51
|
Qian L, Miao L, Abba BSA, Lin Y, Jiang W, Chen S, Luo C, Liu B, Ge X. Molecular characterization and expression of sirtuin 2, sirtuin 3, and sirtuin 5 in the Wuchang bream (Megalobrama amblycephala) in response to acute temperature and ammonia nitrogen stress. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110520. [PMID: 33045325 DOI: 10.1016/j.cbpb.2020.110520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 01/16/2023]
Abstract
This study sought to characterize sirtuin 2 (sirt2), sirtuin 3 (sirt3), and sirtuin 5 (sirt5) in Megalobrama amblycephala (M. amblycephala) by cloning the open reading frame (ORF) of sirt2, sirt3, and sirt5. The full-lengths of the resulting M. amblycephala sirt2, sirt3, and sirt5 cDNA sequences were 1845, 1534, and 1920 bp, respectively, with 92%, 98%, and 91% similarities to Danio rerio sequences. Based on our bioinformatic analyses and predictions, the sirt2 and sirt3 genes of M. amblycephala were classified within the Sir2 I family, whereas sirt5 belonged to the Sir2 III family. Furthermore, sirt2, sirt3, and sirt5 were widely distributed in different M. amblycephala tissues. Particularly, sirt2 and sirt5 were highly expressed in gills, intestines, and liver (P < 0.05), whereas sirt3 was highly expressed in gills, kidney, liver, and spleen (P < 0.05). A 2 × 2 factorial experiment was also conducted to analyze sirt2, sirt3, and sirt5 expression patterns in response to acute temperature (25 and 32 °C) and ammonia nitrogen (0 and 20 mg/L) stress. Notably, these two stressors were found to interactively affect sirt2, sirt3, and sirt5 expression patterns in M. amblycephala liver. At the higher water temperature (32 °C) and ammonia nitrogen concentration (20 mg/L) tested herein, sirt2, sirt3, and sirt5 had similar expression levels and exhibited a down-regulation trend at 6 and 48 h post-stress but became up-regulated thereafter to counteract the stressors at 96 h post-stress.
Collapse
Affiliation(s)
- Linjie Qian
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Linghong Miao
- KeyLaboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | | | - Yan Lin
- KeyLaboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Wenqiang Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Shiyou Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Chenhao Luo
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; KeyLaboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; KeyLaboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi 214081, China.
| |
Collapse
|
52
|
Yuan T, Keijer J, Guo AH, Lombard DB, de Boer VCJ. An optimized desuccinylase activity assay reveals a difference in desuccinylation activity between proliferative and differentiated cells. Sci Rep 2020; 10:17030. [PMID: 33046741 PMCID: PMC7552388 DOI: 10.1038/s41598-020-72833-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Succinylation is a novel post-translational modification identified on many proteins and is involved in multiple biological processes. Succinylation levels are dynamically regulated, balanced by succinylation and desuccinylation processes, and are closely connected to metabolic state in vivo. Sirtuins have been shown to possess NAD+-dependent desuccinylation activity in vitro and in vivo, among which the desuccinylation activity of SIRT5 is most extensively studied. Our understanding of the response of succinylation levels to different metabolic conditions, is hampered by the lack of a fast NAD+-dependent desuccinylation assay in a physiological context. In the present study, we therefore optimized and validated a fluorescence-based assay for measuring NAD+-dependent desuccinylation activity in cell lysates. Our results demonstrated that shorter and stricter reaction time was critical to approach the initial rate of NAD+-dependent desuccinylation activity in crude cell lysate systems, as compared to the desuccinylation reaction of purified His-SIRT5. Analysis of desuccinylation activity in SIRT5 knockout HEK293T cells confirmed the relevance of SIRT5 in cellular desuccinylation activity, as well as the presence of other NAD+-dependent desuccinylase activities. In addition, we were able to analyse desuccinylation and deacetylation activity in multiple cell lines using this assay. We showed a remarkably higher desuccinylase activity, but not deacetylase activity, in proliferative cultured muscle and adipose cells in comparison with their differentiated counterparts. Our results reveal an alteration in NAD+-dependent desuccinylation activity under different metabolic states.
Collapse
Affiliation(s)
- Taolin Yuan
- Human and Animal Physiology, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands
| | - Angela H Guo
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vincent C J de Boer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands.
| |
Collapse
|
53
|
Zhao L, Cao J, Hu K, He X, Yun D, Tong T, Han L. Sirtuins and their Biological Relevance in Aging and Age-Related Diseases. Aging Dis 2020; 11:927-945. [PMID: 32765955 PMCID: PMC7390530 DOI: 10.14336/ad.2019.0820] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Sirtuins, initially described as histone deacetylases and gene silencers in yeast, are now known to have many more functions and to be much more abundant in living organisms. The increasing evidence of sirtuins in the field of ageing and age-related diseases indicates that they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. Here, we summarize some of the recent discoveries in sirtuin biology that clearly implicate the functions of sirtuins in the regulation of aging and age-related diseases. Furthermore, human sirtuins are considered promising therapeutic targets for anti-aging and ageing-related diseases and have attracted interest in scientific communities to develop small molecule activators or drugs to ameliorate a wide range of ageing disorders. In this review, we also summarize the discovery and development status of sirtuin-targeted drug and further discuss the potential medical strategies of sirtuins in delaying aging and treating age-related diseases.
Collapse
Affiliation(s)
- Lijun Zhao
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Jianzhong Cao
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kexin Hu
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Xiaodong He
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dou Yun
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Tanjun Tong
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Limin Han
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| |
Collapse
|
54
|
Wang C, Liu Y, Zhu Y, Kong C. Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer. Oncol Lett 2020; 20:11. [PMID: 32774484 PMCID: PMC7405384 DOI: 10.3892/ol.2020.11872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Sirtuins are mammalian homologs of yeast silent information regulator two (SIRT) and are a highly conserved family of proteins, which act as nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases. The seven sirtuins (SIRT1-7) share a conserved catalytic core domain; however, they have different enzyme activities, biological functions, and subcellular localizations. Among them, mitochondrial SIRT4 possesses ADP-ribosyltransferase, NAD+-dependent deacetylase, lipoamidase, and long-chain deacylase activities and can modulate the function of substrate proteins via ADP-ribosylation, delipoylation, deacetylation and long-chain deacylation. SIRT4 has been shown to play a crucial role in insulin secretion, fatty acid oxidation, amino acid metabolism, ATP homeostasis, apoptosis, neurodegeneration, and cardiovascular diseases. In addition, recent studies have demonstrated that SIRT4 acts as a tumor suppressor. Here, the present review summarizes the enzymatic activities and biological functions of SIRT4, as well as its roles in cellular metabolism and human cancer, which are described in the current literature.
Collapse
Affiliation(s)
- Changming Wang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Urological Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yan Liu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yuyan Zhu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Urological Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chuize Kong
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Urological Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
55
|
ROS Mediate xCT-Dependent Cell Death in Human Breast Cancer Cells under Glucose Deprivation. Cells 2020; 9:cells9071598. [PMID: 32630312 PMCID: PMC7407809 DOI: 10.3390/cells9071598] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
xCT, also known as solute carrier family 7 member 11 (SLC7A11), the light chain of the cystine/glutamate antiporter, is positively correlated with cancer progression due to antioxidant function. During glucose deprivation, the overexpression of xCT does not protect cancer cells but instead promotes cell death. Further understanding the mechanism of glucose deprivation-induced cell death is important for developing anticancer treatments targeting the glucose metabolism. In this study, we found that breast cancer cells with a high expression of xCT demonstrated increased levels of reactive oxygen species (ROS) and were more sensitive to glucose deprivation than the cells with a low expression of xCT. However, AMP-activated protein kinase (AMPK) did not significantly affect glucose-deprivation-induced cell death. The antioxidant N-acetyl-cysteine prevented glucose-deprivation-induced cell death, and the glutathione biosynthesis inhibitor L-buthionine-S, R-sulfoximine enhanced glucose-deprivation-induced cell death. The inhibition of xCT by sulfasalazine or a knockdown of xCT reduced the glucose-deprivation-increased ROS levels and glucose-deprivation-induced cell death. Glucose deprivation reduced the intracellular glutamate, and supplementation with α-ketoglutarate prevented the glucose-deprivation-increased ROS levels and rescued cell death. The knockdown of sirtuin-3 (SIRT3) further enhanced the ROS levels, and promoted xCT-related cell death after glucose deprivation. In conclusion, our results suggested that ROS play a critical role in xCT-dependent cell death in breast cancer cells under glucose deprivation.
Collapse
|
56
|
Lukey MJ, Greene KS, Cerione RA. Lysine succinylation and SIRT5 couple nutritional status to glutamine catabolism. Mol Cell Oncol 2020; 7:1735284. [PMID: 32391426 DOI: 10.1080/23723556.2020.1735284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 10/24/2022]
Abstract
The metabolic microenvironment of tumors is characterized by fluctuating and limited nutrient availability. To survive these conditions, cancer cell-intrinsic mechanisms sense and signal nutritional status. We describe how glutaminase (GLS) is destabilized by lysine succinylation and stabilized by the NAD+-dependent desuccinylase sirtuin 5 (SIRT5), coupling nutrient levels to metabolic flux.
Collapse
Affiliation(s)
- Michael J Lukey
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Kai Su Greene
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
57
|
Zhang GZ, Deng YJ, Xie QQ, Ren EH, Ma ZJ, He XG, Gao YC, Kang XW. Sirtuins and intervertebral disc degeneration: Roles in inflammation, oxidative stress, and mitochondrial function. Clin Chim Acta 2020; 508:33-42. [PMID: 32348785 DOI: 10.1016/j.cca.2020.04.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which seriously reduces the quality of life of patients and places a heavy economic burden on their families. Cellular senescence is considered to be an important factor leading to IDD, and inflammatory response, oxidative stress, and mitochondrial dysfunction are closely related to intervertebral disc (IVD) senescence. Therefore, inhibition of the inflammatory response and oxidative stress, along with maintaining mitochondrial function, may be useful in treating IDD. The sirtuins are a family of evolutionarily conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, which are the major molecules mediating life extension or delay of aging-related diseases. The sirtuin protein family consist of seven members (SIRT1 - 7), which are mainly involved in various aging-related diseases by regulating inflammation, oxidative stress, and mitochondrial function. Among them, SIRT1, SIRT2, SIRT3, and SIRT6 are closely related to IDD. In addition, some activators of sirtuin proteins, such as resveratrol, melatonin, magnolol, 1,4-dihydropyridine (DHP), SRT1720, and nicotinamide mononucleotide (NMN), have been evaluated in preclinical studies for their effects in preventing IDD. This review described the biological functions of sirtuins and the important roles of SIRT1, SIRT2, SIRT3, and SIRT6 in IDD by regulating oxidative stress, inflammatory response, and mitochondrial function. In addition, we introduce the status of some sirtuin activators in IDD preclinical studies. This review will provide a background for further clarification of the molecular mechanism underlying IDD and the development of potential therapeutic drugs.
