51
|
Hodge J, Quint C. Tissue engineered vessel from a biodegradable electrospun scaffold stimulated with mechanical stretch. Biomed Mater 2020; 15:055006. [DOI: 10.1088/1748-605x/ab8e98] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
52
|
Potential Implantable Nanofibrous Biomaterials Combined with Stem Cells for Subchondral Bone Regeneration. MATERIALS 2020; 13:ma13143087. [PMID: 32664278 PMCID: PMC7412392 DOI: 10.3390/ma13143087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/28/2022]
Abstract
The treatment of osteochondral defects remains a challenge. Four scaffolds were produced using Food and Drug Administration (FDA)-approved polymers to investigate their therapeutic potential for the regeneration of the osteochondral unit. Polycaprolactone (PCL) and poly(vinyl-pyrrolidone) (PVP) scaffolds were made by electrohydrodynamic techniques. Hydroxyapatite (HAp) and/or sodium hyaluronate (HA) can be then loaded to PCL nanofibers and/or PVP particles. The purpose of adding hydroxyapatite and sodium hyaluronate into PCL/PVP scaffolds is to increase the regenerative ability for subchondral bone and joint cartilage, respectively. Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) were seeded on these biomaterials. The biocompatibility of these biomaterials in vitro and in vivo, as well as their potential to support MSC differentiation under specific chondrogenic or osteogenic conditions, were evaluated. We show here that hBM-MSCs could proliferate and differentiate both in vitro and in vivo on these biomaterials. In addition, the PCL-HAp could effectively increase the mineralization and induce the differentiation of MSCs into osteoblasts in an osteogenic condition. These results indicate that PCL-HAp biomaterials combined with MSCs could be a beneficial candidate for subchondral bone regeneration.
Collapse
|
53
|
Zuidema JM, Dumont CM, Wang J, Batchelor WM, Lu YS, Kang J, Bertucci A, Ziebarth NM, Shea LD, Sailor MJ. Porous Silicon Nanoparticles Embedded in Poly(lactic- co-glycolic acid) Nanofiber Scaffolds Deliver Neurotrophic Payloads to Enhance Neuronal Growth. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002560. [PMID: 32982626 PMCID: PMC7513949 DOI: 10.1002/adfm.202002560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Scaffolds made from biocompatible polymers provide physical cues to direct the extension of neurites and to encourage repair of damaged nerves. The inclusion of neurotrophic payloads in these scaffolds can substantially enhance regrowth and repair processes. However, many promising neurotrophic candidates are excluded from this approach due to incompatibilities with the polymer or with the polymer processing conditions. This work provides one solution to this problem by incorporating porous silicon nanoparticles (pSiNPs) that are pre-loaded with the therapeutic into a polymer scaffold during fabrication. The nanoparticle-drug-polymer hybrids are prepared in the form of oriented poly(lactic-co-glycolic acid) nanofiber scaffolds. We test three different therapeutic payloads: bpV(HOpic), a small molecule inhibitor of phosphatase and tensin homolog (PTEN); an RNA aptamer specific to tropomyosin-related kinase receptor type B (TrkB); and the protein nerve growth factor (NGF). Each therapeutic is loaded using a loading chemistry that is optimized to slow the rate of release of these water-soluble payloads. The drug-loaded pSiNP-nanofiber hybrids release approximately half of their TrkB aptamer, bpV(HOpic), or NGF payload in 2, 10, and >40 days, respectively. The nanofiber hybrids increase neurite extension relative to drug-free control nanofibers in a dorsal root ganglion explant assay.
Collapse
Affiliation(s)
- Jonathan M Zuidema
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Courtney M Dumont
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, FL 33146, USA
| | - Joanna Wang
- Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wyndham M Batchelor
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive
| | - Yi-Sheng Lu
- Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jinyoung Kang
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, CA
| | - Alessandro Bertucci
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Noel M Ziebarth
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
54
|
Abazari MF, Zare Karizi S, Kohandani M, Nasiri N, Nejati F, Saburi E, Nikpoor AR, Enderami SE, Soleimanifar F, Mansouri V. MicroRNA
‐2861 and nanofibrous scaffold synergistically promote human induced pluripotent stem cells osteogenic differentiation. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mohammad Foad Abazari
- Research Center for Clinical VirologyTehran University of Medical Sciences Tehran Iran
| | - Shohreh Zare Karizi
- Department of BiologyVaramin Pishva Branch, Islamic Azad University Pishva, Varamin Iran
| | - Mina Kohandani
- Department of Biology, Faculty of Biological SciencesIslamic Azad University, East Tehran Branch Tehran Iran
| | - Navid Nasiri
- Department of Biology, Central Tehran BranchIslamic Azad University Tehran Iran
| | - Fatemeh Nejati
- Department of Biology, Central Tehran BranchIslamic Azad University Tehran Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Amin Reza Nikpoor
- Molecular Medicine Research CenterHormozgan Health Institute, Hormozgan University of Medical Sciences Bandar Abbas Iran
| | - Seyed Ehsan Enderami
- Diabetes Research Center, Department of Medical BiotechnologySchool of Advanced Technologies in Medicine, Mazandaran university of Medical Sciences Sari Iran
| | - Fatemeh Soleimanifar
- Department of Medical biotechnology, School of MedicineAlborz University of Medical Sciences Karaj Iran
| | - Vahid Mansouri
- Proteomics Research Center, Department of AnatomySchool of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
55
|
Behere I, Pardawala Z, Vaidya A, Kale V, Ingavle G. Osteogenic differentiation of an osteoblast precursor cell line using composite PCL-gelatin-nHAp electrospun nanofiber mesh. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1767619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Isha Behere
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Zain Pardawala
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
56
|
Begum R, Perriman AW, Su B, Scarpa F, Kafienah W. Chondroinduction of Mesenchymal Stem Cells on Cellulose-Silk Composite Nanofibrous Substrates: The Role of Substrate Elasticity. Front Bioeng Biotechnol 2020; 8:197. [PMID: 32266231 PMCID: PMC7096586 DOI: 10.3389/fbioe.2020.00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/28/2020] [Indexed: 01/09/2023] Open
Abstract
Smart biomaterials with an inherent capacity to elicit specific behaviors in lieu of biological prompts would be advantageous for regenerative medicine applications. In this work, we employ an electrospinning technique to model the in vivo nanofibrous extracellular matrix (ECM) of cartilage using a chondroinductive cellulose and silk polymer blend (75:25 ratio). This natural polymer composite is directly electrospun for the first time, into nanofibers without post-spun treatment, using a trifluoroacetic acid and acetic acid cosolvent system. Biocompatibility of the composite nanofibres with human mesenchymal stem cells (hMSCs) is demonstrated and its inherent capacity to direct chondrogenic stem cell differentiation, in the absence of stimulating growth factors, is confirmed. This chondrogenic stimulation could be countered biochemically using fibroblast growth factor-2, a growth factor used to enhance the proliferation of hMSCs. Furthermore, the potential mechanisms driving this chondroinduction at the cell-biomaterial interface is investigated. Composite substrates are fabricated as two-dimensional film surfaces and cultured with hMSCs in the presence of chemicals that interfere with their biochemical and mechanical signaling pathways. Preventing substrate surface elasticity transmission resulted in a significant downregulation of chondrogenic gene expression. Interference with the classical chondrogenic Smad2/3 phosphorylation pathway did not impact chondrogenesis. The results highlight the importance of substrate mechanical elasticity on hMSCs chondroinduction and its independence to known chondrogenic biochemical pathways. The newly fabricated scaffolds provide the foundation for designing a robust, self-inductive, and cost-effective biomimetic biomaterial for cartilage tissue engineering.
Collapse
Affiliation(s)
- Runa Begum
- Faculty of Biomedical Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Adam W Perriman
- Faculty of Biomedical Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Bo Su
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Fabrizio Scarpa
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol, United Kingdom
| | - Wael Kafienah
- Faculty of Biomedical Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
57
|
Wu T, Ding M, Shi C, Qiao Y, Wang P, Qiao R, Wang X, Zhong J. Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
58
|
Wen M, Zhi D, Wang L, Cui C, Huang Z, Zhao Y, Wang K, Kong D, Yuan X. Local Delivery of Dual MicroRNAs in Trilayered Electrospun Grafts for Vascular Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6863-6875. [PMID: 31958006 DOI: 10.1021/acsami.9b19452] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Globally growing problems related to cardiovascular diseases lead to a considerable need for synthetic vascular grafts. For small-caliber vascular prosthesis, it remains essential to fulfill rapid endothelialization, inhibit intimal hyperplasia, and prevent calcification for keeping patency. To modulate vascular regeneration, herein, we developed a bioactive trilayered tissue-engineered vascular graft encapsulating both microRNA-126 and microRNA-145 in the fibrous inner and middle layers, respectively. In vitro cell activities demonstrated that the trilayered electrospun membranes had significant biological advantages in enhanced growth and intracellular nitric oxide production of vascular endothelial cells, modulation of phenotypes of vascular smooth muscle cells (SMCs), and restraint of calcium deposition through fast-releasing microRNA-126 and slow-releasing microRNA-145. Histological and immunofluorescent analyses of in vivo implantation in a rat abdominal aorta interposition model suggested that the dual-microRNA-loading trilayered electrospun graft exerted a positive effect on accelerating endothelialization, improving contractile SMC regeneration, and promoting normal extracellular matrix formation. Meanwhile, the local bioactivity of microRNA-126 and microRNA-145 in the trilayered vascular graft could regulate inflammation and depress calcification possibly by facilitating transformation of macrophages into the anti-inflammatory M2 phenotype. These findings indicated that the trilayered electrospun graft by local delivery of dual microRNAs could be possibly used as a bioactive substitute for replacement of artificial small-caliber blood vessels.
