51
|
Metelev VG, Oretskaya TS. Modified Oligonucleotides: New Structures, New Properties, and New Spheres of Application. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021; 47:339-343. [PMID: 33935479 PMCID: PMC8074280 DOI: 10.1134/s1068162021020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022]
Abstract
Nucleic acids have made a long and arduous journey "from the bench to the bedside." At present, it can be assumed that drugs based on modified oligonucleotides will find a worthy application in personalized medicine of the future.
Collapse
Affiliation(s)
- V. G. Metelev
- Lomonosov Moscow State University, Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia
| | - T. S. Oretskaya
- Lomonosov Moscow State University, Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, 119991 Moscow, Russia
| |
Collapse
|
52
|
Gagliardi M, Ashizawa AT. The Challenges and Strategies of Antisense Oligonucleotide Drug Delivery. Biomedicines 2021; 9:biomedicines9040433. [PMID: 33923688 PMCID: PMC8072990 DOI: 10.3390/biomedicines9040433] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/27/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are used to selectively inhibit the translation of disease-associated genes via Ribonuclease H (RNaseH)-mediated cleavage or steric hindrance. They are being developed as a novel and promising class of drugs targeting a wide range of diseases. Despite the great potential and numerous ASO drugs in preclinical research and clinical trials, there are many limitations to this technology. In this review we will focus on the challenges of ASO delivery and the strategies adopted to improve their stability in the bloodstream, delivery to target sites, and cellular uptake. Focusing on liposomal delivery, we will specifically describe liposome-incorporated growth factor receptor-bound protein-2 (Grb2) antisense oligodeoxynucleotide BP1001. BP1001 is unique because it is uncharged and is essentially non-toxic, as demonstrated in preclinical and clinical studies. Additionally, its enhanced biodistribution makes it an attractive therapeutic modality for hematologic malignancies as well as solid tumors. A detailed understanding of the obstacles that ASOs face prior to reaching their targets and continued advances in methods to overcome them will allow us to harness ASOs’ full potential in precision medicine.
Collapse
|
53
|
Hamashita Y, Shibata T, Takeuchi A, Okuno T, Kise N, Sakurai T. Inchworm-type PNA-PEG conjugate regulates gene expression based on single nucleotide recognition. Int J Biol Macromol 2021; 181:471-477. [PMID: 33798568 DOI: 10.1016/j.ijbiomac.2021.03.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
In order to detect single nucleotide mutations and suppress gene expression, we synthesized an artificial nucleic acid, an inchworm-type PNA-PEG conjugate (i-PPc), that possessed a chemical structure in which 8 residues of peptide nucleic acid (PNA) were linked to both ends of a polyethylene glycol molecule. I-PPc_T7FM, which forms a complementary strand with the T7 promoter region of luciferase-expressing mRNA, failed to suppress the amount of luciferase produced via gene expression. However, 10 μM of i-PPc_ATGFM, targeting the start codon of luciferase (Luc+), suppressed approximately 85% of Luc+ production compared to that of the control in the cell-free protein synthesis system. Moreover, i-PPc_ATGMM (i-PPc_ATGFM with a single base mutation) only suppressed the amount of luciferase produced by approximately 15%, and such suppression of luciferase expression has not been achieved with block-type PPc or PNA oligos. The thermodynamic parameters suggested that the difference in stability of each PNA segment of the i-PPc contributed to single nucleotide recognition. These results indicate that the i-PPc could be used in antisense therapy to target single nucleotide polymorphisms (SNP).
Collapse
Affiliation(s)
- Yusuke Hamashita
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Cho Minami, Tottori 680-8552, Japan
| | - Takahiro Shibata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Cho Minami, Tottori 680-8552, Japan
| | - Akiko Takeuchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Cho Minami, Tottori 680-8552, Japan
| | - Takashi Okuno
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata, 990-8560, Japan
| | - Naoki Kise
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Cho Minami, Tottori 680-8552, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Cho Minami, Tottori 680-8552, Japan
| | - Toshihiko Sakurai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Cho Minami, Tottori 680-8552, Japan; Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Cho Minami, Tottori 680-8552, Japan.
| |
Collapse
|
54
|
Borah P, Deb PK, Al-Shar’i NA, Dahabiyeh LA, Venugopala KN, Singh V, Shinu P, Hussain S, Deka S, Chandrasekaran B, Jaradat DMM. Perspectives on RNA Vaccine Candidates for COVID-19. Front Mol Biosci 2021; 8:635245. [PMID: 33869282 PMCID: PMC8044912 DOI: 10.3389/fmolb.2021.635245] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
With the current outbreak caused by SARS-CoV-2, vaccination is acclaimed as a public health care priority. Rapid genetic sequencing of SARS-CoV-2 has triggered the scientific community to search for effective vaccines. Collaborative approaches from research institutes and biotech companies have acknowledged the use of viral proteins as potential vaccine candidates against COVID-19. Nucleic acid (DNA or RNA) vaccines are considered the next generation vaccines as they can be rapidly designed to encode any desirable viral sequence including the highly conserved antigen sequences. RNA vaccines being less prone to host genome integration (cons of DNA vaccines) and anti-vector immunity (a compromising factor of viral vectors) offer great potential as front-runners for universal COVID-19 vaccine. The proof of concept for RNA-based vaccines has already been proven in humans, and the prospects for commercialization are very encouraging as well. With the emergence of COVID-19, mRNA-1273, an mRNA vaccine developed by Moderna, Inc. was the first to enter human trials, with the first volunteer receiving the dose within 10 weeks after SARS-CoV-2 genetic sequencing. The recent interest in mRNA vaccines has been fueled by the state of the art technologies that enhance mRNA stability and improve vaccine delivery. Interestingly, as per the "Draft landscape of COVID-19 candidate vaccines" published by the World Health Organization (WHO) on December 29, 2020, seven potential RNA based COVID-19 vaccines are in different stages of clinical trials; of them, two candidates already received emergency use authorization, and another 22 potential candidates are undergoing pre-clinical investigations. This review will shed light on the rationality of RNA as a platform for vaccine development against COVID-19, highlighting the possible pros and cons, lessons learned from the past, and the future prospects.
Collapse
Affiliation(s)
- Pobitra Borah
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- Pratiksha Institute of Pharmaceutical Sciences, Assam, India
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Nizar A. Al-Shar’i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Lina A. Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Snawar Hussain
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Assam, India
| | - Balakumar Chandrasekaran
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Da’san M. M. Jaradat
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
55
|
Chan L, Yokota T. Development and Clinical Applications of Antisense Oligonucleotide Gapmers. Methods Mol Biol 2021; 2176:21-47. [PMID: 32865780 DOI: 10.1007/978-1-0716-0771-8_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA-like molecules called antisense oligonucleotides have opened new treatment possibilities for genetic diseases by offering a method of regulating gene expression. Antisense oligonucleotides are often used to suppress the expression of mutated genes which may interfere with essential downstream pathways. Since antisense oligonucleotides have been introduced for clinical use, different chemistries have been developed to further improve efficacy, potency, and safety. One such chemistry is a chimeric structure of a central block of deoxyribonucleotides flanked by sequences of modified nucleotides. Referred to as a gapmer, this chemistry produced promising results in the treatment of genetic diseases. Mipomersen and inotersen are examples of recent FDA-approved antisense oligonucleotide gapmers used for the treatment of familial hypercholesterolemia and hereditary transthyretin amyloidosis, respectively. In addition, volanesorsen was conditionally approved in the EU for the treatment of adult patients with familial chylomicronemia syndrome (FCS) in 2019. Many others are being tested in clinical trials or under preclinical development. This chapter will cover the development of mipomersen and inotersen in clinical trials, along with advancement in gapmer treatments for cancer, triglyceride-elevating genetic diseases, Huntington's disease, myotonic dystrophy, and prion diseases.
Collapse
Affiliation(s)
- Leanna Chan
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
56
|
Abstract
Long noncoding RNAs (lncRNAs) are a class of RNA with 200 nucleotides or longer that are not translated into protein. lncRNAs are highly abundant; a study estimates that at least four times more lncRNAs are typically present than coding RNAs in humans. However, function of more than 95% of human lncRNAs are still unknown. Synthetic antisense oligonucleotides called gapmers are powerful tools for lncRNA loss-of-function studies. Gapmers contain a central DNA part, which activates RNase H-mediated RNA degradation, flanked by modified oligonucleotides, such as 2'-O-methyl RNA (2'OMe), 2'-O-methoxyethyl RNA (2'MOE), constrained ethyl nucleosides (cEt), and locked nucleic acids (LNAs). In contrast to siRNA or RNAi-based methods, antisense oligonucleotide gapmer-based knockdown is often more effective against nuclear-localized lncRNA targets, since RNase H is mainly localized in nuclei. As such, gapmers are also potentially a powerful tool for therapeutics targeting lncRNAs in various diseases, including cancer, cardiovascular diseases, lung fibrosis, and neurological/neuromuscular diseases. This chapter will discuss the development and applications of gapmers for lncRNA loss-of-function studies and tips to design effective antisense oligonucleotides.
Collapse
|
57
|
Pant P, Pathak A, Jayaram B. Symmetric Nucleosides as Potent Purine Nucleoside Phosphorylase Inhibitors. J Phys Chem B 2021; 125:2856-2862. [PMID: 33715357 DOI: 10.1021/acs.jpcb.0c10553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nucleic acids are one of the most enigmatic biomolecules crucial to several biological processes. Nucleic acid-protein interactions are vital for the coordinated and controlled functioning of a cell, leading to the design of several nucleoside/nucleotide analogues capable of mimicking these interactions and hold paramount importance in the field of drug discovery. Purine nucleoside phosphorylase is a well-established drug target due to its association with numerous immunodeficiency diseases. Here, we study the binding of human purine nucleoside phosphorylase (PNP) to some bidirectional symmetric nucleosides, a class of nucleoside analogues that are more flexible due to the absence of sugar pucker restraints. We compared the binding energies of PNP-symmetric nucleosides to the binding energies of PNP-inosine/Imm-H (a transition-state analogue), by means of 200 ns long all-atom explicit-solvent Gaussian accelerated molecular dynamics simulations followed by energetics estimation using the MM-PBSA methodology. Quite interestingly, we observed that a few symmetric nucleosides, namely, ν3 and ν4, showed strong binding with PNP (-14.1 and -12.6 kcal/mol, respectively), higher than inosine (-6.3 kcal/mol) and Imm-H (-9.6 kcal/mol). This is rationalized by an enhanced hydrogen-bond network for symmetric nucleosides compared to inosine and Imm-H while maintaining similar van der Waals contacts. We note that the chemical structures of both ν3 and ν4, due to an additional unsaturation in them, resemble enzymatic transition states and fall in the category of transition-state analogues (TSAs), which are quite popular.