Collapse
Affiliation(s)
- Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Ya-Jun Deng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Qi-Qi Xie
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - En-Hui Ren
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhan-Jun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xue-Gang He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yi-Cheng Gao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xue-Wen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, PR China; Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China; The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu 730000, PR China.
| |
Collapse
|
58
|
Mautone N, Zwergel C, Mai A, Rotili D. Sirtuin modulators: where are we now? A review of patents from 2015 to 2019. Expert Opin Ther Pat 2020; 30:389-407. [PMID: 32228181 DOI: 10.1080/13543776.2020.1749264] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In recent years, sirtuins (SIRTs) gained an increasing consideration because of their multiple key roles in several biological settings such as the regulation of transcription, energetic metabolism, cell cycle progression, and cytodifferentiation, apoptosis, neuro- and cardio-protection, inflammation, cancer onset and progression. Since there is mounting evidence in favor of potential therapeutic applications of SIRT modulators in various age-related disorders, the search about them is quite active. Areas covered: This review includes the patents regarding SIRT modulators released from 2015 to 2019 and provides an overview of the most relevant SIRT modulators.Expert opinion: Despite the knowledge about this family of broad-spectrum protein lysine deacylases has recently massively increased, there are still open questions, first of all, the exact nature of their involvement in various age-related conditions. The search for isoform-specific SIRT activators and inhibitors is still at its infancy, a limited number of patents describing them has been released, and not many clinical trials are ongoing. However, it is extremely likely that the successes obtained in the structural elucidation and structure-based design approaches that very recently have led to potent and specific SIRT modulators will pave the way for the development of further compounds selective for every single isoform.
Collapse
Affiliation(s)
- Nicola Mautone
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Clemens Zwergel
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy.,Dipartimento di Medicina di Precisione, "Luigi Vanvitelli", Università della Campania, Naples, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| | - Dante Rotili
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, Rome, Italy
| |
Collapse
|
59
|
Xu M, Xue RQ, Lu Y, Yong SY, Wu Q, Cui YL, Zuo XT, Yu XJ, Zhao M, Zang WJ. Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway. Cardiovasc Res 2020; 115:530-545. [PMID: 30165480 DOI: 10.1093/cvr/cvy217] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/01/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
AIMS Cardiac hypertrophy is characterized by a shift in metabolic substrate utilization, but the molecular events underlying the metabolic remodelling remain poorly understood. We explored metabolic remodelling and mitochondrial dysfunction in cardiac hypertrophy and investigated the cardioprotective effects of choline. METHODS AND RESULTS The experiments were conducted using a model of ventricular hypertrophy by partially banding the abdominal aorta of Sprague Dawley rats. Cardiomyocyte size and cardiac fibrosis were significantly increased in hypertrophic hearts. In vitro cardiomyocyte hypertrophy was induced by exposing neonatal rat cardiomyocytes to angiotensin II (Ang II) (10-6 M, 24 h). Choline attenuated the mito-nuclear protein imbalance and activated the mitochondrial-unfolded protein response (UPRmt) in the heart, thereby preserving the ultrastructure and function of mitochondria in the context of cardiac hypertrophy. Moreover, choline inhibited myocardial metabolic dysfunction by promoting the expression of proteins involved in ketone body and fatty acid metabolism in response to pressure overload, accompanied by the activation of sirtuin 3/AMP-activated protein kinase (SIRT3-AMPK) signalling. In vitro analyses demonstrated that SIRT3 siRNA diminished choline-mediated activation of ketone body metabolism and UPRmt, as well as inhibition of hypertrophic signals. Intriguingly, serum from choline-treated abdominal aorta banding models (where β-hydroxybutyrate was increased) attenuated Ang II-induced myocyte hypertrophy, which indicates that β-hydroxybutyrate is important for the cardioprotective effects of choline. CONCLUSION Choline attenuated cardiac dysfunction by modulating the expression of proteins involved in ketone body and fatty acid metabolism, and induction of UPRmt; this was likely mediated by activation of the SIRT3-AMPK pathway. Taken together, these results identify SIRT3-AMPK as a key cardiac transcriptional regulator that helps orchestrate an adaptive metabolic response to cardiac stress. Choline treatment may represent a new therapeutic strategy for optimizing myocardial metabolism in the context of hypertrophy and heart failure.
Collapse
Affiliation(s)
- Man Xu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Run-Qing Xue
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Yi Lu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Su-Yun Yong
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Qing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Yan-Ling Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Xiao-Ting Zuo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Xiao-Jiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Ming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shannxi, PR China
| |
Collapse
|
60
|
Storey KB, Storey JM. Mitochondria, metabolic control and microRNA: Advances in understanding amphibian freeze tolerance. Biofactors 2020; 46:220-228. [PMID: 31026112 DOI: 10.1002/biof.1511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/08/2023]
Abstract
Winter survival for many animal species depends freeze tolerance, a capacity to endure the conversion of as much as 65-70% of total body water into extracellular ice while reorganizing metabolism to provide cells with cryoprotection against insults that include prolonged ischemia and hyperosmotic stress. Natural freeze tolerance involves not just de novo preservation mechanisms such as synthesis of high levels of cryoprotectants or novel proteins that manage ice formation, but also requires attention to and co-ordination of many cellular processes. The present review examines recent studies of the freeze-tolerant wood frog (Rana sylvatica) that probed previously unexplored areas of metabolic adaptation for freezing survival, with a particular emphasis on mitochondria. Post-translational controls on enzyme function play a prominent role in resculpting metabolic responses of the wood frog to freezing including reversible phosphorylation control over fuel processing at the pyruvate dehydrogenase locus and modulation of antioxidant defense enzymes (Mn-SOD, catalase). Enzymes involved in mitochondrial nitrogen metabolism (glutamate dehydrogenase, carbamoyl phosphate synthetase) are also differentially regulated during freezing but by different post-translational modifications including ADP-ribosylation, lysine acetylation or glutarylation. The action of microRNAs in mediating post-translational controls on gene expression aid the suppression of energy-expensive (cell cycle) or destructive (apoptosis) processes in the frozen state while also providing storage of transcripts that will be immediately available for repair or reactivation of metabolic processes after thawing. The effects of low temperature in strengthening mRNA-microRNA interactions can also provide a passive mechanism of metabolic suppression in the frozen state.
Collapse
Affiliation(s)
- Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Janet M Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
61
|
Lee JH, Go Y, Kim DY, Lee SH, Kim OH, Jeon YH, Kwon TK, Bae JH, Song DK, Rhyu IJ, Lee IK, Shong M, Oh BC, Petucci C, Park JW, Osborne TF, Im SS. Isocitrate dehydrogenase 2 protects mice from high-fat diet-induced metabolic stress by limiting oxidative damage to the mitochondria from brown adipose tissue. Exp Mol Med 2020; 52:238-252. [PMID: 32015410 PMCID: PMC7062825 DOI: 10.1038/s12276-020-0379-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Isocitrate dehydrogenase 2 (IDH2) is an NADP+-dependent enzyme that catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate in the mitochondrial matrix, and is critical for the production of NADPH to limit the accumulation of mitochondrial reactive oxygen species (ROS). Here, we showed that high-fat diet (HFD) feeding resulted in accelerated weight gain in the IDH2KO mice due to a reduction in whole-body energy expenditure. Moreover, the levels of NADP+, NADPH, NAD+, and NADH were significantly decreased in the brown adipose tissue (BAT) of the HFD-fed IDH2KO animals, accompanied by decreased mitochondrial function and reduced expression of key genes involved in mitochondrial biogenesis, energy expenditure, and ROS resolution. Interestingly, these changes were partially reversed when the antioxidant butylated hydroxyanisole was added to the HFD. These observations reveal a crucial role for IDH2 in limiting ROS-dependent mitochondrial damage when BAT metabolism is normally enhanced to limit weight gain in response to dietary caloric overload.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601 Republic of Korea
| | - Younghoon Go
- Department of Internal Medicine, School of Medicine Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944 Republic of Korea
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 41404 South Korea
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, 41062 Republic of Korea
| | - Do-Young Kim
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601 Republic of Korea
| | - Sun Hee Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601 Republic of Korea
| | - Ok-Hee Kim
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Younsoo-gu, Inchon, 21999 Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061 Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, Keimyung University School of Medicine, Daegu, 42601 Republic of Korea
| | - Jae-Hoon Bae
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601 Republic of Korea
| | - Dae-Kyu Song
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601 Republic of Korea
| | - Im Joo Rhyu
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841 Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944 Republic of Korea
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, 41404 South Korea
| | - Minho Shong
- Research Center for Endocrinology and Metabolism, Chungnam National University Hospital (CNUH), 282 Munhwaro, Daejeon, 35015 Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University School of Medicine, Younsoo-gu, Inchon, 21999 Republic of Korea
| | - Christopher Petucci
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827 USA
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Jeen-Woo Park
- School of Life Sciences and Biotechnology, College of Natural Science, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Timothy F. Osborne
- Institute for Fundamental Biomedical Research, Department of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, St. Petersburg, FL 33701 USA
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601 Republic of Korea
| |
Collapse
|
62
|
Bhatti GK, Reddy AP, Reddy PH, Bhatti JS. Lifestyle Modifications and Nutritional Interventions in Aging-Associated Cognitive Decline and Alzheimer's Disease. Front Aging Neurosci 2020; 11:369. [PMID: 31998117 PMCID: PMC6966236 DOI: 10.3389/fnagi.2019.00369] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a type of incurable neurodegenerative disease that is characterized by the accumulation of amyloid-β (Aβ; plaques) and tau hyperphosphorylation as neurofibrillary tangles (NFTs) in the brain followed by neuronal death, cognitive decline, and memory loss. The high prevalence of AD in the developed world has become a major public health challenge associated with social and economic burdens on individuals and society. Due to there being limited options for early diagnosis and determining the exact pathophysiology of AD, finding effective therapeutic strategies has become a great challenge. Several possible risk factors associated with AD pathology have been identified; however, their roles are still inconclusive. Recent clinical trials of the drugs targeting Aβ and tau have failed to find a cure for the AD pathology. Therefore, effective preventive strategies should be followed to reduce the exponential increase in the prevalence of cognitive decline and dementia, especially AD. Although the search for new therapeutic targets is a great challenge for the scientific community, the roles of lifestyle interventions and nutraceuticals in the prevention of many metabolic and neurodegenerative diseases are highly appreciated in the literature. In this article, we summarize the molecular mechanisms involved in AD pathology and the possible ameliorative action of lifestyle and nutritional interventions including diet, exercise, Calorie restriction (CR), and various bioactive compounds on cognitive decline and dementia. This article will provide insights into the role of non-pharmacologic interventions in the modulation of AD pathology, which may offer the benefit of improving quality of life by reducing cognitive decline and incident AD.