Collapse
Affiliation(s)
- Meiling Wen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Dengke Zhi
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Lina Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Ce Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Ziqi Huang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Yunhui Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Kai Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Deling Kong
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| |
Collapse
|
59
|
Bil M, Kijeńska-Gawrońska E, Głodkowska-Mrówka E, Manda-Handzlik A, Mrówka P. Design and in vitro evaluation of electrospun shape memory polyurethanes for self-fitting tissue engineering grafts and drug delivery systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110675. [PMID: 32204102 DOI: 10.1016/j.msec.2020.110675] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
Integration of multiple features including shape memory, biodegradation, and sustained drug delivery in a single material offers the opportunity to significantly improve the abilities of implantable devices for cardiovascular system regeneration. Two types of shape memory polyurethanes (SMPUs): PU-PLGA and PU-PLLA/PEG differing in soft segments composition that comprising blends of various biodegradable polyols, i.e. D,l-lactide-co-glycolide diol (o-PLGA), poly(e-caprolactone) diols (o-PCL) with various molecular weights, poly-l-lactide diol (o-PLLA), polyethylene glycol (o-PEG) were synthesized and further utilized to electrospun nanofibrous - rapamycin (Rap) delivery system. Structure characterization by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DCS) and hydrophilicity measurements were performed to gain more insights on the influence of the particular units of the softs segments on the transition temperature (Ttrans), shape recovery, degradation profile, and drug release kinetics. In vitro study in PBS solution revealed that incorporation of o-PLGA segments to SMPUs is favorable over o-PEG as increased shape memory performance was observed. Moreover, presence of PLGA in PU-PLGA gave more predictable degradation profile in comparison to PU-PLLA/PEG system. Human Cardiac Fibroblasts (HCF) viability tests in vitro confirmed that the amount of Rap released from evaluated PU-PLLA/PEG/Rap and PU-PLGA/Rap drug delivery systems was sufficient to inhibit cells growth on the surface of the tested materials.
Collapse
Affiliation(s)
- Monika Bil
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02-507 Warsaw, Poland.
| | - Ewa Kijeńska-Gawrońska
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Street, 02-507 Warsaw, Poland
| | - Eliza Głodkowska-Mrówka
- Department of Experimental Hematology, Department of Laboratory Medicine, Institute of Hematology and Transfusion Medicine, 5 Indiry Gandhi Str, 02-776 Warsaw, Poland
| | - Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, 63A Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Piotr Mrówka
- Department of Biophysics and Human Physiology, Medical University of Warsaw, 5 Chalubinskiego Str., 02-004 Warsaw, Poland
| |
Collapse
|
60
|
Ranjan VD, Zeng P, Li B, Zhang Y. In vitro cell culture in hollow microfibers with porous structures. Biomater Sci 2020; 8:2175-2188. [DOI: 10.1039/c9bm01986c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hollow and porous cell-encapsulated microfibers have been fabricated via simultaneously electrospinning two different biomaterial-based polymer solutions using a coaxial spinneret.
Collapse
Affiliation(s)
- Vivek Damodar Ranjan
- NTU Institute for Health Technologies
- Interdisciplinary Graduate School
- Nanyang Technological University
- Singapore 639798
| | - Peiqin Zeng
- School of Mechanical & Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
| | - Boyuan Li
- School of Mechanical & Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
| | - Yilei Zhang
- Department of Mechanical Engineering
- University of Canterbury
- New Zealand, 8041
| |
Collapse
|
61
|
Udomluck N, Koh WG, Lim DJ, Park H. Recent Developments in Nanofiber Fabrication and Modification for Bone Tissue Engineering. Int J Mol Sci 2019; 21:E99. [PMID: 31877799 PMCID: PMC6981959 DOI: 10.3390/ijms21010099] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/02/2019] [Accepted: 12/19/2019] [Indexed: 01/22/2023] Open
Abstract
Bone tissue engineering is an alternative therapeutic intervention to repair or regenerate lost bone. This technique requires three essential components: stem cells that can differentiate into bone cells, growth factors that stimulate cell behavior for bone formation, and scaffolds that mimic the extracellular matrix. Among the various kinds of scaffolds, highly porous nanofibrous scaffolds are a potential candidate for supporting cell functions, such as adhesion, delivering growth factors, and forming new tissue. Various fabricating techniques for nanofibrous scaffolds have been investigated, including electrospinning, multi-axial electrospinning, and melt writing electrospinning. Although electrospun fiber fabrication has been possible for a decade, these fibers have gained attention in tissue regeneration owing to the possibility of further modifications of their chemical, biological, and mechanical properties. Recent reports suggest that post-modification after spinning make it possible to modify a nanofiber's chemical and physical characteristics for regenerating specific target tissues. The objectives of this review are to describe the details of recently developed fabrication and post-modification techniques and discuss the advanced applications and impact of the integrated system of nanofiber-based scaffolds in the field of bone tissue engineering. This review highlights the importance of nanofibrous scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Nopphadol Udomluck
- School of Integrative Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, YONSEI University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea;
| | - Dong-Jin Lim
- Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Hansoo Park
- School of Integrative Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| |
Collapse
|
62
|
Movahedi M, Asefnejad A, Rafienia M, Khorasani MT. Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation. Int J Biol Macromol 2019; 146:627-637. [PMID: 31805327 DOI: 10.1016/j.ijbiomac.2019.11.233] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/11/2019] [Accepted: 11/29/2019] [Indexed: 01/08/2023]
Abstract
The biomaterials with excellent biocompatibility and biodegradability ¬can lead to satisfactory wound healing. In this study, core-shell structured PU (polyurethane)/St (Starch) and PU/St (Hyaluronic Acid (HA)) nanofibers were fabricated with coaxial electrospinning technique. The morphology characterization of the core-shell structure of nanofibers was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. Contact-angle measurements were confirmed the core/shell structure of the electrospun nanofibers with shell and core feed rates of 0.675 L/min and <0.135 L/min, respectively. The average fiber diameter values were calculated for polyurethane nanofibers (836 ± 172.13 nm), PU/St nanofibers (612 ± 93.21 nm) and PU/St (HA) nanofibers (428 ± 78.32 nm). The average porosity values of scaffolds were determined for PU (1.251 ± 0.235 μm), PU/St (1.734 ± 0.284 μm) and PU/St (HA) (3.186 ± 0.401 μm). The core-shell PU/St and PU/St (HA) nanofibers were evaluated in vitro by using mouse fibroblasts (L929) cells. Cell morphology and viability results were exhibited significant enhancement in cell promoting and cell attachment. Furthermore, in vivo studies was indicated Core-shell PU/St (HA) wound dressing can be an appropriate candidate for skin tissue engineering and wound healing.
Collapse
Affiliation(s)
- Mehdi Movahedi
- Biomedical Engineering (Biomaterials) Department, Islamic Azad University - Science and Research Branch, Tehran, Iran
| | - Azadeh Asefnejad
- Biomedical Engineering (Biomaterials) Department, Islamic Azad University - Science and Research Branch, Tehran, Iran.
| | - Mohammad Rafienia
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Taghi Khorasani
- Biomaterial Department of Iran Polymer and Petrochemical Institute, P.O. Box 14965/159, Tehran, Iran
| |
Collapse
|
63
|
D'Amato AR, Puhl DL, Ellman SAT, Balouch B, Gilbert RJ, Palermo EF. Vastly extended drug release from poly(pro-17β-estradiol) materials facilitates in vitro neurotrophism and neuroprotection. Nat Commun 2019; 10:4830. [PMID: 31645570 PMCID: PMC6811552 DOI: 10.1038/s41467-019-12835-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022] Open
Abstract
Central nervous system (CNS) injuries persist for years, and currently there are no therapeutics that can address the complex injury cascade that develops over this time-scale. 17β-estradiol (E2) has broad tropism within the CNS, targeting and inducing beneficial phenotypic changes in myriad cells following injury. To address the unmet need for vastly prolonged E2 release, we report first-generation poly(pro-E2) biomaterial scaffolds that release E2 at nanomolar concentrations over the course of 1-10 years via slow hydrolysis in vitro. As a result of their finely tuned properties, these scaffolds demonstrate the ability to promote and guide neurite extension ex vivo and protect neurons from oxidative stress in vitro. The design and testing of these materials reported herein demonstrate the first step towards next-generation implantable biomaterials with prolonged release and excellent regenerative potential.