Collapse
Affiliation(s)
- Pradeep Pant
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.,Supercomputing Facility for Bioinformatics & Computational Biology, Hauz Khas, New Delhi 110016, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.,Supercomputing Facility for Bioinformatics & Computational Biology, Hauz Khas, New Delhi 110016, India
| | - B Jayaram
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.,Supercomputing Facility for Bioinformatics & Computational Biology, Hauz Khas, New Delhi 110016, India.,Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
58
|
García-García P, Briffault E, Landin M, Evora C, Diaz-Rodriguez P, Delgado A. Tailor-made oligonucleotide-loaded lipid-polymer nanosystems designed for bone gene therapy. Drug Deliv Transl Res 2021; 11:598-607. [PMID: 33625680 DOI: 10.1007/s13346-021-00926-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Gene therapy has emerged as a tool for the treatment of systemic metabolic disorders as osteoporosis (OP). However, the design of a suitable vehicle able to efficiently load and release the genetic material on the target cells is still a challenge. Moreover, the internalization pathway of nanosystems has been described to be dependent on their surface characteristics and the cell type evaluated. In this study, we aim at obtaining PEGylated lipid-PLGA nanoparticles (NPs) with variable surface charge able to incorporate GapmeRs (single-strand antisense oligonucleotides) for OP treatment. Nanoparticles showing negative, positive, and neutral surface charge were obtained by modulating the lipid composition. All formulations showed a remarkably low polydispersity index with adequate size. NPs were loaded with GapmeRs showing a high encapsulation efficiency and a surface charge-independent oligonucleotide loading. All the formulations were adequately internalized by MSCs. Future experiments will be devoted to use the developed formulations to clarify if the intracellular distribution of hybrid NPs on mesenchymal stem cells (MSCs) is dependent on surface charge. This portfolio of NPs will serve as a tool to analyze the effect of NP surface charge on gene therapy efficiency.
Collapse
Affiliation(s)
- Patricia García-García
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200, La Laguna, Spain
| | - Erik Briffault
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200, La Laguna, Spain
| | - Mariana Landin
- R+D Pharma Group (GI-1645); Strategic Grouping in Materials (AEMAT)Department of Pharmacology, Pharmacy and Pharmaceutical TechnologyFaculty of Pharmacy, Universidade de Santiago de Compostela-Campus Vida, 15782, Santiago de Compostela, Spain
| | - Carmen Evora
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200, La Laguna, Spain.,Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200, La Laguna, Spain
| | - Patricia Diaz-Rodriguez
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200, La Laguna, Spain. .,Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200, La Laguna, Spain.
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200, La Laguna, Spain. .,Institute of Biomedical Technologies (ITB), Center for Biomedical Research of the Canary Islands (CIBICAN), Universidad de La Laguna, 38200, La Laguna, Spain.
| |
Collapse
|
59
|
Schmidt K, Weidmann CA, Hilimire TA, Yee E, Hatfield BM, Schneekloth JS, Weeks KM, Novina CD. Targeting the Oncogenic Long Non-coding RNA SLNCR1 by Blocking Its Sequence-Specific Binding to the Androgen Receptor. Cell Rep 2021; 30:541-554.e5. [PMID: 31940495 DOI: 10.1016/j.celrep.2019.12.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/30/2018] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators of numerous physiological processes and diseases, especially cancers. However, development of lncRNA-based therapies is limited because the mechanisms of many lncRNAs are obscure, and interactions with functional partners, including proteins, remain uncharacterized. The lncRNA SLNCR1 binds to and regulates the androgen receptor (AR) to mediate melanoma invasion and proliferation in an androgen-independent manner. Here, we use biochemical analyses coupled with selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) RNA structure probing to show that the N-terminal domain of AR binds a pyrimidine-rich motif in an unstructured region of SLNCR1. This motif is predictive of AR binding, as we identify an AR-binding motif in lncRNA HOXA11-AS-203. Oligonucleotides that bind either the AR N-terminal domain or the AR RNA motif block the SLNCR1-AR interaction and reduce SLNCR1-mediated melanoma invasion. Delivery of oligos that block SLNCR1-AR interaction thus represent a plausible therapeutic strategy.
Collapse
Affiliation(s)
- Karyn Schmidt
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Chase A Weidmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Thomas A Hilimire
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Elaine Yee
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Breanne M Hatfield
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Carl D Novina
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA.
| |
Collapse
|
60
|
Clavé G, Reverte M, Vasseur JJ, Smietana M. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC Chem Biol 2021; 2:94-150. [PMID: 34458777 PMCID: PMC8341215 DOI: 10.1039/d0cb00136h] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few years, several drugs derived from nucleic acids have been approved for commercialization and many more are in clinical trials. The sensitivity of these molecules to nuclease digestion in vivo implies the need to exploit resistant non-natural nucleotides. Among all the possible modifications, the one concerning the internucleoside linkage is of particular interest. Indeed minor changes to the natural phosphodiester may result in major modifications of the physico-chemical properties of nucleic acids. As this linkage is a key element of nucleic acids' chemical structures, its alteration can strongly modulate the plasma stability, binding properties, solubility, cell penetration and ultimately biological activity of nucleic acids. Over the past few decades, many research groups have provided knowledge about non-natural internucleoside linkage properties and participated in building biologically active nucleic acid derivatives. The recent renewing interest in nucleic acids as drugs, demonstrated by the emergence of new antisense, siRNA, aptamer and cyclic dinucleotide molecules, justifies the review of all these studies in order to provide new perspectives in this field. Thus, in this review we aim at providing the reader insights into modified internucleoside linkages that have been described over the years whose impact on annealing properties and resistance to nucleases have been evaluated in order to assess their potential for biological applications. The syntheses of modified nucleotides as well as the protocols developed for their incorporation within oligonucleotides are described. Given the intended biological applications, the modifications described in the literature that have not been tested for their resistance to nucleases are not reported.
Collapse
Affiliation(s)
| | - Maeva Reverte
- IBMM, Univ. Montpellier, CNRS, ENSCM Montpellier France
| | | | | |
Collapse
|
61
|
Van Der Hofstadt M, Galas JC, Estevez-Torres A. Spatiotemporal Patterning of Living Cells with Extracellular DNA Programs. ACS NANO 2021; 15:1741-1752. [PMID: 33356142 DOI: 10.1021/acsnano.0c09422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reactive extracellular media focus on engineering reaction networks outside the cell to control intracellular chemical composition across time and space. However, current implementations lack the feedback loops and out-of-equilibrium molecular dynamics for encoding spatiotemporal control. Here, we demonstrate that enzyme-DNA molecular programs combining these qualities are functional in an extracellular medium where human cells can grow. With this approach, we construct an internalization program that delivers fluorescent DNA inside living cells and remains functional for at least 48 h. Its nonequilibrium dynamics allows us to control both the time and position of cell internalization. In particular, a spatially inhomogeneous version of this program generates a tunable reaction-diffusion two-band pattern of cell internalization. This demonstrates that a synthetic extracellular program can provide temporal and positional information to living cells, emulating archetypal mechanisms observed during embryo development. We foresee that nonequilibrium reactive extracellular media could be advantageously applied to in vitro biomolecular tracking, tissue engineering, or smart bandages.
Collapse
Affiliation(s)
- Marc Van Der Hofstadt
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France
| | - Jean-Christophe Galas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France
| | - André Estevez-Torres
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), F-75005, Paris, France
| |
Collapse
|
62
|
Naito M, Chaya H, Toh K, Kim BS, Hayashi K, Fukushima S, Nagata T, Yokota T, Kataoka K, Miyata K. Structural tuning of oligonucleotides for enhanced blood circulation properties of unit polyion complexes prepared from two-branched poly(ethylene glycol)-block-poly(l-lysine). J Control Release 2021; 330:812-820. [PMID: 33417983 DOI: 10.1016/j.jconrel.2021.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/26/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Downsizing nanocarriers is a promising strategy for systemically targeting fibrotic cancers, such as pancreatic cancer, owing to enhanced tissue permeability. We recently developed a small oligonucleotide nanocarrier called a unit polyion complex (uPIC) using a single oligonucleotide molecule and one or two molecule(s) of two-branched poly(ethylene glycol)-b-poly(l-lysine) (bPEG-PLys). The uPIC is a dynamic polyion-pair equilibrated with free bPEG-PLys, and thus, is highly stabilized in the presence of excess amounts of free bPEG-PLys in the bloodstream. However, the dynamic polyion-pairing behavior of uPICs needs to be further investigated for longevity in the bloodstream, especially under lower amounts of free bPEG-PLys. Herein, the polyion-pairing behavior of uPICs was investigated by highlighting oligonucleotide stability and negative charge number. To this end, small interfering RNA (siRNA) and antisense oligonucleotides (ASO) were chemically modified to acquire nuclease resistance, and the ASO was hybridized with complementary RNA (cRNA) to form a hetero-duplex oligonucleotide (HDO) with twice the negative charges. While all oligonucleotides similarly formed sub-20 nm-sized uPICs from a single oligonucleotide molecule, the association number of bPEG-PLys (ANbPEG-PLys) in uPICs varied based on the negative charge number of oligonucleotides (N-), that is, ANbPEG-PLys = ~2 at N- = ~40 (i.e., siRNA and HDO) and ANbPEG-PLys = ~1 at N- = 20 (i.e., ASO), presumably because of the balanced charge neutralization between the oligonucleotide and bPEG-PLys with a positive charge number (N+) of ~20. Ultimately, the uPICs prepared from the chemically modified oligonucleotide with higher negative charges showed considerably longer blood retention than those from the control oligonucleotides without chemical modifications or with lower negative charges. The difference in the blood circulation properties of uPICs was more pronounced under lower amounts of free bPEG-PLys. These results demonstrate that the chemical modification and higher negative charge in oligonucleotides facilitated the polyion-pairing between the oligonucleotide and bPEG-PLys under harsh biological conditions, facilitating enhanced blood circulation of uPICs.
