51
|
Liu Y, Xie JX, Niu F, Xu Z, Tan P, Shen C, Gao H, Liu S, Ma Z, So KF, Wu W, Chen C, Gao S, Xu XM, Zhu H. Surgical intervention combined with weight-bearing walking training improves neurological recoveries in 320 patients with clinically complete spinal cord injury: a prospective self-controlled study. Neural Regen Res 2021; 16:820-829. [PMID: 33229715 PMCID: PMC8178778 DOI: 10.4103/1673-5374.297080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although a large number of trials in the SCI field have been conducted, few proven gains have been realized for patients. In the present study, we determined the efficacy of a novel combination treatment involving surgical intervention and long-term weight-bearing walking training in spinal cord injury (SCI) subjects clinically diagnosed as complete or American Spinal Injury Association Impairment Scale (AIS) Class A (AIS-A). A total of 320 clinically complete SCI subjects (271 male and 49 female), aged 16–60 years, received early (≤ 7 days, n = 201) or delayed (8–30 days, n = 119) surgical interventions to reduce intraspinal or intramedullary pressure. Fifteen days post-surgery, all subjects received a weight-bearing walking training with the “Kunming Locomotion Training Program (KLTP)” for a duration of 6 months. The neurological deficit and recovery were assessed using the AIS scale and a 10-point Kunming Locomotor Scale (KLS). We found that surgical intervention significantly improved AIS scores measured at 15 days post-surgery as compared to the pre-surgery baseline scores. Significant improvement of AIS scores was detected at 3 and 6 months and the KLS further showed significant improvements between all pair-wise comparisons of time points of 15 days, 3 or 6 months indicating continued improvement in walking scores during the 6-month period. In conclusion, combining surgical intervention within 1 month post-injury and weight-bearing locomotor training promoted continued and statistically significant neurological recoveries in subjects with clinically complete SCI, which generally shows little clinical recovery within the first year after injury and most are permanently disabled. This study was approved by the Science and Research Committee of Kunming General Hospital of PLA and Kunming Tongren Hospital, China and registered at ClinicalTrials.gov (Identifier: NCT04034108) on July 26, 2019.
Collapse
Affiliation(s)
- Yansheng Liu
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Jia-Xin Xie
- Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Fang Niu
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Zhexi Xu
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Pengju Tan
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Caihong Shen
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Hongkun Gao
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Song Liu
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| | - Zhengwen Ma
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kwok-Fai So
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region; Guangdong-Hongkong-Macau Institute for Central Nervous System Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Wutian Wu
- Guangdong-Hongkong-Macau Institute for Central Nervous System Regeneration, Jinan University, Guangzhou, Guangdong Province; Re-Stem Biotechnology, Co., Ltd., Suzhou, Jiangsu Province, China
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hui Zhu
- Kunming International Spine and Spinal Cord Injury Treatment Center, Kunming Tongren Hospital; Clinical Center for Spinal Cord Injury, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan Province, China
| |
Collapse
|
52
|
Legg Ditterline BE, Wade S, Ugiliweneza B, Singam NS, Harkema SJ, Stoddard MF, Hirsch GA. Beneficial Cardiac Structural and Functional Adaptations After Lumbosacral Spinal Cord Epidural Stimulation and Task-Specific Interventions: A Pilot Study. Front Neurosci 2020; 14:554018. [PMID: 33192245 PMCID: PMC7643015 DOI: 10.3389/fnins.2020.554018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiac myocyte atrophy and the resulting decreases to the left ventricular mass and dimensions are well documented in spinal cord injury. Therapeutic interventions that increase preload can increase the chamber size and improve the diastolic filling ratios; however, there are no data describing cardiac adaptation to chronic afterload increases. Research from our center has demonstrated that spinal cord epidural stimulation (scES) can normalize arterial blood pressure, so we decided to investigate the effects of scES on cardiac function using echocardiography. Four individuals with chronic, motor-complete cervical spinal cord injury were implanted with a stimulator over the lumbosacral enlargement. We assessed the cardiac structure and function at the following time points: (a) prior to implantation; (b) after scES targeted to increase systolic blood pressure; (c) after the addition of scES targeted to facilitate voluntary (i.e., with intent) movement of the trunk and lower extremities; and (d) after the addition of scES targeted to facilitate independent, overground standing. We found significant improvements to the cardiac structure (left ventricular mass = 10 ± 2 g, p < 0.001; internal dimension during diastole = 0.1 ± 0.04 cm, p < 0.05; internal dimension during systole = 0.06 ± 0.03 cm, p < 0.05; interventricular septum dimension = 0.04 ± 0.02 cm, p < 0.05), systolic function (ejection fraction = 1 ± 0.4%, p < 0.05; velocity time integral = 2 ± 0.4 cm, p < 0.001; stroke volume = 4.4 ± 1.5 ml, p < 0.01), and diastolic function (mitral valve deceleration time = -32 ± 11 ms, p < 0.05; mitral valve deceleration slope = 50 ± 25 cm s-1, p < 0.05; isovolumic relaxation time = -6 ± 1.9 ms, p < 0.05) with each subsequent scES intervention. Despite the pilot nature of this study, statistically significant improvements to the cardiac structure, systolic function, and diastolic function demonstrate that scES combined with task-specific interventions led to beneficial cardiac remodeling, which can reverse atrophic changes that result from spinal cord injury. Long-term improvements to cardiac function have implications for increased quality of life and improved cardiovascular health in individuals with spinal cord injury, decreasing the risk of cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Bonnie E. Legg Ditterline
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of NeuroSurgery, University of Louisville, Louisville, KY, United States
| | - Shelley Wade
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of NeuroSurgery, University of Louisville, Louisville, KY, United States
| | - Narayana Sarma Singam
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of NeuroSurgery, University of Louisville, Louisville, KY, United States
| | - Marcus F. Stoddard
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Glenn A. Hirsch
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
- Division of Cardiology, Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
53
|
Rejc E, Smith AC, Weber KA, Ugiliweneza B, Bert RJ, Negahdar M, Boakye M, Harkema SJ, Angeli CA. Spinal Cord Imaging Markers and Recovery of Volitional Leg Movement With Spinal Cord Epidural Stimulation in Individuals With Clinically Motor Complete Spinal Cord Injury. Front Syst Neurosci 2020; 14:559313. [PMID: 33192348 PMCID: PMC7654217 DOI: 10.3389/fnsys.2020.559313] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023] Open
Abstract
Previous studies have shown that epidural stimulation of the lumbosacral spinal cord (scES) can re-enable lower limb volitional motor control in individuals with chronic, clinically motor complete spinal cord injury (SCI). This observation entails that residual supraspinal connectivity to the lumbosacral spinal circuitry still persisted after SCI, although it was non-detectable when scES was not provided. In the present study, we aimed at exploring further the mechanisms underlying scES-promoted recovery of volitional lower limb motor control by investigating neuroimaging markers at the spinal cord lesion site via magnetic resonance imaging (MRI). Spinal cord MRI was collected prior to epidural stimulator implantation in 13 individuals with chronic, clinically motor complete SCI, and the spared tissue of specific regions of the spinal cord (anterior, posterior, right, left, and total cord) was assessed. After epidural stimulator implantation, and prior to any training, volitional motor control was evaluated during left and right lower limb flexion and ankle dorsiflexion attempts. The ability to generate force exertion and movement was not correlated to any neuroimaging marker. On the other hand, spared tissue of specific cord regions significantly and importantly correlated with some aspects of motor control that include activation amplitude of antagonist (negative correlation) muscles during left ankle dorsiflexion, and electromyographic coordination patterns during right lower limb flexion. The fact that amount and location of spared spinal cord tissue at the lesion site were not related to the ability to generate volitional lower limb movements may suggest that supraspinal inputs through spared spinal cord regions that differ across individuals can result in the generation of lower limb volitional motor output prior to any training when epidural stimulation is provided.
Collapse
Affiliation(s)
- Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Andrew C Smith
- University of Colorado School of Medicine, Department of Physical Medicine and Rehabilitation, Physical Therapy Program, Aurora, CO, United States
| | - Kenneth A Weber
- Department of Anethesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Robert J Bert
- Department of Radiology, University of Louisville, Louisville, KY, United States
| | | | - Maxwell Boakye
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, United States.,Department of Bioengineering, University of Louisville, Louisville, KY, United States
| | - Claudia A Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, United States.,Department of Bioengineering, University of Louisville, Louisville, KY, United States
| |
Collapse
|
54
|
Bloom O, Wecht JM, Legg Ditterline BE, Wang S, Ovechkin AV, Angeli CA, Arcese AA, Harkema SJ. Prolonged Targeted Cardiovascular Epidural Stimulation Improves Immunological Molecular Profile: A Case Report in Chronic Severe Spinal Cord Injury. Front Syst Neurosci 2020; 14:571011. [PMID: 33177997 PMCID: PMC7593242 DOI: 10.3389/fnsys.2020.571011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
In individuals with severe spinal cord injury (SCI), the autonomic nervous system (ANS) is affected leading to cardiovascular deficits, which include significant blood pressure instability, with the prevalence of systemic hypotension and orthostatic intolerance resulting in an increased risk of stroke. Additionally, persons with SCI rostral to thoracic vertebral level 5 (T5), where sympathetic nervous system fibers exit the spinal cord and innervate the immune system, have clinically significant systemic inflammation and increased infection risk. Our recent studies show that lumbosacral spinal cord epidural stimulation (scES), applied at the lumbosacral level using targeted configurations that promote cardiovascular stability (CV-scES), can safely and effectively normalize blood pressure in persons with chronic SCI. Herein we present a case report in a female (age 27 years) with chronic clinically motor complete cervical SCI demonstrating that 97-sessions of CV-scES, which increased systemic blood pressure, improved orthostatic tolerance in association with increased cerebral blood flow velocity in the middle cerebral artery, also promoted positive immunological changes in whole-blood gene expression. Specifically, there was evidence of the down-regulation of inflammatory pathways and the up-regulation of adaptative immune pathways. The findings of this case report suggest that the autonomic effects of epidural stimulation, targeted to promote cardiovascular homeostasis, also improves immune system function, which has a significant benefit to long-term cardiovascular and immunologic health in individuals with long-standing SCI. Clinical Trial Registration:www.ClinicalTrials.gov, identifier NCT02307565.