Collapse
Affiliation(s)
- Anthony R D'Amato
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| | - Devan L Puhl
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| | - Samuel A T Ellman
- Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| | - Bailey Balouch
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA
| | - Ryan J Gilbert
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA.
| | - Edmund F Palermo
- Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY, 12180, USA.
| |
Collapse
|
64
|
Eslahi N, Mahmoodi A, Mahmoudi N, Zandi N, Simchi A. Processing and Properties of Nanofibrous Bacterial Cellulose-Containing Polymer Composites: A Review of Recent Advances for Biomedical Applications. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1663210] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Niloofar Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amin Mahmoodi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nafiseh Mahmoudi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nooshin Zandi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
65
|
Gonzalez-Fernandez T, Sikorski P, Leach JK. Bio-instructive materials for musculoskeletal regeneration. Acta Biomater 2019; 96:20-34. [PMID: 31302298 PMCID: PMC6717669 DOI: 10.1016/j.actbio.2019.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
The prevalence and cost of disorders affecting the musculoskeletal system are predicted to rise significantly in the coming years due to the aging global population and the increase of associated risk factors. Despite being the second largest cause of disability, the clinical options for therapeutic intervention remain limited. The clinical translation of cell-based therapies for the treatment of musculoskeletal disorders faces many challenges including maintenance of cell survival in the harsh in vivo environment and the lack of control over regulating cell phenotype upon implantation. In order to address these challenges, the development of bio-instructive materials to modulate cell behavior has taken center stage as a strategy to increase the therapeutic potential of various cell populations. However, the determination of the necessary cues for a specific application and how these signals should be presented from a biomaterial remains elusive. This review highlights recent biochemical and physical strategies used to engineer bio-instructive materials for the repair of musculoskeletal tissues. There is a particular emphasis on emerging efforts such as the engineering of immunomodulatory and antibacterial materials, as well as the incorporation of these strategies into biofabrication and organ-on-a-chip approaches. STATEMENT OF SIGNIFICANCE: Disorders affecting the musculoskeletal system affect individuals across the lifespan and have a profound effect on mobility and quality of life. While small defects in many tissues can heal successfully, larger defects are often unable to heal or instead heal with inferior quality fibrous tissue and require clinical intervention. Cell-based therapies are a promising option for clinical translation, yet challenges related to maintaining cell survival and instructing cell phenotype upon implantation have limited the success of this approach. Bio-instructive materials provide an exciting opportunity to modulate cell behavior and enhance the efficacy of cell-based approaches for musculoskeletal repair. However, the identification of critical instructive cues and how to present these stimuli is a focus of intense investigation. This review highlights recent biochemical and physical strategies used to engineer bio-instructive materials for the repair of musculoskeletal tissues, while also considering exciting progress in the engineering of immunomodulatory and antibacterial materials.
Collapse
Affiliation(s)
| | - Pawel Sikorski
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA; Department of Physics, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA; Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA.
| |
Collapse
|
66
|
Nasef SM, Khozemy EE, Kamoun EA, El-Gendi H. Gamma radiation-induced crosslinked composite membranes based on polyvinyl alcohol/chitosan/AgNO3/vitamin E for biomedical applications. Int J Biol Macromol 2019; 137:878-885. [DOI: 10.1016/j.ijbiomac.2019.07.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023]
|
67
|
Amagat Molas J, Chen M. Injectable PLCL/gelatin core-shell nanofibers support noninvasive 3D delivery of stem cells. Int J Pharm 2019; 568:118566. [DOI: 10.1016/j.ijpharm.2019.118566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 02/08/2023]
|
68
|
Constructing Three-Dimensional Microenvironments Using Engineered Biomaterials for Hematopoietic Stem Cell Expansion. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:312-329. [DOI: 10.1089/ten.teb.2018.0286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
69
|
Best CA, Szafron JM, Rocco KA, Zbinden J, Dean EW, Maxfield MW, Kurobe H, Tara S, Bagi PS, Udelsman BV, Khosravi R, Yi T, Shinoka T, Humphrey JD, Breuer CK. Differential outcomes of venous and arterial tissue engineered vascular grafts highlight the importance of coupling long-term implantation studies with computational modeling. Acta Biomater 2019; 94:183-194. [PMID: 31200116 PMCID: PMC6819998 DOI: 10.1016/j.actbio.2019.05.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
Electrospinning is commonly used to generate polymeric scaffolds for tissue engineering. Using this approach, we developed a small-diameter tissue engineered vascular graft (TEVG) composed of poly-ε-caprolactone-co-l-lactic acid (PCLA) fibers and longitudinally assessed its performance within both the venous and arterial circulations of immunodeficient (SCID/bg) mice. Based on in vitro analysis demonstrating complete loss of graft strength by 12 weeks, we evaluated neovessel formation in vivo over 6-, 12- and 24-week periods. Mid-term observations indicated physiologic graft function, characterized by 100% patency and luminal matching with adjoining native vessel in both the venous and arterial circulations. An active and robust remodeling process was characterized by a confluent endothelial cell monolayer, macrophage infiltrate, and extracellular matrix deposition and remodeling. Long-term follow-up of venous TEVGs at 24 weeks revealed viable neovessel formation beyond graft degradation when implanted in this high flow, low-pressure environment. Arterial TEVGs experienced catastrophic graft failure due to aneurysmal dilatation and rupture after 14 weeks. Scaffold parameters such as porosity, fiber diameter, and degradation rate informed a previously described computational model of vascular growth and remodeling, and simulations predicted the gross differential performance of the venous and arterial TEVGs over the 24-week time course. Taken together, these results highlight the requirement for in vivo implantation studies to extend past the critical time period of polymer degradation, the importance of differential neotissue deposition relative to the mechanical (pressure) environment, and further support the utility of predictive modeling in the design, use, and evaluation of TEVGs in vivo. STATEMENT OF SIGNIFICANCE: Herein, we apply a biodegradable electrospun vascular graft to the arterial and venous circulations of the mouse and follow recipients beyond the point of polymer degradation. While venous implants formed viable neovessels, arterial grafts experienced catastrophic rupture due to aneurysmal dilation. We then inform a previously developed computational model of tissue engineered vascular graft growth and remodeling with parameters specific to the electrospun scaffolds utilized in this study. Remarkably, model simulations predict the differential performance of the venous and arterial constructs over 24 weeks. We conclude that computational simulations should inform the rational selection of scaffold parameters to fabricate tissue engineered vascular grafts that must be followed in vivo over time courses extending beyond polymer degradation.
Collapse
Affiliation(s)
- Cameron A Best
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, United States.
| | - Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | | | - Jacob Zbinden
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Biomedical Engineering Graduate Program, The Ohio State University College of Engineering, Columbus, OH, United States
| | - Ethan W Dean
- Department of Orthopaedic Surgery, University of Florida, Gainesville, FL, United States
| | - Mark W Maxfield
- Department of Thoracic Surgery, University of Massachusetts Memorial Medical Center, Worcester, MA, United States
| | - Hirotsugu Kurobe
- Department of Cardiovascular Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shuhei Tara
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Paul S Bagi
- Department of Orthopaedic Surgery, Yale-New Haven Hospital, New Haven, CT, United States
| | - Brooks V Udelsman
- Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Ramak Khosravi
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Tai Yi
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Department of Cardiac Surgery, Nationwide Children's Hospital, Columbus, OH, United States
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Christopher K Breuer
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Department of Surgery, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
70
|
Effect of extraction methods on the preparation of electrospun/electrosprayed microstructures of tilapia skin collagen. J Biosci Bioeng 2019; 128:234-240. [DOI: 10.1016/j.jbiosc.2019.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/03/2019] [Accepted: 02/08/2019] [Indexed: 12/15/2022]
|
71
|
Steier A, Muñiz A, Neale D, Lahann J. Emerging Trends in Information-Driven Engineering of Complex Biological Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806898. [PMID: 30957921 DOI: 10.1002/adma.201806898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Synthetic biological systems are used for a myriad of applications, including tissue engineered constructs for in vivo use and microengineered devices for in vitro testing. Recent advances in engineering complex biological systems have been fueled by opportunities arising from the combination of bioinspired materials with biological and computational tools. Driven by the availability of large datasets in the "omics" era of biology, the design of the next generation of tissue equivalents will have to integrate information from single-cell behavior to whole organ architecture. Herein, recent trends in combining multiscale processes to enable the design of the next generation of biomaterials are discussed. Any successful microprocessing pipeline must be able to integrate hierarchical sets of information to capture key aspects of functional tissue equivalents. Micro- and biofabrication techniques that facilitate hierarchical control as well as emerging polymer candidates used in these technologies are also reviewed.