Collapse
Affiliation(s)
- Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Arubala P. Reddy
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - P. Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Speech, Language and Hearing Sciences Department, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jasvinder Singh Bhatti
- Department of Biotechnology and Microbial Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| |
Collapse
|
63
|
SIRT5 stabilizes mitochondrial glutaminase and supports breast cancer tumorigenesis. Proc Natl Acad Sci U S A 2019; 116:26625-26632. [PMID: 31843902 DOI: 10.1073/pnas.1911954116] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mitochondrial enzyme glutaminase (GLS) is frequently up-regulated during tumorigenesis and is being evaluated as a target for cancer therapy. GLS catalyzes the hydrolysis of glutamine to glutamate, which then supplies diverse metabolic pathways with carbon and/or nitrogen. Here, we report that SIRT5, a mitochondrial NAD+-dependent lysine deacylase, plays a key role in stabilizing GLS. In transformed cells, SIRT5 regulates glutamine metabolism by desuccinylating GLS and thereby protecting it from ubiquitin-mediated degradation. Moreover, we show that SIRT5 is up-regulated during cellular transformation and supports proliferation and tumorigenesis. Elevated SIRT5 expression in human breast tumors correlates with poor patient prognosis. These findings reveal a mechanism for increasing GLS expression in cancer cells and establish a role for SIRT5 in metabolic reprogramming and mammary tumorigenesis.
Collapse
|
64
|
Ma K, Lu N, Zou F, Meng FZ. Sirtuins as novel targets in the pathogenesis of airway inflammation in bronchial asthma. Eur J Pharmacol 2019; 865:172670. [PMID: 31542484 DOI: 10.1016/j.ejphar.2019.172670] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Sirtuins are NAD-dependent class III histone deacetylase, which modulate the epigenetic changes to influence the functions in normal and diseased conditions. Preclinical studies have described an increase in the levels of sirtuin 2 and decrease in the levels of sirtuin 6 in the lungs. Sirtuin 2 exerts proinflammatory actions and hence, its blockers reduce the airway inflammation and symptoms of asthma. On the other hand, sirtuin 6 is anti-inflammatory and its activators produce beneficial actions in asthma. The beneficial effects of sirtuin 6 have been attributed to decrease in acetylation of transcriptional factor GATA3 in the T cells, which is associated with decrease in the TH2 immune response. However, there seems to be dual role of sirtuin 1 in airway inflammation as its proinflammatory as well as anti-inflammatory actions have been described in asthma. The anti-inflammatory actions of sirtuin 1 have been attributed to decrease in acetylation of GATA3 and inhibition of Akt/NF-kappaB signaling. On the other hand, proinflammatory actions of sirtuin 1 have been attributed to increase in the expression of HIF-1α and VEGF along with repression of PPAR-γ activity. The present review discusses the role of different sirtuins in the pathogenesis of bronchial asthma. Moreover, it also discusses sirtuin-triggered signaling pathways that may contribute in modulating the disease state of bronchial asthma.
Collapse
Affiliation(s)
- Ke Ma
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Na Lu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Fei Zou
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Fan-Zheng Meng
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
65
|
Ringel AE, Tucker SA, Haigis MC. Chemical and Physiological Features of Mitochondrial Acylation. Mol Cell 2019; 72:610-624. [PMID: 30444998 DOI: 10.1016/j.molcel.2018.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/15/2018] [Accepted: 10/15/2018] [Indexed: 01/09/2023]
Abstract
Growing appreciation of the diversity of post-translational modifications (PTMs) in the mitochondria necessitates reevaluation of the roles these modifications play in both health and disease. Compared to the cytosol and nucleus, the mitochondrial proteome is highly acylated, and remodeling of the mitochondrial "acylome" is a key adaptive mechanism that regulates fundamental aspects of mitochondrial biology. It is clear that we need to understand the underlying chemistry that regulates mitochondrial acylation, as well as how chemical properties of the acyl chain impact biological functions. Here, we dissect the sources of PTMs in the mitochondria, review major mitochondrial pathways that control levels of PTMs, and highlight how sirtuin enzymes respond to the bioenergetic state of the cell via NAD+ availability to regulate mitochondrial biology. By providing a framework connecting the chemistry of these modifications, their biochemical consequences, and the pathways that regulate the levels of acyl PTMs, we will gain a deeper understanding of the physiological significance of mitochondrial acylation and its role in mitochondrial adaptation.
Collapse
Affiliation(s)
- Alison E Ringel
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Sarah A Tucker
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
66
|
Wang YS, Du L, Liang X, Meng P, Bi L, Wang YL, Wang C, Tang B. Sirtuin 4 Depletion Promotes Hepatocellular Carcinoma Tumorigenesis Through Regulating Adenosine-Monophosphate-Activated Protein Kinase Alpha/Mammalian Target of Rapamycin Axis in Mice. Hepatology 2019; 69:1614-1631. [PMID: 30552782 DOI: 10.1002/hep.30421] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022]
Abstract
Sirtuin 4 (SIRT4) has been reported to play a vital role in the maintenance of glutamine catabolism and adenosine triphosphate (ATP) homeostasis, but its character in hepatocellular carcinomas (HCCs) remains obscure. In this study, we observed low expression of SIRT4 in both HCC cell lines and HCCs from patients. Decreased disease-free survival time is associated with low tumor levels of SIRT4 in patients. Deficiency of SIRT4 facilitated liver tumor development and lung metastasis in xenografts and knockout (KO) mice by promoting colony formation and migration of hepatoma cells and enhancing sphere formation of HCCs. Mechanistically, SIRT4 deletion augmented mammalian target of rapamycin (mTOR) signaling by inactivating adenosine-monophosphate (AMP)-activated protein kinase alpha (AMPKα) through regulation of glutamine catabolism and subsequent AM)/liver kinase B1 (LKB1) axis. Blockage of mTOR by rapamycin or inhibition of glutaminolysis abolished the discrepancy in tumorigenic capacity between SIRT4-depleted hepatoma cells and control cells. Suppression of LKB1 or promotion of AMP by metformin also abrogated the hyperproliferative phenotype caused by SIRT4 loss, which further confirmed that the LKB1/AMPKα/mTOR axis is required in SIRT4-deficiency-promoted HCC tumorigenesis. Conclusion: SIRT4 could exert its tumor suppressive function in HCC by inhibiting glutamine metabolism and thereby increasing the adenosine diphosphate (ADP)/AMP levels to phosphorylate AMPKα by LKB1, which blocks the mTOR signaling pathway.
Collapse
Affiliation(s)
- Yun-Shan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China.,Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Xingsi Liang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Meng
- Zhangjiang Center for Translational Medicine, Biotecan Medical Diagnostics Co., Ltd, Shanghai, China
| | - Lei Bi
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Li Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Bo Tang
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
67
|
Novel tubular-glomerular interplay in diabetic kidney disease mediated by sirtuin 1, nicotinamide mononucleotide, and nicotinamide adenine dinucleotide Oshima Award Address 2017. Clin Exp Nephrol 2019; 23:987-994. [PMID: 30859351 PMCID: PMC6647828 DOI: 10.1007/s10157-019-01719-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Tubules interact with glomeruli, which are composed of podocytes, parietal epithelial cells, mesangial cells, and glomerular endothelial cells. Glomerular–tubular balance and tubuloglomerular feedback are the two components of the tubular–glomerular interplay, which has been demonstrated to play roles in physiological renal function and in diabetic kidney disease (DKD), in which proteins leaking from glomeruli arrive at tubular regions, leading to further tubular injury caused by the accumulation of proteinuria-inducing reactive oxygens species and various cytokines. In the current review, we present our recent work identifying a novel tubular–glomerular interplay in DKD mediated by sirtuin 1 and nicotinamide mononucleotide.
Collapse
|
68
|
Carafa V, Altucci L, Nebbioso A. Dual Tumor Suppressor and Tumor Promoter Action of Sirtuins in Determining Malignant Phenotype. Front Pharmacol 2019; 10:38. [PMID: 30761005 PMCID: PMC6363704 DOI: 10.3389/fphar.2019.00038] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
Sirtuins (SIRTs), class III histone deacetylases, are differentially expressed in several human cancers, where they display both oncogenic and tumor-suppressive properties depending on cellular context and experimental conditions. SIRTs are involved in many important biological processes and play a critical role in cancer initiation, promotion, and progression. A growing body of evidence indicates the involvement of SIRTs in regulating three important tumor processes: epithelial-to-mesenchymal transition (EMT), invasion, and metastasis. Many SIRTs are responsible for cellular metabolic reprogramming and drug resistance by inactivating cell death pathways and promoting uncontrolled proliferation. In this review, we summarize current knowledge on the role of SIRTs in cancer and discuss their puzzling dual function as tumor suppressors and tumor promoters, important for the future development of novel tailored SIRT-based cancer therapies.
Collapse
Affiliation(s)
- Vincenzo Carafa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Angela Nebbioso
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
69
|
Yan T, Huang J, Nisar MF, Wan C, Huang W. The Beneficial Roles of SIRT1 in Drug-Induced Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8506195. [PMID: 31354914 PMCID: PMC6636535 DOI: 10.1155/2019/8506195] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/27/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF) as a result of accumulated drugs in the human body metabolized into toxic agents and helps generate heavy oxidative stress, inflammation, and apoptosis, which induces necrosis in hepatocytes and ultimately damages the liver. Sirtuin 1 (SIRT1) is said to have multiple vital roles in cell proliferation, aging, and antistress systems of the human body. The levels of SIRT1 and its activation precisely modulate its critical role in the interaction between multiple step procedures of DILI. The nuclear factor kappa-light-chain-enhancer of activated B cell- (NF-κB-) mediated inflammation signaling pathway, reactive oxygen species (ROS), DNA damage, mitochondrial membrane potential collapse, and endoplasmic reticulum (ER) stress also contribute to aggravate DILI. Apoptosis is regarded as the terminal reaction followed by multiple signaling cascades including caspases, p53, and mitochondrial dysfunction which have been said to contribute in DILI. The SIRT1 activator is regarded as a potential candidate for DILI, because the former could inhibit signaling of p53, NF-κB, and ER stress. On the other hand, overexpression of SIRT1 also enhances the activation of antioxidant responses via Kelch-like ECH-associated protein 1- (Keap1-) nuclear factor- (erythroid-derived 2-) like 2 (Nrf2) signaling. The current manuscript will highlight the mechanism of DILI and the interaction of SIRT1 with various cytoplasmic factors leading to DILI along with the summary of potent SIRT1 agonists.