Collapse
Affiliation(s)
- Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Chaya
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Beob Soo Kim
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kotaro Hayashi
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Shigeto Fukushima
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
63
|
Scharner J, Aznarez I. Clinical Applications of Single-Stranded Oligonucleotides: Current Landscape of Approved and In-Development Therapeutics. Mol Ther 2020; 29:540-554. [PMID: 33359792 PMCID: PMC7854307 DOI: 10.1016/j.ymthe.2020.12.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/19/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Single-stranded oligonucleotides have been explored as a therapeutic modality for more than 20 years. Only during the last 5 years have single-stranded oligonucleotides become a modality of choice in the fields of precision medicine and targeted therapeutics. Recently, there have been a number of development efforts involving this modality that have led to treatments for genetic diseases that were once untreatable. This review highlights key applications of single-stranded oligonucleotides that function in a sequence-dependent manner when applied to modulate precursor (pre-)mRNA splicing, gene expression, and immune pathways. These applications have been used to address diseases that range from neurological to muscular to metabolic, as well as to develop vaccines. The wide range of applications denotes the versatility of single-stranded oligonucleotides as a robust therapeutic platform. The focus of this review is centered on approved single-stranded oligonucleotide therapies and the evolution of oligonucleotide therapeutics into novel applications currently in clinical development.
Collapse
|
64
|
Danielsen MB, Christensen NJ, Jørgensen PT, Jensen KJ, Wengel J, Lou C. Polyamine-Functionalized 2'-Amino-LNA in Oligonucleotides: Facile Synthesis of New Monomers and High-Affinity Binding towards ssDNA and dsDNA. Chemistry 2020; 27:1416-1422. [PMID: 33073896 DOI: 10.1002/chem.202004495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/16/2020] [Indexed: 12/15/2022]
Abstract
Attachment of cationic moieties to oligonucleotides (ONs) promises not only to increase the binding affinity of antisense ONs by reducing charge repulsion between the two negatively charged strands of a duplex, but also to augment their in vivo stability against nucleases. In this study, polyamine functionality was introduced into ONs by means of 2'-amino-LNA scaffolds. The resulting ONs exhibited efficient binding towards ssDNA, ssRNA and dsDNA targets, and the 2'-amino-LNA analogue carrying a triaminated linker showed the most pronounced duplex- and triplex-stabilizing effect. Molecular modelling revealed that favourable conformational and electrostatic effects led to salt-bridge formation between positively charged polyamine moieties and the Watson-Hoogsteen groove of the dsDNA targets, resulting in the observed triplex stabilization. All the investigated monomers showed increased resistance against 3'-nucleolytic digestion relative to the non-functionalized controls.
Collapse
Affiliation(s)
- Mathias B Danielsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Niels Johan Christensen
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Per T Jørgensen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Knud J Jensen
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Chenguang Lou
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
65
|
Montaño-Samaniego M, Bravo-Estupiñan DM, Méndez-Guerrero O, Alarcón-Hernández E, Ibáñez-Hernández M. Strategies for Targeting Gene Therapy in Cancer Cells With Tumor-Specific Promoters. Front Oncol 2020; 10:605380. [PMID: 33381459 PMCID: PMC7768042 DOI: 10.3389/fonc.2020.605380] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second cause of death worldwide, surpassed only by cardiovascular diseases, due to the lack of early diagnosis, and high relapse rate after conventional therapies. Chemotherapy inhibits the rapid growth of cancer cells, but it also affects normal cells with fast proliferation rate. Therefore, it is imperative to develop other safe and more effective treatment strategies, such as gene therapy, in order to significantly improve the survival rate and life expectancy of patients with cancer. The aim of gene therapy is to transfect a therapeutic gene into the host cells to express itself and cause a beneficial biological effect. However, the efficacy of the proposed strategies has been insufficient for delivering the full potential of gene therapy in the clinic. The type of delivery vehicle (viral or non viral) chosen depends on the desired specificity of the gene therapy. The first gene therapy trials were performed with therapeutic genes driven by viral promoters such as the CMV promoter, which induces non-specific toxicity in normal cells and tissues, in addition to cancer cells. The use of tumor-specific promoters over-expressed in the tumor, induces specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several cancer- and/or tumor-specific promoters systems have been developed to target cancer cells. This review aims to provide up-to-date information concerning targeting gene therapy with cancer- and/or tumor-specific promoters including cancer suppressor genes, suicide genes, anti-tumor angiogenesis, gene silencing, and gene-editing technology, as well as the type of delivery vehicle employed. Gene therapy can be used to complement traditional therapies to provide more effective treatments.
Collapse
Affiliation(s)
- Mariela Montaño-Samaniego
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Diana M. Bravo-Estupiñan
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Oscar Méndez-Guerrero
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Alarcón-Hernández
- Laboratorio de Genética Molecular, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| | - Miguel Ibáñez-Hernández
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
66
|
Re VD, Brisotto G, Repetto O, De Zorzi M, Caggiari L, Zanussi S, Alessandrini L, Canzonieri V, Miolo G, Puglisi F, Belluco C, Steffan A, Cannizzaro R. Overview of Epstein-Barr-Virus-Associated Gastric Cancer Correlated with Prognostic Classification and Development of Therapeutic Options. Int J Mol Sci 2020; 21:E9400. [PMID: 33321820 PMCID: PMC7764600 DOI: 10.3390/ijms21249400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) is a deadly disease with poor prognosis that is characterized by heterogeneity. New classifications based on histologic features, genotypes, and molecular phenotypes, for example, the Cancer Genome Atlas subtypes and those by the Asian Cancer Research Group, help understand the carcinogenic differences in GC and have led to the identification of an Epstein-Barr virus (EBV)-related GC subtype (EBVaGC), providing new indications for tailored treatment and prognostic factors. This article provides a review of the features of EBVaGC and an update on the latest insights from EBV-related research with a particular focus on the strict interaction between EBV infection and the gastric tumor environment, including the host immune response. This information may help increase our knowledge of EBVaGC pathogenesis and the mechanisms that sustain the immune response of patients since this mechanism has been demonstrated to offer a survival advantage in a proportion of patients with GC.
Collapse
Affiliation(s)
- Valli De Re
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Bioproteomic Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33077 Aviano, Italy; (G.B.); (O.R.); (M.D.Z.); (L.C.); (S.Z.); (A.S.)
| | - Giulia Brisotto
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Bioproteomic Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33077 Aviano, Italy; (G.B.); (O.R.); (M.D.Z.); (L.C.); (S.Z.); (A.S.)
| | - Ombretta Repetto
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Bioproteomic Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33077 Aviano, Italy; (G.B.); (O.R.); (M.D.Z.); (L.C.); (S.Z.); (A.S.)
| | - Mariangela De Zorzi
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Bioproteomic Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33077 Aviano, Italy; (G.B.); (O.R.); (M.D.Z.); (L.C.); (S.Z.); (A.S.)
| | - Laura Caggiari
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Bioproteomic Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33077 Aviano, Italy; (G.B.); (O.R.); (M.D.Z.); (L.C.); (S.Z.); (A.S.)
| | - Stefania Zanussi
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Bioproteomic Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33077 Aviano, Italy; (G.B.); (O.R.); (M.D.Z.); (L.C.); (S.Z.); (A.S.)
| | - Lara Alessandrini
- Pathology, Department of Medicine DIMED, University of Padova, 61-35121 Padova, Italy;
| | - Vincenzo Canzonieri
- Surgical and Health Sciences, Department of Medical, University of Trieste Medical School, 34100 Trieste, Italy;
- Pathology, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (G.M.); (F.P.)
| | - Fabio Puglisi
- Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (G.M.); (F.P.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Claudio Belluco
- Surgical Oncology, Department of Surgery, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Department of Translational Research, Bioproteomic Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33077 Aviano, Italy; (G.B.); (O.R.); (M.D.Z.); (L.C.); (S.Z.); (A.S.)
| | - Renato Cannizzaro
- Gastroenterology, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| |
Collapse
|
67
|
Zhou Y, Kajino R, Ishii S, Yamagishi K, Ueno Y. Synthesis and evaluation of ( S)-5'- C-aminopropyl and ( S)-5'- C-aminopropyl-2'-arabinofluoro modified DNA oligomers for novel RNase H-dependent antisense oligonucleotides. RSC Adv 2020; 10:41901-41914. [PMID: 35516588 PMCID: PMC9057856 DOI: 10.1039/d0ra08468a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
We designed and synthesized two novel thymidine analogs: (S)-5'-C-aminopropyl-thymidine and (S)-5'-C-aminopropyl-2'-β-fluoro-thymidine. Then, DNA oligomers containing these analogs were synthesized, and their functional properties were evaluated. Compared with the naturally occurring thymidine, it was revealed that (S)-5'-C-aminopropyl-2'-arabinofluoro-thymidine was sufficiently thermally stable, while (S)-5'-C-aminopropyl-thymidine featured thermal destabilization. The difference in thermal stability resulted from a moderate change in the secondary structure of the DNA/RNA duplexes and a molecular fluctuation in monomers derived from the (S)-5'-C-aminopropyl side chain, as well as from a variation in sugar puckering derived from the 2'-arabinofluoro modification. Meanwhile, the incorporation of these analogs significantly enhanced the nuclease resistance of the DNA oligomers. Moreover, the (S)-5'-C-aminopropyl-2'-arabinofluoro-modified DNA/RNA duplexes showed a superior ability to activate RNase H-mediated cleavage of the RNA strand compared to the (S)-5'-C-aminopropyl-modified DNA/RNA duplexes.