Collapse
Affiliation(s)
- Anke Steier
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ayşe Muñiz
- Biointerfaces Institute and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dylan Neale
- Biointerfaces Institute and Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joerg Lahann
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute, Departments of Chemical Engineering, Materials Science and Engineering, and Biomedical Engineering and the, Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
72
|
Stone H, Lin S, Mequanint K. Preparation and characterization of electrospun rGO-poly(ester amide) conductive scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:324-332. [DOI: 10.1016/j.msec.2018.12.122] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 12/28/2022]
|
73
|
Elias CDMV, Maia Filho ALM, Silva LRD, Amaral FPDMD, Webster TJ, Marciano FR, Lobo AO. In Vivo Evaluation of the Genotoxic Effects of Poly (Butylene adipate-co-terephthalate)/Polypyrrole with Nanohydroxyapatite Scaffolds for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1330. [PMID: 31022828 PMCID: PMC6515421 DOI: 10.3390/ma12081330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Here, butylene adipate-co-terephthalate/polypyrrole with nanohydroxyapatite (PBAT/PPy/nHAp) scaffolds were fabricated and characterized. The electrospinning process was carried out using 12 kV, a needle of 23 G, an infusion pump set at 0.3 mL/h, and 10 cm of distance. Afterwards, nHAp was directly electrodeposited onto PBAT/PPy scaffolds using a classical three-electrode apparatus. For in vivo assays (comet assay, acute and chronic micronucleus), 60 male albino Wistar rats with 4 groups were used in each test (n = 5): PBAT/PPy; PBAT/PPy/nHAp; positive control (cyclophosphamide); and the negative control (distilled water). Peripheral blood samples were collected from the animals to perform the comet test after 4 h (for damage) and 24 h (for repair). In the comet test, it was shown that the scaffolds did not induce damage to the % DNA tail and neither for tail length. After the end of 48 h (for acute micronucleus) and 72 h (for chronic micronucleus), bone marrow was collected from each rat to perform the micronucleus test. All of the produced scaffolds did not present genotoxic effects, providing strong evidence for the biological application of PBAT/PPy/nHAp scaffolds.
Collapse
Affiliation(s)
- Conceição de Maria Vaz Elias
- Biomedical Engineering graduate program, Scientific and Technological Institute, Brasil University, São Paulo, SP 08230-030, Brazil.
| | | | - Laryssa Roque da Silva
- Laboratory of Experimental Surgery and Mutagenicity, State University of Piauí, Teresina, PI 64001-280, Brazil.
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | | | - Anderson Oliveira Lobo
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, UFPI-Federal University of Piauí, Teresina, PI 64049-550, Brazil.
| |
Collapse
|
74
|
Su W, Wang Z, Jiang J, Liu X, Zhao J, Zhang Z. Promoting tendon to bone integration using graphene oxide-doped electrospun poly(lactic-co-glycolic acid) nanofibrous membrane. Int J Nanomedicine 2019; 14:1835-1847. [PMID: 30880983 PMCID: PMC6417852 DOI: 10.2147/ijn.s183842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background These normal entheses are not reestablished after repair despite significant advances in surgical techniques. There is a significant need to develop integrative biomaterials, facilitating functional tendon-to-bone integration. Materials and methods We fabricated a highly interconnective graphene oxide-doped electrospun poly(lactide-co-glycolide acid) (GO-PLGA) nanofibrous membrane by electrospinning technique and evaluated them using in vitro cell assays. Then, we established rabbit models, the PLGA and GO-PLGA nanofibrous membranes were used to augment the rotator cuff repairs. The animals were killed postoperatively, which was followed by micro-computed tomography, histological and biomechanical evaluation. Results GO was easily mixed into PLGA filament without changing the three dimensional microstructure. An in vitro evaluation demonstrated that the PLGA membranes incorporated with GO accelerated the proliferation of BMSCs and furthered the Osteogenic differentiation of BMSCs. In addition, an in vivo assessment further revealed that the local application of GO-PLGA membrane to the gap between the tendon and the bone in a rabbit model promoted the healing enthesis, increased new bone and cartilage generation, and improved collagen arrangement and biomechanical properties in comparison with repair with PLGA only. Conclusion The electrospun GO-PLGA fibrous membrane provides an effective approach for the regeneration of tendon to bone enthesis.
Collapse
Affiliation(s)
- Wei Su
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China,
| | - Zhiying Wang
- Suzhou Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiang Su, China,
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China,
| | - Xiaoyun Liu
- Suzhou Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiang Su, China,
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China,
| | - Zhijun Zhang
- Suzhou Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiang Su, China,
| |
Collapse
|
75
|
Liu X, Zhou L, Heng P, Xiao J, Lv J, Zhang Q, Hickey ME, Tu Q, Wang J. Lecithin doped electrospun poly(lactic acid)-thermoplastic polyurethane fibers for hepatocyte viability improvement. Colloids Surf B Biointerfaces 2019; 175:264-271. [DOI: 10.1016/j.colsurfb.2018.09.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
|
76
|
Zuidema JM, Gilbert RJ, Gottipati MK. Biomaterial Approaches to Modulate Reactive Astroglial Response. Cells Tissues Organs 2018; 205:372-395. [PMID: 30517922 PMCID: PMC6397084 DOI: 10.1159/000494667] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/18/2018] [Indexed: 11/19/2022] Open
Abstract
Over several decades, biomaterial scientists have developed materials to spur axonal regeneration and limit secondary injury and tested these materials within preclinical animal models. Rarely, though, are astrocytes examined comprehensively when biomaterials are placed into the injury site. Astrocytes support neuronal function in the central nervous system. Following an injury, astrocytes undergo reactive gliosis and create a glial scar. The astrocytic glial scar forms a dense barrier which restricts the extension of regenerating axons through the injury site. However, there are several beneficial effects of the glial scar, including helping to reform the blood-brain barrier, limiting the extent of secondary injury, and supporting the health of regenerating axons near the injury site. This review provides a brief introduction to the role of astrocytes in the spinal cord, discusses astrocyte phenotypic changes that occur following injury, and highlights studies that explored astrocyte changes in response to biomaterials tested within in vitro or in vivo environments. Overall, we suggest that in order to improve biomaterial designs for spinal cord injury applications, investigators should more thoroughly consider the astrocyte response to such designs.
Collapse
Affiliation(s)
- Jonathan M Zuidema
- Department of Chemistry and Biochemistry, University of California, San Diego, California, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Manoj K Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA,
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA,
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA,
| |
Collapse
|
77
|
Frost HK, Andersson T, Johansson S, Englund-Johansson U, Ekström P, Dahlin LB, Johansson F. Electrospun nerve guide conduits have the potential to bridge peripheral nerve injuries in vivo. Sci Rep 2018; 8:16716. [PMID: 30425260 PMCID: PMC6233209 DOI: 10.1038/s41598-018-34699-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/22/2018] [Indexed: 01/22/2023] Open
Abstract
Electrospinning can be used to mimic the architecture of an acellular nerve graft, combining microfibers for guidance, and pores for cellular infiltration. We made electrospun nerve guides, from polycaprolactone (PCL) or poly-L-lactic acid (PLLA), with aligned fibers along the insides of the channels and random fibers around them. We bridged a 10 mm rat sciatic nerve defect with the guides, and, in selected groups, added a cell transplant derived from autologous stromal vascular fraction (SVF). For control, we compared to hollow silicone tubes; or autologous nerve grafts. PCL nerve guides had a high degree of autotomy (8/43 rats), a negative indicator with respect to future usefulness, while PLLA supported axonal regeneration, but did not outperform autologous nerve grafts. Transplanted cells survived in the PLLA nerve guides, but axonal regeneration was not enhanced as compared to nerve guides alone. The inflammatory response was partially enhanced by the transplanted cells in PLLA nerve grafts; Schwann cells were poorly distributed compared to nerve guide without cells. Tailor-made electrospun nerve guides support axonal regeneration in vivo, and can act as vehicles for co-transplanted cells. Our results motivate further studies exploring novel nerve guides and the effect of stromal cell-derived factors on nerve generation.
Collapse
Affiliation(s)
- Hanna K Frost
- Department of Translational Medicine - Hand Surgery, Lund University, SE-205 02, Malmö, Sweden.