Collapse
Affiliation(s)
- Tingdong Yan
- 1Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jinlong Huang
- 2The Institute of Infection and Inflammation, Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443002, China
| | - Muhammad Farrukh Nisar
- 3Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Chunpeng Wan
- 4Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weifeng Huang
- 2The Institute of Infection and Inflammation, Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
70
|
Li L, Chen Z, Fu W, Cai S, Zeng Z. Emerging Evidence concerning the Role of Sirtuins in Sepsis. Crit Care Res Pract 2018; 2018:5489571. [PMID: 30533222 PMCID: PMC6250024 DOI: 10.1155/2018/5489571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/18/2018] [Indexed: 12/29/2022] Open
Abstract
Sepsis, a dysregulated host response to infection, is a major public health concern. Though experimental and clinical studies relating to sepsis are increasing, the mechanism of sepsis is not completely understood. To date, numerous studies have shown that sirtuins (silent mating type information regulation 2 homolog), which belong to the class III histone deacetylases, may have a varied, or even opposite, effect in the pathogenesis of sepsis. Notably, downstream mechanisms of sirtuins are not fully understood. The sirtuin family consists of sirtuins 1-7; among them, sirtuin 1 (SIRT1) is the most studied one, during the development of sepsis. Furthermore, other sirtuin members are also confirmed to be involved in the regulation of inflammatory or metabolic signaling following sepsis. In addition, sirtuins may interact with each other to form a precise regulatory mechanism in different phases of sepsis. Therefore, in this review, by accumulating data from PubMed, we intend to explain the role of sirtuin in sepsis, which we hope will pave the way for further experimental study and the potential future clinical applications of sirtuins.
Collapse
Affiliation(s)
- Lulan Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, Guangdong, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, Guangdong, China
| | - Weijun Fu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, Guangdong, China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, Guangdong, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, Guangdong, China
| |
Collapse
|
71
|
An overview of Sirtuins as potential therapeutic target: Structure, function and modulators. Eur J Med Chem 2018; 161:48-77. [PMID: 30342425 DOI: 10.1016/j.ejmech.2018.10.028] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 02/05/2023]
Abstract
Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in the presence of nicotinamide adenine dinucleotide (NAD+), waves of research have assessed the potential of Sirtuin as a therapeutic target. The Sirtuin family, which is widely distributed throughout the nature, has been divided into seven human isoforms (Sirt1-Sirt7). They are thought to be closely related to some aging diseases such as cardiovascular disorders, neurodegeneration, and tumors. Herein, we present a comprehensive review of the structure, function and modulators of Sirtuins, which is expected to be beneficial to relevant studies.
Collapse
|
72
|
Porter LC, Franczyk MP, Pietka T, Yamaguchi S, Lin JB, Sasaki Y, Verdin E, Apte RS, Yoshino J. NAD +-dependent deacetylase SIRT3 in adipocytes is dispensable for maintaining normal adipose tissue mitochondrial function and whole body metabolism. Am J Physiol Endocrinol Metab 2018; 315:E520-E530. [PMID: 29634313 PMCID: PMC6230701 DOI: 10.1152/ajpendo.00057.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction in adipose tissue is involved in the pathophysiology of obesity-induced systemic metabolic complications, such as type 2 diabetes, insulin resistance, and dyslipidemia. However, the mechanisms responsible for obesity-induced adipose tissue mitochondrial dysfunction are not clear. The aim of present study was to test the hypothesis that nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuin-3 (SIRT3) in adipocytes plays a critical role in adipose tissue mitochondrial biology and obesity. We first measured adipose tissue SIRT3 expression in obese and lean mice. Next, adipocyte-specific mitochondrial Sirt3 knockout (AMiSKO) mice were generated and metabolically characterized. We evaluated glucose and lipid metabolism in adult mice fed either a regular-chow diet or high-fat diet (HFD) and in aged mice. We also determined the effects of Sirt3 deletion on adipose tissue metabolism and mitochondrial biology. Supporting our hypothesis, obese mice had decreased SIRT3 gene and protein expression in adipose tissue. However, despite successful knockout of SIRT3, AMiSKO mice had normal glucose and lipid metabolism and did not change metabolic responses to HFD-feeding and aging. In addition, loss of SIRT3 had no major impact on putative SIRT3 targets, key metabolic pathways, and mitochondrial function in white and brown adipose tissue. Collectively, these findings suggest that adipocyte SIRT3 is dispensable for maintaining normal adipose tissue mitochondrial function and whole body metabolism. Contrary to our hypothesis, loss of SIRT3 function in adipocytes is unlikely to contribute to the pathophysiology of obesity-induced metabolic complications.
Collapse
Affiliation(s)
- Lane C Porter
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine , St. Louis, Missouri
| | - Michael P Franczyk
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine , St. Louis, Missouri
| | - Terri Pietka
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine , St. Louis, Missouri
| | - Shintaro Yamaguchi
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine , St. Louis, Missouri
| | - Jonathan B Lin
- Department of Ophthalmology, Washington University School of Medicine , St. Louis, Missouri
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine , St. Louis, Missouri
| | - Eric Verdin
- Gladstone Institutes, University of California San Francisco , San Francisco, California
- Buck Institute for Research on Aging , Novato, California
| | - Rajendra S Apte
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine , St. Louis, Missouri
- Department of Ophthalmology, Washington University School of Medicine , St. Louis, Missouri
- Department of Developmental Biology, Washington University School of Medicine , St. Louis, Missouri
| | - Jun Yoshino
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine , St. Louis, Missouri
| |
Collapse
|
73
|
Song Y, Li S, Geng W, Luo R, Liu W, Tu J, Wang K, Kang L, Yin H, Wu X, Gao Y, Zhang Y, Yang C. Sirtuin 3-dependent mitochondrial redox homeostasis protects against AGEs-induced intervertebral disc degeneration. Redox Biol 2018; 19:339-353. [PMID: 30216853 PMCID: PMC6139007 DOI: 10.1016/j.redox.2018.09.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/16/2023] Open
Abstract
Intervertebral disc (IVD) degeneration contributes largely to pathoanatomical and degenerative changes of spinal structure that increase the risk of low back pain. Apoptosis in nucleus pulposus (NP) can aggravate IVD degeneration, and increasing studies have shown that interventions targeting NP cell apoptosis can ameliorate IVD degeneration, exhibiting their potential for use as therapeutic strategies. Recent data have shown that advanced glycation end products (AGEs) accumulate in NP tissues in parallel with the progression of IVD degeneration and form a microenvironment of oxidative stress. This study examined whether AGEs accumulation aggravates NP cell apoptosis and IVD degeneration, and explored the mechanisms underlying these effects. We observed that the viability and proliferation of human NP cells were significantly suppressed by AGEs treatment, mainly due to apoptosis. Furthermore, activation of the mitochondrial apoptosis pathway was detected after AGEs treatment. In addition, the molecular data showed that AGEs could significantly aggravate the generation of mitochondrial reactive oxygen species and prolonged activation of the mitochondrial permeability transition pore, as well as the increased level of Bax protein and decreased level of Bcl-2 protein in mitochondria. These effects could be reduced by antioxidant (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (MitoTEMPO) and Visomitin (SKQ1). Importantly, we identified that impairment of Sirtuin3 (SIRT3) function and the mitochondrial antioxidant network were vital mechanisms in AGEs-induced oxidative stress and secondary human NP cell apoptosis. Finally, based on findings that nicotinamide mononucleotide (NMN) could restore SIRT3 function and rescue human NP cell apoptosis through adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor-γ coactivator 1α (AMPK-PGC-1α) pathway in vitro, we confirmed its protective effect on AGEs-induced IVD degeneration in vivo. In conclusion, our data demonstrate that SIRT3 protects against AGEs-induced human NP cell apoptosis and IVD degeneration. Targeting SIRT3 to improve mitochondrial redox homeostasis may represent a potential therapeutic strategy for attenuating AGEs-associated IVD degeneration.
Collapse
Affiliation(s)
- Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Geng
- Department of Ophthalmology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Liu
- Department of Orthopaedics, First Hospital of Wuhan, Wuhan 430022, China
| | - Ji Tu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Kang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huipeng Yin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinghuo Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
74
|
Ma Y, Fei X. SIRT5 regulates pancreatic β-cell proliferation and insulin secretion in type 2 diabetes. Exp Ther Med 2018; 16:1417-1425. [PMID: 30116390 DOI: 10.3892/etm.2018.6301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/27/2017] [Indexed: 12/14/2022] Open
Abstract
Impaired insulin secretion and insulin resistance are the primary characteristics of type 2 diabetes (T2D). However, the mechanisms underlying insulin secretion failure have yet to be elucidated. The present study demonstrated that sirtuin 5 (SIRT5) is upregulated in patients with T2D and in pancreatic β-cell lines. It was also revealed that elevated SIRT5 expression is positively associated with age and blood glucose levels, and negatively associated with pancreatic and duodenal homeobox 1 (PDX1) expression. Colony formation and Cell Counting Kit-8 assays demonstrated that SIRT5 suppressed the proliferation of pancreatic β-cells in vitro. In addition, downregulation of SIRT5 promoted the secretion of insulin. Additionally, SIRT5 ectopic expression downregulated the expression of PDX1 and the inhibition of SIRT5 upregulated PDX1 expression. Chromatin immunoprecipitation assay analysis demonstrated that SIRT5 may regulate the transcription of PDX1 via H4K16 deacetylation. In conclusion, the results of the present study indicate that SIRT5 may serve an important role in the pathogenesis of T2D, and may present a novel therapeutic target for the treatment of patients with T2D.
