51
|
Arwood MJ, Vahabi N, Lteif C, Sharma RK, Machado RF, Duarte JD. Transcriptome-wide analysis associates ID2 expression with combined pre- and post-capillary pulmonary hypertension. Sci Rep 2019; 9:19572. [PMID: 31862991 PMCID: PMC6925238 DOI: 10.1038/s41598-019-55700-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/25/2019] [Indexed: 01/11/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) patients who develop pulmonary hypertension (PH) have an increased risk of death, with combined pre- and post-capillary PH (CpcPH) having the highest risk. However, the mechanism behind PH development in HFpEF is poorly understood. We aimed to identify transcriptomic associations with PH development in HFpEF. Blood was collected from 30 HFpEF patients: 10 without PH, 10 with isolated post-capillary PH, and 10 with CpcPH. Gene expression measurements were completed using transcriptome-wide RNA sequencing. Gene expression differences were compared using a quasi-likelihood method adjusting for age, sex, race, and smoking-status. Biological pathways were compared using global gene expression differences. A replication in 34 additional heart failure patients and a validation in lung tissue from a representative mouse model were completed using quantitative PCR. Six differentially expressed genes were identified when comparing transcriptomics between subjects with CpcPH and those without PH. When tested in additional subjects, only the association with ID2 replicated. Consistent with clinical findings, Id2 expression was also upregulated in mice with HFpEF and PH. Pathway analysis identified proliferative and mitochondrial pathways associated with CpcPH. Thus, these patients may possess systemic pathophysiological differences similar to those observed in pulmonary arterial hypertension patients.
Collapse
Affiliation(s)
- Meghan J Arwood
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Nasim Vahabi
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Christelle Lteif
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Ravindra K Sharma
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Roberto F Machado
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University, Indianapolis, IN, USA
| | - Julio D Duarte
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
52
|
Tseng V, Sutliff RL, Hart CM. Redox Biology of Peroxisome Proliferator-Activated Receptor-γ in Pulmonary Hypertension. Antioxid Redox Signal 2019; 31:874-897. [PMID: 30582337 PMCID: PMC6751396 DOI: 10.1089/ars.2018.7695] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Peroxisome proliferator-activated receptor-gamma (PPARγ) maintains pulmonary vascular health through coordination of antioxidant defense systems, inflammation, and cellular metabolism. Insufficient PPARγ contributes to pulmonary hypertension (PH) pathogenesis, whereas therapeutic restoration of PPARγ activity attenuates PH in preclinical models. Recent Advances: Numerous studies in the past decade have elucidated the complex mechanisms by which PPARγ in the pulmonary vasculature and right ventricle (RV) protects against PH. The scope of PPARγ-interconnected pathways continues to expand and includes induction of antioxidant genes, transrepression of inflammatory signaling, regulation of mitochondrial biogenesis and bioenergetic integrity, control of cell cycle and proliferation, and regulation of vascular tone through interactions with nitric oxide and endogenous vasoactive molecules. Furthermore, PPARγ interacts with an extensive regulatory network of transcription factors and microRNAs leading to broad impact on cell signaling. Critical Issues: Abundant evidence suggests that targeting PPARγ exerts diverse salutary effects in PH and represents a novel and potentially translatable therapeutic strategy. However, progress has been slowed by an incomplete understanding of how specific PPARγ pathways are critically disrupted across PH disease subtypes and lack of optimal pharmacological ligands. Future Directions: Recent studies indicate that ligand-induced post-translational modifications of the PPARγ receptor differentially induce therapeutic benefits versus adverse side effects of PPARγ receptor activation. Strategies to selectively target PPARγ activity in diseased cells of pulmonary circulation and RV, coupled with development of ligands designed to specifically regulate post-translational PPARγ modifications, may unlock the full therapeutic potential of this versatile master transcriptional and metabolic regulator in PH.