Collapse
Affiliation(s)
- Yujun Zhou
- Graduate School of Natural Science and Technology 1-1 Yanagido Gifu 501-1193 Japan +81-58-293-2919 +81-58-293-2919
| | - Ryohei Kajino
- Graduate School of Natural Science and Technology 1-1 Yanagido Gifu 501-1193 Japan +81-58-293-2919 +81-58-293-2919
| | - Seiichiro Ishii
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University 1 Nakagawara, Tokusada, Tamuramachi Koriyama Fukushima 963-8642 Japan
| | - Kenji Yamagishi
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University 1 Nakagawara, Tokusada, Tamuramachi Koriyama Fukushima 963-8642 Japan
| | - Yoshihito Ueno
- Graduate School of Natural Science and Technology 1-1 Yanagido Gifu 501-1193 Japan +81-58-293-2919 +81-58-293-2919
- Faculty of Applied Biological Sciences 1-1 Yanagido Gifu 501-1193 Japan
- United Graduate School of Agricultural Science 1-1 Yanagido Gifu 501-1193 Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
68
|
Szabat M, Lorent D, Czapik T, Tomaszewska M, Kierzek E, Kierzek R. RNA Secondary Structure as a First Step for Rational Design of the Oligonucleotides towards Inhibition of Influenza A Virus Replication. Pathogens 2020; 9:pathogens9110925. [PMID: 33171815 PMCID: PMC7694947 DOI: 10.3390/pathogens9110925] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Influenza is an important research subject around the world because of its threat to humanity. Influenza A virus (IAV) causes seasonal epidemics and sporadic, but dangerous pandemics. A rapid antigen changes and recombination of the viral RNA genome contribute to the reduced effectiveness of vaccination and anti-influenza drugs. Hence, there is a necessity to develop new antiviral drugs and strategies to limit the influenza spread. IAV is a single-stranded negative sense RNA virus with a genome (viral RNA—vRNA) consisting of eight segments. Segments within influenza virion are assembled into viral ribonucleoprotein (vRNP) complexes that are independent transcription-replication units. Each step in the influenza life cycle is regulated by the RNA and is dependent on its interplay and dynamics. Therefore, viral RNA can be a proper target to design novel therapeutics. Here, we briefly described examples of anti-influenza strategies based on the antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA) and catalytic nucleic acids. In particular we focused on the vRNA structure-function relationship as well as presented the advantages of using secondary structure information in predicting therapeutic targets and the potential future of this field.
Collapse
|
69
|
O’Flaherty R, Bergin A, Flampouri E, Mota LM, Obaidi I, Quigley A, Xie Y, Butler M. Mammalian cell culture for production of recombinant proteins: A review of the critical steps in their biomanufacturing. Biotechnol Adv 2020; 43:107552. [DOI: 10.1016/j.biotechadv.2020.107552] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022]
|
70
|
Alnasser SM. Review on mechanistic strategy of gene therapy in the treatment of disease. Gene 2020; 769:145246. [PMID: 33098937 DOI: 10.1016/j.gene.2020.145246] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022]
Abstract
Gene therapy has become a revolution and its breakthrough is a corner stone in modern science. This treatment has rising advantages with limited negative aspects. Gene therapy is a therapeutic method in which, transfer of DNA to an individual to manipulate a defective gene is performed and to mitigate a disease which is not responding to pharmacological therapy. The gene therapy strategies are divided into two main categories such as direct in-vivo gene delivery of manipulated viral vector vehicle into the host and ex-vivo genetically engineered stem cells. In this review, we tried to cover all aspects of gene therapy studies; starting with the concept of gene, its treatment, gene delivery system and types, clinical trial either by vitro or In-Vivo -Clinical Trials and Clinical Intoxication of Gene Therapy. Therefore, the promise of successful treatment with gene therapy could positively affect millions of lives. The main aim of this review is to address the principles of gene therapy, various methods involved in the gene therapy, clinical applications and its merits and demerits.
Collapse
Affiliation(s)
- Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
71
|
Gheibi-Hayat SM, Jamialahmadi K. Antisense Oligonucleotide (AS-ODN) Technology: Principle, Mechanism and Challenges. Biotechnol Appl Biochem 2020; 68:1086-1094. [PMID: 32964539 DOI: 10.1002/bab.2028] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/12/2020] [Indexed: 12/20/2022]
Abstract
Recently, there is a hopefully tremendous interest in antisense therapeutics for clinical purposes. Single-stranded synthetic antisense oligonucleotides (As-ODNs) with monomers of chemically modified 18-21 deoxynucleotides complement the mRNA sequence in target gene. The target gene expression can be blocked because of created cleavage or disability of the mRNA by binding the As-ODNs to cognate mRNA sequences via sequence-specific hybridization. The idea of antisense therapy has become particular concerning that any sequence longer than a minimal number of nucleotides (17 for DNA and 13 for RNA) can be observed only once within the human genome. The mRNA is omnipresent more probably to manipulate compared to DNA, which results in multiple in vitro and in vivo applications for As-ODNs in the field of regulatory mechanisms of biological processes, cancer, viral infections and hereditary impairments. Although, there are uncertain clinical outcomes on the ability of this approach in treatment procedures despite achieving promising findings based on previous investigations. Accordingly, the efficacy, off-target effects, delivery are issues that should be investigated to obtain satisfactory results. In this review, we will explain the mechanism of action of As-ODNs and various types of modifications and their therapeutic purposes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
72
|
Therapeutically Significant MicroRNAs in Primary and Metastatic Brain Malignancies. Cancers (Basel) 2020; 12:cancers12092534. [PMID: 32906592 PMCID: PMC7564168 DOI: 10.3390/cancers12092534] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The overall survival of brain cancer patients remains grim, with conventional therapies such as chemotherapy and radiotherapy only providing marginal benefits to patient survival. Cancers are complex, with multiple pathways being dysregulated simultaneously. Non-coding RNAs such as microRNA (miRNAs) are gaining importance due to their potential in regulating a variety of targets implicated in the pathology of cancers. This could be leveraged for the development of targeted and personalized therapies for cancers. Since miRNAs can upregulate and/or downregulate proteins, this review aims to understand the role of these miRNAs in primary and metastatic brain cancers. Here, we discuss the regulatory mechanisms of ten miRNAs that are highly dysregulated in glioblastoma and metastatic brain tumors. This will enable researchers to develop miRNA-based targeted cancer therapies and identify potential prognostic biomarkers. Abstract Brain cancer is one among the rare cancers with high mortality rate that affects both children and adults. The most aggressive form of primary brain tumor is glioblastoma. Secondary brain tumors most commonly metastasize from primary cancers of lung, breast, or melanoma. The five-year survival of primary and secondary brain tumors is 34% and 2.4%, respectively. Owing to poor prognosis, tumor heterogeneity, increased tumor relapse, and resistance to therapies, brain cancers have high mortality and poor survival rates compared to other cancers. Early diagnosis, effective targeted treatments, and improved prognosis have the potential to increase the survival rate of patients with primary and secondary brain malignancies. MicroRNAs (miRNAs) are short noncoding RNAs of approximately 18–22 nucleotides that play a significant role in the regulation of multiple genes. With growing interest in the development of miRNA-based therapeutics, it is crucial to understand the differential role of these miRNAs in the given cancer scenario. This review focuses on the differential expression of ten miRNAs (miR-145, miR-31, miR-451, miR-19a, miR-143, miR-125b, miR-328, miR-210, miR-146a, and miR-126) in glioblastoma and brain metastasis. These miRNAs are highly dysregulated in both primary and metastatic brain tumors, which necessitates a better understanding of their role in these cancers. In the context of the tumor microenvironment and the expression of different genes, these miRNAs possess both oncogenic and/or tumor-suppressive roles within the same cancer.
Collapse
|
73
|
Loibl N, Arenz C, Seitz O. Monitoring Dicer-Mediated miRNA-21 Maturation and Ago2 Loading by a Dual-Colour FIT PNA Probe Set. Chembiochem 2020; 21:2527-2532. [PMID: 32270536 PMCID: PMC7496889 DOI: 10.1002/cbic.202000173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/06/2020] [Indexed: 12/14/2022]
Abstract
The inhibition of micro RNA (miRNA) maturation by Dicer and loading matured miRNAs into the RNA-induced silencing complex (RISC) is envisioned as a modality for treatment of cancer. Existing methods for evaluating maturation either focus on the conversion of modified precursors or detect mature miRNA. Whereas the former is not applicable to native pre-miRNA, the latter approach underestimates maturation when both nonmatured and matured miRNA molecules are subject to cleavage. We present a set of two orthogonally labelled FIT PNA probes that distinguish between cleaved pre-miRNA and the mature miRNA duplex. The probes allow Dicer-mediated miR21 maturation to be monitored and Ago2-mediated unwinding of the miR21 duplex to be assayed. A two-channel fluorescence readout enables measurement in real-time without the need for specialized instrumentation or further enzyme mediated amplification.