Collapse
Affiliation(s)
- Ona Bloom
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States.,Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Departments of Molecular Medicine; Physical Medicine and Rehabilitation, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | - Jill M Wecht
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States.,Department of Medicine, The Icahn School of Medicine, Mount Sinai, New York, NY, United States.,Rehabilitation Medicine, The Icahn School of Medicine, Mount Sinai, New York, NY, United States
| | - Bonnie E Legg Ditterline
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Siqi Wang
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Alexander V Ovechkin
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Claudia A Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Bioengineering, University of Louisville, Louisville, KY, United States
| | - Anthony A Arcese
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Susan J Harkema
- Departments of Molecular Medicine; Physical Medicine and Rehabilitation, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States.,Department of Bioengineering, University of Louisville, Louisville, KY, United States
| |
Collapse
|
55
|
Cardiovascular Autonomic Dysfunction in Spinal Cord Injury: Epidemiology, Diagnosis, and Management. Semin Neurol 2020; 40:550-559. [PMID: 32906175 DOI: 10.1055/s-0040-1713885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) disrupts autonomic circuits and impairs synchronistic functioning of the autonomic nervous system, leading to inadequate cardiovascular regulation. Individuals with SCI, particularly at or above the sixth thoracic vertebral level (T6), often have impaired regulation of sympathetic vasoconstriction of the peripheral vasculature and the splanchnic circulation, and diminished control of heart rate and cardiac output. In addition, impaired descending sympathetic control results in changes in circulating levels of plasma catecholamines, which can have a profound effect on cardiovascular function. Although individuals with lesions below T6 often have normal resting blood pressures, there is evidence of increases in resting heart rate and inadequate cardiovascular response to autonomic provocations such as the head-up tilt and cold face tests. This manuscript reviews the prevalence of cardiovascular disorders given the level, duration and severity of SCI, the clinical presentation, diagnostic workup, short- and long-term consequences, and empirical evidence supporting management strategies to treat cardiovascular dysfunction following a SCI.
Collapse
|
56
|
Grau JW, Baine RE, Bean PA, Davis JA, Fauss GN, Henwood MK, Hudson KE, Johnston DT, Tarbet MM, Strain MM. Learning to promote recovery after spinal cord injury. Exp Neurol 2020; 330:113334. [PMID: 32353465 PMCID: PMC7282951 DOI: 10.1016/j.expneurol.2020.113334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
The present review explores the concept of learning within the context of neurorehabilitation after spinal cord injury (SCI). The aim of physical therapy and neurorehabilitation is to bring about a lasting change in function-to encourage learning. Traditionally, it was assumed that the adult spinal cord is hardwired-immutable and incapable of learning. Research has shown that neurons within the lower (lumbosacral) spinal cord can support learning after communication with the brain has been disrupted by means of a thoracic transection. Noxious stimulation can sensitize nociceptive circuits within the spinal cord, engaging signal pathways analogous to those implicated in brain-dependent learning and memory. After a spinal contusion injury, pain input can fuel hemorrhage, increase the area of tissue loss (secondary injury), and undermine long-term recovery. Neurons within the spinal cord are sensitive to environmental relations. This learning has a metaplastic effect that counters neural over-excitation and promotes adaptive learning through an up-regulation of brain-derived neurotrophic factor (BDNF). Exposure to rhythmic stimulation, treadmill training, and cycling also enhances the expression of BDNF and counters the development of nociceptive sensitization. SCI appears to enable plastic potential within the spinal cord by down-regulating the Cl- co-transporter KCC2, which reduces GABAergic inhibition. This enables learning, but also fuels over-excitation and nociceptive sensitization. Pairing epidural stimulation with activation of motor pathways also promotes recovery after SCI. Stimulating motoneurons in response to activity within the motor cortex, or a targeted muscle, has a similar effect. It is suggested that a neurofunctionalist approach can foster the discovery of processes that impact spinal function and how they may be harnessed to foster recovery after SCI.
Collapse
Affiliation(s)
- James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Rachel E Baine
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Paris A Bean
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Jacob A Davis
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Gizelle N Fauss
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Melissa K Henwood
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Kelsey E Hudson
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - David T Johnston
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Megan M Tarbet
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Misty M Strain
- Battlefield Pain Research, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, BHT-1, BSA Fort Sam Houston, TX 78234, USA
| |
Collapse
|
57
|
Jack AS, Hurd C, Martin J, Fouad K. Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord. J Neurotrauma 2020; 37:1933-1953. [PMID: 32438858 DOI: 10.1089/neu.2020.7033] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unlike their peripheral nervous system counterparts, the capacity of central nervous system neurons and axons for regeneration after injury is minimal. Although a myriad of therapies (and different combinations thereof) to help promote repair and recovery after spinal cord injury (SCI) have been trialed, few have progressed from bench-top to bedside. One of the few such therapies that has been successfully translated from basic science to clinical applications is electrical stimulation (ES). Although the use and study of ES in peripheral nerve growth dates back nearly a century, only recently has it started to be used in a clinical setting. Since those initial experiments and seminal publications, the application of ES to restore function and promote healing have greatly expanded. In this review, we discuss the progression and use of ES over time as it pertains to promoting axonal outgrowth and functional recovery post-SCI. In doing so, we consider four major uses for the study of ES based on the proposed or documented underlying mechanism: (1) using ES to introduce an electric field at the site of injury to promote axonal outgrowth and plasticity; (2) using spinal cord ES to activate or to increase the excitability of neuronal networks below the injury; (3) using motor cortex ES to promote corticospinal tract axonal outgrowth and plasticity; and (4) leveraging the timing of paired stimuli to produce plasticity. Finally, the use of ES in its current state in the context of human SCI studies is discussed, in addition to ongoing research and current knowledge gaps, to highlight the direction of future studies for this therapeutic modality.
Collapse
Affiliation(s)
- Andrew S Jack
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Caitlin Hurd
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - John Martin
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, and City University of New York Graduate Center, New York, New York, USA
| | - Karim Fouad
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
58
|
Steadman CJ, Grill WM. Spinal cord stimulation for the restoration of bladder function after spinal cord injury. Healthc Technol Lett 2020; 7:87-92. [PMID: 32754343 PMCID: PMC7353924 DOI: 10.1049/htl.2020.0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI) results in the inability to empty the bladder voluntarily, and neurogenic detrusor overactivity (NDO) and detrusor sphincter dyssynergia (DSD) negatively impact both the health and quality of life of persons with SCI. Current approaches to treat bladder dysfunction in persons with SCI, including self-catheterisation and anticholinergic medications, are inadequate, and novel approaches are required to restore continence with increased bladder capacity, as well as to provide predictable and efficient on-demand voiding. Improvements in bladder function following SCI have been documented using a number of different modalities of spinal cord stimulation (SCS) in both persons with SCI and animal models, including SCS alone or SCS with concomitant activity-based training. Improvements include increased volitional voiding, voided volumes, bladder capacity, and quality of life, as well as decreases in NDO and DSD. Further, SCS is a well-developed therapy for chronic pain, and existing Food And Drug Administration (FDA)-approved devices provide a clear pathway to sustainable commercial availability and impact. However, the effective stimulation parameters and the appropriate timing and location of stimulation for SCS-mediated restoration of bladder function require further study, and studies are needed to determine underlying mechanisms of action.
Collapse
Affiliation(s)
- Casey J Steadman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.,Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.,Department of Neurobiology, Duke University, Durham, NC 27708, USA.,Department of Neurosurgery, Duke University, Durham, NC 27708, USA
| |
Collapse
|
59
|
Gallegos C, Carey M, Zheng Y, He X, Cao QL. Reaching and Grasping Training Improves Functional Recovery After Chronic Cervical Spinal Cord Injury. Front Cell Neurosci 2020; 14:110. [PMID: 32536855 PMCID: PMC7266985 DOI: 10.3389/fncel.2020.00110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
Previous studies suggest locomotion training could be an effective non-invasive therapy after spinal cord injury (SCI) using primarily acute thoracic injuries. However, the majority of SCI patients have chronic cervical injuries. Regaining hand function could significantly increase their quality of life. In this study, we used a clinically relevant chronic cervical contusion to study the therapeutic efficacy of rehabilitation in forelimb functional recovery. Nude rats received a moderate C5 unilateral contusive injury and were then divided into two groups with or without Modified Montoya Staircase (MMS) rehabilitation. For the rehabilitation group, rats were trained 5 days a week starting at 8 weeks post-injury (PI) for 6 weeks. All rats were assessed for skilled forelimb functions with MMS test weekly and for untrained gross forelimb locomotion with grooming and horizontal ladder (HL) tests biweekly. Our results showed that MMS rehabilitation significantly increased the number of pellets taken at 13 and 14 weeks PI and the accuracy rates at 12 to 14 weeks PI. However, there were no significant differences in the grooming scores or the percentage of HL missteps at any time point. Histological analyses revealed that MMS rehabilitation significantly increased the number of serotonergic fibers and the amount of presynaptic terminals around motor neurons in the cervical ventral horns caudal to the injury and reduced glial fibrillary acidic protein (GFAP)-immunoreactive astrogliosis in spinal cords caudal to the lesion. This study shows that MMS rehabilitation can modify the injury environment, promote axonal sprouting and synaptic plasticity, and importantly, improve reaching and grasping functions in the forelimb, supporting the therapeutic potential of task-specific rehabilitation for functional recovery after chronic SCI.