- Department of Hand Surgery, Skåne University Hospital, SE-205 02, Malmö, Sweden.
| | - Tomas Andersson
- Department of Biology, Lund University, SE-223 62, Lund, Sweden
| | | | - U Englund-Johansson
- Department of Clinical Sciences in Lund - Ophtalmology, Lund University, SE-211 84, Lund, Sweden
| | - Per Ekström
- Department of Clinical Sciences in Lund - Ophtalmology, Lund University, SE-211 84, Lund, Sweden
| | - Lars B Dahlin
- Department of Translational Medicine - Hand Surgery, Lund University, SE-205 02, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | | |
Collapse
|
78
|
Valente T, Ferreira JL, Henriques C, Borges JP, Silva JC. Polymer blending or fiber blending: A comparative study using chitosan and poly(ε-caprolactone) electrospun fibers. J Appl Polym Sci 2018. [DOI: 10.1002/app.47191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tiago Valente
- Faculty of Science and Technology, Physics Department; Universidade NOVA de Lisboa; Campus de Caparica, 2829-516, Caparica Portugal
| | - José Luís Ferreira
- CENIMAT/I3N, Faculty of Science and Technology, Physics Department; Universidade NOVA de Lisboa; Campus de Caparica, 2829-516, Caparica Portugal
| | - Célia Henriques
- CENIMAT/I3N, Faculty of Science and Technology, Physics Department; Universidade NOVA de Lisboa; Campus de Caparica, 2829-516, Caparica Portugal
| | - João Paulo Borges
- CENIMAT/I3N, Faculty of Science and Technology, Materials Science Department; Universidade NOVA de Lisboa; Campus de Caparica, 2829-516, Caparica Portugal
| | - Jorge Carvalho Silva
- CENIMAT/I3N, Faculty of Science and Technology, Physics Department; Universidade NOVA de Lisboa; Campus de Caparica, 2829-516, Caparica Portugal
| |
Collapse
|
79
|
Qiao Z, Shen M, Xiao Y, Zhu M, Mignani S, Majoral JP, Shi X. Organic/inorganic nanohybrids formed using electrospun polymer nanofibers as nanoreactors. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
80
|
De Pieri A, Ribeiro S, Tsiapalis D, Eglin D, Bohner M, Dubruel P, Procter P, Zeugolis DI, Bayon Y. Joint academic and industrial efforts towards innovative and efficient solutions for clinical needs. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:129. [PMID: 30066293 DOI: 10.1007/s10856-018-6136-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
The 4th Translational Research Symposium (TRS) was organised at the annual meeting of the European Society for Biomaterials (ESB) 2017, Athens, Greece, with a focus on 'Academia-Industry Clusters of Research for Innovation Catalysis'. Collaborations between research institutes and industry can be sustained in several ways such as: European Union (EU) funded consortiums; syndicates of academic institutes, clinicians and industries; funding from national governments; and private collaborations between universities and companies. Invited speakers from industry and research institutions presented examples of these collaborations in the translation of research ideas or concepts into marketable products. The aim of the present article is to summarize the key messages conveyed during these lectures. In particular, emphasis is put on the challenges to appropriately identify and select unmet clinical needs and their translation by ultimately implementing innovative and efficient solutions achieved through joint academic and industrial efforts.
Collapse
Affiliation(s)
- Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Galway Ireland (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Galway Ireland (NUI Galway), Galway, Ireland
- Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Sofia Ribeiro
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Galway Ireland (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Galway Ireland (NUI Galway), Galway, Ireland
- Medtronic Sofradim Production, Trevoux, France
| | - Dimitrios Tsiapalis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Galway Ireland (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Galway Ireland (NUI Galway), Galway, Ireland
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Marc Bohner
- RMS Foundation, Bischmattstrasse 12, P.O. Box 203, 2544, Bettlach, Switzerland
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000, Belgium
| | - Philip Procter
- CPP SARL Divonne les Bains, 01220, Divonne les Bains, France
- Applied Materials Science, Dept Eng. Sciences, Uppsala University, 752 37, Uppsala, Sweden
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Galway Ireland (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Galway Ireland (NUI Galway), Galway, Ireland
| | - Yves Bayon
- Medtronic Sofradim Production, Trevoux, France.
| |
Collapse
|
81
|
Bowers DT, Brown JL. Nanofibers as Bioinstructive Scaffolds Capable of Modulating Differentiation through Mechanosensitive Pathways for Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 5:22-29. [PMID: 31179378 DOI: 10.1007/s40883-018-0076-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioinstructive scaffolds encode information in the physical shape and size of materials to direct cell responses. Electrospinning nanofibers is a process that offers control over scaffold architecture and fiber diameter, while providing extended linear length of fibers. This review summarizes tissue engineering literature that has utilized nanofiber scaffolds to direct stem cell differentiation for various tissues including musculoskeletal, vascular, immunological and nervous system tissues. Nanofibers are also considered for their extracellular matrix mimetic characteristics that can preserve stem cell differentiation capacity. These topics are considered in the context of focal adhesion and integrin signaling. Regenerative engineering will be enhanced by construction of scaffolds encoded with shape information to cause an attached cell to create the intended tissue at that region. Nanofibers are likely to be a bioinstructive scaffold in future regenerative engineering development as we pursue the Grand Challenges of engineering tissues.
Collapse
|
82
|
Silantyeva EA, Nasir W, Carpenter J, Manahan O, Becker ML, Willits RK. Accelerated neural differentiation of mouse embryonic stem cells on aligned GYIGSR-functionalized nanofibers. Acta Biomater 2018; 75:129-139. [PMID: 29879551 PMCID: PMC6774047 DOI: 10.1016/j.actbio.2018.05.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 12/09/2022]
Abstract
Substrates for embryonic stem cell culture are typified by poorly defined xenogenic, whole proteins or cellular components that are difficult and expensive to generate, characterize, and recapitulate. Herein, the generation of well-defined scaffolds of Gly-Tyr-Ile-Gly-Ser-Arg (GYIGSR) peptide-functionalized poly(ε-caprolactone) (PCL) aligned nanofibers are used to accelerate the neural lineage commitment and differentiation of D3 mouse embryonic stem cells (mESCs). Gene expression trends and immunocytochemistry analysis were similar to laminin-coated glass, and indicated an earlier differentiation progression than D3 mESCs on laminin. Further, GYIGSR-functionalized nanofiber substrates yielded an increased gene expression of Sox1, a neural progenitor cell marker, and Tubb3, Cdh2, Syp, neuronal cell markers, at early time points. In addition, guidance of neurites was found to parallel the fiber direction. We demonstrate the fabrication of a well-defined, xeno-free functional nanofiber scaffold and demonstrates its use as a surrogate for xenogenic and complex matrixes currently used for the neural differentiation of stem cells ex vivo. STATEMENT OF SIGNIFICANCE In this paper, we report the use of GYIGSR-functionalized poly(ε-caprolactone) aligned nanofibers as a tool to accelerate the neural lineage commitment and differentiation of D3 mouse embryonic stem cells. The results indicate that functional nanofiber substrates promote faster differentiation than laminin coated substrates. The data suggest that aligned nanofibers and post-electrospinning surface modification with bioactive species can be combined to produce translationally relevant xeno-free substrates for stem cell therapy. Future development efforts are focused on additional bioactive species that are able to function as surrogates for other xenogenic factors found in differentiation media.
Collapse
Affiliation(s)
- Elena A Silantyeva
- Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Wafaa Nasir
- Biomedical Engineering, The University of Akron, Akron, OH 44325, United States
| | | | - Olivia Manahan
- Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, OH 44325, United States; Biomedical Engineering, The University of Akron, Akron, OH 44325, United States.
| | - Rebecca K Willits
- Biomedical Engineering, The University of Akron, Akron, OH 44325, United States
| |
Collapse
|
83
|
Endothelialization of Polycaprolactone Vascular Graft under the Action of Locally Applied Vascular Endothelial Growth Factor. Bull Exp Biol Med 2018; 165:264-268. [PMID: 29926276 DOI: 10.1007/s10517-018-4144-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Indexed: 10/28/2022]
Abstract
We have previously developed a polycaprolactone (PCL) vascular graft with incorporated vascular endothelial growth factor (VEGF). Functioning of the PCL/VEGF graft in rat circulatory system over 1, 3 and 6 months after implantation into abdominal aorta was tested. Graft patency and formation of vascular wall elements were assessed histologically and by immunofluorescence staining for von Willebrand factor, CD31, CD34, and collagens I and IV and DAPI staining. Local application of VEGF promoted endothelialization and improved patency of the graft. The wall of the PCL/VEGF graft underwent remodeling due to active cellular infiltration and the extracellular matrix deposition.