Collapse
Affiliation(s)
- Natalia Loibl
- Department of ChemistryHumbolt-Universität zu BerlinBrook-Taylor-Strase 212489BerlinGermany
| | - Christoph Arenz
- Department of ChemistryHumbolt-Universität zu BerlinBrook-Taylor-Strase 212489BerlinGermany
| | - Oliver Seitz
- Department of ChemistryHumbolt-Universität zu BerlinBrook-Taylor-Strase 212489BerlinGermany
| |
Collapse
|
74
|
Fatthalla MI, Pedersen EB. Evaluation of the Base‐Pairing Properties of 5‐(5‐Indolylethynyl) and 5‐(5‐Indolyl)‐2′‐deoxyuridine Modified Triplex and Duplex. ChemistrySelect 2020. [DOI: 10.1002/slct.202002174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Maha I. Fatthalla
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
- Department of Chemistry, Faculty of Science Helwan University 11795 Ain Helwan Cairo Egypt
- Universite Paris-Sud, Faculte de Pharmacie, 5 rue J.-B. Clement Chatenay-Malabry 92296 France
| | - Erik B. Pedersen
- Department of Physics Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| |
Collapse
|
75
|
Ando H, Ishida T. An RNAi therapeutic, DFP-10825, for intraperitoneal and intrapleural malignant cancers. Adv Drug Deliv Rev 2020; 154-155:27-36. [PMID: 32781056 DOI: 10.1016/j.addr.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
RNA interference (RNAi), a potent post-transcriptional gene-silencing action, has received considerable attentions as a novel therapeutic tool to treat intractable cancers. In recent days, we have developed a novel RNAi-based therapeutic formulation, DFP-10825, for the treatment of intractable advanced cancers developed in coelomic cavities. DFP-10825 was composed of chemically synthesized short hairpin RNA (shRNA) against thymidylate synthase (TS), a key enzyme for cancer proliferation, and cationic liposomes, and achieved high therapeutic effect on the mouse models of peritoneally disseminated gastric and ovarian cancers and malignant pleural mesothelioma without severe side effects by intracoelomic direct treatment. We further designed a freeze-dried DFP-10825 formulation for mass industrial production. DFP-10825 is undergoing in pre-clinical phase and goes to clinical trials. This review introduces a DFP-10825 formulation, a potent novel RNAi-based therapeutic maximizing the benefit of RNAi molecule (shRNA).
Collapse
|
76
|
Aali E, Shokuhi Rad A, Esfahanian M. Computational investigation of the strategy of DNA/RNA stabilization through the study of the conjugation of an oligonucleotide with silver and gold nanoparticles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Elahe Aali
- Department of Chemical Engineering, Qaemshahr Branch Islamic Azad University Qaemshahr Iran
| | - Ali Shokuhi Rad
- Department of Chemical Engineering, Qaemshahr Branch Islamic Azad University Qaemshahr Iran
| | - Mehri Esfahanian
- Department of Chemical Engineering, Qaemshahr Branch Islamic Azad University Qaemshahr Iran
| |
Collapse
|
77
|
Li X, Song Y. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J Hematol Oncol 2020; 13:50. [PMID: 32404196 PMCID: PMC7218526 DOI: 10.1186/s13045-020-00885-3] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Proteolysis-targeting chimera (PROTAC) has been developed to be a useful technology for targeted protein degradation. A bifunctional PROTAC molecule consists of a ligand (mostly small-molecule inhibitor) of the protein of interest (POI) and a covalently linked ligand of an E3 ubiquitin ligase (E3). Upon binding to the POI, the PROTAC can recruit E3 for POI ubiquitination, which is subjected to proteasome-mediated degradation. PROTAC complements nucleic acid-based gene knockdown/out technologies for targeted protein reduction and could mimic pharmacological protein inhibition. To date, PROTACs targeting ~ 50 proteins, many of which are clinically validated drug targets, have been successfully developed with several in clinical trials for cancer therapy. This article reviews PROTAC-mediated degradation of critical oncoproteins in cancer, particularly those in hematological malignancies. Chemical structures, cellular and in vivo activities, pharmacokinetics, and pharmacodynamics of these PROTACs are summarized. In addition, potential advantages, challenges, and perspectives of PROTAC technology in cancer therapy are discussed.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
78
|
Muslehiddinoglu J, Simler R, Hill ML, Mueller C, Amery JHA, Dixon L, Watson A, Storch K, Gazziola C, Gielen F, Lange SA, Prail JD, Nesta DP. Technical Considerations for Use of Oligonucleotide Solution API. Nucleic Acid Ther 2020; 30:189-197. [PMID: 32379529 PMCID: PMC7415879 DOI: 10.1089/nat.2020.0846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The most common approach for the manufacture of oligonucleotides includes isolation of the active pharmaceutical ingredient (API) via lyophilization to provide a solid product, which is then dissolved to provide an aqueous formulation. It is well known from the development and manufacture of large molecules (“biologics”) that API production does not always require isolation of solid API before drug product formulation, and this article provides technical considerations for the analogous use of oligonucleotide API in solution. The primary factor considered is solution stability, and additional factors such as viscosity, concentration, end-to-end manufacturing, microbiological control, packaging, and storage are also discussed. The technical considerations discussed in this article will aid the careful evaluation of the relative advantages and disadvantages of solution versus powder API for a given oligonucleotide drug substance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Doug P Nesta
- GlaxoSmithKline, King of Prussia, United Kingdom
| |
Collapse
|
79
|
Wang F, Kream RM, Stefano GB. An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development. Med Sci Monit 2020; 26:e924700. [PMID: 32366816 PMCID: PMC7218962 DOI: 10.12659/msm.924700] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
The first outbreak of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred in Wuhan, Hubei Province, China, in late 2019. The subsequent COVID-19 pandemic rapidly affected the health and economy of the world. The global approach to the pandemic was to isolate populations to reduce the spread of this deadly virus while vaccines began to be developed. In March 2020, the first phase I clinical trial of a novel lipid nanoparticle (LNP)-encapsulated mRNA-based vaccine, mRNA-1273, which encodes the spike protein (S protein) of SARS-CoV-2, began in the United States (US). The production of mRNA-based vaccines is a promising recent development in the production of vaccines. However, there remain significant challenges in the development and testing of vaccines as rapidly as possible to control COVID-19, which requires international collaboration. This review aims to describe the background to the rationale for the development of mRNA-based SARS-CoV-2 vaccines and the current status of the mRNA-1273 vaccine.
Collapse
Affiliation(s)
- Fuzhou Wang
- Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, U.S.A
- Institute for Translational Medicine on Molecular Function and Artificial Intelligence Imaging, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, Guangdong, P.R. China
| | | | - George B. Stefano
- International Scientific Information, Inc., Melville, NY, U.S.A
- Center for Cognitive and Molecular Neuroscience, First Faculty of Medicine Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
80
|
A Unique Gene-Silencing Approach, Using an Intelligent RNA Expression Device (iRed), Results in Minimal Immune Stimulation When Given by Local Intrapleural Injection in Malignant Pleural Mesothelioma. Molecules 2020; 25:molecules25071725. [PMID: 32283709 PMCID: PMC7181240 DOI: 10.3390/molecules25071725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background: We have recently introduced an intelligent RNA expression device (iRed), comprising the minimum essential components needed to transcribe short hairpin RNA (shRNA) in cells. Use of iRed efficiently produced shRNA molecules after transfection into cells and alleviated the innate immune stimulation following intravenous injection. Methods: To study the usefulness of iRed for local injection, the engineered iRed encoding luciferase shRNA (Luc iRed), complexed with cationic liposomes (Luc iRed/liposome-complexes), was intrapleurally injected into an orthotopic mesothelioma mouse model. Results: Luc iRed/liposome-complexes markedly suppressed the expression of a luciferase marker gene in pleurally disseminated mesothelioma cells. The suppressive efficiency was correlated with the expression level of shRNA within the mesothelioma cells. In addition, intrapleural injection of iRed/liposome-complexes did not induce IL-6 production in the pleural space and consequently in the blood compartment, although plasmid DNA (pDNA) or dsDNA (the natural construct for iRed) in the formulation did. Conclusion: Local delivery of iRed could augment the in vivo gene silencing effect without eliciting pronounced innate immune stimulation. Our results might hold promise for widespread utilization of iRed as an RNAi-based therapeutic for intracelial malignant cancers.
Collapse
|
81
|
Mozafari N, Umek T. Assessing Oligonucleotide Binding to Double-Stranded DNA. Methods Mol Biol 2020; 2036:91-112. [PMID: 31410792 DOI: 10.1007/978-1-4939-9670-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sequence-specific targeting of double-stranded DNA (dsDNA) using synthetic oligonucleotides (ONs) has been under investigation in different therapeutic approaches. Several methods can be used to evaluate ONs effect and binding capacity to their target sequence. Here we describe some of the methods, which have been frequently used for assessing ONs binding to dsDNA.
Collapse
Affiliation(s)
- Negin Mozafari
- Department of Laboratory Medicine, Center for Advanced Therapies, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | - Tea Umek
- Department of Laboratory Medicine, Center for Advanced Therapies, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
82
|
Lundin KE, Gissberg O, Smith CIE, Zain R. Chemical Development of Therapeutic Oligonucleotides. Methods Mol Biol 2020; 2036:3-16. [PMID: 31410788 DOI: 10.1007/978-1-4939-9670-4_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of several different chemical modifications of nucleic acids, with improved base-pairing affinity and specificity as well as increased resistance against nucleases, has been described. These new chemistries have allowed the synthesis of different types of therapeutic oligonucleotides. Here we discuss selected chemistries used in antisense oligonucleotide (ASO) applications (e.g., small interfering RNA (siRNA), RNase H activation, translational block, splice-switching, and also as aptamers). Recently approved oligonucleotide-based drugs are also presented briefly.