Collapse
Affiliation(s)
- Yongmei Ma
- Department of Endocrinology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xiaoqiang Fei
- Department of Endocrinology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
75
|
Chen YH, Zeng WJ, Wen ZP, Cheng Q, Chen XP. Under explored epigenetic modulators: role in glioma chemotherapy. Eur J Pharmacol 2018; 833:201-209. [PMID: 29864410 DOI: 10.1016/j.ejphar.2018.05.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022]
Abstract
Patients with somatic mutations of epigenetic regulators are characterized by aberrant chromatin modification patterns. Recent mechanistic studies pairing chemical tool compounds and deep-sequencing technology have greatly broadened our understanding of epigenetic regulation in glioma progression and underpinned alternative treatment of epigenetic inhibitors. However, the effect of most inhibitors is condition-dependent, and the overall results of clinical trials still have not been applied to patients. There is an intense need to develop more potent and specific compounds as well as identify the population who may achieve clinical benefits. Besides, combination therapy with conventional therapeutics is another alternative strategy. In this review, we summarize well-characterized chemical probes in glioma research and clinical translation. We also discuss the target population and combination of therapy regimens of various agents. In a holistic sense, we try to provide guidance for selecting targeted chemical probes and pave the way for personalized rational therapy.
Collapse
Affiliation(s)
- Yan-Hong Chen
- Department of Clinical pharmacology, Xiangya Hospital, Central South University, Changsha 410078, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Wen-Jing Zeng
- Department of Clinical pharmacology, Xiangya Hospital, Central South University, Changsha 410078, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Zhi-Peng Wen
- Department of Clinical pharmacology, Xiangya Hospital, Central South University, Changsha 410078, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Quan Cheng
- Department of Clinical pharmacology, Xiangya Hospital, Central South University, Changsha 410078, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Xiao-Ping Chen
- Department of Clinical pharmacology, Xiangya Hospital, Central South University, Changsha 410078, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China.
| |
Collapse
|
76
|
Kumar S, Lombard DB. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology. Crit Rev Biochem Mol Biol 2018; 53:311-334. [PMID: 29637793 DOI: 10.1080/10409238.2018.1458071] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sirtuins are NAD+-dependent protein deacylases/ADP-ribosyltransferases that have emerged as candidate targets for new therapeutics to treat metabolic disorders and other diseases, including cancer. The sirtuin SIRT5 resides primarily in the mitochondrial matrix and catalyzes the removal of negatively charged lysine acyl modifications; succinyl, malonyl, and glutaryl groups. Evidence has now accumulated to document the roles of SIRT5 as a significant regulator of cellular homeostasis, in a context- and cell-type specific manner, as has been observed previously for other sirtuin family members. SIRT5 regulates protein substrates involved in glycolysis, the TCA cycle, fatty acid oxidation, electron transport chain, ketone body formation, nitrogenous waste management, and ROS detoxification, among other processes. SIRT5 plays pivotal roles in cardiac physiology and stress responses and is involved in the regulation of numerous aspects of myocardial energy metabolism. SIRT5 is implicated in neoplasia, as both a tumor promoter and suppressor in a context-specific manner, and may serve a protective function in the setting of neurodegenerative disorders. Here, we review the current understanding of functional impacts of SIRT5 on its metabolic targets, and its molecular functions in both normal and pathological conditions. Finally, we will discuss the potential utility of SIRT5 as a drug target and also summarize the current status, progress, and challenges in developing small molecule compounds to modulate SIRT5 activity with high potency and specificity.
Collapse
Affiliation(s)
- Surinder Kumar
- a Department of Pathology , University of Michigan , Ann Arbor , MI , USA
| | - David B Lombard
- a Department of Pathology , University of Michigan , Ann Arbor , MI , USA.,b Institute of Gerontology , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
77
|
Chabi B, Fouret G, Lecomte J, Cortade F, Pessemesse L, Baati N, Coudray C, Lin L, Tong Q, Wrutniak-Cabello C, Casas F, Feillet-Coudray C. Skeletal muscle overexpression of short isoform Sirt3 altered mitochondrial cardiolipin content and fatty acid composition. J Bioenerg Biomembr 2018; 50:131-142. [PMID: 29589261 DOI: 10.1007/s10863-018-9752-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/19/2018] [Indexed: 01/28/2023]
Abstract
Cardiolipin (CL) is a phospholipid at the heart of mitochondrial metabolism, which plays a key role in mitochondrial function and bioenergetics. Among mitochondrial activity regulators, SIRT3 plays a crucial role in controlling the acetylation status of many enzymes participating in the energy metabolism in particular concerning lipid metabolism and fatty acid oxidation. Data suggest that possible connection may exist between SIRT3 and CL status that has not been evaluated in skeletal muscle. In the present study, we have characterized skeletal muscle lipids as well as mitochondrial lipids composition in mice overexpressing long (SIRT3-M1) and short (SIRT3-M3) isoforms of SIRT3. Particular attention has been paid for CL. We reported no alteration in muscle lipids content and fatty acids composition between the two mice SIRT3 strains and the control mice. However, mitochondrial CL content was significantly decreased in SIRT3-M3 mice and associated to an upregulation of tafazzin gene expression. In addition, mitochondrial phospholipids and fatty acids composition was altered with an increase in the PC/PE ratio and arachidonic acid content and a reduction in the MUFA/SFA ratio. These modifications in mitochondrial membrane composition are associated with a reduction in the enzymatic activities of mitochondrial respiratory chain complexes I and IV. In spite of these mitochondrial enzymatic alterations, skeletal muscle mitochondrial respiration remained similar in SIRT3-M3 and control mice. Surprisingly, none of those metabolic alterations were detected in mitochondria from SIRT3-M1 mice. In conclusion, our data indicate a specific action of the shorter SIRT3 isoform on lipid mitochondrial membrane biosynthesis and functioning.
Collapse
Affiliation(s)
- Béatrice Chabi
- DMEM, INRA, Université de Montpellier, Montpellier, France
| | - Gilles Fouret
- DMEM, INRA, Université de Montpellier, Montpellier, France
| | | | | | | | - Narjès Baati
- DMEM, INRA, Université de Montpellier, Montpellier, France
| | | | - Ligen Lin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qiang Tong
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - François Casas
- DMEM, INRA, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
78
|
Khoury N, Koronowski KB, Young JI, Perez-Pinzon MA. The NAD +-Dependent Family of Sirtuins in Cerebral Ischemia and Preconditioning. Antioxid Redox Signal 2018; 28:691-710. [PMID: 28683567 PMCID: PMC5824497 DOI: 10.1089/ars.2017.7258] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Sirtuins are an evolutionarily conserved family of NAD+-dependent lysine deacylases and ADP ribosylases. Their requirement for NAD+ as a cosubstrate allows them to act as metabolic sensors that couple changes in the energy status of the cell to changes in cellular physiological processes. NAD+ levels are affected by several NAD+-producing and NAD+-consuming pathways as well as by cellular respiration. Thus their intracellular levels are highly dynamic and are misregulated in a spectrum of metabolic disorders including cerebral ischemia. This, in turn, compromises several NAD+-dependent processes that may ultimately lead to cell death. Recent Advances: A number of efforts have been made to replenish NAD+ in cerebral ischemic injuries as well as to understand the functions of one its important mediators, the sirtuin family of proteins through the use of pharmacological modulators or genetic manipulation approaches either before or after the insult. Critical Issues and Future Directions: The results of these studies have regarded the sirtuins as promising therapeutic targets for cerebral ischemia. Yet, additional efforts are needed to understand the role of some of the less characterized members and to address the sex-specific effects observed with some members. Sirtuins also exhibit cell-type-specific expression in the brain as well as distinct subcellular and regional localizations. As such, they are involved in diverse and sometimes opposing cellular processes that can either promote neuroprotection or further contribute to the injury; which also stresses the need for the development and use of sirtuin-specific pharmacological modulators. Antioxid. Redox Signal. 28, 691-710.
Collapse
Affiliation(s)
- Nathalie Khoury
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Kevin B. Koronowski
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Juan I. Young
- Dr. John T. Macdonald Foundation Department of Human Genetics; Hussman Institute for Human Genomics, and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Miguel A. Perez-Pinzon
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
79
|
Abstract
SIGNIFICANCE Developing evidence in the literature suggests that sirtuin 5 (SIRT5) may be involved in metabolic reprogramming, an emerging hallmark of cancer by which neoplastic cells reconfigure their metabolism to support the anabolic demands of rapid cell division. SIRT5 is one of the seven members of the nicotinamide adenine dinucleotide-dependent sirtuin family of lysine deacetylases. It removes succinyl, malonyl, and glutaryl groups from protein targets within the mitochondrial matrix and other subcellular compartments. SIRT5 substrates include a number of proteins integral to metabolism. Recent Advances: New work has begun to elucidate the roles of SIRT5 in glycolysis, tricarboxylic acid cycle, fatty acid oxidation, nitrogen metabolism, pentose phosphate pathway, antioxidant defense, and apoptosis. CRITICAL ISSUES In this study, we summarize biological functions of SIRT5 reported in normal tissues and in cancer and discuss potential mechanisms whereby SIRT5 may impact tumorigenesis, particularly focusing on its reported roles in metabolic reprogramming. Finally, we review current efforts to target SIRT5 pharmacologically. FUTURE DIRECTIONS The biological significance of SIRT5 has been elucidated in the context of only an extremely small fraction of its targets and interactors. There is no doubt that further studies in this area will provide a wealth of insights into functions of SIRT5 and its targets in normal and neoplastic cells. Antioxid. Redox Signal. 28, 677-690.
Collapse
Affiliation(s)
| | - Angela H. Guo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - David B. Lombard
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
80
|
Abstract
SIGNIFICANCE Extranuclear sirtuins in cytosol (SIRT2) and mitochondria (SIRT3, SIRT4, and SIRT5) are key regulators of metabolic enzymes and the antioxidative defense mechanisms. They play an important role in the adjustment of metabolic pathways in alterations of the nutritional status. Recent Advances: Recent studies have shown that in addition to lysine deacetylation, sirtuins catalyze several different lysine deacylation reactions, removal of lipid modifications, and adenosine diphosphate-ribosylation. Large-scale studies have revealed hundreds of target proteins regulated by different sirtuin modifications. CRITICAL ISSUES Sensing of the metabolic state and regulation of the sirtuin function and expression are critical components of the machinery, optimizing cellular functions in the switch from fed to fasting condition. Overfeeding, obesity, and metabolic diseases cause metabolic stress that dysregulates the sirtuins, which may play a role in the pathogenesis and complications of metabolic diseases such as type 2 diabetes, fatty liver disease, and cardiac diseases. In the current review, we will discuss the significance of the extranuclear sirtuins as metabolic regulators and in protection against the reactive oxygen species, and also how these sirtuins are regulated by metabolic status and their putative role in metabolic diseases. FUTURE DIRECTIONS To efficiently utilize sirtuins as drug targets for treatment of the metabolic diseases, better understanding of the sirtuin functions, targets, regulation, and cross talk is needed. Furthermore, more studies in humans are needed to confirm the many observations mainly made in animal and cell models so far. Antioxid. Redox Signal. 28, 662-676.