Collapse
Affiliation(s)
- Victor Tseng
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Roy L Sutliff
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - C Michael Hart
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia.,Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
53
|
Shimoda LA. CA Dreamin': Carbonic Anhydrase Inhibitors, Macrophages, and Pulmonary Hypertension. Am J Respir Cell Mol Biol 2019; 61:412-413. [PMID: 30973760 PMCID: PMC6775948 DOI: 10.1165/rcmb.2019-0122ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Larissa A Shimoda
- Division of Pulmonary and Critical Care MedicineJohns Hopkins School of MedicineBaltimore, Maryland
| |
Collapse
|
54
|
Spiekerkoetter E, Goncharova EA, Guignabert C, Stenmark K, Kwapiszewska G, Rabinovitch M, Voelkel N, Bogaard HJ, Graham B, Pullamsetti SS, Kuebler WM. Hot topics in the mechanisms of pulmonary arterial hypertension disease: cancer-like pathobiology, the role of the adventitia, systemic involvement, and right ventricular failure. Pulm Circ 2019; 9:2045894019889775. [PMID: 31798835 PMCID: PMC6868582 DOI: 10.1177/2045894019889775] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
In order to intervene appropriately and develop disease-modifying therapeutics for pulmonary arterial hypertension, it is crucial to understand the mechanisms of disease pathogenesis and progression. We herein discuss four topics of disease mechanisms that are currently highly debated, yet still unsolved, in the field of pulmonary arterial hypertension. Is pulmonary arterial hypertension a cancer-like disease? Does the adventitia play an important role in the initiation of pulmonary vascular remodeling? Is pulmonary arterial hypertension a systemic disease? Does capillary loss drive right ventricular failure? While pulmonary arterial hypertension does not replicate all features of cancer, anti-proliferative cancer therapeutics might still be beneficial in pulmonary arterial hypertension if monitored for safety and tolerability. It was recognized that the adventitia as a cell-rich compartment is important in the disease pathogenesis of pulmonary arterial hypertension and should be a therapeutic target, albeit the data are inconclusive as to whether the adventitia is involved in the initiation of neointima formation. There was agreement that systemic diseases can lead to pulmonary arterial hypertension and that pulmonary arterial hypertension can have systemic effects related to the advanced lung pathology, yet there was less agreement on whether idiopathic pulmonary arterial hypertension is a systemic disease per se. Despite acknowledging the limitations of exactly assessing vascular density in the right ventricle, it was recognized that the failing right ventricle may show inadequate vascular adaptation resulting in inadequate delivery of oxygen and other metabolites. Although the debate was not meant to result in a definite resolution of the specific arguments, it sparked ideas about how we might resolve the discrepancies by improving our disease modeling (rodent models, large-animal studies, studies of human cells, tissues, and organs) as well as standardization of the models. Novel experimental approaches, such as lineage tracing and better three-dimensional imaging of experimental as well as human lung and heart tissues, might unravel how different cells contribute to the disease pathology.
Collapse
Affiliation(s)
- Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Elena A. Goncharova
- Pittsburgh Heart, Blood and Vascular Medicine Institute, Pulmonary, Allergy & Critical Care Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christophe Guignabert
- INSERM UMR_S 999, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Kurt Stenmark
- Department of Pediatrics, School of Medicine, University of Colorado, Denver, CO, USA
- Cardio Vascular Pulmonary Research Lab, University of Colorado, Denver, CO, USA
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute, Lung Vascular Research, Medical University of Graz, Graz, Austria
| | - Marlene Rabinovitch
- Division of Pediatric Cardiology, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Norbert Voelkel
- Department of Pulmonary Medicine, Vrije Universiteit MC, Amsterdam, The Netherlands
| | - Harm J. Bogaard
- Department of Pulmonary Medicine, Vrije Universiteit MC, Amsterdam, The Netherlands
| | - Brian Graham
- Pulmonary Sciences and Critical Care, School of Medicine, University of Colorado, Denver, CO, USA
| | - Soni S. Pullamsetti
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité – Universitaetsmedizin Berlin, Berlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael's, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
55
|
Stenmark KR, Hu CJ, Pullamsetti SS. How Many FOXs Are There on The Road to Pulmonary Hypertension? Am J Respir Crit Care Med 2019; 198:704-707. [PMID: 29694238 DOI: 10.1164/rccm.201804-0702ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Kurt R Stenmark
- 1 Department of Pediatrics.,2 Department of Medicine.,3 Cardiovascular Research Laboratories University of Colorado Anschutz Medical Campus Aurora, Colorado
| | - Cheng-Jun Hu
- 3 Cardiovascular Research Laboratories University of Colorado Anschutz Medical Campus Aurora, Colorado.,4 Department of Craniofacial Biology
| | - Soni S Pullamsetti
- 5 Department of Lung Development and Remodeling Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research Bad Nauheim, Germany.,6 Department of Internal Medicine Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research Giessen, Germany and.,7 Justus-Liebig University Giessen, Germany
| |
Collapse
|
56
|
Stenmark KR, Frid MG, Graham BB, Tuder RM. Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension. Cardiovasc Res 2019; 114:551-564. [PMID: 29385432 DOI: 10.1093/cvr/cvy004] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is the end result of interaction between pulmonary vascular tone and a complex series of cellular and molecular events termed 'vascular remodelling'. The remodelling process, which can involve the entirety of pulmonary arterial vasculature, almost universally involves medial thickening, driven by increased numbers and hypertrophy of its principal cellular constituent, smooth muscle cells (SMCs). It is noted, however that SMCs comprise heterogeneous populations of cells, which can exhibit markedly different proliferative, inflammatory, and extracellular matrix production changes during remodelling. We further consider that these functional changes in SMCs of different phenotype and their role in PH are dynamic and may undergo significant changes over time (which we will refer to as cellular plasticity); no single property can account for the complexity of the contribution of SMC to pulmonary vascular remodelling. Thus, the approaches used to pharmacologically manipulate PH by targeting the SMC phenotype(s) must take into account processes that underlie dominant phenotypes that drive the disease. We present evidence for time- and location-specific changes in SMC proliferation in various animal models of PH; we highlight the transient nature (rather than continuous) of SMC proliferation, emphasizing that the heterogenic SMC populations that reside in different locations along the pulmonary vascular tree exhibit distinct responses to the stresses associated with the development of PH. We also consider that cells that have often been termed 'SMCs' may arise from many origins, including endothelial cells, fibroblasts and resident or circulating progenitors, and thus may contribute via distinct signalling pathways to the remodelling process. Ultimately, PH is characterized by long-lived, apoptosis-resistant SMC. In line with this key pathogenic characteristic, we address the acquisition of a pro-inflammatory phenotype by SMC that is essential to the development of PH. We present evidence that metabolic alterations akin to those observed in cancer cells (cytoplasmic and mitochondrial) directly contribute to the phenotype of the SM and SM-like cells involved in PH. Finally, we raise the possibility that SMCs transition from a proliferative to a senescent, pro-inflammatory and metabolically active phenotype over time.