Collapse
Affiliation(s)
- Karin E Lundin
- Department of Laboratory Medicine, Center for Advanced Therapies, Karolinska Institutet, Stockholm, Sweden.
| | - Olof Gissberg
- Department of Laboratory Medicine, Center for Advanced Therapies, Karolinska Institutet, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Center for Advanced Therapies, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Center for Advanced Therapies, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Center for Rare Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
83
|
Current and Future Therapies for Psoriasis with a Focus on Serotonergic Drugs. Mol Neurobiol 2020; 57:2391-2419. [DOI: 10.1007/s12035-020-01889-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
|
84
|
Bianga J, Perez M, Mouvet D, Cajot C, De Raeve P, Delobel A. Development of an ICP-MS/MS approach for absolute quantification and determination of phosphodiester to phosphorothioate ratio in therapeutic oligonucleotides. J Pharm Biomed Anal 2020; 184:113179. [PMID: 32092633 DOI: 10.1016/j.jpba.2020.113179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
A new analytical method based on ICP-MS/MS is proposed for the characterization of synthetic phosphorothioate oligonucleotides. Absolute quantification of oligonucleotides is challenging, as well as the determination of phosphodiester to phosphorothioate ratio for phosphorothioate oligonucleotides. Both are considered as critical quality attributes and should be determined using robust validated methods. The method we developed was designed to be easy to apply, fast, and robust. It allows simultaneous absolute quantification of an oligonucleotide (based on the quantification of phosphorus), determination of the phosphodiester to phosphorothioate ratio (based on the quantification of phosphorus and sulfur) and optionally determination of sodium (or any other metal) as a counter ion. The performance of the method was demonstrated on O,O-diethyl thiophosphate potassium salt, a well characterized model substance that possesses similar composition to phosphorothioate oligonucleotides. Method was also tested on different synthetic phophorothioate oligonucleotides, showing excellent accuracy and precision.
Collapse
Affiliation(s)
- Juliusz Bianga
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium
| | - Magali Perez
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium
| | - Damien Mouvet
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium
| | - Caroline Cajot
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium
| | - Philippe De Raeve
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium
| | - Arnaud Delobel
- Quality Assistance sa, Technoparc de Thudinie 2, B-6536 Donstiennes, Belgium.
| |
Collapse
|
85
|
Danielsen MB, Lou C, Lisowiec-Wachnicka J, Pasternak A, Jørgensen PT, Wengel J. Gapmer Antisense Oligonucleotides Containing 2',3'-Dideoxy-2'-fluoro-3'-C-hydroxymethyl-β-d-lyxofuranosyl Nucleotides Display Site-Specific RNase H Cleavage and Induce Gene Silencing. Chemistry 2020; 26:1368-1379. [PMID: 31682037 DOI: 10.1002/chem.201904540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 01/14/2023]
Abstract
Off-target effects remain a significant challenge in the therapeutic use of gapmer antisense oligonucleotides (AONs). Over the years various modifications have been synthesized and incorporated into AONs, however, precise control of RNase H-induced cleavage and target sequence selectivity has yet to be realized. Herein, the synthesis of the uracil and cytosine derivatives of a novel class of 2'-deoxy-2'-fluoro-3'-C-hydroxymethyl-β-d-lyxo-configured nucleotides has been accomplished and the target molecules have been incorporated into AONs. Experiments on exonuclease degradation showed improved nucleolytic stability relative to the unmodified control. Upon the introduction of one or two of the novel 2'-fluoro-3'-C-hydroxymethyl nucleotides as modifications in the gap region of a gapmer AON was associated with efficient RNase H-mediated cleavage of the RNA strand of the corresponding AON:RNA duplex. Notably, a tailored single cleavage event could be engineered depending on the positioning of a single modification. The effect of single mismatched base pairs was scanned along the full gap region demonstrating that the modification enables a remarkable specificity of RNase H cleavage. A cell-based model system was used to demonstrate the potential of gapmer AONs containing the novel modification to mediate gene silencing.
Collapse
Affiliation(s)
- Mathias B Danielsen
- Biomolecular Nanonscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Chenguang Lou
- Biomolecular Nanonscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Jolanta Lisowiec-Wachnicka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Anna Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Per T Jørgensen
- Biomolecular Nanonscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Jesper Wengel
- Biomolecular Nanonscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
86
|
Abstract
Gapmers are antisense oligonucleotides composed of a central DNA segment flanked by nucleotides of modified chemistry. Hybridizing with transcripts by sequence complementarity, gapmers recruit ribonuclease H and induce target RNA degradation. Since its concept first emerged in the 1980s, much work has gone into developing gapmers for use in basic research and therapy. These include improvements in gapmer chemistry, delivery, and therapeutic safety. Gapmers have also successfully entered clinical trials for various genetic disorders, with two already approved by the U.S. Food and Drug Administration for the treatment of familial hypercholesterolemia and transthyretin amyloidosis-associated polyneuropathy. Here, we review the events surrounding the early development of gapmers, from conception to their maturity, and briefly conclude with perspectives on their use in therapy.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
87
|
Epanchintseva AV, Poletaeva JE, Pyshnyi DV, Ryabchikova EI, Pyshnaya IA. Long-term stability and scale-up of noncovalently bound gold nanoparticle-siRNA suspensions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2568-2578. [PMID: 31921536 PMCID: PMC6941443 DOI: 10.3762/bjnano.10.248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Gold nanoparticles (AuNPs) are a platform for the creation of nanoconstructions that can have a variety of functions, including the delivery of therapeutic nucleic acids. We previously designed a AuNP/small interfering RNA (siRNA) nanoconstruction consisting of siRNA noncovalently bound on the AuNP surface and showed that this construction, when coated with a lipid shell, was an efficient vehicle for the delivery of siRNA into cells. The goal of the present work was to study the possibility of scaling up the synthesis of AuNP-siRNA and its long-term storage without loss of physicochemical characteristics and siRNA duplex integrity as well as siRNA surface density. Dynamic light scattering, transmission electron microscopy, UV-vis spectroscopy, and electrophoresis were used to study the effect of scaling up the AuNP-siRNA synthesis and long term storage of its suspension on physicochemical properties of the samples and integrity of the siRNA duplex. It was shown that a ten-fold increase in the volume of the reaction mixture decreased the surface density of siRNA by about 10%, which influenced the corresponding physicochemical characteristics of the AuNP-siRNA suspension. The storage of the AuNP-siRNA suspension at 4 °C for different times resulted in the formation of particle clusters of high colloidal stability as demonstrated by conventional methods. These clusters completely disintegrated when albumin was added, indicating that they are agglomerates (and not aggregates) of AuNP-siRNA. The AuNPs-siRNA nanoconstruction demonstrated integrity of the siRNA duplex and high stability of the siRNA surface density during storage for seven months at 4 °C. Thus, it can be concluded that it is possible to scale-up the synthesis of noncovalent AuNP-siRNA and to obtain a nanoconstruction possessing high stability in terms of physicochemical characteristics and siRNA surface density for a long period.
Collapse
Affiliation(s)
- Anna V Epanchintseva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science, Lavrent’ev av., 8, Novosibirsk, 630090, Russian Federation
| | - Julia E Poletaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science, Lavrent’ev av., 8, Novosibirsk, 630090, Russian Federation
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science, Lavrent’ev av., 8, Novosibirsk, 630090, Russian Federation
| | - Elena I Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science, Lavrent’ev av., 8, Novosibirsk, 630090, Russian Federation
| | - Inna A Pyshnaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science, Lavrent’ev av., 8, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
88
|
Davideit H, Becker S, Müller J, Becker NP, Göttel P, Abay A, Sinn A, Grossmann M, Mallek M, Haberland A, Weisshoff H. In-Vivo Degradation of DNA-Based Therapeutic BC 007 in Humans. Eur J Drug Metab Pharmacokinet 2019; 44:567-578. [PMID: 30674038 PMCID: PMC6617257 DOI: 10.1007/s13318-019-00541-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND OBJECTIVES Since there is no clear evidence in the literature to show how non-modified single-stranded DNA (ssDNA) drugs are metabolized in humans, we assessed the metabolism of BC 007, an ssDNA therapeutic, under development as a neutralizer of autoantibodies against G-protein-coupled receptors. In-vitro, investigating its stability in monkey plasma and serum, a successive 3'-exonuclease degradation resulting in several n-x degradation products has been previously reported. Here, we investigated the metabolism of BC 007 in humans after intravenous application to autoantibody-positive healthy subjects, in line with Phase I safety testing. METHODS 1H-NMR was applied for n-x degradation product search and beta-aminoisobutyric acid (bAIBA) measurement in urine; ultra-performance liquid chromatography-mass spectrometry was also used for the latter. Colorimetric assays were used for quantification of uric acid in serum and urine. RESULTS Fast degradation prohibited the detection of the intermediate n-x degradation products in urine using 1H-NMR. Instead, NMR revealed a further downstream degradation product, bAIBA, which was also detected in serum shortly after initial application. The purine degradation product, uric acid, confirmed this finding of fast metabolism. CONCLUSION Fast and full degradation of BC 007, shown by nucleic bases degradation products, is one of the first reports about the fate of a ssDNA product in humans.
Collapse
Affiliation(s)
- Hanna Davideit
- Berlin Cures GmbH, Robert-Rössle-Str. 10, Laboratory, 13125, Berlin, Germany
| | - Susanne Becker
- Department of Clinical Affairs, Berlin Cures GmbH, Knesebeckstr. 59-61, 10719, Berlin, Germany
| | - Johannes Müller
- Management, Berlin Cures GmbH, Knesebeckstr. 59-61, 10719, Berlin, Germany
| | - Niels-Peter Becker
- Department of Regulatory Affairs, Berlin Cures GmbH, Knesebeckstr. 59-61, 10719, Berlin, Germany
| | - Peter Göttel
- Management, Berlin Cures GmbH, Knesebeckstr. 59-61, 10719, Berlin, Germany
| | - Ayşe Abay
- Department of Clinical Affairs, Berlin Cures GmbH, Knesebeckstr. 59-61, 10719, Berlin, Germany
| | - Angela Sinn
- PAREXEL-PAREXEL International GmbH, Early Phase Clinical Unit, Klinikum Westend, Spandauer Damm 130, 14050, Berlin, Germany
| | - Matthias Grossmann
- PAREXEL-PAREXEL International GmbH, Early Phase Clinical Unit, Klinikum Westend, Spandauer Damm 130, 14050, Berlin, Germany
| | - Markus Mallek
- Department of Toxicology and Drug-Monitoring, Medizinisches Versorgungszentrum Dr. Eberhard & Partner Dortmund, Brauhausstr. 4, 44137, Dortmund, Germany
| | | | - Hardy Weisshoff
- Department of Chemistry, NMR Facility, Humboldt University of Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
89
|
Skakuj K, Bujold KE, Mirkin CA. Mercury-Free Automated Synthesis of Guanidinium Backbone Oligonucleotides. J Am Chem Soc 2019; 141:20171-20176. [PMID: 31840508 DOI: 10.1021/jacs.9b09937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A new method for synthesizing deoxynucleic guanidine (DNG) oligonucleotides that uses iodine as a mild and inexpensive coupling reagent is reported. This method eliminates the need for the toxic mercury salts and pungent thiophenol historically used in methods aimed at preparing DNG oligonucleotides. This coupling strategy was readily translated to a standard MerMade 12 oligonucleotide synthesizer with coupling yields of 95% and has enabled the synthesis of a 20-mer DNG oligonucleotide, the longest DNG strand to date, in addition to mixed DNA-DNG sequences with 3-9 DNG inserts. Importantly, DNG oligonucleotides exhibit robust unaided cellular uptake as compared to unmodified oligonucleotides without apparent cellular toxicity. Taken together, these findings should greatly increase the accessibility of cationic backbone modifications and assist in the development of oligonucleotide-based drugs.
