leading causes of death in the world. There is a growing demand for in vitro cardiac models that can recapitulate the complex physiology of the cardiac tissue. These cardiac models can provide a platform to better understand the underlying mechanisms of cardiac development and disease and aid in developing novel treatment alternatives and platforms towards personalized medicine. In this review, a summary of engineered cardiac platforms is presented. Basic design considerations for replicating the heart's microenvironment are discussed considering the anatomy of the heart. This is followed by a detailed summary of the currently available biomaterial platforms for modeling the heart tissue in vitro. These in vitro models include 2D surface modified structures, 3D molded structures, porous scaffolds, electrospun scaffolds, bioprinted structures, and heart-on-a-chip devices. The challenges faced by current models and the future directions of in vitro cardiac models are also discussed. Engineered in vitro tissue models utilizing patients' own cells could potentially revolutionize the way we develop treatment and diagnostic alternatives.
Collapse
Affiliation(s)
- Andrew House
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| | - Iren Atalla
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| | - Eun Jung Lee
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| | - Murat Guvendiren
- Instructive Biomaterials and Additive Manufacturing Laboratory, Otto H. York Chemical and Materials Engineering, 138 York Center, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
100
|
Taghizadeh B, Ghavami L, Derakhshankhah H, Zangene E, Razmi M, Jaymand M, Zarrintaj P, Zarghami N, Jaafari MR, Moallem Shahri M, Moghaddasian A, Tayebi L, Izadi Z. Biomaterials in Valvular Heart Diseases. Front Bioeng Biotechnol 2020; 8:529244. [PMID: 33425862 PMCID: PMC7793990 DOI: 10.3389/fbioe.2020.529244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/16/2020] [Indexed: 01/07/2023] Open
Abstract
Valvular heart disease (VHD) occurs as the result of valvular malfunction, which can greatly reduce patient's quality of life and if left untreated may lead to death. Different treatment regiments are available for management of this defect, which can be helpful in reducing the symptoms. The global commitment to reduce VHD-related mortality rates has enhanced the need for new therapeutic approaches. During the past decade, development of innovative pharmacological and surgical approaches have dramatically improved the quality of life for VHD patients, yet the search for low cost, more effective, and less invasive approaches is ongoing. The gold standard approach for VHD management is to replace or repair the injured valvular tissue with natural or synthetic biomaterials. Application of these biomaterials for cardiac valve regeneration and repair holds a great promise for treatment of this type of heart disease. The focus of the present review is the current use of different types of biomaterials in treatment of valvular heart diseases.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laleh Ghavami
- Laboratory of Biophysics and Molecular Biology, Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Zangene
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Razmi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Payam Zarrintaj
- Polymer Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Moallem Shahri
- Cardiology Department, Taleghani Trauma Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, United States
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Academic Center for Education, Culture and Research (ACECR), Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| |
Collapse
|