Collapse
Affiliation(s)
- Chrystine Gallegos
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Matthew Carey
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Summer Undergraduate Research Program, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yiyan Zheng
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiuquan He
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Qi Lin Cao
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
60
|
Atkinson DA, Mendez L, Goodrich N, Aslan SC, Ugiliweneza B, Behrman AL. Muscle Activation Patterns During Movement Attempts in Children With Acquired Spinal Cord Injury: Neurophysiological Assessment of Residual Motor Function Below the Level of Lesion. Front Neurol 2019; 10:1295. [PMID: 31920919 PMCID: PMC6933608 DOI: 10.3389/fneur.2019.01295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/25/2019] [Indexed: 11/26/2022] Open
Abstract
Introduction: Characterization of residual neuromotor capacity after spinal cord injury (SCI) is challenging. The current gold standard for measurement of sensorimotor function after SCI, the International Society for Neurological Classification of Spinal Cord Injury (ISNCSCI) exam, seeks to determine isolated intentional muscle activation, however many individuals with SCI exhibit intentional movements and muscle activation patterns which are not confined to specific joint or muscle. Further, isolated muscle activation is a feature of the neuromuscular system that emerges during development, and thus may not be an appropriate measurement standard for children younger than 6. Methods: We utilized neurophysiological assessment methodology, long studied in adult SCI populations, to evaluate residual neuromotor capacity in 24 children with SCI, as well as 19 typically developing (TD) children. Surface electromyography (EMG) signals were recorded from 11 muscles bilaterally, representing spinal motor output from all regions (i.e., cervical, thoracic, and lumbosacral), during standardized movement attempts. EMG records were subjectively analyzed based on spatiotemporal muscle activation characteristics, while the voluntary response index (VRI) was utilized for objective analysis of unilateral leg movement tasks. Results: Evidence of intentional leg muscle activation below the level of lesion was found in 11/24 children with SCI, and was classified based on activation pattern. Trace activation, bilateral (generalized) activation, and unilateral or isolated activation occurred in 32, 49, and 8% of movement tasks, respectively. Similarly, VRI analyses objectively identified significant differences between TD and SCI children in both magnitude (p < 0.01) and similarity index (p < 0.05) for all unilateral leg movement tasks. Activation of the erector spinae muscles, recorded at the T10–T12 vertebral level, was observed in all children with SCI, regardless of injury level or severity. Conclusions: Residual descending influence on spinal motor circuits may be present after SCI in children. Assessment of multi-muscle activation patterns during intentional movement attempts can provide objective evidence of the presence and extent of such residual muscle activation, and may provide an indicator of motor recovery potential following injury. The presence of residual intentional muscle activation has important implications for rehabilitation following pediatric-onset SCI.
Collapse
Affiliation(s)
- Darryn A Atkinson
- Doctor of Physical Therapy Program, University of St. Augustine for Health Sciences, Austin, TX, United States
| | - Laura Mendez
- Kosair Charities Center for Pediatric NeuroRecovery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Natalie Goodrich
- Kosair Charities Center for Pediatric NeuroRecovery, University of Louisville, Louisville, KY, United States.,Pediatric Neurorecovery Program, Frazier Rehab Institute, Louisville, KY, United States
| | - Sevda C Aslan
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Andrea L Behrman
- Kosair Charities Center for Pediatric NeuroRecovery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| |
Collapse
|
61
|
Arpin DJ, Ugiliweneza B, Forrest G, Harkema SJ, Rejc E. Optimizing Neuromuscular Electrical Stimulation Pulse Width and Amplitude to Promote Central Activation in Individuals With Severe Spinal Cord Injury. Front Physiol 2019; 10:1310. [PMID: 31681016 PMCID: PMC6813182 DOI: 10.3389/fphys.2019.01310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) is one of the most effective treatments for counteracting the deleterious skeletal muscle adaptations that occur after spinal cord injury (SCI). Additionally, previous findings suggest that NMES can activate motor units via both peripheral and central mechanisms; however, this NMES-promoted central activation is not well understood. In this study, we aimed at investigating the effects of NMES on central activation in 10 individuals with motor complete SCI, focusing on understanding how to optimize NMES pulse width and amplitude for promoting central activation in this population. To this end, we used NMES to generate isometric contractions of the knee extensors and ankle plantarflexors while electromyographic (EMG) activity was recorded from the vastus lateralis and gastrocnemius medialis, respectively. We used EMG activity that persisted after the termination of NMES delivery (post-NMES) as a neurophysiological marker to assess central activation and explored differences in post-NMES EMG activity promoted by 500 and 1,000 μs pulse width NMES. Additionally, we explored the relationships between post-NMES EMG amplitude, torque output, and stimulation amplitude. Our results show that the higher pulse width (1,000 μs) demonstrated a greater effect on central activation as quantified by more frequent occurrences of post-NMES EMG activity (p = 0.002) and a 3.551 μV higher EMG amplitude (p = 0.003) when controlling for the torque output generated by 500 and 1,000 μs pulse width NMES. Importantly, we also found that the interplay among central activation, stimulation amplitude, and muscle torque output differs across SCI individuals, conceivably because of the individual-specific characteristics of the cord lesion and following plasticity of the spinal circuitry. These results suggest that NMES can be optimized to promote central activation, which may lead to novel opportunities for motor function recovery after SCI.
Collapse
Affiliation(s)
- David J Arpin
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Gail Forrest
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, United States.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Frazier Rehab Institute, KentuckyOne Health, Louisville, KY, United States
| | - Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| |
Collapse
|
62
|
Mesbah S, Gonnelli F, Angeli CA, El-Baz A, Harkema SJ, Rejc E. Neurophysiological markers predicting recovery of standing in humans with chronic motor complete spinal cord injury. Sci Rep 2019; 9:14474. [PMID: 31597924 PMCID: PMC6785550 DOI: 10.1038/s41598-019-50938-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
The appropriate selection of individual-specific spinal cord epidural stimulation (scES) parameters is crucial to re-enable independent standing with self-assistance for balance in individuals with chronic, motor complete spinal cord injury, which is a key achievement toward the recovery of functional mobility. To date, there are no available algorithms that contribute to the selection of scES parameters for facilitating standing in this population. Here, we introduce a novel framework for EMG data processing that implements spectral analysis by continuous wavelet transform and machine learning methods for characterizing epidural stimulation-promoted EMG activity resulting in independent standing. Analysis of standing data collected from eleven motor complete research participants revealed that independent standing was promoted by EMG activity characterized by lower median frequency, lower variability of median frequency, lower variability of activation pattern, lower variability of instantaneous maximum power, and higher total power. Additionally, the high classification accuracy of assisted and independent standing allowed the development of a prediction algorithm that can provide feedback on the effectiveness of muscle-specific activation for standing promoted by the tested scES parameters. This framework can support researchers and clinicians during the process of selection of epidural stimulation parameters for standing motor rehabilitation.
Collapse
Affiliation(s)
- Samineh Mesbah
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Electrical and Computer Engineering, University of Louisville, Louisville, Kentucky, USA.,Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - Federica Gonnelli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Medicine, University of Udine, Udine, Italy.,School of Sport Sciences, University of Udine, Udine, Italy
| | - Claudia A Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Frazier Rehab Institute, Kentucky One Health, Louisville, Kentucky, USA
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Frazier Rehab Institute, Kentucky One Health, Louisville, Kentucky, USA.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA. .,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
63
|
Holmes GM, Blanke EN. Gastrointestinal dysfunction after spinal cord injury. Exp Neurol 2019; 320:113009. [PMID: 31299180 PMCID: PMC6716787 DOI: 10.1016/j.expneurol.2019.113009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/13/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract of vertebrates is a heterogeneous organ system innervated to varying degrees by a local enteric neural network as well as extrinsic parasympathetic and sympathetic neural circuits located along the brainstem and spinal axis. This diverse organ system serves to regulate the secretory and propulsive reflexes integral to the digestion and absorption of nutrients. The quasi-segmental distribution of the neural circuits innervating the gastrointestinal (GI) tract produces varying degrees of dysfunction depending upon the level of spinal cord injury (SCI). At all levels of SCI, GI dysfunction frequently presents life-long challenges to individuals coping with injury. Growing attention to the profound changes that occur across the entire physiology of individuals with SCI reveals profound knowledge gaps in our understanding of the temporal dimensions and magnitude of organ-specific co-morbidities following SCI. It is essential to understand and identify these broad pathophysiological changes in order to develop appropriate evidence-based strategies for management by clinicians, caregivers and individuals living with SCI. This review summarizes the neurophysiology of the GI tract in the uninjured state and the pathophysiology associated with the systemic effects of SCI.
Collapse
Affiliation(s)
- Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America.
| | - Emily N Blanke
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033, United states of America
| |
Collapse
|
64
|
Calvert JS, Manson GA, Grahn PJ, Sayenko DG. Preferential activation of spinal sensorimotor networks via lateralized transcutaneous spinal stimulation in neurologically intact humans. J Neurophysiol 2019; 122:2111-2118. [PMID: 31553681 DOI: 10.1152/jn.00454.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transcutaneous spinal stimulation (TSS), a noninvasive technique to modulate sensorimotor circuitry within the spinal cord, has been shown to enable a wide range of functions that were thought to be permanently impaired in humans with spinal cord injury. However, the extent to which TSS can be used to target specific mediolateral spinal cord circuitry remains undefined. We tested the hypothesis that TSS applied unilaterally to the skin ~2 cm lateral to the midline of the lumbosacral spine selectively activates ipsilateral spinal sensorimotor circuitry, resulting in ipsilateral activation of downstream lower extremity neuromusculature. TSS cathodes and anodes were positioned lateral from the midline of the spine in 15 healthy subjects while supine, and the timing of TSS pulses was synchronized to recordings of lower extremity muscle activity and force. At motor threshold, left and right TSS-evoked muscle activity was significantly higher in the ipsilateral leg compared with contralateral recordings from the same muscles. Similarly, we observed a significant increase in force production in the ipsilateral leg compared with the contralateral leg. Delivery of paired TSS pulses, during which an initial stimulus was applied to one side of the spinal cord and 50 ms later a second stimulus was applied to the contralateral side, revealed that ipsilateral leg muscle responses decreased following the initial stimulus, whereas contralateral muscle responses did not decrease, indicating side-specific activation of lateral spinal sensorimotor circuitry. Our results indicate TSS can selectively engage ipsilateral neuromusculature via lumbosacral sensorimotor networks responsible for lower extremity function in healthy humans.NEW & NOTEWORTHY We demonstrate the selectivity of transcutaneous spinal stimulation (TSS), which has been shown to enable function in humans with chronic paralysis. Specifically, we demonstrate that TSS applied to locations lateral to the spinal cord can selectively activate ipsilateral spinal sensorimotor networks. We quantified lumbosacral spinal network activity by recording lower extremity muscle electromyography and force. Our results suggest lumbosacral TSS engages side-specific spinal sensorimotor networks associated with ipsilateral lower extremity function in humans.
