51
|
Brauer PM, Zheng Y, Evans MD, Dominguez-Brauer C, Peehl DM, Tyner AL. The alternative splice variant of protein tyrosine kinase 6 negatively regulates growth and enhances PTK6-mediated inhibition of β-catenin. PLoS One 2011; 6:e14789. [PMID: 21479203 PMCID: PMC3068133 DOI: 10.1371/journal.pone.0014789] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 03/01/2011] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine kinase 6 (PTK6), also called breast tumor kinase (BRK), is expressed in epithelial cells of various tissues including the prostate. Previously it was shown that PTK6 is localized to epithelial cell nuclei in normal prostate, but becomes cytoplasmic in human prostate tumors. PTK6 is also primarily cytoplasmic in the PC3 prostate adenocarcinoma cell line. Sequencing revealed expression of wild type full-length PTK6 transcripts in addition to an alternative transcript lacking exon 2 in PC3 cells. The alternative transcript encodes a 134 amino acid protein, referred to here as ALT-PTK6, which shares the first 77 amino acid residues including the SH3 domain with full length PTK6. RT-PCR was used to show that ALT-PTK6 is coexpressed with full length PTK6 in established human prostate and colon cell lines, as well as in primary cell lines derived from human prostate tissue and tumors. Although interaction between full-length PTK6 and ALT-PTK6 was not detected, ALT-PTK6 associates with the known PTK6 substrates Sam68 and β-catenin in GST pull-down assays. Coexpression of PTK6 and ALT-PTK6 led to suppression of PTK6 activity and reduced association of PTK6 with tyrosine phosphorylated proteins. While ALT-PTK6 alone did not influence β-catenin/TCF transcriptional activity in a luciferase reporter assay, it enhanced PTK6-mediated inhibition of β-catenin/TCF transcription by promoting PTK6 nuclear functions. Ectopic expression of ALT-PTK6 led to reduced expression of the β-catenin/TCF targets Cyclin D1 and c-Myc in PC3 cells. Expression of tetracycline-inducible ALT-PTK6 blocked the proliferation and colony formation of PC3 cells. Our findings suggest that ALT-PTK6 is able to negatively regulate growth and modulate PTK6 activity, protein-protein associations and/or subcellular localization. Fully understanding functions of ALT-PTK6 and its impact on PTK6 signaling will be critical for development of therapeutic strategies that target PTK6 in cancer.
Collapse
Affiliation(s)
- Patrick M. Brauer
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Yu Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Mark D. Evans
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Carmen Dominguez-Brauer
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Donna M. Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Angela L. Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
52
|
Elliott DJ, Rajan P. The role of the RNA-binding protein Sam68 in mammary tumourigenesis. J Pathol 2010; 222:223-6. [PMID: 20730808 DOI: 10.1002/path.2753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The RNA binding protein Sam68 (Src-associated in mitosis 68 kD) is implicated in cell signalling, transcriptional regulation, pre-mRNA splicing, and is overexpressed and/or hyperphosphorylated in breast, prostate, and renal cancers. Sam68 has roles in normal breast development; however, a study by Song et al published in this issue of The Journal of Pathology reports overexpression of nuclear and cytoplasmic Sam68 protein in a large cohort of clinical breast tumours, implicating Sam68 as a potential prognostic indicator and target for therapy. In breast cancer cells, nuclear Sam68 protein might affect the expression of cancer-relevant genes and/or modulate exon splicing patterns in a dose-dependent manner. Sam68-regulated expression of alternative transcripts may help drive mammary tumourigenesis. The high levels of cytoplasmic Sam68 protein observed in breast cancer cells could also impact on cellular signalling pathways important for mammary tumour cell biology.
Collapse
Affiliation(s)
- David J Elliott
- Institute of Human Genetics, Newcastle University, Newcastle-upon-Tyne, UK.
| | | |
Collapse
|
53
|
Abstract
Orphan nuclear bodies are defined as nonchromatin nuclear compartments that have been less well studied compared with other well-characterized structures in the nucleus. Nuclear bodies have traditionally been thought of as uniform distinct entities depending on the protein "markers" they contain. However, it is becoming increasingly apparent that nuclear bodies enriched in different sets of transcriptional regulators share a link to the ubiquitin-proteasome and SUMO-conjugation pathways. An emerging concept is that some orphan nuclear bodies might act as sites of protein modification by SUMO and/or proteasomal degradation of ubiquitin-tagged proteins. By defining a specialized environment for protein modification and degradation, orphan nuclear bodies may increase the capacity of cells to survive under varying environmental conditions.
Collapse
Affiliation(s)
- Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | | | | |
Collapse
|
54
|
The serine/arginine-rich protein SF2/ASF regulates protein sumoylation. Proc Natl Acad Sci U S A 2010; 107:16119-24. [PMID: 20805487 DOI: 10.1073/pnas.1004653107] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein modification by conjugation of small ubiquitin-related modifier (SUMO) is involved in diverse biological functions, such as transcription regulation, subcellular partitioning, stress response, DNA damage repair, and chromatin remodeling. Here, we show that the serine/arginine-rich protein SF2/ASF, a factor involved in splicing regulation and other RNA metabolism-related processes, is a regulator of the sumoylation pathway. The overexpression of this protein stimulates, but its knockdown inhibits SUMO conjugation. SF2/ASF interacts with Ubc9 and enhances sumoylation of specific substrates, sharing characteristics with already described SUMO E3 ligases. In addition, SF2/ASF interacts with the SUMO E3 ligase PIAS1 (protein inhibitor of activated STAT-1), regulating PIAS1-induced overall protein sumoylation. The RNA recognition motif 2 of SF2/ASF is necessary and sufficient for sumoylation enhancement. Moreover, SF2/ASF has a role in heat shock-induced sumoylation and promotes SUMO conjugation to RNA processing factors. These results add a component to the sumoylation pathway and a previously unexplored role for the multifunctional SR protein SF2/ASF.
Collapse
|
55
|
Garee JP, Oesterreich S. SAFB1's multiple functions in biological control-lots still to be done! J Cell Biochem 2010; 109:312-9. [PMID: 20014070 DOI: 10.1002/jcb.22420] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The examination of scaffold attachment factor B1 (SAFB1) and its multiple functions and tasks in cellular processes provides insight into its role in diseases, such as cancer. SAFB1 is a large multi-domain protein with well-described functions in transcriptional repression, and RNA splicing. It is ubiquitously expressed, and has been shown to be important in numerous cellular processes including cell growth, stress response, and apoptosis. SAFB1 is part of a protein family with at least two other family members, SAFB2 and the SAFB-like transcriptional modulator SLTM. The goal of this prospect article is to summarize known functions of SAFB1, and its roles in cellular processes, but also to speculate on less well described, novel attributes of SAFB1, such as a potential role in chromatin organization. This timely review shows aspects of SAFB1, which are proving to have a complexity far greater than was previously thought.
Collapse
Affiliation(s)
- Jason P Garee
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
56
|
Brauer PM, Tyner AL. Building a better understanding of the intracellular tyrosine kinase PTK6 - BRK by BRK. Biochim Biophys Acta Rev Cancer 2010; 1806:66-73. [PMID: 20193745 DOI: 10.1016/j.bbcan.2010.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/17/2010] [Accepted: 02/19/2010] [Indexed: 01/21/2023]
Abstract
Protein tyrosine kinase 6 (PTK6), also referred to as breast tumor kinase BRK, is a member of a distinct family of kinases that is evolutionarily related to the SRC family of tyrosine kinases. While not expressed in the normal mammary gland, PTK6 expression is detected in a large proportion of human mammary gland tumors. In breast tumor cells, PTK6 promotes growth factor signaling and cell migration. PTK6 expression is also increased in a number of other epithelial tumors, including ovarian and colon cancer. In contrast, PTK6 is expressed in diverse normal epithelia, including the linings of the gastrointestinal tract, skin and prostate, where its expression correlates with cell cycle exit and differentiation. Disruption of the mouse Ptk6 gene leads to increased growth and impaired differentiation in the small intestine that is accompanied by increased AKT and Wnt signaling. Following total body irradiation, PTK6 expression is induced in proliferating progenitor cells of the intestine, where it plays an essential role in DNA-damage induced apoptosis. A distinguishing feature of PTK6 is its flexibility in intracellular localization, due to a lack of amino-terminal myristoylation/palmitoylation. Recently a number of substrates of PTK6 have been identified, including nuclear RNA-binding proteins and transcription factors. We discuss PTK6 signaling, its apparent conflicting roles in cancer and normal epithelia, and its potential as a therapeutic target in epithelial cancers.