Collapse
Affiliation(s)
- Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| | - Brian B Graham
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| | - Rubin M Tuder
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| |
Collapse
|
57
|
Bertero T, Perk D, Chan SY. The molecular rationale for therapeutic targeting of glutamine metabolism in pulmonary hypertension. Expert Opin Ther Targets 2019; 23:511-524. [PMID: 31055988 DOI: 10.1080/14728222.2019.1615438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pulmonary hypertension (PH) is a deadly enigmatic disease with increasing prevalence. Cellular pathologic hallmarks of PH are driven at least partly by metabolic rewiring, but details are just emerging. The discovery that vascular matrix stiffening can mechanically activate the glutaminase (GLS) enzyme and serve as a pathogenic mechanism of PH has advanced our understanding of the complex role of glutamine in PH. It has also offered a novel therapeutic target for development as a next-generation drug for this disease. Area covered: This review discusses the cellular contribution of glutamine metabolism to PH together with the possible therapeutic application of pharmacologic GLS inhibitors in this disease. Expert opinion: Despite advances in our understanding of glutamine metabolism in PH, questions remain unanswered regarding the development of therapies targeting glutamine in PH. The comprehensive mechanisms by which glutamine metabolism rewiring influences pulmonary vascular cell behavior to drive PH are incompletely understood. Because glutamine metabolism exhibits a variety of functions in organ repair and homeostasis, a better understanding of the overall risk-benefit ratio of these strategies with long-term follow-up is needed. This knowledge should pave the way for the design of new strategies to prevent and hopefully even regress PH.
Collapse
Affiliation(s)
- Thomas Bertero
- a Institute of Molecular and Cellular Pharmacology , Université Côte d'Azur , Valbonne , France
| | - Dror Perk
- b Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine , University of Pittsburgh Medical Center , Pittsburgh , PA , USA
| | - Stephen Y Chan
- b Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine , University of Pittsburgh Medical Center , Pittsburgh , PA , USA
| |
Collapse
|
58
|
NSD2 silencing alleviates pulmonary arterial hypertension by inhibiting trehalose metabolism and autophagy. Clin Sci (Lond) 2019; 133:1085-1096. [PMID: 31040165 DOI: 10.1042/cs20190142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Nuclear receptor binding SET domain 2 (NSD2)-mediated metabolic reprogramming has been demonstrated to regulate oncogenesis via catalyzing the methylation of histones. The present study aimed to investigate the role of NSD2-mediated metabolic abnormality in pulmonary arterial hypertension (PAH). Monocrotaline (MCT)-induced PAH rat model was established and infected with adeno-associated virus carrying short hairpin RNA (shRNA) targeting NSD2. Hemodynamic parameters, ventricular function, and pathology were evaluated by microcatheter, echocardiography, and histological analysis. Metabolomics changes in lung tissue were analyzed by LC-MS. The results showed that silencing of NSD2 effectively ameliorated MCT-induced PAH and right ventricle dysfunction, and partially reversed pathological remodeling of pulmonary artery and right ventricular hypertrophy. In addition, the silencing of NSD2 markedly reduced the di-methylation level of H3K36 (H3K36me2 level) and inhibited autophagy in pulmonary artery. Non-targeted LC-MS based metabolomics analysis indicated that trehalose showed the most significant change in lung tissue. NSD2-regulated trehalose mainly affected ABC transporters, mineral absorption, protein digestion and absorption, metabolic pathways, and aminoacyl-tRNA biosynthesis. In conclusion, we reveal a new role of NSD2 in the pathogenesis of PAH related to the regulation of trehalose metabolism and autophagy via increasing the H3K36me2 level. NSD2 is a promising target for PAH therapy.