Collapse
|
84
|
Gionet-Gonzales MA, Leach JK. Engineering principles for guiding spheroid function in the regeneration of bone, cartilage, and skin. Biomed Mater 2018; 13:034109. [PMID: 29460842 PMCID: PMC5898817 DOI: 10.1088/1748-605x/aab0b3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a critical need for strategies that effectively enhance cell viability and post-implantation performance in order to advance cell-based therapies. Spheroids, which are dense cellular aggregates, overcome many current limitations with transplanting individual cells. Compared to individual cells, the aggregation of cells into spheroids results in increased cell viability, together with enhanced proangiogenic, anti-inflammatory, and tissue-forming potential. Furthermore, the transplantation of cells using engineered materials enables localized delivery to the target site while providing an opportunity to guide cell fate in situ, resulting in improved therapeutic outcomes compared to systemic or localized injection. Despite promising early results achieved by freely injecting spheroids into damaged tissues, growing evidence demonstrates the advantages of entrapping spheroids within a biomaterial prior to implantation. This review will highlight the basic characteristics and qualities of spheroids, describe the underlying principles for how biomaterials influence spheroid behavior, with an emphasis on hydrogels, and provide examples of synergistic approaches using spheroids and biomaterials for tissue engineering applications.
Collapse
Affiliation(s)
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
85
|
Zuidema JM, Kumeria T, Kim D, Kang J, Wang J, Hollett G, Zhang X, Roberts DS, Chan N, Dowling C, Blanco-Suarez E, Allen NJ, Tuszynski MH, Sailor MJ. Oriented Nanofibrous Polymer Scaffolds Containing Protein-Loaded Porous Silicon Generated by Spray Nebulization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706785. [PMID: 29363828 PMCID: PMC6475500 DOI: 10.1002/adma.201706785] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/13/2017] [Indexed: 06/07/2023]
Abstract
Oriented composite nanofibers consisting of porous silicon nanoparticles (pSiNPs) embedded in a polycaprolactone or poly(lactide-co-glycolide) matrix are prepared by spray nebulization from chloroform solutions using an airbrush. The nanofibers can be oriented by an appropriate positioning of the airbrush nozzle, and they can direct growth of neurites from rat dorsal root ganglion neurons. When loaded with the model protein lysozyme, the pSiNPs allow the generation of nanofiber scaffolds that carry and deliver the protein under physiologic conditions (phosphate-buffered saline (PBS), at 37 °C) for up to 60 d, retaining 75% of the enzymatic activity over this time period. The mass loading of protein in the pSiNPs is 36%, and in the resulting polymer/pSiNP scaffolds it is 3.6%. The use of pSiNPs that display intrinsic photoluminescence (from the quantum-confined Si nanostructure) allows the polymer/pSiNP composites to be definitively identified and tracked by time-gated photoluminescence imaging. The remarkable ability of the pSiNPs to protect the protein payload from denaturation, both during processing and for the duration of the long-term aqueous release study, establishes a model for the generation of biodegradable nanofiber scaffolds that can load and deliver sensitive biologics.
Collapse
Affiliation(s)
- Jonathan M. Zuidema
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA)
| | - Tushar Kumeria
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA), School of Pharmacy, University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland 4102, Australia
| | - Dokyoung Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Jinyoung Kang
- Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Joanna Wang
- Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA)
| | - Geoffrey Hollett
- Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA)
| | - Xuan Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA)
| | - David S. Roberts
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA)
| | - Nicole Chan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA)
| | - Cari Dowling
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines, La Jolla, CA, 92037 (USA)
| | - Elena Blanco-Suarez
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines, La Jolla, CA, 92037 (USA)
| | - Nicola J. Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines, La Jolla, CA, 92037 (USA)
| | - Mark H. Tuszynski
- Veterans Administration Medical Center, 3350 La Jolla Village Drive, San Diego, CA, 92161 (USA), Department of Neurosciences, University of California, San Diego, 9500 Gilman, La Jolla, CA 92093 (USA)
| | - Michael J. Sailor
- Department of Chemistry and BiochemistryUniversity of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 (USA)
| |
Collapse
|
86
|
Saghazadeh S, Rinoldi C, Schot M, Kashaf SS, Sharifi F, Jalilian E, Nuutila K, Giatsidis G, Mostafalu P, Derakhshandeh H, Yue K, Swieszkowski W, Memic A, Tamayol A, Khademhosseini A. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev 2018; 127:138-166. [PMID: 29626550 PMCID: PMC6003879 DOI: 10.1016/j.addr.2018.04.008] [Citation(s) in RCA: 403] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 01/22/2023]
Abstract
Chronic, non-healing wounds place a significant burden on patients and healthcare systems, resulting in impaired mobility, limb amputation, or even death. Chronic wounds result from a disruption in the highly orchestrated cascade of events involved in wound closure. Significant advances in our understanding of the pathophysiology of chronic wounds have resulted in the development of drugs designed to target different aspects of the impaired processes. However, the hostility of the wound environment rich in degradative enzymes and its elevated pH, combined with differences in the time scales of different physiological processes involved in tissue regeneration require the use of effective drug delivery systems. In this review, we will first discuss the pathophysiology of chronic wounds and then the materials used for engineering drug delivery systems. Different passive and active drug delivery systems used in wound care will be reviewed. In addition, the architecture of the delivery platform and its ability to modulate drug delivery are discussed. Emerging technologies and the opportunities for engineering more effective wound care devices are also highlighted.
Collapse
Affiliation(s)
- Saghi Saghazadeh
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Chiara Rinoldi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology. Warsaw 02-507, Poland
| | - Maik Schot
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- MIRA Institute of Biomedical Technology and Technical Medicine, Department of Developmental BioEngineering, University of Twente, Enschede, The Netherlands
| | - Sara Saheb Kashaf
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- The University of Chicago Medical Scientist Training Program, Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Fatemeh Sharifi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Elmira Jalilian
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Giorgio Giatsidis
- Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Pooria Mostafalu
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Hossein Derakhshandeh
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | - Kan Yue
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
| | - Wojciech Swieszkowski
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology. Warsaw 02-507, Poland
| | - Adnan Memic
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School. Boston, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology. Cambridge, MA 02139, USA
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Department of Radiology, California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
87
|
Electrospinning pectin-based nanofibers: a parametric and cross-linker study. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0649-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Pectin, a natural biopolymer mainly derived from citrus fruits and apple peels, shows excellent biodegradable and biocompatible properties. This study investigated the electrospinning of pectin-based nanofibers. The parameters, pectin:PEO (polyethylene oxide) ratio, surfactant concentration, voltage, and flow rate, were studied to optimize the electrospinning process for generating the pectin-based nanofibers. Oligochitosan, as a novel and nonionic cross-liker of pectin, was also researched. Nanofibers were characterized by using AFM, SEM, and FTIR spectroscopy. The results showed that oligochitosan was preferred over Ca2+ because it cross-linked pectin molecules without negatively affecting the nanofiber morphology. Moreover, oligochitosan treatment produced a positive surface charge of nanofibers, determined by zeta potential measurement, which is desired for tissue engineering applications.
Collapse
|
88
|
Xiao Y, Shen M, Shi X. Design of functional electrospun nanofibers for cancer cell capture applications. J Mater Chem B 2018; 6:1420-1432. [DOI: 10.1039/c7tb03347h] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The review reports recent advances in the design of functional electrospun nanofibers for cancer cell capture applications.