Collapse
Affiliation(s)
- Kacper Skakuj
- Department of Chemistry and the International Institute for Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Katherine E Bujold
- Department of Chemistry and the International Institute for Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Chad A Mirkin
- Department of Chemistry and the International Institute for Nanotechnology , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
90
|
Zhou X, Wang S, Zhu Y, Pan Y, Zhang L, Yang Z. Overcoming the delivery barrier of oligonucleotide drugs and enhancing nucleoside drug efficiency: The use of nucleolipids. Med Res Rev 2019; 40:1178-1199. [PMID: 31820472 DOI: 10.1002/med.21652] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
With the rapid development of synthetic technology and biological technology, many nucleic acid-based drugs have entered the clinical trials. However, their inherent disabilities in actively and efficiently penetrating cell membranes still severely restrict their further application. The main drawback of cationic lipids, which have been widely used as nonviral vectors of nucleic acids, is their high cytotoxicity. A series of nucleoside-based or nucleotide-based nucleolipids have been reported in recent years, due to their oligonucleotide delivery capacity and low toxicity in comparison with cationic lipids. Lipophilic prodrugs of nucleoside analogs have extremely similar structures with nucleolipid vectors and are thus helpful for improving the transmembrane ability. This review introduces the progress of nucleolipids and provides new strategies for improving the delivery efficiency of nucleic acid-based drugs, as well as lipophilic prodrugs of nucleosides or nucleotides for antiviral or anticancer therapies.
Collapse
Affiliation(s)
- Xinyang Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| | - Shuhe Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| | - Yuejie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| | - Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Haidian, China
| |
Collapse
|
91
|
Molecular Approaches for the Treatment of Pompe Disease. Mol Neurobiol 2019; 57:1259-1280. [PMID: 31713816 DOI: 10.1007/s12035-019-01820-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Glycogen storage disease type II (GSDII, Pompe disease) is a rare metabolic disorder caused by a deficiency of acid alpha-glucosidase (GAA), an enzyme localized within lysosomes that is solely responsible for glycogen degradation in this compartment. The manifestations of GSDII are heterogeneous but are classified as early or late onset. The natural course of early-onset Pompe disease (EOPD) is severe and rapidly fatal if left untreated. Currently, one therapeutic approach, namely, enzyme replacement therapy, is available, but advances in molecular medicine approaches hold promise for even more effective therapeutic strategies. These approaches, which we review here, comprise splicing modification by antisense oligonucleotides, chaperone therapy, stop codon readthrough therapy, and the use of viral vectors to introduce wild-type genes. Considering the high rate at which innovations are translated from bench to bedside, it is reasonable to expect substantial improvements in the treatment of this illness in the foreseeable future.
Collapse
|
92
|
Janas MM, Zlatev I, Liu J, Jiang Y, Barros SA, Sutherland JE, Davis WP, Liu J, Brown CR, Liu X, Schlegel MK, Blair L, Zhang X, Das B, Tran C, Aluri K, Li J, Agarwal S, Indrakanti R, Charisse K, Nair J, Matsuda S, Rajeev KG, Zimmermann T, Sepp-Lorenzino L, Xu Y, Akinc A, Fitzgerald K, Vaishnaw AK, Smith PF, Manoharan M, Jadhav V, Wu JT, Maier MA. Safety evaluation of 2'-deoxy-2'-fluoro nucleotides in GalNAc-siRNA conjugates. Nucleic Acids Res 2019; 47:3306-3320. [PMID: 30820542 PMCID: PMC6468299 DOI: 10.1093/nar/gkz140] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 11/29/2022] Open
Abstract
For oligonucleotide therapeutics, chemical modifications of the sugar-phosphate backbone are frequently used to confer drug-like properties. Because 2′-deoxy-2′-fluoro (2′-F) nucleotides are not known to occur naturally, their safety profile was assessed when used in revusiran and ALN-TTRSC02, two short interfering RNAs (siRNAs), of the same sequence but different chemical modification pattern and metabolic stability, conjugated to an N-acetylgalactosamine (GalNAc) ligand for targeted delivery to hepatocytes. Exposure to 2′-F-monomer metabolites was low and transient in rats and humans. In vitro, 2′-F-nucleoside 5′-triphosphates were neither inhibitors nor preferred substrates for human polymerases, and no obligate or non-obligate chain termination was observed. Modest effects on cell viability and mitochondrial DNA were observed in vitro in a subset of cell types at high concentrations of 2′-F-nucleosides, typically not attained in vivo. No apparent functional impact on mitochondria and no significant accumulation of 2′-F-monomers were observed after weekly administration of two GalNAc–siRNA conjugates in rats for ∼2 years. Taken together, the results support the conclusion that 2′-F nucleotides can be safely applied for the design of metabolically stabilized therapeutic GalNAc–siRNAs with favorable potency and prolonged duration of activity allowing for low dose and infrequent dosing.
Collapse
Affiliation(s)
- Maja M Janas
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Ju Liu
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | | | | | | | | - Jingxuan Liu
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | | - Xiumin Liu
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | | - Lauren Blair
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Xuemei Zhang
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Biplab Das
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Chris Tran
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Krishna Aluri
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Jing Li
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Saket Agarwal
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | - Yuanxin Xu
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Akin Akinc
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | | | | - Peter F Smith
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | | - Vasant Jadhav
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Jing-Tao Wu
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | | |
Collapse
|
93
|
Potential and Challenges of Aptamers as Specific Carriers of Therapeutic Oligonucleotides for Precision Medicine in Cancer. Cancers (Basel) 2019; 11:cancers11101521. [PMID: 31636244 PMCID: PMC6826972 DOI: 10.3390/cancers11101521] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/03/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022] Open
Abstract
Due to the progress made in the area of precision and personalized medicine in the field of cancer therapy, strategies to selectively and specifically identify target molecules causative of the diseases are urgently needed. Efforts are being made by a number of different laboratories, companies, and researchers to develop therapeutic molecules that selectively recognize the tissues and the cells of interest, exhibit few or no off-target and side effects, are non-immunogenic, and have a strong action. Aptamers, artificially selected single-stranded DNA or RNA oligonucleotides, are promising molecules satisfying many of the requirements needed for diagnosis and precision medicine. Aptamers can also couple to their native mechanism of action the delivery of additional molecules (oligonucleotides, siRNAs, miRNAs) to target cells. In this review, we summarize recent progress in the aptamer-mediated strategy for the specific delivery of therapeutic oligonucleotides.
Collapse
|
94
|
Rittié L, Athanasopoulos T, Calero-Garcia M, Davies ML, Dow DJ, Howe SJ, Morrison A, Ricciardelli I, Saudemont A, Jespers L, Clay TM. The Landscape of Early Clinical Gene Therapies outside of Oncology. Mol Ther 2019; 27:1706-1717. [PMID: 31526597 PMCID: PMC6822232 DOI: 10.1016/j.ymthe.2019.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/26/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023] Open
Abstract
The field of cell and gene therapy (GT) is expanding rapidly and there is undoubtedly a wave of enthusiasm and anticipation for what these treatments could achieve next. Here we assessed the worldwide landscape of GT assets currently in early clinical development (clinical trial phase 1/2 or about to enter clinical trial). We included all gene therapies, i.e., strategies that modify an individual's protein make-up by introducing exogenous nucleic acid or nucleic acid modifiers, regardless of delivery. Unmodified cell therapies, oncology therapies (reviewed elsewhere), and vaccine programs (distinct therapeutic strategy) were not included. Using a December 31, 2018 cutoff date, we identified 336 gene therapies being developed for 138 different indications covering 165 genetic targets. In all, we found that the early clinical GT landscape comprises a very disparate group of drug candidates in terms of indications, organizations, and delivery methods. We also highlight interesting trends, revealing the evolution of the field toward in vivo therapies and adeno-associated virus vector-based delivery systems. It will be interesting to witness what proportion of this current list effectively translates into new medicines.