Collapse
Affiliation(s)
- Patrick M Brauer
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
57
|
|
58
|
Ashraf S, Hoskins BE, Chaib H, Hoefele J, Pasch A, Saisawat P, Trefz F, Hacker HW, Nuernberg G, Nuernberg P, Otto EA, Hildebrandt F. Mapping of a new locus for congenital anomalies of the kidney and urinary tract on chromosome 8q24. Nephrol Dial Transplant 2009; 25:1496-501. [PMID: 20007758 DOI: 10.1093/ndt/gfp650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Congenital anomalies of the kidney and urinary tract (CAKUT) account for the majority of end-stage renal disease in children (50%). Previous studies have mapped autosomal dominant loci for CAKUT. We here report a genome-wide search for linkage in a large pedigree of Somalian descent containing eight affected individuals with a non-syndromic form of CAKUT. METHODS Clinical data and blood samples were obtained from a Somalian family with eight individuals with CAKUT including high-grade vesicoureteral reflux and unilateral renal agenesis. Total genome search for linkage was performed using a 50K SNP Affymetric DNA microarray. As neither parent is affected, the results of the SNP array were analysed under recessive models of inheritance, with and without the assumption of consanguinity. RESULTS Using the non-consanguineous recessive model, a new gene locus (CAKUT1) for CAKUT was mapped to chromosome 8q24 with a significant maximum parametric Logarithm of the ODDs (LOD) score (LOD(max)) of 4.2. Recombinations were observed in two patients defining a critical genetic interval of 2.5 Mb physical distance flanked by markers SNP_A-1740062 and SNP_A-1653225. CONCLUSION We have thus identified a new non-syndromic recessive gene locus for CAKUT (CAKUT1) on chromosome 8q24. The identification of the disease-causing gene will provide further insights into the pathogenesis of urinary tract malformations and mechanisms of renal development.
Collapse
Affiliation(s)
- Shazia Ashraf
- 1Department of Pediatrics and of Human Genetics, University of Michigan, Ann Arbor, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Rajan P, Dalgliesh C, Bourgeois CF, Heiner M, Emami K, Clark EL, Bindereif A, Stevenin J, Robson CN, Leung HY, Elliott DJ. Proteomic identification of heterogeneous nuclear ribonucleoprotein L as a novel component of SLM/Sam68 Nuclear Bodies. BMC Cell Biol 2009; 10:82. [PMID: 19912651 PMCID: PMC2784748 DOI: 10.1186/1471-2121-10-82] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 11/13/2009] [Indexed: 11/25/2022] Open
Abstract
Background Active pre-mRNA splicing occurs co-transcriptionally, and takes place throughout the nucleoplasm of eukaryotic cells. Splicing decisions are controlled by networks of nuclear RNA-binding proteins and their target sequences, sometimes in response to signalling pathways. Sam68 (Src-associated in mitosis 68 kDa) is the prototypic member of the STAR (Signal Transduction and Activation of RNA) family of RNA-binding proteins, which regulate splicing in response to signalling cascades. Nuclear Sam68 protein is concentrated within subnuclear organelles called SLM/Sam68 Nuclear Bodies (SNBs), which also contain some other splicing regulators, signalling components and nucleic acids. Results We used proteomics to search for the major interacting protein partners of nuclear Sam68. In addition to Sam68 itself and known Sam68-associated proteins (heterogeneous nuclear ribonucleoproteins hnRNP A1, A2/B1 and G), we identified hnRNP L as a novel Sam68-interacting protein partner. hnRNP L protein was predominantly present within small nuclear protein complexes approximating to the expected size of monomers and dimers, and was quantitatively associated with nucleic acids. hnRNP L spatially co-localised with Sam68 as a novel component of SNBs and was also observed within the general nucleoplasm. Localisation within SNBs was highly specific to hnRNP L and was not shared by the closely-related hnRNP LL protein, nor any of the other Sam68-interacting proteins we identified by proteomics. The interaction between Sam68 and hnRNP L proteins was observed in a cell line which exhibits low frequency of SNBs suggesting that this association also takes place outside SNBs. Although ectopic expression of hnRNP L and Sam68 proteins independently affected splicing of CD44 variable exon v5 and TJP1 exon 20 minigenes, these proteins did not, however, co-operate with each other in splicing regulation of these target exons. Conclusion Here we identify hnRNP L as a novel SNB component. We show that, compared with other identified Sam68-associated hnRNP proteins and hnRNP LL, this co-localisation within SNBs is specific to hnRNP L. Our data suggest that the novel Sam68-hnRNP L protein interaction may have a distinct role within SNBs.
Collapse
Affiliation(s)
- Prabhakar Rajan
- Institute of Human Genetics, Newcastle University, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Huot ME, Vogel G, Richard S. Identification of a Sam68 ribonucleoprotein complex regulated by epidermal growth factor. J Biol Chem 2009; 284:31903-13. [PMID: 19762470 DOI: 10.1074/jbc.m109.018465] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sam68, Src associated in mitosis of 68 kDa, is a known RNA-binding protein and a signaling adaptor protein for tyrosine kinases. However, the proteins associated with Sam68 and the existence of a Sam68 complex, its mass, and regulation are, however, unknown. Herein we identify a large Sam68 complex with a mass >1 MDa in HeLa cells that is composed of approximately 40 proteins using an immunoprecipitation followed by a mass spectrometry approach. Many of the proteins identified are RNA-binding proteins and are known components of a previously identified structure termed the spreading initiation center. The large Sam68 complex is a ribonucleoprotein complex, as treatment with RNases caused a shift in the molecular mass of the complex to 200-450 kDa. Moreover, treatment of HeLa cells with phorbol 12-myristate 13-acetate or epidermal growth factor induced the disassociation of Sam68 from the large complex and the appearance of Sam68 within the smaller complex. Actually, in certain cell lines such as breast cancer cell lines MCF-7 and BT-20, Sam68 exists in equilibrium between a large and a small complex. The appearance of the small Sam68 complex in cells correlates with the ability of Sam68 to promote the alternative splicing of CD44 and cell migration. Our findings show that Sam68 exists in equilibrium in transformed cells between two complexes and that extracellular signals, such as epidermal growth factor stimulation, promote alternative splicing by modulating the composition of the Sam68 complex.
Collapse
Affiliation(s)
- Marc-Etienne Huot
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | | | | |
Collapse
|
61
|
Zhang Z, Li J, Zheng H, Yu C, Chen J, Liu Z, Li M, Zeng M, Zhou F, Song L. Expression and cytoplasmic localization of SAM68 is a significant and independent prognostic marker for renal cell carcinoma. Cancer Epidemiol Biomarkers Prev 2009; 18:2685-93. [PMID: 19755649 DOI: 10.1158/1055-9965.epi-09-0097] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE This retrospective study aimed to examine the expression and localization of SAM68 (Src-associated in mitosis, 68 kDa) in a larger cohort of surgical specimens of renal cell carcinoma and their correlation with the progression of human renal cell carcinoma. EXPERIMENTAL DESIGN The protein and mRNA expression levels of SAM68 in normal renal tubular epithelial cells, renal cell carcinoma cell lines, as well as nine pairs of renal cell carcinoma and matched tumor-adjacent renal tissues were examined using reverse transcription-PCR and Western blot. Moreover, SAM68 protein expression and localization in 241 clinicopathologically characterized renal cell carcinoma samples were examined by immunohistochemistry. Prognostic and diagnostic associations were examined by statistical analyses. RESULTS SAM68 was markedly overexpressed in renal cell carcinoma cell lines and renal cell carcinoma tissues at both the transcriptional and translational levels. Immunohistochemical analysis revealed high SAM68 protein expression in 129 of the 241 (53.5%) paraffin-embedded archival renal cell carcinoma specimens. Moreover, there was a significant correlation between SAM68 expression and pathologic stage (P < 0.001), T classification (P = 0.003), N classification (P = 0.001), M classification (P = 0.006), and Fuhrman grade (P < 0.001). Patients with higher SAM68 expression had shorter overall survival time than patients with lower SAM68 expression, and the cytoplasmic localization of SAM68 significantly correlated with clinicopathologic grade and outcome. Multivariate analysis indicated that SAM68 protein overexpression and cytoplasmic localization were independent predictors for poor survival of renal cell carcinoma patients. CONCLUSIONS Our results suggest that SAM68 could represent a novel and useful prognostic marker for renal cell carcinoma. High SAM68 expression and cytoplasmic localization are associated with poor overall survival in renal cell carcinoma patients.
Collapse
Affiliation(s)
- Zhiling Zhang
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Cancer Center, Zhongshan School of Medicine, Guangzhou 510060, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Lukong KE, Huot MÉ, Richard S. BRK phosphorylates PSF promoting its cytoplasmic localization and cell cycle arrest. Cell Signal 2009; 21:1415-22. [DOI: 10.1016/j.cellsig.2009.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/30/2009] [Indexed: 11/29/2022]
|
63
|
Casafont I, Berciano MT, Lafarga M. Bortezomib induces the formation of nuclear poly(A) RNA granules enriched in Sam68 and PABPN1 in sensory ganglia neurons. Neurotox Res 2009; 17:167-78. [PMID: 19609631 DOI: 10.1007/s12640-009-9086-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/17/2009] [Accepted: 06/24/2009] [Indexed: 11/28/2022]
Abstract
The ubiquitin-dependent proteasome system (UPS) is the major pathway responsible for selective nuclear and cytoplasmic protein degradation. Bortezomib, a boronic acid dipeptide, is a reversible 20S proteasome inhibitor used as novel anticancer drug, particularly in the treatment of multiple myeloma and certain lymphomas. Bortezomib-induced peripheral neuropathy (BIPN) is a widely recognized dose-limiting neurotoxicity of this proteasome inhibitor, which causes a significant negative impact on the quality of life. The pathogenic mechanisms underlying bortezomib neurotoxicity are little known. In this study a rat was used as our animal model to investigate the bortezomib-induced nuclear changes in dorsal root ganglia (DRG) neurons. Our results indicate that this neuronal population is an important target of bortezomib neurotoxicity. Nuclear changes include accumulation of ubiquitin-protein conjugates, reduction of transcriptional activity, and nuclear retention of poly(A) RNAs in numerous spherical or ring-shaped dense granules. They also contained the RNA-binding proteins PABPN1 (poly(A) binding protein nuclear 1) and Sam68, but lacked the mRNA nuclear export factors REF and Y14. At the cytoplasmic level, most neurons exhibited chromatolysis, supporting the inhibition of mRNA translation. Our results indicate that bortezomib interferes with transcription, nuclear processing and transport, and cytoplasmic translation of mRNAs in DRG neurons. They also support that this neuronal dysfunction is an essential pathogenic mechanism in the BIPN, which is characterized by sensory impairment including sensory ataxia.