Collapse
Affiliation(s)
- Yunchao Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| |
Collapse
|
89
|
Wang Y, Zhu T, Kuang H, Sun X, Zhu J, Shi Y, Wang C, Mo X, Lu S, Hong T. Preparation and evaluation of poly(ester-urethane) urea/gelatin nanofibers based on different crosslinking strategies for potential applications in vascular tissue engineering. RSC Adv 2018; 8:35917-35927. [PMID: 35558443 PMCID: PMC9088401 DOI: 10.1039/c8ra07123c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/16/2018] [Indexed: 01/18/2023] Open
Abstract
Due to the brittleness of gelatin, the resulting absence of mechanical performance restricts its applications in vascular tissue engineering. In this research, the fabrication of poly(ester-urethane) urea/gelatin (PU75) nanofibers via an electrospinning technique, followed by different crosslinking methods, resulted in the improvement of its mechanical properties. Poly(ester urethane) urea (PEUU) nanofibrous scaffolds and PU75-based nanofibrous scaffolds were characterized using scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, wide-angle X-ray diffraction (WAXRD), a mechanical properties test, a cytocompatibility assay, a hemolysis assay, and a histological analysis. Water contact angle (WCA) tests confirmed that the PU75-GA (PU75 nanofibers crosslinked with glutaraldehyde vapor) nanofibrous scaffold surfaces became more hydrophilic compared with other crosslinked nanofibrous scaffolds. The results show that the PU75-GA nanofibrous scaffold exhibited a combination of excellent mechanical properties, suitable pore diameters, hydrophilic properties, good cytocompatibility, and reliable hemocompatibility. Overall, PU75-GA nanofibers may be a potential scaffold for artificial blood vessel construction. SEM micrographs of the PEUU nanofibrous membrane, PU75 nanofibrous membrane, PU75-DT nanofibrous membrane, PU75-GA nanofibrous membrane, and PU75-E/N nanofibrous membrane and magnified 1000, 5000, and 10 000 times, respectively.![]()
Collapse
|
90
|
MacEwan MR, MacEwan S, Kovacs TR, Batts J. What Makes the Optimal Wound Healing Material? A Review of Current Science and Introduction of a Synthetic Nanofabricated Wound Care Scaffold. Cureus 2017; 9:e1736. [PMID: 29209583 PMCID: PMC5711514 DOI: 10.7759/cureus.1736] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/02/2017] [Indexed: 11/05/2022] Open
Abstract
Wound matrix materials are used to improve the regeneration of dermal and epidermal layers in both acute and chronic wounds. Contemporary wound matrices are primarily composed of biologic materials such as processed xenogeneic and allogeneic tissues. Unfortunately, existing biologic wound matrices possess multiple limitations including poor longevity, durability, strength, and enzymatic resistance required for persistent support for new tissue formation. A fully-synthetic, resorbable electrospun material (Restrata Wound Matrix, Acera, St.Louis, Missouri ) that exhibits structural similarities to the native extracellular matrix offers a new approach to the treatment of acute and chronic wounds. This novel matrix is the first product to combine the advantages of synthetic construction (e.g. resistance to enzymatic degradation, excellent biocompatibility, strength/durability and controlled degradation) with the positive attributes of biologic materials (e.g. biomimetic architecture similar to human extracellular matrix (ECM), fibrous architecture optimized to support cellular migration and proliferation, engineered porosity to encourage tissue ingrowth and vascularization). These features allow RWM to achieve rapid and complete healing of full-thickness wounds that, in preclinical studies, is comparable to Integra Bilayer Wound Matrix (Integra LifeSciences, Plainsboro, New Jersey), a gold standard biologic material with diverse clinical indications in the wound care. Together, this review suggests that the RWM offers a unique fully-synthetic alternative to existing biologic matrices that is effective, widely available, easy to store, simple to apply and low cost.
Collapse
|
91
|
MacEwan MR, MacEwan S, Wright AP, Kovacs TR, Batts J, Zhang L. Comparison of a Fully Synthetic Electrospun Matrix to a Bi-Layered Xenograft in Healing Full Thickness Cutaneous Wounds in a Porcine Model. Cureus 2017; 9:e1614. [PMID: 29098126 PMCID: PMC5659317 DOI: 10.7759/cureus.1614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A fully synthetic electrospun matrix was compared to a bi-layered xenograft in the healing of full thickness cutaneous wounds in Yucatan miniature swine. Full thickness wounds were created along the dorsum, to which these matrices were applied. The wound area was measured over the course of healing and wound tissue was scored for evidence of inflammation and healing. Animals were sacrificed at Day 15 and Day 30 and tissue samples from the wound site were harvested for histopathological analysis to evaluate inflammation and tissue healing as evidenced by granulation tissue, collagen maturation, vascularization, and epithelialization. Average wound area was significantly smaller for treatment group wounds compared to control group wounds at 15 and 30 days ([7.7 cm2 ± 0.9]/[3.8 cm2 ± 0.8]) and ([2.9 cm2 ± 1.1]/[0.2 cm2 ± 0.0]) (control/treatment) (p = 0.002/p = 0.01). Histopathological analysis of wound sections revealed superior quality of healing with treatment group wounds, as measured by inflammatory response, granulation tissue, and re-epithelialization. A fully synthetic electrospun matrix was associated with faster rates of wound closure characterized by granulation tissue, deposition of mature collagen and vascularization at earlier time points than in wounds treated with a bi-layered xenograft. Treatment with this fully synthetic material may represent a new standard of care by facilitating full-thickness wound closure while eliminating the risks of inflammatory response and disease transmission associated with biologic modalities.
Collapse
|
92
|
Bioactive glass ceramic nanoparticles-coated poly(l-lactic acid) scaffold improved osteogenic differentiation of adipose stem cells in equine. Tissue Cell 2017; 49:565-572. [PMID: 28851519 DOI: 10.1016/j.tice.2017.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 01/19/2023]
Abstract
Horses with big bone fractures have low chance to live mainly due to the lake of a proper treatment strategy. We believe that further attempts in equine bone tissue engineering will probably be required to meet all the needs for the lesion therapies. Therefore in this study we aimed to investigate the osteogenic differentiation capacity of equine adipose-derived stem cells (e-ASCs) on nano-bioactive glass (nBGs) coated poly(l-lactic acid) (PLLA) nanofibers scaffold (nBG-PLLA). Using electrospinning technique, PLLA scaffold was prepared successfully and coated with nBGs. Fabricated nanofibers were characterized by MTT, SEM, and FTIR analyses, and then osteogenic differentiation potential of isolated e-ASCs was investigated by the most key osteogenic markers, namely Alizarin red-S, ALP, calcium content and bone related (RUNX2, Collagen I, Osteonectin, and ALP) gene markers. Our results indicated that nBGs was successfully coated on PLLA scaffold and this scaffold had no negative (p>0.05) effect on cell growth rate as indicated by MTT assay. Moreover, e-ASCs that differentiated on nBGs-PLLA scaffold showed a higher (p<0.05) ALP activity, more (p<0.05) calcium content, and higher (p<0.05) expression of bone-related genes than that on uncoated PLLA scaffold and TCPS. According to the results, a combination of bioceramics and biopolymeric nanofibers hold valuable promising potentials to use for bone tissue engineering application and regenerative medicine.
Collapse
|
93
|
Tsiapalis D, De Pieri A, Biggs M, Pandit A, Zeugolis DI. Biomimetic Bioactive Biomaterials: The Next Generation of Implantable Devices. ACS Biomater Sci Eng 2017; 3:1172-1174. [PMID: 33440507 DOI: 10.1021/acsbiomaterials.7b00372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Andrea De Pieri
- National University of Ireland Galway and Proxy Biomedical Ltd
| | | | | | | |
Collapse
|
94
|
Santana-Melo GF, Rodrigues BV, da Silva E, Ricci R, Marciano FR, Webster TJ, Vasconcellos LM, Lobo AO. Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone. Colloids Surf B Biointerfaces 2017; 155:544-552. [DOI: 10.1016/j.colsurfb.2017.04.053] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/30/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
|
95
|
Yin H, Wang J, Gu Z, Feng W, Gao M, Wu Y, Zheng H, He X, Mo X. Evaluation of the potential of kartogenin encapsulated poly(L-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration. J Biomater Appl 2017; 32:331-341. [PMID: 28658997 DOI: 10.1177/0885328217717077] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tracheal stenosis is one of major challenging issues in clinical medicine because of the poor intrinsic ability of tracheal cartilage for repair. Tissue engineering provides an alternative method for the treatment of tracheal defects by generating replacement tracheal structures. In this study, we fabricated coaxial electrospun fibers using poly(L-lactic acid-co-caprolactone) and collagen solution as shell fluid and kartogenin solution as core fluid. Scanning electron microscope and transmission electron microscope images demonstrated that nanofibers had uniform and smooth structure. The kartogenin released from the scaffolds in a sustained and stable manner for about 2 months. The bioactivity of released kartogenin was evaluated by its effect on maintain the synthesis of type II collagen and glycosaminoglycans by chondrocytes. The proliferation and morphology analyses of mesenchymal stems cells derived from bone marrow of rabbits indicated the good biocompatibility of the fabricated nanofibrous scaffold. Meanwhile, the chondrogenic differentiation of bone marrow mesenchymal stem cells cultured on core-shell nanofibrous scaffold was evaluated by real-time polymerase chain reaction. The results suggested that the core-shell nanofibrous scaffold with kartogenin could promote the chondrogenic differentiation ability of bone marrow mesenchymal stem cells. Overall, the core-shell nanofibrous scaffold could be an effective delivery system for kartogenin and served as a promising tissue engineered scaffold for tracheal cartilage regeneration.