Collapse
|
59
|
Mylonis I, Simos G, Paraskeva E. Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. Cells 2019; 8:cells8030214. [PMID: 30832409 PMCID: PMC6468845 DOI: 10.3390/cells8030214] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023] Open
Abstract
Oxygen deprivation or hypoxia characterizes a number of serious pathological conditions and elicits a number of adaptive changes that are mainly mediated at the transcriptional level by the family of hypoxia-inducible factors (HIFs). The HIF target gene repertoire includes genes responsible for the regulation of metabolism, oxygen delivery and cell survival. Although the involvement of HIFs in the regulation of carbohydrate metabolism and the switch to anaerobic glycolysis under hypoxia is well established, their role in the control of lipid anabolism and catabolism remains still relatively obscure. Recent evidence indicates that many aspects of lipid metabolism are modified during hypoxia or in tumor cells in a HIF-dependent manner, contributing significantly to the pathogenesis and/or progression of cancer and metabolic disorders. However, direct transcriptional regulation by HIFs has been only demonstrated in relatively few cases, leaving open the exact and isoform-specific mechanisms that underlie HIF-dependency. This review summarizes the evidence for both direct and indirect roles of HIFs in the regulation of genes involved in lipid metabolism as well as the involvement of HIFs in various diseases as demonstrated by studies with transgenic animal models.
Collapse
Affiliation(s)
- Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece.
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece.
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H4A 3T2, Canada.
| | - Efrosyni Paraskeva
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece.
| |
Collapse
|
60
|
Deng Y, Guo SL, Wei B, Gao XC, Zhou YC, Li JQ. Activation of Nicotinic Acetylcholine α7 Receptor Attenuates Progression of Monocrotaline-Induced Pulmonary Hypertension in Rats by Downregulating the NLRP3 Inflammasome. Front Pharmacol 2019; 10:128. [PMID: 30863307 PMCID: PMC6399137 DOI: 10.3389/fphar.2019.00128] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Inflammation and altered immunity contribute to the development of pulmonary arterial hypertension (PH). The alpha 7 nicotinic acetylcholine receptor (α7nAChR) possesses anti-inflammatory activities. The current study was performed to investigate the effects of a selective α7nAChR agonist, PNU-282987, on controlling a monocrotaline (MCT)-induced rat model of PH and explored the underlying mechanisms. Methods: Sprague-Dawley rats were injected with MCT and treated with PNU-282987 at the prevention (starting 1 week before MCT) and treatment (starting 2 weeks after MCT) settings. Four weeks after MCT injection, hemodynamic changes, right ventricular structure, and lung morphological features were assessed. Enzyme-linked immunosorbent assay, Western blot and qRT-PCR were performed to assess levels of inflammatory cytokines and NLRP3 (Nod-like receptor family pyrin domain-containing 3) inflammasome pathway in the rat lung tissues. In addition, the lung macrophage line NR8383 was used to confirm the in vivo data. Results: Monocrotaline injection produced PH in rats and downregulated α7nAChR mRNA and protein expression in rat lung tissues compared to sham controls. Pharmacological activation of α7nAChR by PNU-282987 therapy improved the rat survival rate, attenuated the development of PH as assessed by remodeling of pulmonary arterioles, reduced the right ventricular (RV) systolic pressure, and ameliorated the hypertrophy and fibrosis of the RV in rats with MCT-induced PH. The expression of TNF-α, IL-6, IL-1β, and IL-18 were downregulated in rat lung tissues, which implied that PNU-282987 therapy may help regulate inflammation. These protective effects involved the inhibition of the NLRP3 inflammasome. In vitro assays of cultured rat lung macrophages confirmed that the anti-inflammation effect of PNU-282987 therapy may contribute to the disturbance of NLRP3 inflammasome activation. Conclusion: Targeting α7nAChR with PNU-282987 could effectively prevent and treat PH with benefits for preventing ongoing inflammation in the lungs of rats with MCT-induced PH by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yan Deng
- Department of Ultrasound, The Cardiovascular Disease Institute, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Sheng-Lan Guo
- Department of Ultrasound, The Cardiovascular Disease Institute, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Bin Wei
- Department of Cardiology, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Xing-Cui Gao
- Department of Cardiology, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Ying-Chuan Zhou
- Department of Pathology, The First Affiliated Hospital to Guangxi Medical University, Nanning, China
| | - Jia-Quan Li
- The Experimental Center of Guangxi Medical University, Nanning, China
| |
Collapse
|
61
|
Abstract
The lung is often overlooked as a metabolically active organ, yet biochemical studies have long demonstrated that glucose utilization surpasses that of many other organs, including the heart, kidney, and brain. For most cells in the lung, energy consumption is relegated to performing common cellular tasks, like mRNA transcription and protein translation. However, certain lung cell populations engage in more specialized types of energy-consuming behaviors, such as the beating of cilia or the production of surfactant. While many extrapulmonary diseases are now linked to abnormalities in cellular metabolism, the pulmonary community has only recently embraced the concept of metabolic dysfunction as a driver of respiratory pathology. Herein, we provide an overview of the major metabolic pathways in the lung and discuss how cells sense and adapt to low-energy states. Moreover, we review some of the emerging evidence that links alterations in cellular metabolism to the pathobiology of several common respiratory diseases.