Collapse
Affiliation(s)
- Iñigo Casafont
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enferemedades Neurodegenerativas (CIBERNED), Faculty of Medicine, University of Cantabria, Avd. Cardenal Herrera Oria s/n, Santander, Spain
| | | | | |
Collapse
|
64
|
Heinrich B, Zhang Z, Raitskin O, Hiller M, Benderska N, Hartmann AM, Bracco L, Elliott D, Ben-Ari S, Soreq H, Sperling J, Sperling R, Stamm S. Heterogeneous nuclear ribonucleoprotein G regulates splice site selection by binding to CC(A/C)-rich regions in pre-mRNA. J Biol Chem 2009; 284:14303-15. [PMID: 19282290 PMCID: PMC2682879 DOI: 10.1074/jbc.m901026200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 03/11/2009] [Indexed: 11/06/2022] Open
Abstract
Almost every protein-coding gene undergoes pre-mRNA splicing, and the majority of these pre-mRNAs are alternatively spliced. Alternative exon usage is regulated by the transient formation of protein complexes on the pre-mRNA that typically contain heterogeneous nuclear ribonucleoproteins (hnRNPs). Here we characterize hnRNP G, a member of the hnRNP class of proteins. We show that hnRNP G is a nuclear protein that is expressed in different concentrations in various tissues and that interacts with other splicing regulatory proteins. hnRNP G is part of the supraspliceosome, where it regulates alternative splice site selection in a concentration-dependent manner. Its action on alternative exons can occur without a functional RNA-recognition motif by binding to other splicing regulatory proteins. The RNA-recognition motif of hnRNP G binds to a loose consensus sequence containing a CC(A/C) motif, and hnRNP G preferentially regulates alternative exons where this motif is clustered in close proximity. The X-chromosomally encoded hnRNP G regulates different RNAs than its Y-chromosomal paralogue RNA-binding motif protein, Y-linked (RBMY), suggesting that differences in alternative splicing, evoked by the sex-specific expression of hnRNP G and RBMY, could contribute to molecular sex differences in mammals.
Collapse
Affiliation(s)
- Bettina Heinrich
- Institute for Biochemistry, University of Erlangen, Fahrstrasse 17, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Galarneau A, Richard S. The STAR RNA binding proteins GLD-1, QKI, SAM68 and SLM-2 bind bipartite RNA motifs. BMC Mol Biol 2009; 10:47. [PMID: 19457263 PMCID: PMC2697983 DOI: 10.1186/1471-2199-10-47] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/20/2009] [Indexed: 11/29/2022] Open
Abstract
Background SAM68, SAM68-like mammalian protein 1 (SLM-1) and 2 (SLM-2) are members of the K homology (KH) and STAR (signal transduction activator of RNA metabolism) protein family. The function of these RNA binding proteins has been difficult to elucidate mainly because of lack of genetic data providing insights about their physiological RNA targets. In comparison, genetic studies in mice and C. elegans have provided evidence as to the physiological mRNA targets of QUAKING and GLD-1 proteins, two other members of the STAR protein family. The GLD-1 binding site is defined as a hexanucleotide sequence (NACUCA) that is found in many, but not all, physiological GLD-1 mRNA targets. Previously by using Systematic Evolution of Ligands by EXponential enrichment (SELEX), we defined the QUAKING binding site as a hexanucleotide sequence with an additional half-site (UAAY). This sequence was identified in QKI mRNA targets including the mRNAs for myelin basic proteins. Results Herein we report using SELEX the identification of the SLM-2 RNA binding site as direct U(U/A)AA repeats. The bipartite nature of the consensus sequence was essential for SLM-2 high affinity RNA binding. The identification of a bipartite mRNA binding site for QKI and now SLM-2 prompted us to determine whether SAM68 and GLD-1 also bind bipartite direct repeats. Indeed SAM68 bound the SLM-2 consensus and required both U(U/A)AA motifs. We also confirmed that GLD-1 also binds a bipartite RNA sequence in vitro with a short RNA sequence from its tra-2 physiological mRNA target. Conclusion These data demonstrate that the STAR proteins QKI, GLD-1, SAM68 and SLM-2 recognize RNA with direct repeats as bipartite motifs. This information should help identify binding sites within physiological RNA targets.
Collapse
Affiliation(s)
- André Galarneau
- Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B, Davis Jewish General Hospital, and Department of Oncology, McGill University, Montréal, Québec, Canada.
| | | |
Collapse
|
66
|
An adaptor role for cytoplasmic Sam68 in modulating Src activity during cell polarization. Mol Cell Biol 2009; 29:1933-43. [PMID: 19139276 DOI: 10.1128/mcb.01707-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Src-associated substrate during mitosis with a molecular mass of 68 kDa (Sam68) is predominantly nuclear and is known to associate with proteins containing the Src homology 3 (SH3) and SH2 domains. Although Sam68 is a Src substrate, little is known about the signaling pathway that link them. Src is known to be activated transiently after cell spreading, where it modulates the activity of small Rho GTPases. Herein we report that Sam68-deficient cells exhibit loss of cell polarity and cell migration. Interestingly, Sam68-deficient cells exhibited sustained Src activity after cell attachment, resulting in the constitutive tyrosine phosphorylation and activation of p190RhoGAP and its association with p120rasGAP. Consistently, we observed that Sam68-deficient cells exhibited deregulated RhoA and Rac1 activity. By using total internal reflection fluorescence microscopy, we observed Sam68 near the plasma membrane after cell attachment coinciding with phosphorylation of its C-terminal tyrosines and association with Csk. These findings show that Sam68 localizes near the plasma membrane during cell attachment and serves as an adaptor protein to modulate Src activity for proper signaling to small Rho GTPases.
Collapse
|
67
|
Marsh K, Soros V, Cochrane A. Selective translational repression of HIV-1 RNA by Sam68DeltaC occurs by altering PABP1 binding to unspliced viral RNA. Retrovirology 2008; 5:97. [PMID: 18957126 PMCID: PMC2584037 DOI: 10.1186/1742-4690-5-97] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 10/28/2008] [Indexed: 12/13/2022] Open
Abstract
HIV-1 structural proteins are translated from incompletely spliced 9 kb and 4 kb mRNAs, which are transported to the cytoplasm by Crm1. It has been assumed that once in the cytoplasm, translation of incompletely spliced HIV-1 mRNAs occurs in the same manner as host mRNAs. Previous analyses have demonstrated that Sam68 and a mutant thereof, Sam68DeltaC, have dramatic effects on HIV gene expression, strongly enhancing and inhibiting viral structural protein synthesis, respectively. While investigating the inhibition of incompletely spliced HIV-1 mRNAs by Sam68DeltaC, we determined that the effect was independent of the perinuclear bundling of the viral RNA. Inhibition was dependent upon the nuclear export pathway used, as translation of viral RNA exported via the Tap/CTE export pathway was not blocked by Sam68DeltaC. We demonstrate that inhibition of HIV expression by Sam68DeltaC is correlated with a loss of PABP1 binding with no attendant change in polyadenosine tail length of the affected RNAs. The capacity of Sam68DeltaC to selectively inhibit translation of HIV-1 RNAs exported by Crm1 suggests that it is able to recognize unique characteristics of these viral RNPs, a property that could lead to new therapeutic approaches to controlling HIV-1 replication.
Collapse
Affiliation(s)
- Kim Marsh
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
68
|
Abstract
Sam68 (Src-associated in mitosis, 68 kDa) is a KH domain RNA binding protein implicated in a variety of cellular processes, including alternative pre-mRNA splicing, but its functions are not well understood. Using RNA interference knockdown of Sam68 expression and splicing-sensitive microarrays, we identified a set of alternative exons whose splicing depends on Sam68. Detailed analysis of one newly identified target exon in epsilon sarcoglycan (Sgce) showed that both RNA elements distributed across the adjacent introns and the RNA binding activity of Sam68 are necessary to repress the Sgce exon. Sam68 protein is upregulated upon neuronal differentiation of P19 cells, and many Sam68 RNA targets change in expression and splicing during this process. When Sam68 is knocked down by short hairpin RNAs, many Sam68-dependent splicing changes do not occur and P19 cells fail to differentiate. We also found that the differentiation of primary neuronal progenitor cells from embryonic mouse neocortex is suppressed by Sam68 depletion and promoted by Sam68 overexpression. Thus, Sam68 controls neurogenesis through its effects on a specific set of RNA targets.