Collapse
Affiliation(s)
- Jonathan S Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Gerome A Manson
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| | - Peter J Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota.,Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Dimitry G Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
65
|
Khan M, Luna T, Santamaria V, Omofuma I, Martelli D, Rejc E, Stein J, Harkema S, Agrawal S. Stand Trainer With Applied Forces at the Pelvis and Trunk: Response to Perturbations and Assist-As-Needed Support. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1855-1864. [PMID: 31395551 DOI: 10.1109/tnsre.2019.2933381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Functional rehabilitation of patients with spinal cord injury remains a current challenge. Training these patients to successfully stand is the first step towards restoring advanced skills such as walking. To address this need, we have developed a novel robotic stand trainer that can apply controlled forces on the trunk and the pelvis of a user, while controlling the knee angle. The stand trainer utilizes cables to apply assistive, resistive, or perturbation forces at the trunk, pelvis, and the knees, simultaneously. We have conducted a human study to validate the system. In this study, we applied multi-direction perturbation forces either at the pelvis or the trunk while assist-as-needed forces were applied to the other segment to keep balance. This study characterizes the human kinematics and measures of balance under the perturbations and assistive forces on the human body. Results shows that the level of force-field assistance (trunk or pelvis) directly affects the motion of the trunk, pelvis, and center of pressure. This provides a quantitative framework to restore balance in patients while providing assistance only when needed. This stand trainer can potentially free up therapists to attend to higher level rehabilitation goals and objectively assist patients to engage in interventions that challenge both their musculoskeletal and sensorimotor impairments.
Collapse
|
66
|
Behrman AL, Trimble SA, Argetsinger LC, Roberts MT, Mulcahey MJ, Clayton L, Gregg ME, Lorenz D, Ardolino EM. Interrater Reliability of the Pediatric Neuromuscular Recovery Scale for Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2019; 25:121-131. [PMID: 31068744 DOI: 10.1310/sci2502-121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: In synergy with the mounting scientific evidence for the capacity of recovery after spinal cord injury (SCI) and training, new evidence-based therapies advancing neuromuscular recovery are emerging. There is a parallel need for outcome instruments that specifically address recovery. The Pediatric Neuromuscular Recovery Scale (Pediatric NRS) is one example with established content validity to assess neuromuscular capacity within task performance. Objective: The objective of this study was to determine interrater reliability of the Pediatric NRS to classify motor capacity in children after SCI. Methods: Pediatric physicians (3), occupational therapists (5), and physical therapists (6) received standardized training in scoring the scale, then rated video assessments of 32 children post SCI, 2-12 years of age, 78% non-ambulatory. Interrater reliability was analyzed using Kendall coefficient of concordance for individual Pediatric NRS items and overall score. Results: The interrater reliability coefficient was determined to be near 1 for the overall Pediatric NRS score (ICC = 0.966; 95% CI, 0.89-0.98). Twelve of 16 individual items exhibited high concordance coefficients (Kendall's W ≥ 0.8) and four items demonstrated concordance coefficients, < 0.8 and > 0.69. Interrater reliability was equivalent among groups defined by age and neurological level, but lower among non-ambulatory individuals. Conclusion: Strong interrater reliability was demonstrated by pediatric clinicians who scored children with SCI using the Pediatric NRS.
Collapse
Affiliation(s)
- Andrea L Behrman
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Shelley A Trimble
- Spinal Cord Medicine Program, Frazier Rehab Institute, Louisville, Kentucky
| | | | | | - M J Mulcahey
- Jefferson College of Rehabilitation Science, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lisa Clayton
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,Kosair Charities Center for Pediatric NeuroRecovery, University of Louisville, Louisville, Kentucky
| | - Mary E Gregg
- Department of Biostatistics, University of Louisville, Louisville, Kentucky
| | - Doug Lorenz
- Department of Biostatistics, University of Louisville, Louisville, Kentucky
| | - Elizabeth M Ardolino
- Doctor of Physical Therapy Program - Austin, University of St. Augustine for Health Sciences, Austin, Texas
| |
Collapse
|
67
|
Cheng R, Sui Y, Sayenko D, Burdick JW. Motor Control After Human SCI Through Activation of Muscle Synergies Under Spinal Cord Stimulation. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1331-1340. [PMID: 31056504 DOI: 10.1109/tnsre.2019.2914433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Spinal cord stimulation (SCS) has enabled motor recovery in paraplegics with motor complete spinal cord injury (SCI). However, the physiological mechanisms underlying this recovery are unknown. This paper analyzes muscle synergies in two motor complete SCI patients under SCS during standing and compares them with muscle synergies in healthy subjects, in order to help elucidate the mechanisms that enable motor control through SCS. One challenge is that standard muscle synergy extraction algorithms, such as non-negative matrix factorization (NMF), fail when applied to SCI patients under SCS. We develop a new algorithm-rShiftNMF-to extract muscle synergies in these cases. We find muscle synergies extracted by rShiftNMF are significantly better at interpreting electromyography (EMG) activity, and resulting synergy features are more physiologically meaningful. By analyzing muscle synergies from SCI patients and healthy subjects, we find that: 1) SCI patients rely significantly on muscle synergy activation to generate motor activity; 2) interleaving SCS can selectively activate an additional muscle synergy that is critical to SCI standing; and 3) muscle synergies extracted from SCI patients under SCS differ substantially from those extracted from healthy subjects. We provide evidence that after spinal cord injury, SCS influences motor function through muscle synergy activation.
Collapse
|
68
|
Calvert JS, Grahn PJ, Strommen JA, Lavrov IA, Beck LA, Gill ML, Linde MB, Brown DA, Van Straaten MG, Veith DD, Lopez C, Sayenko DG, Gerasimenko YP, Edgerton VR, Zhao KD, Lee KH. Electrophysiological Guidance of Epidural Electrode Array Implantation over the Human Lumbosacral Spinal Cord to Enable Motor Function after Chronic Paralysis. J Neurotrauma 2019; 36:1451-1460. [PMID: 30430902 PMCID: PMC6482916 DOI: 10.1089/neu.2018.5921] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epidural electrical stimulation (EES) of the spinal cord has been shown to restore function after spinal cord injury (SCI). Characterization of EES-evoked motor responses has provided a basic understanding of spinal sensorimotor network activity related to EES-enabled motor activity of the lower extremities. However, the use of EES-evoked motor responses to guide EES system implantation over the spinal cord and their relation to post-operative EES-enabled function in humans with chronic paralysis attributed to SCI has yet to be described. Herein, we describe the surgical and intraoperative electrophysiological approach used, followed by initial EES-enabled results observed in 2 human subjects with motor complete paralysis who were enrolled in a clinical trial investigating the use of EES to enable motor functions after SCI. The 16-contact electrode array was initially positioned under fluoroscopic guidance. Then, EES-evoked motor responses were recorded from select leg muscles and displayed in real time to determine electrode array proximity to spinal cord regions associated with motor activity of the lower extremities. Acceptable array positioning was determined based on achievement of selective proximal or distal leg muscle activity, as well as bilateral muscle activation. Motor response latencies were not significantly different between intraoperative recordings and post-operative recordings, indicating that array positioning remained stable. Additionally, EES enabled intentional control of step-like activity in both subjects within the first 5 days of testing. These results suggest that the use of EES-evoked motor responses may guide intraoperative positioning of epidural electrodes to target spinal cord circuitry to enable motor functions after SCI.
Collapse
Affiliation(s)
- Jonathan S. Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Peter J. Grahn
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey A. Strommen
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | - Igor A. Lavrov
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Lisa A. Beck
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | - Megan L. Gill
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | - Margaux B. Linde
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | - Desmond A. Brown
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Meegan G. Van Straaten
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | - Daniel D. Veith
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | - Cesar Lopez
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | - Dimitry G. Sayenko
- Department of Integrative Biology and Physiology University of California Los Angeles, Los Angeles, California
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, Texas
| | - Yury P. Gerasimenko
- Department of Integrative Biology and Physiology University of California Los Angeles, Los Angeles, California
- Pavlov Institute of Physiology, St. Petersburg, Russia
| | - V. Reggie Edgerton
- Department of Integrative Biology and Physiology University of California Los Angeles, Los Angeles, California
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California
- Brain Research Institute, University of California Los Angeles, Los Angeles, California
- Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, Badalona, Spain
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Kristin D. Zhao
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
69
|
Spinal Cord Epidural Stimulation for Lower Limb Motor Function Recovery in Individuals with Motor Complete Spinal Cord Injury. Phys Med Rehabil Clin N Am 2019; 30:337-354. [DOI: 10.1016/j.pmr.2018.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
70
|
Murray LM, Knikou M. Transspinal stimulation increases motoneuron output of multiple segments in human spinal cord injury. PLoS One 2019; 14:e0213696. [PMID: 30845251 PMCID: PMC6405126 DOI: 10.1371/journal.pone.0213696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Targeted neuromodulation strategies that strengthen neuronal activity are in great need for restoring sensorimotor function after chronic spinal cord injury (SCI). In this study, we established changes in the motoneuron output of individuals with and without SCI after repeated noninvasive transspinal stimulation at rest over the thoracolumbar enlargement, the spinal location of leg motor circuits. Cases of motor incomplete and complete SCI were included to delineate potential differences when corticospinal motor drive is minimal. All 10 SCI and 10 healthy control subjects received daily monophasic transspinal stimuli of 1-ms duration at 0.2 Hz at right soleus transspinal evoked potential (TEP) subthreshold and suprathreshold intensities at rest. Before and two days after cessation of transspinal stimulation, we determined changes in TEP recruitment input-output curves, TEP amplitude at stimulation frequencies of 0.1, 0.125, 0.2, 0.33 and 1.0 Hz, and TEP postactivation depression upon transspinal paired stimuli at interstimulus intervals of 60, 100, 300, and 500 ms. TEPs were recorded at rest from bilateral ankle and knee flexor/extensor muscles. Repeated transspinal stimulation increased the motoneuron output over multiple segments. In control and complete SCI subjects, motoneuron output increased for knee muscles, while in motor incomplete SCI subjects motoneuron output increased for both ankle and knee muscles. In control subjects, TEPs homosynaptic and postactivation depression were present at baseline, and were potentiated for the distal ankle or knee flexor muscles. TEPs homosynaptic and postactivation depression at baseline depended on the completeness of the SCI, with minimal changes observed after transspinal stimulation. These results indicate that repeated transspinal stimulation increases spinal motoneuron responsiveness of ankle and knee muscles in the injured human spinal cord, and thus can promote motor recovery. This noninvasive neuromodulation method is a promising modality for promoting functional neuroplasticity after SCI.