Collapse
Affiliation(s)
- Gang Liu
- Division of Pulmonary, Allergy and Critical Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Ross Summer
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA;
| |
Collapse
|
62
|
Culp-Hill R, Srinivasan AJ, Gehrke S, Kamyszek R, Ansari A, Shah N, Welsby I, D'Alessandro A. Effects of red blood cell (RBC) transfusion on sickle cell disease recipient plasma and RBC metabolism. Transfusion 2018; 58:2797-2806. [PMID: 30265764 DOI: 10.1111/trf.14931] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Exchange transfusion is a mainstay in the treatment of sickle cell anemia. Transfusion recipients with sickle cell disease (SCD) can be transfused over 10 units per therapy, an intervention that replaces circulating sickle red blood cells (RBCs) with donor RBCs. Storage of RBCs makes the intervention logistically feasible. The average storage duration for units transfused at the Duke University Medical Center is approximately 2 weeks, a time window that should anticipate the accumulation of irreversible storage lesion to the RBCs. However, no metabolomics study has been performed to date to investigate the impact of exchange transfusion on recipients' plasma and RBC phenotypes. STUDY DESIGN AND METHODS Plasma and RBCs were collected from patients with sickle cell anemia before transfusion and within 5 hours after exchange transfusion with up to 11 units, prior to metabolomics analyses. RESULTS Exchange transfusion significantly decreased plasma levels of markers of systemic hypoxemia like lactate, succinate, sphingosine 1-phosphate, and 2-hydroxyglutarate. These metabolites accumulated in transfused RBCs, suggesting that RBCs may act as scavenger/reservoirs. Transfused RBCs displayed higher glycolysis, total adenylate pools, and 2,3-diphosphoglycerate, consistent with increased capacity to deliver oxygen. Plasma levels of acyl-carnitines and amino acids decreased, while fatty acids and potentially harmful phthalates increased upon exchange transfusion. CONCLUSION Metabolic phenotypes confirm the benefits of the transfusion therapy in transfusion recipients with SCD and the reversibility of some of the metabolic storage lesion upon transfusion in vivo in 2-week-old RBCs. However, results also suggest that potentially harmful plasticizers are transfused.
Collapse
Affiliation(s)
- Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Sarah Gehrke
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Reed Kamyszek
- Duke University Medical Center, Durham, North Carolina
| | - Andrea Ansari
- Duke University Medical Center, Durham, North Carolina
| | - Nirmish Shah
- Duke University Medical Center, Durham, North Carolina
| | - Ian Welsby
- Duke University Medical Center, Durham, North Carolina
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
63
|
Harvey LD, Chan SY. Evolving systems biology approaches to understanding non-coding RNAs in pulmonary hypertension. J Physiol 2018; 597:1199-1208. [PMID: 30113078 DOI: 10.1113/jp275855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/04/2018] [Indexed: 01/17/2023] Open
Abstract
Our appreciation of the roles of non-coding RNAs, in particular microRNAs, in the manifestation of pulmonary hypertension (PH) has advanced considerably over the past decade. Comprised of small nucleotide sequences, microRNAs have demonstrated critical and broad regulatory roles in the pathogenesis of PH via the direct binding to messenger RNA transcripts for degradation or inhibition of translation, thereby exerting a profound influence on cellular activity. Yet, as inherently pleiotropic molecules, microRNAs have been difficult to study using traditional, reductionist approaches alone. With the advent of high-throughput -omics technologies and more advanced computational modelling, the study of microRNAs and their multi-faceted and complex functions in human disease serves as a fertile platform for the application of systems biology methodologies in combination with traditional experimental techniques. Here, we offer our viewpoint of past successes of systems biology in elucidating the otherwise hidden actions of microRNAs in PH, as well as areas for future development to integrate these strategies into the discovery of RNA pathobiology in this disease. We contend that such successful applications of systems biology in elucidating the functional architecture of microRNA regulation will further reveal the molecular mechanisms of disease, while simultaneously revealing potential diagnostic and therapeutic strategies in disease amelioration.
Collapse
Affiliation(s)
- Lloyd D Harvey
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
64
|
Hu CJ, Zhang H, Laux A, Pullamsetti SS, Stenmark KR. Mechanisms contributing to persistently activated cell phenotypes in pulmonary hypertension. J Physiol 2018; 597:1103-1119. [PMID: 29920674 PMCID: PMC6375873 DOI: 10.1113/jp275857] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/16/2018] [Indexed: 12/24/2022] Open
Abstract
Chronic pulmonary hypertension (PH) is characterized by the accumulation of persistently activated cell types in the pulmonary vessel exhibiting aberrant expression of genes involved in apoptosis resistance, proliferation, inflammation and extracellular matrix (ECM) remodelling. Current therapies for PH, focusing on vasodilatation, do not normalize these activated phenotypes. Furthermore, current approaches to define additional therapeutic targets have focused on determining the initiating signals and their downstream effectors that are important in PH onset and development. Although these approaches have produced a large number of compelling PH treatment targets, many promising human drugs have failed in PH clinical trials. Herein, we propose that one contributing factor to these failures is that processes important in PH development may not be good treatment targets in the established phase of chronic PH. We hypothesize that this is due to alterations of chromatin structure in PH cells, resulting in functional differences between the same factor or pathway in normal or early PH cells versus cells in chronic PH. We propose that the high expression of genes involved in the persistently activated phenotype of PH vascular cells is perpetuated by an open chromatin structure and multiple transcription factors (TFs) via the recruitment of high levels of epigenetic regulators including the histone acetylases P300/CBP, histone acetylation readers including BRDs, the Mediator complex and the positive transcription elongation factor (Abstract figure). Thus, determining how gene expression is controlled by examining chromatin structure, TFs and epigenetic regulators associated with aberrantly expressed genes in pulmonary vascular cells in chronic PH, may uncover new PH therapeutic targets.