Collapse
Affiliation(s)
- Laure Rittié
- GSK R&D Cell and Gene Therapy Discovery Research, UP1410, 1250 S. Collegeville Road, Collegeville, PA 19426, USA.
| | - Takis Athanasopoulos
- GSK R&D Cell and Gene Therapy Discovery Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Miguel Calero-Garcia
- GSK R&D Cell and Gene Therapy Discovery Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Marie L Davies
- GSK R&D Cell and Gene Therapy Discovery Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - David J Dow
- GSK R&D Cell and Gene Therapy Discovery Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Steven J Howe
- GSK R&D Cell and Gene Therapy Process Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Alastair Morrison
- GSK R&D Worldwide Business Development, 5G104, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Ida Ricciardelli
- GSK R&D Cell and Gene Therapy Discovery Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Aurore Saudemont
- GSK R&D Cell and Gene Therapy Discovery Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Laurent Jespers
- GSK R&D Cell and Gene Therapy Discovery Research, 6F, Gunnels Wood Road, Stevenage, Herts SG1 2NY, UK
| | - Timothy M Clay
- GSK R&D Cell and Gene Therapy Discovery Research, UP1410, 1250 S. Collegeville Road, Collegeville, PA 19426, USA
| |
Collapse
|
95
|
Papachristodoulou A, Silginer M, Weller M, Schneider H, Hasenbach K, Janicot M, Roth P. Therapeutic Targeting of TGFβ Ligands in Glioblastoma Using Novel Antisense Oligonucleotides Reduces the Growth of Experimental Gliomas. Clin Cancer Res 2019; 25:7189-7201. [PMID: 31530630 DOI: 10.1158/1078-0432.ccr-17-3024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 07/26/2019] [Accepted: 09/13/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Transforming growth factor (TGF)-β is expressed at high levels by glioma cells and contributes to the malignant phenotype of glioblastoma. However, its therapeutic targeting remains challenging. Here, we examined an alternative therapeutic approach of TGFβ inhibition using two novel phosphorothioate-locked nucleic acid (LNA)-modified antisense oligonucleotide gapmers, ISTH1047 and ISTH0047, which specifically target TGFβ1 and TGFβ2. EXPERIMENTAL DESIGN We characterized the effects of ISTH1047 and ISTH0047 on TGFβ1/2 expression, downstream signaling and growth of human LN-308, LN-229, and ZH-161 cells as well as murine SMA-560 glioma cells in vitro. Furthermore, we assessed their target inhibition and effects on survival in orthotopic xenogeneic and syngeneic rodent glioma models in vivo. RESULTS Both antisense oligonucleotides specifically silenced their corresponding target and abrogated SMAD2 phosphorylation in several glioma cell lines. Moreover, inhibition of TGFβ1 or TGFβ2 expression by ISTH1047 or ISTH0047 reduced the migration and invasiveness of LN-308 and SMA-560 glioma cells. Systemic antisense oligonucleotide administration to glioma-bearing mice suppressed TGFβ1 or TGFβ2 mRNA expression as well as the expression of the downstream target PAI-1 in orthotopic gliomas. Glioma-bearing mice had significantly prolonged survival upon systemic treatment with ISTH1047 or ISTH0047, which was associated with a reduction of intratumoral SMAD2 phosphorylation and, in a fully immunocompetent model, with increased immune cell infiltration. CONCLUSIONS Targeting TGFβ expression with the novel LNA antisense oligonucleotides ISTH1047 or ISTH0047 results in strong antiglioma activity in vitro and in vivo, which may represent a promising approach to be examined in human patients with glioma.
Collapse
Affiliation(s)
- Alexandros Papachristodoulou
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Hannah Schneider
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | | | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
96
|
Nandi B, Pattanayak S, Paul S, Kundu J, Sinha S. Synthesis of Nucleobase-Functionalized Morpholino Monomers. Methods Mol Biol 2019; 1973:107-130. [PMID: 31016698 DOI: 10.1007/978-1-4939-9216-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Morpholino antisense oligonucleotides are used as routine tools in developmental biology to investigate gene function during early embryogenesis. These chemically modified oligos contain morpholine ring connected with phosphorodiamidate linkages as backbone but carry unmodified nucleobases. In this chapter, we describe the methods to further modify the nucleobases using palladium-catalyzed cross-coupling reactions. The key reactions used are halogenations of the nucleobases in suitable position and subsequent Pd-catalyzed Sonogashira and Suzuki reactions. The sequential synthetic steps are described in detail in this chapter, and the examples are shown in tables.
Collapse
Affiliation(s)
- Bappaditya Nandi
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Sankha Pattanayak
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Sibasish Paul
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Jayanta Kundu
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Surajit Sinha
- Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India.
| |
Collapse
|
97
|
Santos T, Pereira P, Campello MPC, Paulo A, Queiroz JA, Cabrita E, Cruz C. RNA G-quadruplex as supramolecular carrier for cancer-selective delivery. Eur J Pharm Biopharm 2019; 142:473-479. [PMID: 31325486 DOI: 10.1016/j.ejpb.2019.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/12/2019] [Accepted: 07/15/2019] [Indexed: 01/21/2023]
Abstract
Nucleic acid aptamers have emerged as an attractive class of carrier molecules due to their ability to bind with high affinity to specific ligands; their high chemical flexibility; as well as tissue penetration capability. RNA G-quadruplex (rG4) sequences have been described as structures with high stability and selectivity towards cancer cells. Recently, precursor microRNAs (pre-miRNAs) have been described as new G4 forming molecules. Surface nucleolin (NCL) is a known target of aptamer G4 AS1411 and is overexpressed on prostate cancer cells when compared with normal cells. We have shown that the sequence 5' GGGAGGGAGGGACGGG 3' found in pre-miR-149 forms a rG4 parallel structure, which can bind NCL. Also, another rG4 sequence with a longer loop was evaluated in terms of G4 formation, stabilization and binding affinity to NCL. Both rG4s sequences were studied as supramolecular carriers for the cancer-selective delivery of acridine ligand C8. The rG4s-C8 complexes showed high affinity (KD = 10-6 M) and stabilization (Tm > 30 °C). The affinity of the rG4s-C8 complexes against NCL was in the low nanomolar range, indicating that C8 did not affect NCL binding. Noteworthy, the short loop rG4-C8 complex showed selective antiproliferative effects in prostate cancer cells when compared with normal prostatic cells. The stability and nuclease resistance of rG4 and rG4-C8 complex were evaluated in biological conditions and revealed the maintenance of G4 structure and complex stability. Furthermore, confocal microscopy studies confirmed the potential of rG4s-C8 complexes in the targeting of prostate cancer cells. Overall, it is here demonstrated that the rG4 found in pre-miR-149 can be used as a cancer-selective delivery carrier of C8 to prostate cancer cells.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Patrícia Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, Oeiras 2780-157, Portugal
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), Bobadela LRS 2695-066, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), Bobadela LRS 2695-066, Portugal
| | - João A Queiroz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Eurico Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã 6200-506, Portugal.
| |
Collapse
|
98
|
Crommelin DJA, Mastrobattista E, Hawe A, Hoogendoorn KH, Jiskoot W. Shifting Paradigms Revisited: Biotechnology and the Pharmaceutical Sciences. J Pharm Sci 2019; 109:30-43. [PMID: 31449815 DOI: 10.1016/j.xphs.2019.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022]
Abstract
In 2003, Crommelin et al. published an article titled: "Shifting paradigms: biopharmaceuticals versus low molecular weight drugs" (https://doi.org/10.1016/S0378-5173(03)00376-4). In the present commentary, 16 years later, we discuss pharmaceutically relevant aspects of the evolution of biologics since then. First, we discuss the increasing repertoire of biologics, in particular, the rapidly growing monoclonal antibody family and the advent of advanced therapy medicinal products. Next, we discuss trends in formulation and characterization as well as summarize our current insights into immunogenicity of biologics. We spend a separate section on new product(ion) paradigms for biologics, such as cell-free production systems, production of advanced therapy medicinal products, and downscaled production approaches. Furthermore, we share our views on issues related to reaching the patient, including routes and techniques of administration, alternative development models for affordable biologics, biosimilars, and handling of biologics. In the concluding section, we outline outstanding issues and make some suggestions for resolving those.
Collapse
Affiliation(s)
- Daan J A Crommelin
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Karin H Hoogendoorn
- Leiden University Medical Center, Hospital Pharmacy, Interdivisional GMP Facility, Leiden, the Netherlands
| | - Wim Jiskoot
- Coriolis Pharma, Martinsried, Germany; Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
99
|
Bosgra S, Sipkens J, de Kimpe S, den Besten C, Datson N, van Deutekom J. The Pharmacokinetics of 2'- O-Methyl Phosphorothioate Antisense Oligonucleotides: Experiences from Developing Exon Skipping Therapies for Duchenne Muscular Dystrophy. Nucleic Acid Ther 2019; 29:305-322. [PMID: 31429628 DOI: 10.1089/nat.2019.0805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Delivery to the target site and adversities related to off-target exposure have made the road to clinical success and approval of antisense oligonucleotide (AON) therapies challenging. Various classes of AONs have distinct chemical features and pharmacological properties. Understanding the similarities and differences in pharmacokinetics (PKs) among AON classes is important to make future development more efficient and may facilitate regulatory guidance of AON development programs. For the class of 2'-O-methyl phosphorothioate (2OMe PS) RNA AONs, most nonclinical and clinical PK data available today are derived from development of exon skipping therapies for Duchenne muscular dystrophy (DMD). While some publications have featured PK aspects of these AONs, no comprehensive overview is available to date. This article presents a detailed review of absorption, distribution, metabolism, and excretion of 2OMe PS AONs, compiled from publicly available data and previously unpublished internal data on drisapersen and related exon skipping candidates in preclinical species and DMD patients. Considerations regarding drug-drug interactions, toxicokinetics, and pharmacodynamics are also discussed. From the data presented, the picture emerges of consistent PK properties within the 2OMe PS class, predictable behavior across species, and a considerable overlap with other single-stranded PS AONs. A level of detail on muscle as a target tissue is provided, which was not previously available. Furthermore, muscle biopsy samples taken in DMD clinical trials allowed confirmation of the applicability of interspecies scaling approaches commonly applied in the absence of clinical target tissue data.
Collapse
|
100
|
Abstract
Early researchers focussed on developing stimuli-responsive liposomes in order to manipulate drug release at the site of action or under certain conditions. In recent times, a great deal of efforts has been made to modify the surface of liposomes with ligands for the purpose of achieving targeted drug delivery. Due to the morphology of liposomes, their surfaces can be engineered by attaching molecules such as oligosaccharides, peptides, antibodies, antigens and oligonucleotides to the bilayer structure. Over the years, a number of techniques including the use of covalent and non-covalent linkages have been utilised in designing ligand-liposome conjugates. In this review, various strategies for the functionalisation of liposomes as well as the different types of ligand-liposome conjugates have been discussed. Finally, the pros and cons of conjugation in liposomes are concisely summarised.
Collapse
Affiliation(s)
- İpek Eroğlu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| | - Mamudu İbrahim
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|