Collapse
Affiliation(s)
- Lynda M. Murray
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York, United States of America
| | - Maria Knikou
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York, United States of America
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York, New York, New York, United States of America
| |
Collapse
|
71
|
Darrow D, Balser D, Netoff TI, Krassioukov A, Phillips A, Parr A, Samadani U. Epidural Spinal Cord Stimulation Facilitates Immediate Restoration of Dormant Motor and Autonomic Supraspinal Pathways after Chronic Neurologically Complete Spinal Cord Injury. J Neurotrauma 2019; 36:2325-2336. [PMID: 30667299 PMCID: PMC6648195 DOI: 10.1089/neu.2018.6006] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epidural Spinal Cord Stimulation (eSCS) in combination with extensive rehabilitation has been reported to restore volitional movement in a select group of subjects after motor-complete spinal cord injury (SCI). Numerous questions about the generalizability of these findings to patients with longer term SCI have arisen, especially regarding the possibility of restoring autonomic function. To better understand the effect of eSCS on volitional movement and autonomic function, two female participants five and 10 years after injury at ages 48 and 52, respectively, with minimal spinal cord preservation on magnetic resonance imaging were implanted with an eSCS system at the vertebral T12 level. We demonstrated that eSCS can restore volitional movement immediately in two female participants in their fifth and sixth decade of life with motor and sensory-complete SCI, five and 10 years after sustaining severe radiographic injuries, and without prescribed or significant pre-habilitation. Both patients experienced significant improvements in surface electromyography power during a volitional control task with eSCS on. Cardiovascular function was also restored with eSCS in one participant with cardiovascular dysautonomia using specific eSCS settings during tilt challenge while not affecting function in a participant with normal cardiovascular function. Orgasm was achieved for the first time since injury in one participant with and immediately after eSCS. Bowel-bladder synergy improved in both participants while restoring volitional urination in one with eSCS. While numerous questions remain, the ability to restore some supraspinal control over motor function below the level of injury, cardiovascular function, sexual function, and bowel and bladder function should promote intense efforts to investigate and develop optimization strategies to maximize recovery in all participants with chronic SCI.
Collapse
Affiliation(s)
- David Darrow
- 1Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - David Balser
- 2Department of Surgery, Division of Neurosurgery, Minneapolis VA Health Care System, Minneapolis, Minnesota
| | - Theoden I Netoff
- 3Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Andrei Krassioukov
- 4International Collaboration on Repair Discoveries; Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron Phillips
- 5Departments of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ann Parr
- 1Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Uzma Samadani
- 6Department of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota
| |
Collapse
|
72
|
Calvert JS, Grahn PJ, Zhao KD, Lee KH. Emergence of Epidural Electrical Stimulation to Facilitate Sensorimotor Network Functionality After Spinal Cord Injury. Neuromodulation 2019; 22:244-252. [PMID: 30840354 DOI: 10.1111/ner.12938] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) disrupts signaling pathways between the brain and spinal networks below the level of injury. In cases of severe SCI, permanent loss of sensorimotor and autonomic function can occur. The standard of care for severe SCI uses compensation strategies to maximize independence during activities of daily living while living with chronic SCI-related dysfunctions. Over the past several years, the research field of spinal neuromodulation has generated promising results that hold potential to enable recovery of functions via epidural electrical stimulation (EES). METHODS This review provides a historical account of the translational research efforts that led to the emergence of EES of the spinal cord to enable intentional control of motor functions that were lost after SCI. We also highlight the major limitations associated with EES after SCI and propose future directions of spinal neuromodulation research. RESULTS Multiple, independent studies have demonstrated return of motor function via EES in individuals with chronic SCI. These enabled motor functions include intentional, controlled movement of previously paralyzed extremities, independent standing and stepping, and increased grip strength. In addition, improvements in cardiovascular health, respiratory function, body composition, and urologic function have been reported. CONCLUSIONS EES holds promise to enable functions thought to be permanently lost due to SCI. However, EES is currently restricted to scientific investigation in humans with SCI and requires further validation of factors such as safety and efficacy before clinical translation.
Collapse
Affiliation(s)
| | - Peter J Grahn
- Department of Neurologic Surgery, Rochester, MN, USA.,Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, MN, USA
| | - Kristin D Zhao
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Rochester, MN, USA.,Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
73
|
Restoring prolonged standing via functional electrical stimulation after spinal cord injury: A systematic review of control strategies. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
74
|
Carraro U. Collection of the Abstracts of the 2019Sp PMD: Translational Myology and Mobility Medicine. Eur J Transl Myol 2019; 29:8155. [PMID: 31019666 PMCID: PMC6460219 DOI: 10.4081/ejtm.2019.8155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy and the A&C M-C Foundation for Translational Myology, Padova, Italy organized with the scientific support of Helmut Kern, Jonathan C. Jarvis, Viviana Moresi, Marco Narici, Feliciano Protasi, Marco Sandri and Ugo Carraro, the 2019SpringPaduaMuscleDays: Translational Myology and Mobility Medicine, an International Conference held March 28-30, 2019 in Euganei Hills and Padova (Italy). Presentations and discussions of the Three Physiology Lectures and of the seven Sessions (I: Spinal Cord Neuromodulation and h-bFES in SC; II: Muscle epigenetics in aging and myopathies; III: Experimental approaches in animal models; IV: Face and Voice Rejuvenation; V: Muscle Imaging; VI: Official Meeting of the EU Center of Active Aging; VII: Early Rehabilitation after knee and hip replacement) were at very high levels. This was true in the past and will be true in future events thanks to researchers and clinicians who were and are eager to attend the PaduaMuscleDays.
Collapse
Affiliation(s)
- Ugo Carraro
- Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy
- A&C M-C Foundation for Translational Myology, Padova, Italy
| |
Collapse
|
75
|
Arpin DJ, Forrest G, Harkema SJ, Rejc E. Submaximal Marker for Investigating Peak Muscle Torque Using Neuromuscular Electrical Stimulation after Paralysis. J Neurotrauma 2018; 36:930-936. [PMID: 30226407 DOI: 10.1089/neu.2018.5848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spinal cord injury (SCI) results in deleterious skeletal muscle adaptations, such as relevant atrophy and loss of force. In particular, the relevant loss of lower-limb force-generating capacity may limit functional mobility even if neuronal control was sufficient. Currently, methods of assessing maximal force-generating capacity using neuromuscular electrical stimulation (NMES) are limited in individuals who cannot tolerate higher stimulation amplitudes, such as those with residual sensation and those at risk of fracture. In this study, we examined the relationship between NMES amplitude and muscle torque exerted (recruitment curve) in order to determine whether maximal torque output can be characterized by a submaximal marker. Recruitment curves for knee extensors, knee flexors, and ankle plantarflexors were recorded from 30 individuals with motor complete SCI. NMES was delivered starting with an amplitude of 5 mA, and increasing by 5 mA for every subsequent stimulation until either the participant requested to stop the stimulation or the maximum stimulation amplitude (140 mA) was reached. Significant correlations between peak slope of the recruitment curve and peak torque for all muscle groups were found (knee extensors, r = 0.75; p < 0.0001; knee flexors, r = 0.68; p < 0.0001; ankle plantarflexors, r = 0.91; p < 0.0001), indicating that muscles that show greater peak slope of the recruitment curve tend to generate a greater peak torque. This suggests that peak slope, which was achieved at an average stimulation intensity (55.0 mA) that was 43% smaller than that corresponding to peak torque (97.4 mA), may be used as a submaximal marker for characterizing maximal torque output in individuals with SCI.
Collapse
Affiliation(s)
- David J Arpin
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,2 Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - Gail Forrest
- 3 Human Performance and Engineering Research, Kessler Foundation, West Orange, New Jersey.,4 Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Susan J Harkema
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,2 Department of Neurological Surgery, University of Louisville, Louisville, Kentucky.,5 Frazier Rehab Institute, Kentucky One Health, Louisville, Kentucky
| | - Enrico Rejc
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky.,2 Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| |
Collapse
|
76
|
Angeli CA, Boakye M, Morton RA, Vogt J, Benton K, Chen Y, Ferreira CK, Harkema SJ. Recovery of Over-Ground Walking after Chronic Motor Complete Spinal Cord Injury. N Engl J Med 2018; 379:1244-1250. [PMID: 30247091 DOI: 10.1056/nejmoa1803588] [Citation(s) in RCA: 382] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Persons with motor complete spinal cord injury, signifying no voluntary movement or sphincter function below the level of injury but including retention of some sensation, do not recover independent walking. We tested intense locomotor treadmill training with weight support and simultaneous spinal cord epidural stimulation in four patients 2.5 to 3.3 years after traumatic spinal injury and after failure to improve with locomotor training alone. Two patients, one with damage to the mid-cervical region and one with damage to the high-thoracic region, achieved over-ground walking (not on a treadmill) after 278 sessions of epidural stimulation and gait training over a period of 85 weeks and 81 sessions over a period of 15 weeks, respectively, and all four achieved independent standing and trunk stability. One patient had a hip fracture during training. (Funded by the Leona M. and Harry B. Helmsley Charitable Trust and others; ClinicalTrials.gov number, NCT02339233 .).