![]()
Collapse
Affiliation(s)
- Cheng-Jun Hu
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aya Laux
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus-Liebig University, Giessen, Germany
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
65
|
Culley MK, Chan SY. Mitochondrial metabolism in pulmonary hypertension: beyond mountains there are mountains. J Clin Invest 2018; 128:3704-3715. [PMID: 30080181 DOI: 10.1172/jci120847] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pulmonary hypertension (PH) is a heterogeneous and fatal disease of the lung vasculature, where metabolic and mitochondrial dysfunction may drive pathogenesis. Similar to the Warburg effect in cancer, a shift from mitochondrial oxidation to glycolysis occurs in diseased pulmonary vessels and the right ventricle. However, appreciation of metabolic events in PH beyond the Warburg effect is only just emerging. This Review discusses molecular, translational, and clinical concepts centered on the mitochondria and highlights promising, controversial, and challenging areas of investigation. If we can move beyond the "mountains" of obstacles in this field and elucidate these fundamental tenets of pulmonary vascular metabolism, such work has the potential to usher in much-needed diagnostic and therapeutic approaches for the mitochondrial and metabolic management of PH.
Collapse
Affiliation(s)
- Miranda K Culley
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
66
|
Callejo M, Mondejar-Parreño G, Barreira B, Izquierdo-Garcia JL, Morales-Cano D, Esquivel-Ruiz S, Moreno L, Cogolludo Á, Duarte J, Perez-Vizcaino F. Pulmonary Arterial Hypertension Affects the Rat Gut Microbiome. Sci Rep 2018; 8:9681. [PMID: 29946072 PMCID: PMC6018770 DOI: 10.1038/s41598-018-27682-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
We have analysed whether pulmonary arterial hypertension (PAH) alters the rat faecal microbiota. Wistar rats were injected with the VEGF receptor antagonist SU5416 (20 mg/kg s.c.) and followed for 2 weeks kept in hypoxia (10% O2, PAH) or injected with vehicle and kept in normoxia (controls). Faecal samples were obtained and microbiome composition was determined by 16S rRNA gene sequencing and bioinformatic analysis. No effect of PAH on the global microbiome was found (α- or β-diversity). However, PAH-exposed rats showed gut dysbiosis as indicated by a taxonomy-based analysis. Specifically, PAH rats had a three-fold increase in Firmicutes-to-Bacteroidetes ratio. Within the Firmicutes phylum, there were no large changes in the relative abundance of the bacterial families in PAH. Among Bacteroidetes, all families were less abundant in PAH. A clear separation was observed between the control and PAH clusters based on short chain fatty acid producing bacterial genera. Moreover, acetate was reduced in the serum of PAH rats. In conclusion, faecal microbiota composition is altered as a result of PAH. This misbalanced bacterial ecosystem might in turn play a pathophysiological role in PAH by altering the immunologic, hormonal and metabolic homeostasis.
Collapse
Affiliation(s)
- María Callejo
- Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Gema Mondejar-Parreño
- Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Bianca Barreira
- Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - José L Izquierdo-Garcia
- Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,CIC biomaGUNE, Donostia-San Sebastián, Spain
| | - Daniel Morales-Cano
- Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Sergio Esquivel-Ruiz
- Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Laura Moreno
- Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Ángel Cogolludo
- Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Juan Duarte
- Dept of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain.,Ciber Enfermedades Cardiovasculares (CiberCV), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Departamento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain. .,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain. .,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.
| |
Collapse
|
67
|
Reisz JA, Barrett AS, Nemkov T, Hansen KC, D'Alessandro A. When nature's robots go rogue: exploring protein homeostasis dysfunction and the implications for understanding human aging disease pathologies. Expert Rev Proteomics 2018; 15:293-309. [PMID: 29540077 PMCID: PMC6174679 DOI: 10.1080/14789450.2018.1453362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Proteins have been historically regarded as 'nature's robots': Molecular machines that are essential to cellular/extracellular physical mechanical properties and catalyze key reactions for cell/system viability. However, these robots are kept in check by other protein-based machinery to preserve proteome integrity and stability. During aging, protein homeostasis is challenged by oxidation, decreased synthesis, and increasingly inefficient mechanisms responsible for repairing or degrading damaged proteins. In addition, disruptions to protein homeostasis are hallmarks of many neurodegenerative diseases and diseases disproportionately affecting the elderly. Areas covered: Here we summarize age- and disease-related changes to the protein machinery responsible for preserving proteostasis and describe how both aging and disease can each exacerbate damage initiated by the other. We focus on alteration of proteostasis as an etiological or phenomenological factor in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, along with Down syndrome, ophthalmic pathologies, and cancer. Expert commentary: Understanding the mechanisms of proteostasis and their dysregulation in health and disease will represent an essential breakthrough in the treatment of many (senescence-associated) pathologies. Strides in this field are currently underway and largely attributable to the introduction of high-throughput omics technologies and their combination with novel approaches to explore structural and cross-link biochemistry.