Collapse
|
69
|
Rajan P, Gaughan L, Dalgliesh C, El-Sherif A, Robson CN, Leung HY, Elliott DJ. The RNA-binding and adaptor protein Sam68 modulates signal-dependent splicing and transcriptional activity of the androgen receptor. J Pathol 2008; 215:67-77. [PMID: 18273831 DOI: 10.1002/path.2324] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The RNA-binding protein Sam68 has been reported to be up-regulated in clinical cases of prostate cancer (PCa), where it is thought to contribute to cell proliferation and survival. Consistent with this, we observed over-expression of Sam68 in a panel of clinical prostate tumours as compared with benign controls. Since Sam68 is implicated in a number of signalling pathways, we reasoned that its role in PCa may involve modulation of the androgen receptor (AR) signalling cascade, which drives the onset and progression of PCa. We found that Sam68 interacts with the AR in vivo in LNCaP cells, and is dynamically recruited to androgen response elements within the promoter region of the prostate-specific antigen (PSA) gene. Based on its known functions and nuclear location, Sam68 might either: (a) co-regulate AR-dependent transcription positively or negatively; or (b) modulate AR-dependent alternative splicing by enhancing incorporation of a Sam68-responsive exon transcribed under the control of an androgen-responsive promoter. We tested these possibilities using functional assays. Both wild-type Sam68 protein and the Sam68(V229F) mutant, which is impaired in RNA binding, functioned as a ligand-dependent AR co-activator on an androgen-regulated reporter gene. In contrast, splicing of a Sam68-responsive variable exon, transcribed under control of an androgen-responsive promoter, was strongly repressed in the presence of AR and androgens. This splicing inhibition was reversed by ectopic expression of Sam68 but enhanced by Sam68(V229F). These results demonstrate that Sam68 has separable effects on AR-regulated transcriptional activity and alternative splicing, both of which may affect PCa phenotypes.
Collapse
Affiliation(s)
- P Rajan
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | | | | | | | | | | | | |
Collapse
|
70
|
Lazer G, Pe'er L, Schapira V, Richard S, Katzav S. The association of Sam68 with Vav1 contributes to tumorigenesis. Cell Signal 2007; 19:2479-86. [PMID: 17855053 DOI: 10.1016/j.cellsig.2007.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Vav1 functions in the hematopoietic system as a specific GDP/GTP nucleotide exchange factor regulated by tyrosine phosphorylation. An intact C-terminal SH3 domain of Vav1 (Vav1SH3C) was shown to be necessary for Vav1-induced transformation, yet the associating protein(s) necessary for this activity have not yet been identified. Using a proteomics approach, we identified Sam68 as a Vav1SH3C-associating protein. Sam68 (Src-associated in mitosis of 68 kD) belongs to the heteronuclear ribonucleoprotein particle K (hnRNP-K) homology (KH) domain family of RNA-binding proteins. The Vav1/Sam68 interaction was observed in vitro and in vivo. Mutants of Vav1SH3C previously shown to lose their transforming potential did not associate with Sam68. Co-expression of Vav1 and Sam68 in Jurkat T cells led to increased localization of Vav1 in the nucleus and changes in cell morphology. We then tested the contribution of Sam68 to known functions of Vav1, such as focus-forming in NIH3T3 fibroblasts and NFAT stimulation in T cells. Co-expression of oncogenic Vav1 with Sam68 in NIH3T3 fibroblasts resulted in a dose-dependent increase in foci, yet no further enhancement of NFAT activity was observed in Jurkat T cells, as compared to cells overexpressing only Vav1 or Sam68. Our results strongly suggest that Sam68 contributes to transformation by oncogenic Vav1.
Collapse
Affiliation(s)
- Galit Lazer
- The Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
71
|
Goulet I, Gauvin G, Boisvenue S, Côté J. Alternative Splicing Yields Protein Arginine Methyltransferase 1 Isoforms with Distinct Activity, Substrate Specificity, and Subcellular Localization. J Biol Chem 2007; 282:33009-21. [PMID: 17848568 DOI: 10.1074/jbc.m704349200] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PRMT1 is the predominant member of a family of protein arginine methyltransferases (PRMTs) that have been implicated in various cellular processes, including transcription, RNA processing, and signal transduction. It was previously reported that the human PRMT1 pre-mRNA was alternatively spliced to yield three isoforms with distinct N-terminal sequences. Close inspection of the genomic organization in the 5'-end of the PRMT1 gene revealed that it can produce up to seven protein isoforms, all varying in their N-terminal domain. A detailed biochemical characterization of these variants revealed that unique N-terminal sequences can influence catalytic activity as well as substrate specificity. In addition, our results uncovered the presence of a functional nuclear export sequence in PRMT1v2. Finally, we find that the relative balance of PRMT1 isoforms is altered in breast cancer.
Collapse
Affiliation(s)
- Isabelle Goulet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
72
|
Iborra FJ. Can visco-elastic phase separation, macromolecular crowding and colloidal physics explain nuclear organisation? Theor Biol Med Model 2007; 4:15. [PMID: 17430588 PMCID: PMC1853075 DOI: 10.1186/1742-4682-4-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 04/12/2007] [Indexed: 11/10/2022] Open
Abstract
Background The cell nucleus is highly compartmentalized with well-defined domains, it is not well understood how this nuclear order is maintained. Many scientists are fascinated by the different set of structures observed in the nucleus to attribute functions to them. In order to distinguish functional compartments from non-functional aggregates, I believe is important to investigate the biophysical nature of nuclear organisation. Results The various nuclear compartments can be divided broadly as chromatin or protein and/or RNA based, and they have very different dynamic properties. The chromatin compartment displays a slow, constrained diffusional motion. On the other hand, the protein/RNA compartment is very dynamic. Physical systems with dynamical asymmetry go to viscoelastic phase separation. This phase separation phenomenon leads to the formation of a long-lived interaction network of slow components (chromatin) scattered within domains rich in fast components (protein/RNA). Moreover, the nucleus is packed with macromolecules in the order of 300 mg/ml. This high concentration of macromolecules produces volume exclusion effects that enhance attractive interactions between macromolecules, known as macromolecular crowding, which favours the formation of compartments. In this paper I hypothesise that nuclear compartmentalization can be explained by viscoelastic phase separation of the dynamically different nuclear components, in combination with macromolecular crowding and the properties of colloidal particles. Conclusion I demonstrate that nuclear structure can satisfy the predictions of this hypothesis. I discuss the functional implications of this phenomenon.
Collapse
Affiliation(s)
- Francisco J Iborra
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK.
| |
Collapse
|
73
|
Paronetto MP, Achsel T, Massiello A, Chalfant CE, Sette C. The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. ACTA ACUST UNITED AC 2007; 176:929-39. [PMID: 17371836 PMCID: PMC2064079 DOI: 10.1083/jcb.200701005] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RNA-binding protein Sam68 is involved in apoptosis, but its cellular mRNA targets and its mechanism of action remain unknown. We demonstrate that Sam68 binds the mRNA for Bcl-x and affects its alternative splicing. Depletion of Sam68 by RNA interference caused accumulation of antiapoptotic Bcl-x(L), whereas its up-regulation increased the levels of proapoptotic Bcl-x(s). Tyrosine phosphorylation of Sam68 by Fyn inverted this effect and favored the Bcl-x(L) splice site selection. A point mutation in the RNA-binding domain of Sam68 influenced its splicing activity and subnuclear localization. Moreover, coexpression of ASF/SF2 with Sam68, or fusion with an RS domain, counteracted Sam68 splicing activity toward Bcl-x. Finally, Sam68 interacted with heterogenous nuclear RNP (hnRNP) A1, and depletion of hnRNP A1 or mutations that impair this interaction attenuated Bcl-x(s) splicing. Our results indicate that Sam68 plays a role in the regulation of Bcl-x alternative splicing and that tyrosine phosphorylation of Sam68 by Src-like kinases can switch its role from proapoptotic to antiapoptotic in live cells.
Collapse
Affiliation(s)
- Maria Paola Paronetto
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
74
|
Busà R, Paronetto MP, Farini D, Pierantozzi E, Botti F, Angelini DF, Attisani F, Vespasiani G, Sette C. The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells. Oncogene 2007; 26:4372-82. [PMID: 17237817 DOI: 10.1038/sj.onc.1210224] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tyrosine kinase Src is frequently activated in advanced human prostate carcinomas and its activation correlates with tyrosine phosphorylation of the RNA-binding protein Sam68. Herein, we have investigated the expression and function of Sam68 in human prostate cancer cells. Analysis of specimens obtained from 20 patients revealed that Sam68 is upregulated at the protein level in 35% of the samples. Real-time polymerase chain reaction confirmed the results at the mRNA level in most patients. Downregulation of Sam68 by RNAi in LNCaP prostate cancer cells delayed cell cycle progression and reduced the proliferation rate. Moreover, depletion of Sam68 sensitized cells to apoptosis induced by DNA-damaging agents. Similarly, stable cell lines expressing a truncated GFP-Sam68(GSG) protein displayed reduced growth rates and higher sensitivity to cisplatin-induced apoptosis. Microarray analyses revealed that a subset of genes involved in proliferation and apoptosis were altered when Sam68 was knocked down in LNCaP cells. Our results indicate that Sam68 expression supports prostate cancer cells proliferation and survival to cytotoxic agents.