Collapse
Affiliation(s)
- Claudia A Angeli
- From the Frazier Rehabilitation Institute (C.A.A., R.A.M., J.V., K.B., S.J.H.), and the Kentucky Spinal Cord Injury Research Center (C.A.A., M.B., Y.C., C.K.F., S.J.H.) and the Department of Neurosurgery, School of Medicine (M.B., R.A.M., J.V., K.B., Y.C., C.K.F., S.J.H.), University of Louisville - all in Louisville, KY
| | - Maxwell Boakye
- From the Frazier Rehabilitation Institute (C.A.A., R.A.M., J.V., K.B., S.J.H.), and the Kentucky Spinal Cord Injury Research Center (C.A.A., M.B., Y.C., C.K.F., S.J.H.) and the Department of Neurosurgery, School of Medicine (M.B., R.A.M., J.V., K.B., Y.C., C.K.F., S.J.H.), University of Louisville - all in Louisville, KY
| | - Rebekah A Morton
- From the Frazier Rehabilitation Institute (C.A.A., R.A.M., J.V., K.B., S.J.H.), and the Kentucky Spinal Cord Injury Research Center (C.A.A., M.B., Y.C., C.K.F., S.J.H.) and the Department of Neurosurgery, School of Medicine (M.B., R.A.M., J.V., K.B., Y.C., C.K.F., S.J.H.), University of Louisville - all in Louisville, KY
| | - Justin Vogt
- From the Frazier Rehabilitation Institute (C.A.A., R.A.M., J.V., K.B., S.J.H.), and the Kentucky Spinal Cord Injury Research Center (C.A.A., M.B., Y.C., C.K.F., S.J.H.) and the Department of Neurosurgery, School of Medicine (M.B., R.A.M., J.V., K.B., Y.C., C.K.F., S.J.H.), University of Louisville - all in Louisville, KY
| | - Kristin Benton
- From the Frazier Rehabilitation Institute (C.A.A., R.A.M., J.V., K.B., S.J.H.), and the Kentucky Spinal Cord Injury Research Center (C.A.A., M.B., Y.C., C.K.F., S.J.H.) and the Department of Neurosurgery, School of Medicine (M.B., R.A.M., J.V., K.B., Y.C., C.K.F., S.J.H.), University of Louisville - all in Louisville, KY
| | - Yangshen Chen
- From the Frazier Rehabilitation Institute (C.A.A., R.A.M., J.V., K.B., S.J.H.), and the Kentucky Spinal Cord Injury Research Center (C.A.A., M.B., Y.C., C.K.F., S.J.H.) and the Department of Neurosurgery, School of Medicine (M.B., R.A.M., J.V., K.B., Y.C., C.K.F., S.J.H.), University of Louisville - all in Louisville, KY
| | - Christie K Ferreira
- From the Frazier Rehabilitation Institute (C.A.A., R.A.M., J.V., K.B., S.J.H.), and the Kentucky Spinal Cord Injury Research Center (C.A.A., M.B., Y.C., C.K.F., S.J.H.) and the Department of Neurosurgery, School of Medicine (M.B., R.A.M., J.V., K.B., Y.C., C.K.F., S.J.H.), University of Louisville - all in Louisville, KY
| | - Susan J Harkema
- From the Frazier Rehabilitation Institute (C.A.A., R.A.M., J.V., K.B., S.J.H.), and the Kentucky Spinal Cord Injury Research Center (C.A.A., M.B., Y.C., C.K.F., S.J.H.) and the Department of Neurosurgery, School of Medicine (M.B., R.A.M., J.V., K.B., Y.C., C.K.F., S.J.H.), University of Louisville - all in Louisville, KY
| |
Collapse
|
77
|
Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med 2018; 24:1677-1682. [DOI: 10.1038/s41591-018-0175-7] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/03/2018] [Indexed: 11/08/2022]
|
78
|
Ievins A, Moritz CT. Therapeutic Stimulation for Restoration of Function After Spinal Cord Injury. Physiology (Bethesda) 2018; 32:391-398. [PMID: 28814499 DOI: 10.1152/physiol.00010.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
Paralysis due to spinal cord injury can severely limit motor function and independence. This review summarizes different approaches to electrical stimulation of the spinal cord designed to restore motor function, with a brief discussion of their origins and the current understanding of their mechanisms of action. Spinal stimulation leads to impressive improvements in motor function along with some benefits to autonomic functions such as bladder control. Nonetheless, the precise mechanisms underlying these improvements and the optimal spinal stimulation approaches for restoration of motor function are largely unknown. Finally, spinal stimulation may augment other therapies that address the molecular and cellular environment of the injured spinal cord. The fact that several stimulation approaches are now leading to substantial and durable improvements in function following spinal cord injury provides a new perspectives on the previously "incurable" condition of paralysis.
Collapse
Affiliation(s)
- Aiva Ievins
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington.,Graduate Program in Neuroscience, University of Washington, Seattle, Washington.,Center for Sensorimotor Neural Engineering, Seattle, Washington
| | | |
Collapse
|
79
|
Abstract
BACKGROUND AND PURPOSE The IV STEP conference challenged presenters and participants to consider the state of science in rehabilitation, highlighting key area of progress since the previous STEP conference related to prediction, prevention, plasticity, and participation in rehabilitation. KEY POINTS Emerging from the thought-provoking discussions was recognition of the progress we have made as a profession and a call for future growth. In this summary article, we present a recap of the key points and call for action. We review the information presented and the field at large as it relates to the 4 Ps: prediction, prevention, plasticity, and participation. RECOMMENDATIONS FOR PRACTICE Given that personalized medicine is an increasingly important approach that was clearly woven throughout the IV STEP presentations, we took the liberty of adding a fifth "P," Personalized, in our discussion of the future direction of the profession.
Collapse
|
80
|
Gad PN, Kreydin E, Zhong H, Latack K, Edgerton VR. Non-invasive Neuromodulation of Spinal Cord Restores Lower Urinary Tract Function After Paralysis. Front Neurosci 2018; 12:432. [PMID: 30008661 PMCID: PMC6034097 DOI: 10.3389/fnins.2018.00432] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/08/2018] [Indexed: 12/17/2022] Open
Abstract
It is commonly assumed that restoration of locomotion is the ultimate goal after spinal cord injury (SCI). However, lower urinary tract (LUT) dysfunction is universal among SCI patients and significantly impacts their health and quality of life. Micturition is a neurologically complex behavior that depends on intact sensory and motor innervation. SCI disrupts both motor and sensory function and leads to marked abnormalities in urine storage and emptying. Current therapies for LUT dysfunction after SCI focus on preventing complications and managing symptoms rather than restoring function. In this study, we demonstrate that Transcutaneous Electrical Spinal Stimulation for LUT functional Augmentation (TESSLA), a non-invasive neuromodulatory technique, can reengage the spinal circuits' active in LUT function and normalize bladder and urethral sphincter function in individuals with SCI. Specifically, TESSLA reduced detrusor overactivity (DO), decreased detrusor-sphincter dyssynergia (DSD), increased bladder capacity and enabled voiding. TESSLA may represent a novel approach to transform the intrinsic spinal networks to a more functionally physiological state. Each of these features has significant clinical implications. Improvement and restoration of LUT function after SCI stand to significantly benefit patients by improving their quality of life and reducing the risk of incontinence, kidney injury and urinary tract infection, all the while lowering healthcare costs.
Collapse
Affiliation(s)
- Parag N Gad
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
| | - Evgeniy Kreydin
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States.,Institute of Urology, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
| | - Kyle Latack
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States.,Institute of Urology, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari Adscrit a la Universitat Autònoma de Barcelona, Barcelona, Spain.,Faculty of Science, The Centre for Neuroscience and Regenerative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
81
|
Herrity AN, Williams CS, Angeli CA, Harkema SJ, Hubscher CH. Lumbosacral spinal cord epidural stimulation improves voiding function after human spinal cord injury. Sci Rep 2018; 8:8688. [PMID: 29875362 PMCID: PMC5989228 DOI: 10.1038/s41598-018-26602-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/15/2018] [Indexed: 01/05/2023] Open
Abstract
Deficits in urologic function after spinal cord injury (SCI) manifest both as a failure to store and empty, greatly impacting daily life. While current management strategies are necessary for urological maintenance, they oftentimes are associated with life-long side effects. Our objective was to investigate the efficacy of spinal cord epidural stimulation (scES) as a promising therapy to improve bladder control after SCI. A bladder mapping study was undertaken for sixteen sessions over the course of four months in an individual with chronic, motor complete SCI. Varying combinations of stimulating cathode electrodes were initially tested during filling cystometry resulting in the identification of an effective configuration for reflexive bladder emptying at the caudal end of the electrode array. Subsequent systematic testing of different frequencies at a fixed stimulus intensity and pulse width yielded lowest post-void residual volumes at 30 Hz. These stimulation parameters were then tested in four additional research participants and found to also improve reflexive voiding efficiency. Taken together with SCI studies on step, stand, voluntary motor control and cardiovascular regulation, these findings further corroborate that scES has an all-encompassing potential to increase the central state of excitability, allowing for the control of multiple body functions, including the urological system.
Collapse
Affiliation(s)
- A N Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - C S Williams
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - C A Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Frazier Rehab Institute, Louisville, KY, USA
| | - S J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Frazier Rehab Institute, Louisville, KY, USA
| | - C H Hubscher
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA. .,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
82
|
Aslan SC, Legg Ditterline BE, Park MC, Angeli CA, Rejc E, Chen Y, Ovechkin AV, Krassioukov A, Harkema SJ. Epidural Spinal Cord Stimulation of Lumbosacral Networks Modulates Arterial Blood Pressure in Individuals With Spinal Cord Injury-Induced Cardiovascular Deficits. Front Physiol 2018; 9:565. [PMID: 29867586 PMCID: PMC5968099 DOI: 10.3389/fphys.2018.00565] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/30/2018] [Indexed: 12/23/2022] Open
Abstract
Disruption of motor and autonomic pathways induced by spinal cord injury (SCI) often leads to persistent low arterial blood pressure and orthostatic intolerance. Spinal cord epidural stimulation (scES) has been shown to enable independent standing and voluntary movement in individuals with clinically motor complete SCI. In this study, we addressed whether scES configured to activate motor lumbosacral networks can also modulate arterial blood pressure by assessing continuous, beat-by-beat blood pressure and lower extremity electromyography during supine and standing in seven individuals with C5-T4 SCI. In three research participants with arterial hypotension, orthostatic intolerance, and low levels of circulating catecholamines (group 1), scES applied while supine and standing resulted in increased arterial blood pressure. In four research participants without evidence of arterial hypotension or orthostatic intolerance and normative circulating catecholamines (group 2), scES did not induce significant increases in arterial blood pressure. During scES, there were no significant differences in electromyographic (EMG) activity between group 1 and group 2. In group 1, during standing assisted by scES, blood pressure was maintained at 119/72 ± 7/14 mmHg (mean ± SD) compared with 70/45 ± 5/7 mmHg without scES. In group 2 there were no arterial blood pressure changes during standing with or without scES. These findings demonstrate that scES configured to facilitate motor function can acutely increase arterial blood pressure in individuals with SCI-induced cardiovascular deficits.