Collapse
Affiliation(s)
- Mahmoud-Sobhy Elkhwanky
- 1 Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu , Oulu, Finland .,2 Medical Research Center Oulu, Oulu University Hospital and University of Oulu , Oulu, Finland
| | - Jukka Hakkola
- 1 Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu , Oulu, Finland .,2 Medical Research Center Oulu, Oulu University Hospital and University of Oulu , Oulu, Finland
| |
Collapse
|
81
|
D'Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 Signaling Pathways in Cardiovascular Disease Protection. Antioxid Redox Signal 2018; 28:711-732. [PMID: 28661724 PMCID: PMC5824538 DOI: 10.1089/ars.2017.7178] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Oxidative stress represents the common hallmark of pathological conditions associated with cardiovascular disease (CVD), including atherosclerosis, heart failure, hypertension, aging, diabetes, and other vascular system-related diseases. The sirtuin (SIRT) family, comprising seven proteins (SIRT1-SIRT7) sharing a highly conserved nicotinamide adenine dinucleotide (NAD+)-binding catalytic domain, attracted a great attention for the past few years as stress adaptor and epigenetic enzymes involved in the cellular events controlling aging-related disorder, cancer, and CVD. Recent Advances: Among sirtuins, SIRT1 and SIRT6 are the best characterized for their protective roles against inflammation, vascular aging, heart disease, and atherosclerotic plaque development. This latest role has been only recently unveiled for SIRT6. Of interest, in recent years, complex signaling networks controlled by SIRT1 and SIRT6 common to stress resistance, vascular aging, and CVD have emerged. CRITICAL ISSUES We provide a comprehensive overview of recent developments on the molecular signaling pathways controlled by SIRT1 and SIRT6, two post-translational modifiers proven to be valuable tools to dampen inflammation and oxidative stress at the cardiovascular level. FUTURE DIRECTIONS A deeper understanding of the epigenetic mechanisms through which SIRT1 and SIRT6 act in the signalings responsible for onset and development CVD is a prime scientific endeavor of the upcoming years. Multiple "omic" technologies will have widespread implications in understanding such mechanisms, speeding up the achievement of selective and efficient pharmacological modulation of sirtuins for future applications in the prevention and treatment of CVD. Antioxid. Redox Signal. 28, 711-732.
Collapse
Affiliation(s)
- Nunzia D'Onofrio
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Università degli Studi della Campania , Naples, Italy
| | - Luigi Servillo
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Università degli Studi della Campania , Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Università degli Studi della Campania , Naples, Italy
| |
Collapse
|
82
|
Bird RP. The Emerging Role of Vitamin B6 in Inflammation and Carcinogenesis. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 83:151-194. [PMID: 29477221 DOI: 10.1016/bs.afnr.2017.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vitamin B6 serves as a coenzyme catalyzing more than 150 enzymes regulating metabolism and synthesis of proteins, carbohydrates, lipids, heme, and important bioactive metabolites. For several years vitamin B6 and its vitamers (B6) were recognized as antioxidant and antiinflammatory and in modulating immunity and gene expression. During the last 10 years, there were growing reports implicating B6 in inflammation and inflammation-related chronic illnesses including cancer. It is unclear if the deficiency of B6 or additional intake of B6, above the current requirement, should be the focus. Whether the current recommended daily intake for B6 is adequate should be revisited, since B6 is important to human health beyond its role as a coenzyme and its status is affected by many factors including but not limited to age, obesity, and inflammation associated with chronic illnesses. A link between inflammation B6 status and carcinogenesis is not yet completely understood. B6-mediated synthesis of H2S, a gasotransmitter, and taurine in health and disease, especially in maintaining mitochondrial integrity and biogenesis and inflammation, remains an important area to be explored. Recent developments in the molecular role of B6 and its direct interaction with inflammasomes, and nuclear receptor corepressor and coactivator, receptor-interacting protein 140, provide a strong impetus to further explore the multifaceted role of B6 in carcinogenesis and human health.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
83
|
Lu J, Zhang H, Chen X, Zou Y, Li J, Wang L, Wu M, Zang J, Yu Y, Zhuang W, Xia Q, Wang J. A small molecule activator of SIRT3 promotes deacetylation and activation of manganese superoxide dismutase. Free Radic Biol Med 2017; 112:287-297. [PMID: 28711502 DOI: 10.1016/j.freeradbiomed.2017.07.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/10/2017] [Indexed: 01/04/2023]
Abstract
The modulation of protein acetylation network is a promising strategy for life span extension and disease treatment (Sabari et al., 2016; Giblin et al., 2014) [1,2]. A variety of small molecules have been developed to target deacetylases, but extremely few of these molecules are capable of activating the mitochondrial NAD-dependent deacetylase sirtuin-3 (SIRT3) (Gertz and Steegborn, 2016; Scholz et al., 2015) [3,4]. Manganese superoxide dismutase (MnSOD) is the major superoxide scavenger in mitochondria, whose activity is regulated by SIRT3-mediated deacetylation, particularly at the Lys68 site (Chen et al., 2011) [5]. To investigate the influence of Lys68 acetylation on MnSOD activity, we produced a mutant MnSOD protein-bearing N-acetyllysine (AcK) at its Lys68 position through the genetic code expansion approach. We solved the crystal structure of this acetylated MnSOD (MnSODK68AcK), thus revealing the structural and electrostatic basis for the significant activity decrease upon Lys68 acetylation. On the basis of an assay we developed for the SIRT3-mediated deacetylation of MnSODK68AcK, we identified a novel SIRT3 activator, 7-hydroxy-3-(4'-methoxyphenyl) coumarin (C12), which binds to SIRT3 with high affinity and can promote the deacetylation and activation of MnSOD. C12 adds to the current repertoire of extremely few SIRT3 activators, which are potentially valuable for treating a wide array of diseases via modulating the cellular acetylome.
Collapse
Affiliation(s)
- Jiaqi Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hua Zhang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Huhhot, 010021,China
| | - Xian Chen
- Department of Physics, Jilin University, Changchun 130012, China
| | - Yong Zou
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Tianhe District, Guangzhou 510650, China
| | - Jiasong Li
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Li Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Minhao Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianye Zang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Yu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wei Zhuang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
84
|
Kumar S, Lombard DB. For Certain, SIRT4 Activities! Trends Biochem Sci 2017; 42:499-501. [PMID: 28587732 DOI: 10.1016/j.tibs.2017.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
Despite the fact that SIRT4 regulates important biological processes, its primary enzymatic activity has remained ambiguous. A recent study by Anderson, Huynh et al. has uncovered deacylase activities of SIRT4 towards newly described lysine modifications derived from reactive acyl-CoAs generated in leucine catabolism.
Collapse
Affiliation(s)
- Surinder Kumar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
85
|
Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1066-1077. [PMID: 27836629 PMCID: PMC5423868 DOI: 10.1016/j.bbadis.2016.11.010] [Citation(s) in RCA: 832] [Impact Index Per Article: 118.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/06/2023]
Abstract
Mitochondria are the powerhouses of the cell and are involved in essential functions of the cell, including ATP production, intracellular Ca2+ regulation, reactive oxygen species production & scavenging, regulation of apoptotic cell death and activation of the caspase family of proteases. Mitochondrial dysfunction and oxidative stress are largely involved in aging, cancer, age-related neurodegenerative and metabolic syndrome. In the last decade, tremendous progress has been made in understanding mitochondrial structure, function and their physiology in metabolic syndromes such as diabetes, obesity, stroke and hypertension, and heart disease. Further, progress has also been made in developing therapeutic strategies, including lifestyle interventions (healthy diet and regular exercise), pharmacological strategies and mitochondria-targeted approaches. These strategies were mainly focused to reduce mitochondrial dysfunction and oxidative stress and to maintain mitochondrial quality in metabolic syndromes. The purpose of our article is to highlight the recent progress on the mitochondrial role in metabolic syndromes and also summarize the progress of mitochondria-targeted molecules as therapeutic targets to treat metabolic syndromes. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Department of Biotechnology and Bioinformatics, Sri Guru Gobind Singh College, Sector-26, Chandigarh 160019, India; Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.
| | - Gurjit Kaur Bhatti
- UGC Centre of Excellence in Nano applications, Panjab University, UIPS building, Chandigarh 160014, India
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neuroscience & Pharmacology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, United States
| |
Collapse
|
86
|
Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, Giannakis M, Shilatifard A, Finn OJ, Dhodapkar M, Kay NE, Braggio E, Vilar E, Mazzilli SA, Rebbeck TR, Garber JE, Velculescu VE, Disis ML, Wallace DC, Lippman SM. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 2017; 77:1510-1541. [PMID: 28373404 PMCID: PMC6681830 DOI: 10.1158/0008-5472.can-16-2346] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Cancer development is a complex process driven by inherited and acquired molecular and cellular alterations. Prevention is the holy grail of cancer elimination, but making this a reality will take a fundamental rethinking and deep understanding of premalignant biology. In this Perspective, we propose a national concerted effort to create a Precancer Atlas (PCA), integrating multi-omics and immunity - basic tenets of the neoplastic process. The biology of neoplasia caused by germline mutations has led to paradigm-changing precision prevention efforts, including: tumor testing for mismatch repair (MMR) deficiency in Lynch syndrome establishing a new paradigm, combinatorial chemoprevention efficacy in familial adenomatous polyposis (FAP), signal of benefit from imaging-based early detection research in high-germline risk for pancreatic neoplasia, elucidating early ontogeny in BRCA1-mutation carriers leading to an international breast cancer prevention trial, and insights into the intricate germline-somatic-immunity interaction landscape. Emerging genetic and pharmacologic (metformin) disruption of mitochondrial (mt) respiration increased autophagy to prevent cancer in a Li-Fraumeni mouse model (biology reproduced in clinical pilot) and revealed profound influences of subtle changes in mt DNA background variation on obesity, aging, and cancer risk. The elaborate communication between the immune system and neoplasia includes an increasingly complex cellular microenvironment and dynamic interactions between host genetics, environmental factors, and microbes in shaping the immune response. Cancer vaccines are in early murine and clinical precancer studies, building on the recent successes of immunotherapy and HPV vaccine immune prevention. Molecular monitoring in Barrett's esophagus to avoid overdiagnosis/treatment highlights an important PCA theme. Next generation sequencing (NGS) discovered age-related clonal hematopoiesis of indeterminate potential (CHIP). Ultra-deep NGS reports over the past year have redefined the premalignant landscape remarkably identifying tiny clones in the blood of up to 95% of women in their 50s, suggesting that potentially premalignant clones are ubiquitous. Similar data from eyelid skin and peritoneal and uterine lavage fluid provide unprecedented opportunities to dissect the earliest phases of stem/progenitor clonal (and microenvironment) evolution/diversity with new single-cell and liquid biopsy technologies. Cancer mutational signatures reflect exogenous or endogenous processes imprinted over time in precursors. Accelerating the prevention of cancer will require a large-scale, longitudinal effort, leveraging diverse disciplines (from genetics, biochemistry, and immunology to mathematics, computational biology, and engineering), initiatives, technologies, and models in developing an integrated multi-omics and immunity PCA - an immense national resource to interrogate, target, and intercept events that drive oncogenesis. Cancer Res; 77(7); 1510-41. ©2017 AACR.