Collapse
Affiliation(s)
- R Busà
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Babic I, Cherry E, Fujita DJ. SUMO modification of Sam68 enhances its ability to repress cyclin D1 expression and inhibits its ability to induce apoptosis. Oncogene 2006; 25:4955-64. [PMID: 16568089 DOI: 10.1038/sj.onc.1209504] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sam68 (Src associated in mitosis; 68 kDa) is an RNA-binding protein and substrate of Src family kinases. It is thought to play a role in cell cycle progression. Overexpression of Sam68 in fibroblasts was reported to have two separable functions dependent on its ability to bind RNA--cell cycle arrest or the induction of apoptosis. Post-translational modification with SUMO (small ubiquitin-like modifier) is common to many transcription factors and can regulate protein localization, stability and function. Here we show Sam68 to be modified by SUMO, and demonstrate that the SUMO E3 ligase (PIAS1) (protein inhibitor of activated STAT1) can enhance Sam68 sumoylation. Lysine 96, the first lysine in the amino-terminal region of Sam68, was found to be the major SUMO acceptor site. Mutation of the SUMO acceptor lysine to arginine enhanced the ability of Sam68 to induce apoptosis but inhibited its ability to act as a transcriptional inhibitor of cyclin D1 expression. A SUMO-1 Sam68 fusion protein, on the other hand, inhibited the ability of Sam68 to induce apoptosis but was a strong repressor of cyclin D1 expression. Thus, SUMO may be an important regulator of Sam68 function in cell cycle progression.
Collapse
Affiliation(s)
- I Babic
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
76
|
Richard S, Torabi N, Franco GV, Tremblay GA, Chen T, Vogel G, Morel M, Cléroux P, Forget-Richard A, Komarova S, Tremblay ML, Li W, Li A, Gao YJ, Henderson JE. Ablation of the Sam68 RNA binding protein protects mice from age-related bone loss. PLoS Genet 2005; 1:e74. [PMID: 16362077 PMCID: PMC1315279 DOI: 10.1371/journal.pgen.0010074] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 11/11/2005] [Indexed: 02/02/2023] Open
Abstract
The Src substrate associated in mitosis of 68 kDa (Sam68) is a KH-type RNA binding protein that has been shown to regulate several aspects of RNA metabolism; however, its physiologic role has remained elusive. Herein we report the generation of Sam68-null mice by homologous recombination. Aged Sam68−/− mice preserved their bone mass, in sharp contrast with 12-month-old wild-type littermates in which bone mass was decreased up to approximately 75%. In fact, the bone volume of the 12-month-old Sam68−/− mice was virtually indistinguishable from that of 4-month-old wild-type or Sam68−/− mice. Sam68−/− bone marrow stromal cells had a differentiation advantage for the osteogenic pathway. Moreover, the knockdown of Sam68 using short hairpin RNA in the embryonic mesenchymal multipotential progenitor C3H10T1/2 cells resulted in more pronounced expression of the mature osteoblast marker osteocalcin when differentiation was induced with bone morphogenetic protein-2. Cultures of mouse embryo fibroblasts generated from Sam68+/+ and Sam68−/− littermates were induced to differentiate into adipocytes with culture medium containing pioglitazone and the Sam68−/− mouse embryo fibroblasts shown to have impaired adipocyte differentiation. Furthermore, in vivo it was shown that sections of bone from 12-month-old Sam68−/− mice had few marrow adipocytes compared with their age-matched wild-type littermate controls, which exhibited fatty bone marrow. Our findings identify endogenous Sam68 as a positive regulator of adipocyte differentiation and a negative regulator of osteoblast differentiation, which is consistent with Sam68 being a modulator of bone marrow mesenchymal cell differentiation, and hence bone metabolism, in aged mice. Osteoporosis is a debilitating bone disease that is characterized by reduced bone mass and microarchitectural damage, which result in increased bone fragility and susceptibility to fracture. Peak bone mass, which is achieved by the age of 30 in humans, has been identified as a major determinant of resistance or susceptibility to osteoporosis. The authors generated mice deficient for the Sam68 RNA binding protein, a protein of unknown physiologic function. The mice develop normally and are protected against bone loss during aging. Age-related bone loss has long been associated with an increase in marrow adipocytes, which are derived from the same mesenchymal lineage as osteoblasts in bone marrow. The authors showed that Sam68 regulates the differentiation of this mesenchymal lineage, such that in its absence, osteoblasts continued to be generated in aging bone, leading to preservation of bone mass. This study identifies a physiologic role for Sam68 as a modulator of the bone marrow stem cell niche and hence of bone metabolism. The data identify Sam68 as a potential therapeutic target for the prevention and treatment of age-related bone loss.
Collapse
Affiliation(s)
- Stéphane Richard
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Shin C, Kleiman FE, Manley JL. Multiple properties of the splicing repressor SRp38 distinguish it from typical SR proteins. Mol Cell Biol 2005; 25:8334-43. [PMID: 16135820 PMCID: PMC1234314 DOI: 10.1128/mcb.25.18.8334-8343.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SR protein SRp38 is a general splicing repressor that is activated by dephosphorylation during mitosis and in response to heat shock. Here we describe experiments that provide insights into the mechanism by which SRp38 functions in splicing repression. We first show that SRp38 redistributes and colocalizes with snRNPs, but not with a typical SR protein, SC35, during mitosis and following heat shock. Supporting the functional significance of this association, a micrococcal nuclease-sensitive component, i.e., an snRNP(s), completely rescued heat shock-induced splicing repression in vitro, and purified U1 snRNP did so partially. SRp38 contains an N-terminal RNA binding domain (RBD) and a C-terminal RS domain composed of two subdomains (RS1 and RS2 domains). Unexpectedly, an RS1 deletion mutant derivative specifically inhibited the second step of splicing, while an RS2 deletion mutant retained significant dephosphorylation-dependent repression activity. Using chimeric SRp38/SC35 proteins, we show that SC35-RBD/SRp38-RS can function as a general splicing activator and that the dephosphorylated version can act as a strong splicing repressor. SRp38-RBD/SC35-RS, however, was essentially inactive in these assays. Together, our results help to define the unusual features of SRp38 that distinguish it from other SR proteins.
Collapse
Affiliation(s)
- Chanseok Shin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
78
|
Lukong KE, Larocque D, Tyner AL, Richard S. Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression. J Biol Chem 2005; 280:38639-47. [PMID: 16179349 DOI: 10.1074/jbc.m505802200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The breast tumor kinase (BRK) is a growth promoting non-receptor tyrosine kinase overexpressed in the majority of human breast tumors. BRK is known to potentiate the epidermal growth factor (EGF) response in these cells. Although BRK is known to phosphorylate the RNA-binding protein Sam68, the specific tyrosines phosphorylated and the exact role of this phosphorylation remains unknown. Herein, we have generated Sam68 phospho-specific antibodies against C-terminal phosphorylated tyrosine residues within the Sam68 nuclear localization signal. We show that BRK phosphorylates Sam68 on all three tyrosines in the nuclear localization signal. By indirect immunofluorescence we observed that BRK and EGF treatment not only phosphorylates Sam68 but also induces its relocalization. Tyrosine 440 was identified as a principal modulator of Sam68 localization and this site was phosphorylated in response to EGF treatment in human breast tumor cell lines. Moreover, this phosphorylation event was inhibited by BRK small interfering RNA treatment, consistent with Sam68 being a physiological substrate of BRK downstream of the EGF receptor in breast cancer cells. Finally, we observed that Sam68 suppressed BRK-induced cell proliferation, suggesting that Sam68 does indeed contain anti-proliferative properties that may be neutralized in breast cancer cells by phosphorylation.
Collapse
Affiliation(s)
- Kiven Erique Lukong
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research and Department of Oncology, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | |
Collapse
|
79
|
Galarneau A, Richard S. Target RNA motif and target mRNAs of the Quaking STAR protein. Nat Struct Mol Biol 2005; 12:691-8. [PMID: 16041388 DOI: 10.1038/nsmb963] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 06/20/2005] [Indexed: 11/08/2022]
Abstract
Quaking viable (Qk(v)) mice have developmental defects that result in their characteristic tremor. The quaking (Qk) locus expresses alternatively spliced RNA-binding proteins belonging to the STAR family. To characterize the RNA binding specificity of the QKI proteins, we selected for RNA species that bound QKI from random pools of RNAs and defined the QKI response element (QRE) as a bipartite consensus sequence NACUAAY-N(1-20)-UAAY. A bioinformatic analysis using the QRE identified the three known RNA targets of QKI and 1,430 new putative mRNA targets, of which 23 were validated in vivo. A large proportion of the mRNAs are implicated in development and cell differentiation, as predicted from the phenotype of the Qk(v) mice. In addition, 24% are implicated in cell growth and/or maintenance, suggesting a role for QKI in cancer.