Collapse
Affiliation(s)
- Julie A Reisz
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Alexander S Barrett
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Travis Nemkov
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Kirk C Hansen
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
68
|
Frump A, Prewitt A, de Caestecker MP. BMPR2 mutations and endothelial dysfunction in pulmonary arterial hypertension (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018765840. [PMID: 29521190 PMCID: PMC5912278 DOI: 10.1177/2045894018765840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/26/2018] [Indexed: 12/22/2022] Open
Abstract
Despite the discovery more than 15 years ago that patients with hereditary pulmonary arterial hypertension (HPAH) inherit BMP type 2 receptor ( BMPR2) mutations, it is still unclear how these mutations cause disease. In part, this is attributable to the rarity of HPAH and difficulty obtaining tissue samples from patients with early disease. However, in addition, limitations to the approaches used to study the effects of BMPR2 mutations on the pulmonary vasculature have restricted our ability to determine how individual mutations give rise to progressive pulmonary vascular pathology in HPAH. The importance of understanding the mechanisms by which BMPR2 mutations cause disease in patients with HPAH is underscored by evidence that there is reduced BMPR2 expression in patients with other, more common, non-hereditary form of PAH, and that restoration of BMPR2 expression reverses established disease in experimental models of pulmonary hypertension. In this paper, we focus on the effects on endothelial function. We discuss some of the controversies and challenges that have faced investigators exploring the role of BMPR2 mutations in HPAH, focusing specifically on the effects different BMPR2 mutation have on endothelial function, and whether there are qualitative differences between different BMPR2 mutations. We discuss evidence that BMPR2 signaling regulates a number of responses that may account for endothelial abnormalities in HPAH and summarize limitations of the models that are used to study these effects. Finally, we discuss evidence that BMPR2-dependent effects on endothelial metabolism provides a unifying explanation for the many of the BMPR2 mutation-dependent effects that have been described in patients with HPAH.
Collapse
Affiliation(s)
- Andrea Frump
- Division
of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University
School of Medicine, Indianapolis, IN,
USA
| | | | - Mark P. de Caestecker
- Division
of Nephrology and Hypertension, Department of Medicine, Vanderbilt University
Medical center, Nashville, TN, USA
| |
Collapse
|
69
|
Abstract
There has been tremendous and rapidly growing interest in understanding intermediary metabolism as a key aspect of both normal cellular function and as a participant in the molecular pathogenesis of many different complex diseases. This area of research naturally intersects at virtually every level with the substantial and expanding body of knowledge regarding mechanisms of cellular redox balance. In this Forum, the contributing authors address specifically the union of intermediary metabolism and redox biology through detailed consideration of the biochemistry and biology of nicotine adenine dinucleotides, the cell's "redox currency." From technical considerations of how to measure nicotine adenine dinucleotides all the way to detailed treatments of their potential roles in specific disease states, this Forum provides a thorough introduction to a topic that is positioned to be at the heart of the next wave of research in metabolism and redox biology. Antioxid. Redox Signal. 28, 165-166.
Collapse
Affiliation(s)
- Joshua P Fessel
- 1 Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - William M Oldham
- 2 Department of Medicine, Brigham and Women's Hospital , Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
70
|
CULP-HILL R, REISZ JA, HANSEN KC, D’ALESSANDRO A. Investigation of the effects of storage and freezing on mixes of heavy-labeled metabolite and amino acid standards. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:2030-2034. [PMID: 28910859 PMCID: PMC5673535 DOI: 10.1002/rcm.7989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE High-throughput metabolomics has now made it possible for small/medium-sized laboratories to analyze thousands of samples/year from the most diverse biological matrices including biofluids, cell and tissue extracts. In large-scale metabolomics studies, stable-isotope-labeled standards are increasingly used to normalize for matrix effects and control for technical reproducibility (e.g. extraction efficiency, chromatographic retention times and mass spectrometry signal stability). However, it is currently unknown how stable mixes of commercially available standards are following repeated freeze/thaw cycles or prolonged storage of aliquots. METHODS Standard mixes for 13 C, 15 N or deuterated isotopologues of amino acids and key metabolites from the central carbon and nitrogen pathways (e.g. glycolysis, Krebs cycle, redox homeostasis, purines) were either repeatedly frozen/thawed for up to 10 cycles or diluted into aliquots prior to frozen storage for up to 42 days. Samples were characterized by ultra-high-pressure liquid chromatography/mass spectrometry to determine the stability of the aliquoted standards upon freezing/thawing or prolonged storage. RESULTS Metabolite standards were stable over up to 10 freeze/thaw cycles, with the exception of adenosine and glutathione, showing technical variability across aliquots in a freeze/thaw-cycle-independent fashion. Storage for up to 42 days of mixes of commercially available standards did not significantly affect the stability of amino acid or metabolite standards for the first 2 weeks, while progressive degradation (statistically significant for fumarate) was observed after 3 weeks. CONCLUSIONS Refrigerated or frozen preservation for at least 2 weeks of aliquoted heavy-labeled standard mixes for metabolomics analysis is a feasible and time-/resource-saving strategy for standard metabolomics laboratories.