Collapse
Affiliation(s)
- Sevda C Aslan
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Bonnie E Legg Ditterline
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Michael C Park
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Department of Neurosurgery and Neurology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Claudia A Angeli
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Frazier Rehab Institute, Louisville, KY, United States
| | - Enrico Rejc
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Yangsheng Chen
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Alexander V Ovechkin
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Andrei Krassioukov
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada.,International Collaboration on Repair Discoveries, Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Susan J Harkema
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Frazier Rehab Institute, Louisville, KY, United States
| |
Collapse
|
83
|
Harkema SJ, Wang S, Angeli CA, Chen Y, Boakye M, Ugiliweneza B, Hirsch GA. Normalization of Blood Pressure With Spinal Cord Epidural Stimulation After Severe Spinal Cord Injury. Front Hum Neurosci 2018; 12:83. [PMID: 29568266 PMCID: PMC5852107 DOI: 10.3389/fnhum.2018.00083] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/19/2018] [Indexed: 11/18/2022] Open
Abstract
Chronic low blood pressure and orthostatic hypotension remain challenging clinical issues after severe spinal cord injury (SCI), affecting health, rehabilitation, and quality of life. We previously reported that targeted lumbosacral spinal cord epidural stimulation (scES) could promote stand and step functions and restore voluntary movement in patients with chronic motor complete SCI. This study addresses the effects of targeted scES for cardiovascular function (CV-scES) in individuals with severe SCI who suffer from chronic hypotension. We tested the hypothesis that CV-scES can increase resting blood pressure and attenuate chronic hypotension in individuals with chronic cervical SCI. Four research participants with chronic cervical SCI received an implant of a 16-electrode array on the dura (L1–S1 cord segments, T11–L1 vertebrae). Individual-specific CV-scES configurations (anode and cathode electrode selection, voltage, frequency, and pulse width) were identified to maintain systolic blood pressure within targeted normative ranges without skeletal muscle activity of the lower extremities as assessed by electromyography. These individuals completed five 2-h sessions using CV-scES in an upright, seated position during measurement of blood pressure and heart rate. Noninvasive continuous blood pressure was measured from a finger cuff by plethysmograph technique. For each research participant there were statistically significant increases in mean arterial pressure in response to CV-scES that was maintained within normative ranges. This result was reproducible over the five sessions with concomitant decreases or no changes in heart rate using individual-specific CV-scES that was modulated with modest amplitude changes throughout the session. Our study shows that stimulating dorsal lumbosacral spinal cord can effectively and safely activate mechanisms to elevate blood pressures to normal ranges from a chronic hypotensive state in humans with severe SCI with individual-specific CV-scES.
Collapse
Affiliation(s)
- Susan J Harkema
- Frazier Rehab Institute, Louisville, KY, United States.,Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Siqi Wang
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Claudia A Angeli
- Frazier Rehab Institute, Louisville, KY, United States.,Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Yangsheng Chen
- Department of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
| | - Maxwell Boakye
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Beatrice Ugiliweneza
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Glenn A Hirsch
- Division of Cardiology, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
84
|
Herman PE, Papatheodorou A, Bryant SA, Waterbury CKM, Herdy JR, Arcese AA, Buxbaum JD, Smith JJ, Morgan JR, Bloom O. Highly conserved molecular pathways, including Wnt signaling, promote functional recovery from spinal cord injury in lampreys. Sci Rep 2018; 8:742. [PMID: 29335507 PMCID: PMC5768751 DOI: 10.1038/s41598-017-18757-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
In mammals, spinal cord injury (SCI) leads to dramatic losses in neurons and synaptic connections, and consequently function. Unlike mammals, lampreys are vertebrates that undergo spontaneous regeneration and achieve functional recovery after SCI. Therefore our goal was to determine the complete transcriptional responses that occur after SCI in lampreys and to identify deeply conserved pathways that promote regeneration. We performed RNA-Seq on lamprey spinal cord and brain throughout the course of functional recovery. We describe complex transcriptional responses in the injured spinal cord, and somewhat surprisingly, also in the brain. Transcriptional responses to SCI in lampreys included transcription factor networks that promote peripheral nerve regeneration in mammals such as Atf3 and Jun. Furthermore, a number of highly conserved axon guidance, extracellular matrix, and proliferation genes were also differentially expressed after SCI in lampreys. Strikingly, ~3% of differentially expressed transcripts belonged to the Wnt pathways. These included members of the Wnt and Frizzled gene families, and genes involved in downstream signaling. Pharmacological inhibition of Wnt signaling inhibited functional recovery, confirming a critical role for this pathway. These data indicate that molecular signals present in mammals are also involved in regeneration in lampreys, supporting translational relevance of the model.
Collapse
Affiliation(s)
- Paige E Herman
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA
| | - Angelos Papatheodorou
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA
| | - Stephanie A Bryant
- University of Kentucky, Department of Biology, Lexington, KY, 40506, USA
| | | | - Joseph R Herdy
- University of Kentucky, Department of Biology, Lexington, KY, 40506, USA
| | - Anthony A Arcese
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA
| | - Joseph D Buxbaum
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, 10029, USA
| | - Jeramiah J Smith
- University of Kentucky, Department of Biology, Lexington, KY, 40506, USA
| | - Jennifer R Morgan
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, 02543, USA.
| | - Ona Bloom
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA.
| |
Collapse
|
85
|
Taccola G, Sayenko D, Gad P, Gerasimenko Y, Edgerton VR. And yet it moves: Recovery of volitional control after spinal cord injury. Prog Neurobiol 2017; 160:64-81. [PMID: 29102670 PMCID: PMC5773077 DOI: 10.1016/j.pneurobio.2017.10.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/09/2017] [Accepted: 10/21/2017] [Indexed: 12/12/2022]
Abstract
Preclinical and clinical neurophysiological and neurorehabilitation research has generated rather surprising levels of recovery of volitional sensory-motor function in persons with chronic motor paralysis following a spinal cord injury. The key factor in this recovery is largely activity-dependent plasticity of spinal and supraspinal networks. This key factor can be triggered by neuromodulation of these networks with electrical and pharmacological interventions. This review addresses some of the systems-level physiological mechanisms that might explain the effects of electrical modulation and how repetitive training facilitates the recovery of volitional motor control. In particular, we substantiate the hypotheses that: (1) in the majority of spinal lesions, a critical number and type of neurons in the region of the injury survive, but cannot conduct action potentials, and thus are electrically non-responsive; (2) these neuronal networks within the lesioned area can be neuromodulated to a transformed state of electrical competency; (3) these two factors enable the potential for extensive activity-dependent reorganization of neuronal networks in the spinal cord and brain, and (4) propriospinal networks play a critical role in driving this activity-dependent reorganization after injury. Real-time proprioceptive input to spinal networks provides the template for reorganization of spinal networks that play a leading role in the level of coordination of motor pools required to perform a given functional task. Repetitive exposure of multi-segmental sensory-motor networks to the dynamics of task-specific sensory input as occurs with repetitive training can functionally reshape spinal and supraspinal connectivity thus re-enabling one to perform complex motor tasks, even years post injury.
Collapse
Affiliation(s)
- G Taccola
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA; Neuroscience Department, International School for Advanced Studies (SISSA), Bonomea 265, Trieste, Italy
| | - D Sayenko
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA
| | - P Gad
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA
| | - Y Gerasimenko
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA; Pavlov Institute of Physiology, St. Petersburg 199034, Russia
| | - V R Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA; Department of Neurobiology, University of California, Los Angeles, CA 90095 USA; Department of Neurosurgery, University of California, Los Angeles, CA 90095 USA; Brain Research Institute, University of California, Los Angeles, CA 90095 USA; The Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, 2007 NSW, Australia; Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, 08916 Badalona, Spain.
| |
Collapse
|
86
|
Hachem LD, Ahuja CS, Fehlings MG. Assessment and management of acute spinal cord injury: From point of injury to rehabilitation. J Spinal Cord Med 2017; 40:665-675. [PMID: 28571527 PMCID: PMC5778930 DOI: 10.1080/10790268.2017.1329076] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CONTEXT Spinal cord injury (SCI) is a devastating condition that can lead to significant neurological impairment and reduced quality of life. Despite advancements in our understanding of the pathophysiology and secondary injury mechanisms involved in SCI, there are currently very few effective treatments for this condition. The field, however, is rapidly changing as new treatments are developed and key discoveries are made. METHODS In this review, we outline the pathophysiology, management, and long-term rehabilitation of individuals with traumatic SCI. We also provide an in-depth overview of emerging therapies along the spectrum of the translational pipeline. EVIDENCE SYNTHESIS The concept of "time is spine" refers to the concept which emphasizes the importance of early transfer to specialized centers, early decompressive surgery, and early delivery of other treatments (e.g. blood pressure augmentation, methylprednisolone) to affect long-term outcomes. Another important evolution in management has been the recognition and prevention of the chronic complications of SCI including respiratory compromise, bladder dysfunction, Charcot joints, and pressure sores through directed interventions along with early integration of physical rehabilitation and mobilization. There have also been significant advances in neuroprotective and neuroregenerative strategies for SCI, many of which are actively in clinical trial including riluzole, Cethrin, stem cell transplantation, and the use of functional electrical stimulation. CONCLUSION Pharmacologic treatments, cell-based therapies, and other technology-driven interventions will likely play a combinatorial role in the evolving management of SCI as the field continues to evolve.