Collapse
Affiliation(s)
- Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ludmil Alexandrov
- Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rafael Bejar
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhav Dhodapkar
- Department of Hematology and Immunology, Yale Cancer Center, New Haven, Connecticut
| | - Neil E Kay
- Department of Hematology, Mayo Clinic Hospital, Rochester, Minnesota
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic Hospital, Phoenix, Arizona
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Hematology and Oncology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor E Velculescu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Mary L Disis
- Department of Medicine, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott M Lippman
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
87
|
Xiong Y, Wang M, Zhao J, Wang L, Li X, Zhang Z, Jia L, Han Y. SIRT3 is correlated with the malignancy of non-small cell lung cancer. Int J Oncol 2017; 50:903-910. [PMID: 28197634 DOI: 10.3892/ijo.2017.3868] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/30/2017] [Indexed: 11/05/2022] Open
Abstract
The mitochondrial deacetylase SIRT3 plays a pivotal role in the initiation and the progression of certain cancers acting as an oncogene. However, in others it acts anti-oncogenically. Its conflicting action is possibly due to the different key proteins it modifies depending on the context of active intracellular signaling pathways in different cancers. SIRT3 is thus a novel target for preventing and treating cancer. In the present study, we explored the function of SIRT3 in non-small cell lung cancer (NSCLC) with the aim of elucidating the underlying mechanisms. We first determined the SIRT3 expression levels by real-time PCR, western blotting and immunohistochemistry on tissue microarrays of paired samples of NSCLC tissue and adjacent normal tissue from 70 patients with associated clinicopathological data. Levels of SIRT3 protein and mRNA were significantly increased in NSCLC tissue, compared with normal tissue (P<0.05). Expression of SIRT3 in NSCLC positively correlated with that of malignant biomarker Ki-67 (P<0.05) and oncogene p-Akt (P<0.05). Patients with higher SIRT3 expression had a shorter overall survival duration (P<0.05). NSCLC tissue of squamous cell carcinoma type had higher SIRT3 expression compared with other types (P<0.05). Furthermore, among the clinicopathological variables examined, SIRT3 expression was correlated only with pathological type (P<0.05). In NSCLC cell lines, we found that downregulation of SIRT3 by siRNA decreased the activation of Akt, and that SIRT3 overexpression caused the activation of Akt. In addition, in a NSCLC cell line, SIRT3 was able to co-immunoprecipitate Akt and co-located with Akt, suggesting that SIRT3 regulates the activation of Akt through post-transcriptional modification. Our findings suggest that SIRT3 promotes the malignancy of NSCLC, showing an oncogenic preference towards squamous cell carcinoma, and that could represent a novel target for treatment.
Collapse
Affiliation(s)
- Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Mingxing Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Lei Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yong Han
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
88
|
Bhatti JS, Kumar S, Vijayan M, Bhatti GK, Reddy PH. Therapeutic Strategies for Mitochondrial Dysfunction and Oxidative Stress in Age-Related Metabolic Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:13-46. [PMID: 28253984 DOI: 10.1016/bs.pmbts.2016.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondria are complex, intercellular organelles present in the cells and are involved in multiple roles including ATP formation, free radicals generation and scavenging, calcium homeostasis, cellular differentiation, and cell death. Many studies depicted the involvement of mitochondrial dysfunction and oxidative damage in aging and pathogenesis of age-related metabolic disorders and neurodegenerative diseases. Remarkable advancements have been made in understanding the structure, function, and physiology of mitochondria in metabolic disorders such as diabetes, obesity, cardiovascular diseases, and stroke. Further, much progress has been done in the improvement of therapeutic strategies, including lifestyle interventions, pharmacological, and mitochondria-targeted therapeutic approaches. These strategies were mainly focused to reduce the mitochondrial dysfunction caused by oxidative stress and to retain the mitochondrial health in various diseases. In this chapter, we have highlighted the involvement of mitochondrial dysfunction in the pathophysiology of various disorders and recent progress in the development of mitochondria-targeted molecules as therapeutic measures for metabolic disorders.
Collapse
Affiliation(s)
- J S Bhatti
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India.
| | - S Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - M Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - G K Bhatti
- UGC Centre of Excellence in Nano Applications, Panjab University, Chandigarh, India
| | - P H Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
89
|
Mei Z, Zhang X, Yi J, Huang J, He J, Tao Y. Sirtuins in metabolism, DNA repair and cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:182. [PMID: 27916001 PMCID: PMC5137222 DOI: 10.1186/s13046-016-0461-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/19/2016] [Indexed: 12/12/2022]
Abstract
The mammalian sirtuin family has attracted tremendous attention over the past few years as stress adaptors and post-translational modifier. They have involved in diverse cellular processes including DNA repair, energy metabolism, and tumorigenesis. Notably, genomic instability and metabolic reprogramming are two of characteristic hallmarks in cancer. In this review, we summarize current knowledge on the functions of sirtuins mainly regarding DNA repair and energy metabolism, and further discuss the implication of sirtuins in cancer specifically by regulating genome integrity and cancer-related metabolism.
Collapse
Affiliation(s)
- Zhen Mei
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xian Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Jiarong Yi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Junjie Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Jian He
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China. .,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
90
|
Sirtuin 5: a review of structure, known inhibitors and clues for developing new inhibitors. SCIENCE CHINA-LIFE SCIENCES 2016; 60:249-256. [DOI: 10.1007/s11427-016-0060-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
|
91
|
Xiong Y, Wang M, Zhao J, Han Y, Jia L. Sirtuin 3: A Janus face in cancer (Review). Int J Oncol 2016; 49:2227-2235. [DOI: 10.3892/ijo.2016.3767] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/03/2016] [Indexed: 11/06/2022] Open
|
92
|
Osborne B, Bentley NL, Montgomery MK, Turner N. The role of mitochondrial sirtuins in health and disease. Free Radic Biol Med 2016; 100:164-174. [PMID: 27164052 DOI: 10.1016/j.freeradbiomed.2016.04.197] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/21/2016] [Accepted: 04/29/2016] [Indexed: 01/15/2023]
Abstract
Mitochondria play a critical role in energy production, cell signalling and cell survival. Defects in mitochondrial function contribute to the ageing process and ageing-related disorders such as metabolic disease, cancer, and neurodegeneration. The sirtuin family of deacylase enzymes have a variety of subcellular localisations and have been found to remove a growing list of post-translational acyl modifications from target proteins. SIRT3, SIRT4, and SIRT5 are found primarily located in the mitochondria, and are involved in many of the key processes of this organelle. SIRT3 has been the subject of intense research and is primarily a deacetylase thought to function as a mitochondrial fidelity protein, with roles in mitochondrial substrate metabolism, protection against oxidative stress, and cell survival pathways. Less is known about the functional targets of SIRT4, which has deacetylase, ADP-ribosylase, and a newly-described lipoamidase function, although key roles in lipid and glutamine metabolism have been reported. SIRT5 modulates a host of newly-discovered acyl modifications including succinylation, malonylation, and glutarylation in both mitochondrial and extra-mitochondrial compartments, however the functional significance of SIRT5 in the regulation of many of its proposed target proteins remains to be discovered. Because of their influence on a broad range of pathways, SIRT3, SIRT4, and SIRT5 are implicated in a range of disease-states including metabolic disease such as diabetes, neurodegenerative diseases, cancer, and ageing-related disorders such as hearing-loss and cardiac dysfunction. We review the current knowledge on the function of the three mitochondrial sirtuins, their role in disease, and the current outstanding questions in the field.
Collapse
Affiliation(s)
- Brenna Osborne
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Nicholas L Bentley
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Magdalene K Montgomery
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Nigel Turner
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia.
| |
Collapse
|
93
|
Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization. Cell 2016; 167:985-1000.e21. [PMID: 27881304 DOI: 10.1016/j.cell.2016.10.016] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/25/2016] [Accepted: 10/07/2016] [Indexed: 11/21/2022]
Abstract
Mitochondrial sirtuins, SIRT3-5, are NAD+-dependent deacylases and ADP-ribosyltransferases that are critical for stress responses. However, a comprehensive understanding of sirtuin targets, regulation of sirtuin activity, and the relationships between sirtuins remains a key challenge in mitochondrial physiology. Here, we employ systematic interaction proteomics to elucidate the mitochondrial sirtuin protein interaction landscape. This work reveals sirtuin interactions with numerous functional modules within mitochondria, identifies candidate sirtuin substrates, and uncovers a fundamental role for sequestration of SIRT3 by ATP synthase in mitochondrial homeostasis. In healthy mitochondria, a pool of SIRT3 binds ATP synthase, but upon matrix pH reduction with concomitant loss of mitochondrial membrane potential, SIRT3 dissociates. This release correlates with rapid deacetylation of matrix proteins, and SIRT3 is required for recovery of membrane potential. In vitro reconstitution experiments, as well as analysis of CRISPR/Cas9-engineered cells, indicate that pH-dependent SIRT3 release requires H135 in the ATP5O subunit of ATP synthase. Our SIRT3-5 interaction network provides a framework for discovering novel biological functions regulated by mitochondrial sirtuins.