Collapse
Affiliation(s)
- André Galarneau
- Terry Fox Molecular Oncology Group, Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Department of Oncology, McGill University, Montréal, Québec, Canada, H3T 1E2
| | | |
Collapse
|
80
|
Stoss O, Novoyatleva T, Gencheva M, Olbrich M, Benderska N, Stamm S. p59(fyn)-mediated phosphorylation regulates the activity of the tissue-specific splicing factor rSLM-1. Mol Cell Neurosci 2005; 27:8-21. [PMID: 15345239 DOI: 10.1016/j.mcn.2004.04.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 04/22/2004] [Accepted: 04/29/2004] [Indexed: 02/08/2023] Open
Abstract
The Sam68-like mammalian protein SLM-1 is a member of the STAR protein family and is related to SAM68 and SLM-2. Here, we demonstrate that rSLM-1 interacts with itself, scaffold-attachment factor B, YT521-B, SAM68, rSLM-2, SRp30c, and hnRNP G. rSLM-1 regulates splice site selection in vivo via a purine-rich enhancer. In contrast to the widely expressed SAM68 and rSLM-2 proteins, rSLM-1 is found primarily in brain and, to a much smaller degree, in testis. In the brain, rSLM-1 and rSLM-2 are predominantly expressed in different neurons. In the hippocampal formation, rSLM-1 is present only in the dentate gyrus, whereas rSLM-2 is found in the pyramidal cells of the CA1, CA3, and CA4 regions. rSLM-1, but not rSLM-2, is phosphorylated by p59(fyn). p59(fyn)-mediated phosphorylation abolishes the ability of rSLM-1 to regulate splice site selection, but has no effect on rSLM-2 activity. This suggests that rSLM-1-positive cells could respond with a change of their splicing pattern to p59(fyn) activation, whereas rSLM-2-positive cells would not be affected. Together, our data indicate that rSLM-1 is a tissue-specific splicing factor whose activity is regulated by tyrosine phosphorylation signals emanating from p59(fyn).
Collapse
Affiliation(s)
- Oliver Stoss
- Klinikum Kassel, Pathology, Mönchebergstr. 41-43, D-34125 Kassel, Germany
| | | | | | | | | | | |
Collapse
|
81
|
Sleeman JE. Dynamics of the mammalian nucleus: can microscopic movements help us to understand our genes? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2004; 362:2775-2793. [PMID: 15539370 DOI: 10.1098/rsta.2004.1463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The cell is the basic building block of human life. Each of us has existed as a single cell--the fertilized egg--and each of us is made up of billions of cells specialized in many different ways to form our tissues and organs. The nucleus of the cell, described as far back as 1682, is known to be the site of storage of chromosomes that carry the essential and unique DNA blueprint for life. With the recent publication of the entire human genome, our knowledge of exactly what our genes say has increased immeasurably. This, however, is only a small part of the story. In order for the chromosomal genes to function correctly, a complex cellular machinery must rewrite (or transcribe) the genetic instructions of the DNA into a temporary messenger molecule, messenger RNA (mRNA), rearrange (or splice) this message into a readable format and then produce a protein that accurately represents the DNA code. It is these protein molecules that are the functional result of the genetic information. This whole process is termed 'gene expression'. Both transcription and splicing of the mRNA message are carried out in the nucleus. These events must be performed accurately and efficiently in a minute volume already full of highly packaged DNA. An ever-increasing number of sub-nuclear structures have been described, from the nucleolus (first described in 1835) to newly discovered 'paraspeckles' and 'clastosomes'. In fact, as increasing numbers of molecular probes become available, so the complexity of nuclear structure appears to expand. The functions of some of these structures are currently unknown. Those whose functions are, at least partly, understood play roles in gene expression. Interestingly, alterations in nuclear structure are associated with human diseases such as spinal muscular atrophy and promyelocytic leukaemia, suggesting that the control of nuclear organization may be vital to health. The dynamic nature of the structure of the mammalian nucleus has come under increasing scrutiny over the past few years. This has largely been driven by advances in microscopy as well as the advent of in vivo labelling techniques for sub-nuclear structures. It is now possible, using a protein originally isolated from jellyfish, to visualize sub-nuclear structures in living cultured cells. Together with three-dimensional time-lapse microscopy and an ever-expanding range of photo-bleaching techniques, this technology allows us to ask detailed questions about movements of sub-nuclear structures themselves and of the proteins contained within them. It has recently become clear that sub-nuclear structures are capable of moving within the nucleus and of physically interacting with each other. It is also now known that there is a constant flux of molecules into and out of these mobile structures as well as exchange of molecules between them, rather like passengers travelling on the London Underground. The challenge for the future is to relate dynamic events at the microscopic and molecular levels back to the organism as a whole. Only by understanding how the information encoded on genes is accurately expressed at the right time and in the right place can we really take advantage of the knowledge currently available to us.
Collapse
Affiliation(s)
- Judith E Sleeman
- University of Dundee, Division of Pathology and Neuroscience, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
82
|
Haegebarth A, Heap D, Bie W, Derry JJ, Richard S, Tyner AL. The nuclear tyrosine kinase BRK/Sik phosphorylates and inhibits the RNA-binding activities of the Sam68-like mammalian proteins SLM-1 and SLM-2. J Biol Chem 2004; 279:54398-404. [PMID: 15471878 DOI: 10.1074/jbc.m409579200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Expression of the intracellular tyrosine kinase BRK/Sik is epithelial-specific and regulated during differentiation. Only a few substrates have been identified for BRK/Sik, including the KH domain containing RNA-binding protein Sam68 and the novel adaptor protein BKS. Although the physiological role of Sam68 is unknown, it has been shown to regulate mRNA transport, pre-mRNA splicing, and polyadenylation. Here we demonstrate that the Sam68-like mammalian proteins SLM-1 and SLM-2 but not the related KH domain containing heterogeneous nuclear ribonucleoprotein K are novel substrates of BRK/Sik. The expression of active BRK/Sik results in increased SLM-1 and SLM-2 phosphorylation and increased retention of BRK/Sik within the nucleus. The phosphorylation of SLM-1 and SLM-2 has functional relevance and leads to inhibition of their RNA-binding abilities. We show that SLM-1, SLM-2, and BRK/Sik have restricted patterns of expression unlike the ubiquitously expressed Sam68. Moreover, BRK/Sik, SLM-1, and Sam68 transcripts were coexpressed in the mouse gastrointestinal tract and skin, suggesting that SLM-1 and Sam68 could be physiologically relevant BRK/Sik targets in vivo. The ability of BRK/Sik to negatively regulate the RNA-binding activities of the KH domain RNA binding proteins SLM-1 and Sam68 may have an impact on the posttranscriptional regulation of epithelial cell gene expression.
Collapse
Affiliation(s)
- Andrea Haegebarth
- Departments of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | | | |
Collapse
|
83
|
Chen T, Tsujimoto N, Li E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol Cell Biol 2004; 24:9048-58. [PMID: 15456878 PMCID: PMC517890 DOI: 10.1128/mcb.24.20.9048-9058.2004] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/08/2004] [Accepted: 06/29/2004] [Indexed: 12/31/2022] Open
Abstract
Dnmt3a and Dnmt3b are responsible for the establishment of DNA methylation patterns during development. These proteins contain, in addition to a C-terminal catalytic domain, a unique N-terminal regulatory region that harbors conserved domains, including a PWWP domain. The PWWP domain, characterized by the presence of a highly conserved proline-tryptophan-tryptophan-proline motif, is a module of 100 to 150 amino acids found in many chromatin-associated proteins. However, the function of the PWWP domain remains largely unknown. In this study, we provide evidence that the PWWP domains of Dnmt3a and Dnmt3b are involved in functional specialization of these enzymes. We show that both endogenous and green fluorescent protein-tagged Dnmt3a and Dnmt3b are particularly concentrated in pericentric heterochromatin. Mutagenesis analysis indicates that their PWWP domains are required for their association with pericentric heterochromatin. Disruption of the PWWP domain abolishes the ability of Dnmt3a and Dnmt3b to methylate the major satellite repeats at pericentric heterochromatin. Furthermore, we demonstrate that the Dnmt3a PWWP domain has little DNA-binding ability, in contrast to the Dnmt3b PWWP domain, which binds DNA nonspecifically. Collectively, our results suggest that the PWWP domains of Dnmt3a and Dnmt3b are essential for targeting these enzymes to pericentric heterochromatin, probably via a mechanism other than protein-DNA interactions.
Collapse
Affiliation(s)
- Taiping Chen
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | |
Collapse
|
84
|
Ben Fredj N, Grange J, Sadoul R, Richard S, Goldberg Y, Boyer V. Depolarization-induced translocation of the RNA-binding protein Sam68 to the dendrites of hippocampal neurons. J Cell Sci 2004; 117:1079-90. [PMID: 14996936 DOI: 10.1242/jcs.00927] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The traffic and expression of mRNAs in neurons are modulated by changes in neuronal activity. The regulation of neuronal RNA-binding proteins is therefore currently receiving attention. Sam68 is a ubiquitous nuclear RNA-binding protein implicated in post-transcriptional processes such as signal-dependent splice site selection. We show that Sam68 undergoes activity-responsive translocation to the soma and dendrites of hippocampal neurons in primary culture. In unstimulated neurons transiently expressing a GFP-Sam68 fusion protein, 90% of the cells accumulated the protein exclusively in the nucleus, and 4% showed extension of GFP-Sam68 to the dendrites. This nuclear expression pattern required the integrity of the Sam68 N-terminus. When present, the dendritic GFP-Sam68 formed granules, 26% of which were colocalized with ethidium bromide-stained RNA clusters. Most of the GFP-Sam68 granules were completely stationary, but a few moved in either a retrograde or anterograde direction. Following depolarization by 25 mM KCl, 50% of neurons displayed dendritic GFP-Sam68. GFP-Sam68 invaded the dendrites after 2 hours with high KCl, and returned to the nucleus within 3 hours after termination of the KCl treatment. A control GFP fusion derived from the SC-35 splicing factor remained fully nuclear during depolarization. No significant change was observed in the phosphorylation of Sam68 after depolarization. Translocation of Sam68 to the distal dendrites was microtubule dependent. Blockade of calcium channels with nimodipine abolished the translocation. Furthermore, inhibition of CRM-1-mediated nuclear export by leptomycin B partially prevented the depolarization-induced nuclear efflux of GFP-Sam68. These results support the possible involvement of Sam68 in the activity-dependent regulation of dendritic mRNAs.