Collapse
Affiliation(s)
- Haiyue Yin
- 1 Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Juan Wang
- 1 Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Ziqi Gu
- 1 Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Wenhao Feng
- 1 Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Manchen Gao
- 2 Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wu
- 1 Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Hao Zheng
- 1 Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China.,3 State Key Laboratory of Polymer Materials Engineering, Sichuan University, Sichuan, China
| | - Xiaomin He
- 2 Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiumei Mo
- 1 Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
96
|
Kadakia PU, Growney Kalaf EA, Dunn AJ, Shornick LP, Sell SA. Comparison of silk fibroin electrospun scaffolds with poloxamer and honey additives for burn wound applications. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517710664] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A primary aim in wound-healing research is to construct an inexpensive, biodegradable dermal regeneration template with heightened moisture retention and permeability properties. The presence of moisture is important for optimal burn wound healing as it creates an environment for re-epithelialization and minimizes the risk of infections. Permeability can be achieved through a process known as electrospinning. This scaffold fabrication technique creates a mat of randomly oriented nanofibers that can readily mimic native extracellular matrix. Novel electrospun silk fibroin scaffolds were fabricated with poloxamer 407 (P407) and Manuka honey additives for a burn wound dermal regeneration template application. Enhanced human dermal fibroblast adhesion and cell infiltration were observed with the inclusion of P407, and scaffolds incorporated with Manuka honey demonstrated increased water uptake and a higher cell density within the scaffolds at the end of a 28-day period. Overall, this study established that both the silk fibroin/P407 and silk fibroin/Manuka honey scaffolds have the potential to be successful dermal regeneration templates, with P407 increasing surface wettability and Manuka honey modulating moisture retention.
Collapse
Affiliation(s)
- Parin U Kadakia
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | | | - Andrew J Dunn
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | | | - Scott A Sell
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
97
|
Zhang N, Qiao R, Su J, Yan J, Xie Z, Qiao Y, Wang X, Zhong J. Recent Advances of Electrospun Nanofibrous Membranes in the Development of Chemosensors for Heavy Metal Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604293. [PMID: 28422441 DOI: 10.1002/smll.201604293] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Indexed: 05/21/2023]
Abstract
It is critical to detect and analyze the heavy metal pollutions in environments and foods. Chemosensors have been widely investigated for fast detection of analytes such as heavy metals due to their unique advantages. In order to improve the detection sensitivity of chemosensors, recently electrospun nanofibrous membranes (ENMs) have been explored for the immobilization of chemosensors or receptors due to their high surface-to-volume ratio, high porosity, easiness of fabrication and functionalization, controllability of nanofiber properties, low cost, easy detection, no obvious pollution to the detection solution, and easy post-treatment after the detection process. The purpose of this review is to summarize and guide the development and application of ENMs in the field of chemosensors for the detection of analytes, especially heavy metals. First, heavy metals, chemosensors, and four types of preparation methods for ENM-immobilized chemosensors/receptors are briefly introduced. And then, ENM-immobilized chemosensors/receptors and their application progresses for optical, electro, and mass detections of heavy metals are reviewed according to the four types of preparation methods. Finally, the application of ENM-immobilized chemosensors/receptors is summarized and an outlook is provided. The review will provide an instruction to the research and development of ENM-immobilized chemosensors/receptors for the detection of analytes.
Collapse
Affiliation(s)
- Nan Zhang
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Ruirui Qiao
- Key Laboratory of Colloid Interface Science and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100080, China
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan Yan
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhiqiang Xie
- Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Yiqun Qiao
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xichang Wang
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Jian Zhong
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
98
|
Schussler SD, Uske K, Marwah P, Kemp FW, Bogden JD, Lin SS, Livingston Arinzeh T. Controlled Release of Vanadium from a Composite Scaffold Stimulates Mesenchymal Stem Cell Osteochondrogenesis. AAPS JOURNAL 2017; 19:1017-1028. [PMID: 28332167 DOI: 10.1208/s12248-017-0073-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/06/2017] [Indexed: 01/03/2023]
Abstract
Large bone defects often require the use of autograft, allograft, or synthetic bone graft augmentation; however, these treatments can result in delayed osseous integration. A tissue engineering strategy would be the use of a scaffold that could promote the normal fracture healing process of endochondral ossification, where an intermediate cartilage phase is later transformed to bone. This study investigated vanadyl acetylacetonate (VAC), an insulin mimetic, combined with a fibrous composite scaffold, consisting of polycaprolactone with nanoparticles of hydroxyapatite and beta-tricalcium phosphate, as a potential bone tissue engineering scaffold. The differentiation of human mesenchymal stem cells (MSCs) was evaluated on 0.05 and 0.025 wt% VAC containing composite scaffolds (VAC composites) in vitro using three different induction media: osteogenic (OS), chondrogenic (CCM), and chondrogenic/osteogenic (C/O) media, which mimics endochondral ossification. The controlled release of VAC was achieved over 28 days for the VAC composites, where approximately 30% of the VAC was released over this period. MSCs cultured on the VAC composites in C/O media had increased alkaline phosphatase activity, osteocalcin production, and collagen synthesis over the composite scaffold without VAC. In addition, gene expressions for chondrogenesis (Sox9) and hypertrophic markers (VEGF, MMP-13, and collagen X) were the highest on VAC composites. Almost a 1000-fold increase in VEGF gene expression and VEGF formation, as indicated by immunostaining, was achieved for cells cultured on VAC composites in C/O media, suggesting VAC will promote angiogenesis in vivo. These results demonstrate the potential of VAC composite scaffolds in supporting endochondral ossification as a bone tissue engineering strategy.
Collapse
Affiliation(s)
- S D Schussler
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| | - K Uske
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey, 07102, USA
| | - P Marwah
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey, 07102, USA
| | - F W Kemp
- Department of Preventive Medicine and Community Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, USA
| | - J D Bogden
- Department of Preventive Medicine and Community Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, USA
| | - S S Lin
- Department of Orthopaedic Surgery, New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, USA
| | - Treena Livingston Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey, 07102, USA.
| |
Collapse
|
99
|
Keller L, Idoux-Gillet Y, Wagner Q, Eap S, Brasse D, Schwinté P, Arruebo M, Benkirane-Jessel N. Nanoengineered implant as a new platform for regenerative nanomedicine using 3D well-organized human cell spheroids. Int J Nanomedicine 2017; 12:447-457. [PMID: 28138241 PMCID: PMC5238755 DOI: 10.2147/ijn.s116749] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In tissue engineering, it is still rare today to see clinically transferable strategies for tissue-engineered graft production that conclusively offer better tissue regeneration than the already existing technologies, decreased recovery times, and less risk of complications. Here a novel tissue-engineering concept is presented for the production of living bone implants combining 1) a nanofibrous and microporous implant as cell colonization matrix and 2) 3D bone cell spheroids. This combination, double 3D implants, shows clinical relevant thicknesses for the treatment of an early stage of bone lesions before the need of bone substitutes. The strategy presented here shows a complete closure of a defect in nude mice calvaria after only 31 days. As a novel strategy for bone regenerative nanomedicine, it holds great promises to enhance the therapeutic efficacy of living bone implants.
Collapse
Affiliation(s)
- Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), “Osteoarticular and Dental Regenerative Nanomedicine” Laboratory, UMR 1109, Faculté de Médecine, FMTS
- University of Strasbourg, Faculté de Chirurgie Dentaire
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health and Medical Research), “Osteoarticular and Dental Regenerative Nanomedicine” Laboratory, UMR 1109, Faculté de Médecine, FMTS
- University of Strasbourg, Faculté de Chirurgie Dentaire
| | - Quentin Wagner
- INSERM (French National Institute of Health and Medical Research), “Osteoarticular and Dental Regenerative Nanomedicine” Laboratory, UMR 1109, Faculté de Médecine, FMTS
- University of Strasbourg, Faculté de Chirurgie Dentaire
| | - Sandy Eap
- INSERM (French National Institute of Health and Medical Research), “Osteoarticular and Dental Regenerative Nanomedicine” Laboratory, UMR 1109, Faculté de Médecine, FMTS
- University of Strasbourg, Faculté de Chirurgie Dentaire
| | - David Brasse
- CNRS (Centre National de la Recherche Scientifique), UMR 7178, IPHC (Hubert Curien Multidisciplinary Institute), Strasbourg, France
| | - Pascale Schwinté
- INSERM (French National Institute of Health and Medical Research), “Osteoarticular and Dental Regenerative Nanomedicine” Laboratory, UMR 1109, Faculté de Médecine, FMTS
- University of Strasbourg, Faculté de Chirurgie Dentaire
| | - Manuel Arruebo
- Department of Chemical Engineering, INA (Aragon Nanoscience Institute), University of Zaragoza, Zaragoza, Spain
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), “Osteoarticular and Dental Regenerative Nanomedicine” Laboratory, UMR 1109, Faculté de Médecine, FMTS
- University of Strasbourg, Faculté de Chirurgie Dentaire
| |
Collapse
|
100
|
Tejeda-Alejandre R, Lara-Padilla H, Mendoza-Buenrostro C, Rodriguez CA, Dean D. Electrospinning Complexly-shaped, Resorbable, Bifurcated Vascular Grafts. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.procir.2017.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|