Collapse
|
94
|
Zhao WY, Zhang L, Sui MX, Zhu YH, Zeng L. Protective effects of sirtuin 3 in a murine model of sepsis-induced acute kidney injury. Sci Rep 2016; 6:33201. [PMID: 27620507 PMCID: PMC5020492 DOI: 10.1038/srep33201] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/22/2016] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a rapid loss of kidney function characterized by damage to renal tubular cells driven by mitochondrial dysregulation and oxidative stress. Here, we used a murine caecal ligation and puncture (CLP) model of sepsis-induced AKI to study the role of sirtuin 3 (SIRT3), a NAD+ dependent deacetylase critical for the maintenance of mitochondrial viability, in AKI-related renal tubular cell damage and explored the underlying mechanisms. CLP induced alterations in kidney function and morphology were associated with SIRT3 downregulation, and SIRT3 deletion exacerbated CLP-induced kidney dysfunction, renal tubular cell injury and apoptosis, mitochondrial alterations, and ROS production in a knockout mouse model. SIRT3 deletion increased the CLP-induced upregulation of the NLRP3 inflammasome and apoptosis-associated speck-like protein, resulting in the activation of oxidative stress, increased production of the proinflammatory cytokines interleukin (IL)-1β and IL-18, and the enhancement of apoptosis, and these effects were reversed by antioxidant NAC. Our results suggest that SIRT3 plays a protective role against mitochondrial damage in the kidney by attenuating ROS production, inhibiting the NRLP3 inflammasome, attenuating oxidative stress, and downregulating IL-1β and IL-18.
Collapse
Affiliation(s)
- Wen-Yu Zhao
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Lei Zhang
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Ming-Xing Sui
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - You-Hua Zhu
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| | - Li Zeng
- Department of Organ Transplantation, Changhai Hospital, Second Military Medical University, Shanghai, PR China
| |
Collapse
|
95
|
Buler M, Andersson U, Hakkola J. Who watches the watchmen? Regulation of the expression and activity of sirtuins. FASEB J 2016; 30:3942-3960. [PMID: 27591175 DOI: 10.1096/fj.201600410rr] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/22/2016] [Indexed: 01/07/2023]
Abstract
Sirtuins (SIRT1-7) are a family of nicotine adenine dinucleotide (NAD+)-dependent enzymes that catalyze post-translational modifications of proteins. Together, they regulate crucial cellular functions and are traditionally associated with aging and longevity. Dysregulation of sirtuins plays an important role in major diseases, including cancer and metabolic, cardiac, and neurodegerative diseases. They are extensively regulated in response to a wide range of stimuli, including nutritional and metabolic challenges, inflammatory signals or hypoxic and oxidative stress. Each sirtuin is regulated individually in a tissue- and cell-specific manner. The control of sirtuin expression involves all the major points of regulation, including transcriptional and post-translational mechanisms and microRNAs. Collectively, these mechanisms control the protein levels, localization, and enzymatic activity of sirtuins. In many cases, the regulators of sirtuin expression are also their substrates, which lead to formation of intricate regulatory networks and extensive feedback loops. In this review, we highlight the mechanisms mediating the physiologic and pathologic regulation of sirtuin expression and activity. We also discuss the consequences of this regulation on sirtuin function and cellular physiology.-Buler, M., Andersson, U., Hakkola, J. Who watches the watchmen? Regulation of the expression and activity of sirtuins.
Collapse
Affiliation(s)
- Marcin Buler
- Drug Safety and Metabolism, AstraZeneca R&D, Göteborg, Sweden
| | - Ulf Andersson
- Drug Safety and Metabolism, AstraZeneca R&D, Göteborg, Sweden
| | - Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; and .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
96
|
Shi Q, Liu T, Zhang X, Geng J, He X, Nu M, Pang D. Decreased sirtuin 4 expression is associated with poor prognosis in patients with invasive breast cancer. Oncol Lett 2016; 12:2606-2612. [PMID: 27698834 PMCID: PMC5038587 DOI: 10.3892/ol.2016.5021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/07/2016] [Indexed: 12/29/2022] Open
Abstract
Aberrant metabolism is a hallmark of human cancer. Glutamine metabolism has been identified as a central metabolic pathway in cancer and thus, targeting glutamine metabolism may exhibit therapeutic potential. Sirtuin 4 (SIRT4) is an important molecule that mediates the blockade of glutamine catabolism by inhibiting glutamate dehydrogenase. In the present study, SIRT4 protein expression levels were analyzed in 409 breast cancer tissues and 241 paired adjacent non-cancerous tissues by immunohistochemical analysis and the correlation between SIRT4 expression and the clinicopathological features was evaluated. SIRT4 protein was markedly increased in the breast cancer cells compared with adjacent non-tumor mammary cells and was correlated with estrogen receptor, progesterone receptor, nuclear-associated antigen Ki-67 and tumor protein p53 status, as well as breast cancer subtypes. Furthermore, low SIRT4 expression was associated with poor overall survival in breast cancers patients, particularly in Luminal A patients. Univariate and multivariate analyses confirmed that increased SIRT4 expression was an independent predictive factor of good prognosis for breast cancer patients. In conclusion, SIRT4 expression represents a significant favorable prognostic factor for patients with invasive breast cancer.
Collapse
Affiliation(s)
- Qingyu Shi
- Department of Breast Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150040, P.R. China
| | - Tong Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150040, P.R. China
| | - Xianyu Zhang
- Department of Breast Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150040, P.R. China
| | - Jingshu Geng
- Department of Pathology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150040, P.R. China
| | - Xiaohui He
- Department of Medical Records, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150040, P.R. China
| | - Ming Nu
- Department of Breast Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150040, P.R. China
| | - Da Pang
- Department of Breast Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
97
|
Lysine acetylation in mitochondria: From inventory to function. Mitochondrion 2016; 33:58-71. [PMID: 27476757 DOI: 10.1016/j.mito.2016.07.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/12/2022]
Abstract
Cellular signaling pathways are regulated in a highly dynamic fashion in order to quickly adapt to distinct environmental conditions. Acetylation of lysine residues represents a central process that orchestrates cellular metabolism and signaling. In mitochondria, acetylation seems to be the most prevalent post-translational modification, presumably linked to the compartmentation and high turnover of acetyl-CoA in this organelle. Similarly, the elevated pH and the higher concentration of metabolites in mitochondria seem to favor non-enzymatic lysine modifications, as well as other acylations. Hence, elucidating the mechanisms for metabolic control of protein acetylation is crucial for our understanding of cellular processes. Recent advances in mass spectrometry-based proteomics have considerably increased our knowledge of the regulatory scope of acetylation. Here, we review the current knowledge and functional impact of mitochondrial protein acetylation across species. We first cover the experimental approaches to identify and analyze lysine acetylation on a global scale, we then explore both commonalities and specific differences of plant and animal acetylomes and the evolutionary conservation of protein acetylation, as well as its particular impact on metabolism and diseases. Important future directions and technical challenges are discussed, and it is pointed out that the transfer of knowledge between species and diseases, both in technology and biology, is of particular importance for further advancements in this field.
Collapse
|
98
|
Li F, Liu L. SIRT5 Deficiency Enhances Susceptibility to Kainate-Induced Seizures and Exacerbates Hippocampal Neurodegeneration not through Mitochondrial Antioxidant Enzyme SOD2. Front Cell Neurosci 2016; 10:171. [PMID: 27445698 PMCID: PMC4922023 DOI: 10.3389/fncel.2016.00171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a common and serious neurological disorder characterized by occurrence of recurrent spontaneous seizures, and emerging evidences support the association of mitochondrial dysfunction with epilepsy. Sirtuin 5 (SIRT5), localized in mitochondrial matrix, has been considered as an important functional modulator of mitochondria that contributes to ageing and neurological diseases. Our data shows that SIRT5 deficiency strikingly increased mortality rate and severity of response to epileptic seizures, dramatically exacerbated hippocampal neuronal loss and degeneration in mice exposed to Kainate (KA), and triggered more severe reactive astrogliosis. We found that the expression of mitochondrial SIRT5 of injured hippocampus was relatively up-regulated, indicating its potential contribution to the comparably increased survival of these cells and its possible neuroprotective role. Unexpectedly, SIRT5 seems not to apparently alter the decline of antioxidant enzymes superoxide dismutase 2 (SOD2) and glutathione peroxidase (GPx) in hippocampus caused by KA exposure in our paradigm, which indicates the protective role of SIRT5 on seizures and cellular degeneration might through different regulatory mechanism that would be explored in the future. In the present study, we provided strong evidences for the first time to demonstrate the association between SIRT5 and epilepsy, which offers a new understanding of the roles of SIRT5 in mitochondrial functional regulation. The neuroprotection of SIRT5 in KA-induced epileptic seizure and neurodegeneration will improve our current knowledge of the nature of SIRT5 in central nervous system (CNS) and neurological diseases.
Collapse
Affiliation(s)
- Fengling Li
- Department of Pharmacy, Linyi Tumor Hospital Linyi, Shandong, China
| | - Lei Liu
- Department of Anesthesiology, University of FloridaGainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, University of FloridaGainesville, FL, USA
| |
Collapse
|
99
|
Abstract
Sirtuins are evolutionarily conserved nicotinamide adenine dinucleotide (NAD(+))-dependent lysine deacylases or ADP-ribosyltransferases. These cellular enzymes are metabolic sensors sensitive to NAD(+) levels that maintain physiological homeostasis in the animal and plant cells.
Collapse
|
100
|
George J, Ahmad N. Mitochondrial Sirtuins in Cancer: Emerging Roles and Therapeutic Potential. Cancer Res 2016; 76:2500-6. [PMID: 27197261 DOI: 10.1158/0008-5472.can-15-2733] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/17/2016] [Indexed: 01/22/2023]
Abstract
The past few decades have witnessed a furious attention of scientific community toward identifying novel molecular factors and targets that could be exploited for drug development for cancer management. One such factor is the sirtuin (SIRT) family of nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylases. The role of SIRTs in cancer is extremely complex, with dichotomous functions depending on cell contexts. Mammalian SIRTs (SIRT1-7) differ in their cellular localization and biologic functions. Among these, SIRT -3, -4, and -5 are located in the mitochondria and are being carefully investigated. These mitochondrial SIRTs (mtSIRT) regulate multiple cellular and physiologic processes, including cell cycle, gene expression, cell viability, stress response, metabolism, and energy homeostasis. Recent research suggests that mtSIRTs influence tumors by regulating the metabolic state of the cell. Although the research on the role of mtSIRTs in cancer is still in its infancy, studies have suggested tumor suppressor as well as tumor promoter roles for them. This review is focused on discussing up-to-date information about the roles and functional relevance of mtSIRTs (SIRT -3, -4, -5) in cancers. We have also provided a critical discussion and our perspective on their dual roles, as tumor promoter versus tumor suppressor, in cancer. Cancer Res; 76(9); 2500-6. ©2016 AACR.
Collapse
Affiliation(s)
- Jasmine George
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin. William S. Middleton VA Medical Center, Madison, Wisconsin.
| |
Collapse
|