Collapse
Affiliation(s)
- Laureen D. Hachem
- Institute of Medical Science, University of Toronto, Toronto, ONT, Canada
| | - Christopher S. Ahuja
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ONT, Canada
- Institute of Medical Science, University of Toronto, Toronto, ONT, Canada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ONT, Canada
- Institute of Medical Science, University of Toronto, Toronto, ONT, Canada
- McEwen Centre for Regenerative Medicine, UHN, University of Toronto, Toronto, ONT, Canada
- Department of Surgery, University of Toronto, Toronto, ONT, Canada
- Spine Program, University of Toronto, Toronto, ONT, Canada
- McLaughlin Center in Molecular Medicine, University of Toronto, Toronto, ONT, Canada
| |
Collapse
|
87
|
Rejc E, Angeli CA, Atkinson D, Harkema SJ. Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic. Sci Rep 2017; 7:13476. [PMID: 29074997 PMCID: PMC5658385 DOI: 10.1038/s41598-017-14003-w] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/05/2017] [Indexed: 11/17/2022] Open
Abstract
The prognosis for recovery of motor function in motor complete spinal cord injured (SCI) individuals is poor. Our research team has demonstrated that lumbosacral spinal cord epidural stimulation (scES) and activity-based training can progressively promote the recovery of volitional leg movements and standing in individuals with chronic clinically complete SCI. However, scES was required to perform these motor tasks. Herein, we show the progressive recovery of voluntary leg movement and standing without scES in an individual with chronic, motor complete SCI throughout 3.7 years of activity-based interventions utilizing scES configurations customized for the different motor tasks that were specifically trained (standing, stepping, volitional leg movement). In particular, this report details the ongoing neural adaptations that allowed a functional progression from no volitional muscle activation to a refined, task-specific activation pattern and movement generation during volitional attempts without scES. Similarly, we observed the re-emergence of muscle activation patterns sufficient for standing with independent knee and hip extension. These findings highlight the recovery potential of the human nervous system after chronic clinically motor complete SCI.
Collapse
Affiliation(s)
- Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Claudia A Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Frazier Rehab Institute, Louisville, Kentucky, USA
| | - Darryn Atkinson
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA. .,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA. .,Frazier Rehab Institute, Louisville, Kentucky, USA.
| |
Collapse
|
88
|
A novel approach for automatic visualization and activation detection of evoked potentials induced by epidural spinal cord stimulation in individuals with spinal cord injury. PLoS One 2017; 12:e0185582. [PMID: 29020054 PMCID: PMC5636093 DOI: 10.1371/journal.pone.0185582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/16/2017] [Indexed: 01/19/2023] Open
Abstract
Voluntary movements and the standing of spinal cord injured patients have been facilitated using lumbosacral spinal cord epidural stimulation (scES). Identifying the appropriate stimulation parameters (intensity, frequency and anode/cathode assignment) is an arduous task and requires extensive mapping of the spinal cord using evoked potentials. Effective visualization and detection of muscle evoked potentials induced by scES from the recorded electromyography (EMG) signals is critical to identify the optimal configurations and the effects of specific scES parameters on muscle activation. The purpose of this work was to develop a novel approach to automatically detect the occurrence of evoked potentials, quantify the attributes of the signal and visualize the effects across a high number of scES parameters. This new method is designed to automate the current process for performing this task, which has been accomplished manually by data analysts through observation of raw EMG signals, a process that is laborious and time-consuming as well as prone to human errors. The proposed method provides a fast and accurate five-step algorithms framework for activation detection and visualization of the results including: conversion of the EMG signal into its 2-D representation by overlaying the located signal building blocks; de-noising the 2-D image by applying the Generalized Gaussian Markov Random Field technique; detection of the occurrence of evoked potentials using a statistically optimal decision method through the comparison of the probability density functions of each segment to the background noise utilizing log-likelihood ratio; feature extraction of detected motor units such as peak-to-peak amplitude, latency, integrated EMG and Min-max time intervals; and finally visualization of the outputs as Colormap images. In comparing the automatic method vs. manual detection on 700 EMG signals from five individuals, the new approach decreased the processing time from several hours to less than 15 seconds for each set of data, and demonstrated an average accuracy of 98.28% based on the combined false positive and false negative error rates. The sensitivity of this method to the signal-to-noise ratio (SNR) was tested using simulated EMG signals and compared to two existing methods, where the novel technique showed much lower sensitivity to the SNR.
Collapse
|
89
|
Kimberley TJ, Novak I, Boyd L, Fowler E, Larsen D. Stepping Up to Rethink the Future of Rehabilitation: IV STEP Considerations and Inspirations. Pediatr Phys Ther 2017; 29 Suppl 3:S76-S85. [PMID: 28654481 PMCID: PMC6013833 DOI: 10.1097/pep.0000000000000435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE The IV STEP conference challenged presenters and participants to consider the state of science in rehabilitation, highlighting key area of progress since the previous STEP conference related to prediction, prevention, plasticity, and participation in rehabilitation. KEY POINTS Emerging from the thought-provoking discussions was recognition of the progress we have made as a profession and a call for future growth. In this summary article, we present a recap of the key points and call for action. We review the information presented and the field at large as it relates to the 4 Ps: prediction, prevention, plasticity, and participation. RECOMMENDATIONS FOR PRACTICE Given that personalized medicine is an increasingly important approach that was clearly woven throughout the IV STEP presentations, we took the liberty of adding a fifth "P," Personalized, in our discussion of the future direction of the profession.
Collapse
Affiliation(s)
- Teresa Jacobson Kimberley
- Department of Physical Medicine, Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis (T.J.K.); Cerebral Palsy Alliance, Discipline of Child and Adolescent Health, The University of Sydney, Camperdown, Australia (I.N.); Department of Physical Therapy and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia (L.B.); Department of Orthopaedic Surgery, Center for Cerebral Palsy, University of California, Los Angeles (E.F.); and School of Health and Rehabilitation Sciences, The Ohio State University, Columbus (D.L.)
| | | | | | | | | |
Collapse
|
90
|
Gonzalez-Rothi EJ, Streeter KA, Hanna MH, Stamas AC, Reier PJ, Baekey DM, Fuller DD. High-frequency epidural stimulation across the respiratory cycle evokes phrenic short-term potentiation after incomplete cervical spinal cord injury. J Neurophysiol 2017; 118:2344-2357. [PMID: 28615341 DOI: 10.1152/jn.00913.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 01/15/2023] Open
Abstract
C2 spinal hemilesion (C2Hx) paralyzes the ipsilateral diaphragm, but recovery is possible through activation of "crossed spinal" synaptic inputs to ipsilateral phrenic motoneurons. We tested the hypothesis that high-frequency epidural stimulation (HF-ES) would potentiate ipsilateral phrenic output after subacute and chronic C2Hx. HF-ES (300 Hz) was applied to the ventrolateral C4 or T2 spinal cord ipsilateral to C2Hx in anesthetized and mechanically ventilated adult rats. Stimulus duration was 60 s, and currents ranged from 100 to 1,000 µA. Bilateral phrenic nerve activity and ipsilateral hypoglossal (XII) nerve activity were recorded before and after HF-ES. Higher T2 stimulus currents potentiated ipsilateral phasic inspiratory activity at both 2 and 12 wk post-C2Hx, whereas higher stimulus currents delivered at C4 potentiated ipsilateral phasic phrenic activity only at 12 wk (P = 0.028). Meanwhile, tonic output in the ipsilateral phrenic nerve reached 500% of baseline values at the high currents with no difference between 2 and 12 wk. HF-ES did not trigger inspiratory burst-frequency changes. Similar responses occurred following T2 HF-ES. Increases in contralateral phrenic and XII nerve output were induced by C4 and T2 HF-ES at higher currents, but the relative magnitude of these changes was small compared with the ipsilateral phrenic response. We conclude that following incomplete cervical spinal cord injury, HF-ES of the ventrolateral midcervical or thoracic spinal cord can potentiate efferent phrenic motor output with little impact on inspiratory burst frequency. However, the substantial increases in tonic output indicate that the uninterrupted 60-s stimulation paradigm used is unlikely to be useful for respiratory muscle activation after spinal injury.NEW & NOTEWORTHY Previous studies reported that high-frequency epidural stimulation (HF-ES) activates the diaphragm following acute spinal transection. This study examined HF-ES and phrenic motor output following subacute and chronic incomplete cervical spinal cord injury. Short-term potentiation of phrenic bursting following HF-ES illustrates the potential for spinal stimulation to induce respiratory neuroplasticity. Increased tonic phrenic output indicates that alternatives to the continuous stimulation paradigm used in this study will be required for respiratory muscle activation after spinal cord injury.
Collapse
Affiliation(s)
- Elisa J Gonzalez-Rothi
- McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida;
| | - Kristi A Streeter
- McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Marie H Hanna
- McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Anna C Stamas
- McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Paul J Reier
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, Florida; and
| | - David M Baekey
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - David D Fuller
- McKnight Brain Institute, Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| |
Collapse
|
91
|
Grahn PJ, Lavrov IA, Sayenko DG, Van Straaten MG, Gill ML, Strommen JA, Calvert JS, Drubach DI, Beck LA, Linde MB, Thoreson AR, Lopez C, Mendez AA, Gad PN, Gerasimenko YP, Edgerton VR, Zhao KD, Lee KH. Enabling Task-Specific Volitional Motor Functions via Spinal Cord Neuromodulation in a Human With Paraplegia. Mayo Clin Proc 2017; 92:544-554. [PMID: 28385196 DOI: 10.1016/j.mayocp.2017.02.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 10/19/2022]
Abstract
We report a case of chronic traumatic paraplegia in which epidural electrical stimulation (EES) of the lumbosacral spinal cord enabled (1) volitional control of task-specific muscle activity, (2) volitional control of rhythmic muscle activity to produce steplike movements while side-lying, (3) independent standing, and (4) while in a vertical position with body weight partially supported, voluntary control of steplike movements and rhythmic muscle activity. This is the first time that the application of EES enabled all of these tasks in the same patient within the first 2 weeks (8 stimulation sessions total) of EES therapy.
Collapse
Affiliation(s)
- Peter J Grahn
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Igor A Lavrov
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Dimitry G Sayenko
- Department of Integrative Biology and Physiology, University of California Los Angeles
| | - Meegan G Van Straaten
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Megan L Gill
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Jeffrey A Strommen
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Jonathan S Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN
| | - Dina I Drubach
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Lisa A Beck
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Margaux B Linde
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Andrew R Thoreson
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Cesar Lopez
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN
| | - Aldo A Mendez
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Parag N Gad
- Department of Integrative Biology and Physiology, University of California Los Angeles
| | - Yury P Gerasimenko
- Department of Integrative Biology and Physiology, University of California Los Angeles; Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California Los Angeles
| | - Kristin D Zhao
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN.
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN.
| |
Collapse
|