Collapse
Affiliation(s)
- Rachel CULP-HILL
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, 12801 East 17 Ave, Aurora, CO, 80045 USA
| | - Julie A. REISZ
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, 12801 East 17 Ave, Aurora, CO, 80045 USA
| | - Kirk C. HANSEN
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, 12801 East 17 Ave, Aurora, CO, 80045 USA
| | - Angelo D’ALESSANDRO
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, 12801 East 17 Ave, Aurora, CO, 80045 USA
| |
Collapse
|
71
|
Zhang H, Wang D, Li M, Plecitá-Hlavatá L, D'Alessandro A, Tauber J, Riddle S, Kumar S, Flockton A, McKeon BA, Frid MG, Reisz JA, Caruso P, El Kasmi KC, Ježek P, Morrell NW, Hu CJ, Stenmark KR. Metabolic and Proliferative State of Vascular Adventitial Fibroblasts in Pulmonary Hypertension Is Regulated Through a MicroRNA-124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/Pyruvate Kinase Muscle Axis. Circulation 2017; 136:2468-2485. [PMID: 28972001 DOI: 10.1161/circulationaha.117.028069] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND An emerging metabolic theory of pulmonary hypertension (PH) suggests that cellular and mitochondrial metabolic dysfunction underlies the pathology of this disease. We and others have previously demonstrated the existence of hyperproliferative, apoptosis-resistant, proinflammatory adventitial fibroblasts from human and bovine hypertensive pulmonary arterial walls (PH-Fibs) that exhibit constitutive reprogramming of glycolytic and mitochondrial metabolism, accompanied by an increased ratio of glucose catabolism through glycolysis versus the tricarboxylic acid cycle. However, the mechanisms responsible for these metabolic alterations in PH-Fibs remain unknown. We hypothesized that in PH-Fibs microRNA-124 (miR-124) regulates PTBP1 (polypyrimidine tract binding protein 1) expression to control alternative splicing of pyruvate kinase muscle (PKM) isoforms 1 and 2, resulting in an increased PKM2/PKM1 ratio, which promotes glycolysis and proliferation even in aerobic environments. METHODS Pulmonary adventitial fibroblasts were isolated from calves and humans with severe PH (PH-Fibs) and from normal subjects. PTBP1 gene knockdown was achieved via PTBP1-siRNA; restoration of miR-124 was performed with miR-124 mimic. TEPP-46 and shikonin were used to manipulate PKM2 glycolytic function. Histone deacetylase inhibitors were used to treat cells. Metabolic products were determined by mass spectrometry-based metabolomics analyses, and mitochondrial function was analyzed by confocal microscopy and spectrofluorometry. RESULTS We detected an increased PKM2/PKM1 ratio in PH-Fibs compared with normal subjects. PKM2 inhibition reversed the glycolytic status of PH-Fibs, decreased their cell proliferation, and attenuated macrophage interleukin-1β expression. Furthermore, normalizing the PKM2/PKM1 ratio in PH-Fibs by miR-124 overexpression or PTBP1 knockdown reversed the glycolytic phenotype (decreased the production of glycolytic intermediates and byproducts, ie, lactate), rescued mitochondrial reprogramming, and decreased cell proliferation. Pharmacological manipulation of PKM2 activity with TEPP-46 and shikonin or treatment with histone deacetylase inhibitors produced similar results. CONCLUSIONS In PH, miR-124, through the alternative splicing factor PTBP1, regulates the PKM2/PKM1 ratio, the overall metabolic, proliferative, and inflammatory state of cells. This PH phenotype can be rescued with interventions at various levels of the metabolic cascade. These findings suggest a more integrated view of vascular cell metabolism, which may open unique therapeutic prospects in targeting the dynamic glycolytic and mitochondrial interactions and between mesenchymal inflammatory cells in PH.
Collapse
Affiliation(s)
- Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - Daren Wang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - Lydie Plecitá-Hlavatá
- University of Colorado Anschutz Medical Campus, Aurora. Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague (L.P.-H., J.T., P.J.)
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., J.A.R.)
| | - Jan Tauber
- University of Colorado Anschutz Medical Campus, Aurora. Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague (L.P.-H., J.T., P.J.)
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - Amanda Flockton
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - B Alexandre McKeon
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., J.A.R.)
| | - Paola Caruso
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., N.W.M.)
| | - Karim C El Kasmi
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.)
| | - Petr Ježek
- University of Colorado Anschutz Medical Campus, Aurora. Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague (L.P.-H., J.T., P.J.)
| | - Nicholas W Morrell
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., N.W.M.)
| | - Cheng-Jun Hu
- Department of Craniofacial Biology, School of Dental Medicine (C.-J.H.)
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.)
| |
Collapse
|