Collapse
Affiliation(s)
- Naïla Ben Fredj
- Neurodégénérescence et Plasticité, INSERM EMI 01-08, Institut National de la Santé et de la Recherche Médicale, Pavillon de Neurologie, Centre Hospitalier Universitaire, 38043 Grenoble, France
| | | | | | | | | | | |
Collapse
|
85
|
Grange J, Boyer V, Fabian-Fine R, Fredj NB, Sadoul R, Goldberg Y. Somatodendritic localization and mRNA association of the splicing regulatory protein Sam68 in the hippocampus and cortex. J Neurosci Res 2004; 75:654-66. [PMID: 14991841 DOI: 10.1002/jnr.20003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The RNA-binding protein Sam68 has been implicated in the signal-dependent processing of pre-mRNA and in the utilization of intron-containing retroviral mRNAs. Sam68 is predominantly nuclear but exhibits remarkable binding affinity for signalling proteins located at the membrane. We have investigated the subcellular distribution of Sam68 in adult rat cortex and hippocampus. Subcellular fractionation showed that the protein was most abundant in nuclei but also was present at a significant level in the cytosol and membrane fractions, including light and synaptic membranes derived from crude synaptosomes. Sam68 extracted from the synaptosomal fraction cosedimented with polysomes on sucrose gradients. In agreement with these findings, immunohistochemical staining indicated that Sam68 was concentrated in neuronal nuclei but was also detectable in the soma and dendrites. Sam68 immunoreactivity examined at the ultrastructural level was found to associate with dendritic microtubules, endoplasmic reticulum, and free polyribosomes, sometimes close to synapses. A combination of immunoprecipitation and RT-PCR directly confirmed that Sam68 was bound to polyadenylated mRNA in cortical lysates. The alphaCaMKII mRNA was identified as one of the coprecipitated transcripts; in contrast, the gephyrin and NR1-1 mRNAs were not coprecipitated, indicating a certain degree of sequence specificity in the association. In electrophoretic mobility shift assays, recombinant GST-Sam68 as well as brain-derived Sam68 bound with high affinity to the alphaCaMKII 3' untranslated region. These results suggest that Sam68 may accompany and, conceivably, regulate mature mRNAs during nuclear export, somatodendritic transport, and translation.
Collapse
Affiliation(s)
- Julien Grange
- Laboratoire Neurodégénérescence et Plasticité, INSERM EMI 01-08, Institut National de la Santé et de la Recherche Médicale, Pavillon de Neurologie, Centre Hospitalier Universitaire, Grenoble, France
| | | | | | | | | | | |
Collapse
|
86
|
Taylor SJ, Resnick RJ, Shalloway D. Sam68 exerts separable effects on cell cycle progression and apoptosis. BMC Cell Biol 2004; 5:5. [PMID: 14736338 PMCID: PMC331397 DOI: 10.1186/1471-2121-5-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 01/22/2004] [Indexed: 11/24/2022] Open
Abstract
Background The RNA-binding protein Sam68 has been implicated in a number of cellular processes, including transcription, RNA splicing and export, translation, signal transduction, cell cycle progression and replication of the human immunodeficiency virus and poliovirus. However, the precise impact it has on essential cellular functions remains largely obscure. Results In this report we show that conditional overexpression of Sam68 in fibroblasts results in both cell cycle arrest and apoptosis. Arrest in G1 phase of the cell cycle is associated with decreased levels of cyclins D1 and E RNA and protein, resulting in dramatically reduced Rb phosphorylation. Interestingly, cell cycle arrest does not require the specific RNA binding ability of Sam68. In marked contrast, induction of apoptosis by Sam68 absolutely requires a fully-functional RNA binding domain. Moreover, the anti-cancer agent trichostatin A potentiates Sam68-driven apoptosis. Conclusions For the first time we have shown that Sam68, an RNA binding protein with multiple apparent functions, exerts functionally separable effects on cell proliferation and survival, dependent on its ability to bind specifically to RNA. These findings shed new light on the ability of signal transducing RNA binding proteins to influence essential cell function. Moreover, the ability of a class of anti-cancer therapeutics to modulate its ability to promote apoptosis suggests that Sam68 status may impact some cancer treatments.
Collapse
Affiliation(s)
- Stephen J Taylor
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Ross J Resnick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, U.S.A
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
87
|
Abstract
Sam68 is one of the most studied members of the STAR family of RNA-binding proteins since its identification over a decade ago. Since its ascension into prominence, enormous progress has been made to unmask the link between the RNA-binding properties of Sam68 and the regulation of cellular processes including signal transduction, cell cycle regulation and tumorigenesis and RNA biogenesis in general. In this review we provide a detailed description of the functional domains of Sam68 and the possible biological roles that justify its superSTAR status.
Collapse
Affiliation(s)
- Kiven E Lukong
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, H3T 1E2 Québec, Canada
| | | |
Collapse
|
88
|
Paronetto MP, Venables JP, Elliott DJ, Geremia R, Rossi P, Sette C. tr-kit promotes the formation of a multimolecular complex composed by Fyn, PLCγ1 and Sam68. Oncogene 2003; 22:8707-15. [PMID: 14647465 DOI: 10.1038/sj.onc.1207016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tr-kit is a truncated form of the tyrosine kinase receptor c-kit expressed in the haploid phase of spermatogenesis. Upon microinjection, tr-kit triggers metaphase-to-anaphase transition in mouse eggs by the sequential activation of Fyn and PLCgamma1. Here, we show that tr-kit promotes the interaction of several tyrosine-phosphorylated proteins with the SH3 domain of PLCgamma1. Western blot analysis indicates that one of these proteins is Sam68, an RNA-binding protein that is known to interact with and be phosphorylated by Src-like kinases in mitosis. tr-kit promotes the association of Sam68 with PLCgamma1 and Fyn in a multimolecular complex, as demonstrated by co-immunoprecipitation of the phosphorylated forms of these proteins using antibodies directed to anyone of the partners of the complex. Expression of tr-kit potentiates the interaction of endogenous Sam68 also with the SH3 domain of Fyn. Furthermore, the subcellular localization of Sam68 is affected by tr-kit through activation of Fyn in live cells. Lastly, we show that interaction with the SH3 domain of Fyn triggers the release of Sam68 from bound RNA. Thus, our data suggest that tr-kit promotes the formation of a multimolecular complex composed of Fyn, PLCgamma1 and Sam68, which allows phosphorylation of PLCgamma1 by Fyn, and may modulate RNA metabolism.
Collapse
Affiliation(s)
- Maria Paola Paronetto
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome 'Tor Vergata', Rome, Italy
| | | | | | | | | | | |
Collapse
|
89
|
Oesterreich S. Scaffold attachment factors SAFB1 and SAFB2: Innocent bystanders or critical players in breast tumorigenesis? J Cell Biochem 2003; 90:653-61. [PMID: 14587024 DOI: 10.1002/jcb.10685] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Scaffold attachment factor B1 (SAFB1) and SAFB2 are large, multifunctional proteins that have been implicated in numerous cellular processes including chromatin organization, transcriptional regulation, RNA splicing, and stress response. While the two homologous proteins show high similarity, and functional domains are highly conserved, evidence suggests that they also have unique properties. For example, SAFB2 can be found in both the nucleus and cytoplasm, whereas SAFB1 seems to be mainly localized in the nucleus. In breast cancer cells, SAFBs function as estrogen receptor corepressors and growth inhibitors. SAFB protein expression is lost in approximately 20% of breast cancers. Interestingly, the two genes reside in close proximity, oriented head-to-head, on chromosome 19p13, a locus which is frequently lost in clinical breast cancer specimens. Furthermore, SAFB1 mutations have been identified in breast tumors that were not present in adjacent normal tissue. The possibility that SAFB1 and SAFB2 are novel breast tumor suppressor genes, and how they might function in this role, are discussed.
Collapse
Affiliation(s)
- Steffi Oesterreich
- Department of Medicine and Molecular and Cellular Biology, The Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| |
Collapse
|
90
|
Abstract
An organism ultimately reflects the coordinate expression of its genome. The misexpression of a gene can have catastrophic consequences for an organism, yet the mechanics of transcription is a local phenomenon within the cell nucleus. Chromosomal and nuclear position often dictate the activity of a specific gene. Transcription occurs in territories and in discrete localized foci within these territories. The proximity of a gene or trans-acting factor to heterochromatin can have profound functional significance. The organization of heterochromatin changes with cell development, thus conferring temporal changes on gene activity. The protein-protein interactions that engage the trans-acting factor also contribute to context-dependent transcription. Multi-protein assemblages known as enhanceosomes govern gene expression by local committee thus dictating regional transcription factor function. Local DNA architecture can prescribe enhancesome membership. The local bending of the double helix, typically mediated by architectural transcription factors, is often critical for stabilizing enhanceosomes formed from trans-acting proteins separated over small and large distances. The recognition element to which a transcription factor binds is of functional significance because DNA may act as an allosteric ligand influencing the conformation and thus the activity of the transactivation domain of the binding protein, as well as the recruitment of other proteins to the enhanceosome. Here, we review and attempt to integrate these local determinants of gene expression.
Collapse
Affiliation(s)
- Marta Alvarez
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
91
|
Derry JJ, Prins GS, Ray V, Tyner AL. Altered localization and activity of the intracellular tyrosine kinase BRK/Sik in prostate tumor cells. Oncogene 2003; 22:4212-20. [PMID: 12833144 DOI: 10.1038/sj.onc.1206465] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Breast tumor kinase (BRK) is an intracellular tyrosine kinase expressed in differentiating epithelial cells of the gastrointestinal tract and skin, and in several epithelial cancers including carcinomas of the breast and colon. We examined expression of BRK and its mouse ortholog Src-related intestinal kinase (Sik) in prostate tissues and detected it in the nuclei of normal luminal prostate epithelial cells. BRK localization was then examined in 58 human prostate biopsy samples representing various grades of prostate cancer. While nuclear localization of BRK was present in well-differentiated tumors, it was absent in poorly differentiated tumors. However localization of Sam68, a nuclear substrate of BRK/Sik, was unaltered in all prostate tumors examined. Consistent with these results, nuclear BRK was detected in the more differentiated androgen-responsive LNCaP human prostate cancer cell line that is poorly tumorigenic in host animals, but it was primarily cytoplasmic in the undifferentiated androgen-unresponsive PC3 prostate cancer cell line that forms aggressive tumors. While PC3 cells expressed higher levels of endogenous BRK than LNCaP cells, BRK was less active in these cells. Our data suggest that BRK plays a role in differentiation of prostate epithelial cells. Altered BRK localization and/or activity may provide a prognostic indicator for prostate tumor progression and be a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Jason J Derry
- Department of Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
92
|
Wang C, Politz JC, Pederson T, Huang S. RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol Biol Cell 2003; 14:2425-35. [PMID: 12808040 PMCID: PMC194890 DOI: 10.1091/mbc.e02-12-0818] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The perinucleolar compartment (PNC) is a nuclear substructure present in transformed cells. The PNC is defined by high concentrations of certain RNA binding proteins and a subset of small RNAs transcribed by RNA polymerase III (pol III), including the signal recognition particle RNA and an Alu RNA as reported here. To determine if the PNC is dependent on pol III transcription, HeLa cells were microinjected with the selective pol III inhibitor, Tagetin. This resulted in disassembly of the PNC, whereas inhibition of pol I by cycloheximide or pol II by alpha-amanitin did not significantly affect the PNC. However, overexpression of one of the PNC-associated RNAs from a pol II promoter followed by injection of Tagetin blocked the Tagetin-induced PNC disassembly, demonstrating that it is the RNA rather than pol III activity that is important for the PNC integrity. To elucidate the role of the PNC-associated protein PTB, its synthesis was inhibited by siRNA. This resulted in a reduction of the number of PNC-containing cells and the PNC size. Together, these findings suggest, as a working model, that PNCs may be involved in the metabolism of specific pol III transcripts in the transformed state and that PTB is one of the key elements mediating this process.
Collapse
Affiliation(s)
- Chen Wang
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
93
|
Raffetseder U, Frye B, Rauen T, Jürchott K, Royer HD, Jansen PL, Mertens PR. Splicing factor SRp30c interaction with Y-box protein-1 confers nuclear YB-1 shuttling and alternative splice site selection. J Biol Chem 2003; 278:18241-8. [PMID: 12604611 DOI: 10.1074/jbc.m212518200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The multifunctional DNA- and RNA-associated Y-box protein 1 (YB-1) specifically binds to splicing recognition motifs and regulates alternative splice site selection. Here, we identify the arginine/serine-rich SRp30c protein as an interacting protein of YB-1 by performing a two-hybrid screen against a human mesangial cell cDNA library. Co-immunoprecipitation studies confirm a direct interaction of tagged proteins YB-1 and SRp30c in the absence of RNA via two independent protein domains of YB-1. A high affinity interaction is conferred through the N-terminal region. We show that the subcellular YB-1 localization is dependent on the cellular SRp30c content. In proliferating cells, YB-1 localizes to the cytoplasm, whereas FLAG-SRp30c protein is detected in the nucleus. After overexpression of YB-1 and FLAG-SRp30c, both proteins are co-localized in the nucleus, and this requires the N-terminal region of YB-1. Heat shock treatment of cells, a condition under which SRp30c accumulates in stress-induced Sam68 nuclear bodies, abrogates the co-localization and YB-1 shuttles back to the cytoplasm. Finally, the functional relevance of the YB-1/SRp30c interaction for in vivo splicing is demonstrated in the E1A minigene model system. Here, changes in splice site selection are detected, that is, overexpression of YB-1 is accompanied by preferential 5' splicing site selection and formation of the 12 S isoform.
Collapse
Affiliation(s)
- Ute Raffetseder
- Division of Nephrology and Clinical Immunology, University Hospital of Aachen, 52057 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
94
|
Lasko P. Gene Regulation at the RNA Layer: RNA Binding Proteins in Intercellular Signaling Networks. Sci Signal 2003. [DOI: 10.1126/scisignal.1792003re6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
95
|
Lasko P. Gene regulation at the RNA layer: RNA binding proteins in intercellular signaling networks. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:RE6. [PMID: 12709531 DOI: 10.1126/stke.2003.179.re6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transcriptional regulators are sometimes believed to be the only targets through which signal transduction pathways regulate gene expression. Although it is certainly true that many well-characterized intercellular signaling pathways operate by modifying the activity of specific transcription factors, an increasing body of evidence indicates that external signals can modulate gene expression by posttranscriptional mechanisms. RNA binding motifs are combined with other conserved domains, such as protein-interaction domains and consensus phosphorylation motifs, to allow gene expression to be regulated at the level of the RNA in response to extracellular signals. In this review, I discuss evidence that reveals how a particular family of RNA binding proteins, called signal transduction and activation of RNA (STAR) proteins, function in signaling and in the development of multicellular organisms. Furthermore, insulin and related growth factors regulate cell growth, at least in part, by moderating the activity of eukaryotic initiation factor 4E (eIF4E)-binding protein (4EBP), a protein that does not bind RNA directly but inhibits the activity of eIF4E, which is an mRNA cap-binding protein. I discuss the evidence linking insulin signaling to 4EBP phosphorylation. Finally, several other genes have been identified from invertebrate model organisms that encode RNA binding proteins and whose mutant phenotypes implicate them in intercellular signaling, but for which the mechanisms of function currently are unclear. The study of these and other similar genes is likely to uncover a diversity of roles for RNA binding proteins in signal transduction.
Collapse
Affiliation(s)
- Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada H3A 1B1.
| |
Collapse
|
96
|
Shpargel KB, Ospina JK, Tucker KE, Matera AG, Hebert MD. Control of Cajal body number is mediated by the coilin C-terminus. J Cell Sci 2003; 116:303-12. [PMID: 12482916 DOI: 10.1242/jcs.00211] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cajal bodies (CBs) are nuclear suborganelles implicated in the post-transcriptional maturation of small nuclear and small nucleolar RNAs. The number of CBs displayed by various cell lines and tissues varies, and factors that control CB numbers within a given cell have yet to be described. In this report, we show that specific regions within the C-terminus of coilin, the CB marker protein, are responsible for regulating the number of nuclear foci. Despite the fact that the coilin N-terminal domain is responsible for its self-oligomerization activity, truncation or mutation of predicted sites of phosphorylation in the conserved C-terminal region leads to a striking alteration in the number of nuclear bodies. Similarly, coilin constructs from various species display differential propensities to form nuclear foci when expressed in heterologous backgrounds. We mapped the domain responsible for this variability to the coilin C-terminus utilizing chimeric proteins. Furthermore, the activities responsible for regulating coilin self-association must reside in the nucleus, as constructs lacking critical nuclear localization sequences fail to form foci in the cytoplasm. Factors controlling the putative signal transduction cascade that phosphorylates coilin are also discussed. The results point to a model whereby phosphorylation of the coilin C-terminus regulates the availability of the N-terminal self-interaction domain.
Collapse
Affiliation(s)
- Karl B Shpargel
- Department of Genetics, Center for Human Genetics and Program in Cell Biology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106-4955, USA
| | | | | | | | | |
Collapse
|
97
|
Abstract
The nucleus is the cellular organelle in which the bulk of the genomic information is stored. From studies using fluorescence microscopy with optical sections of fixed cells, a picture of an organized nuclear structure has emerged. Recently, the application of the green fluorescent protein (GFP) as a fluorescent dye allows the visualization of nuclear dynamics in live cells. Using four-dimensional fluorescence microscopy, the nuclear structures within an interphase nucleus are perceived to have dynamic domains. Structural analyses of a living plant nucleus contribute to our understanding of the genome information process in a particular cell in multicelluar systems.
Collapse
Affiliation(s)
- Naohiro Kato
- Biotechnology Center for Agriculture and the Environment, Rutgers, The State University of New Jersey, 59 Dudley Road, Foran Hall, New Brunswick, New Jersey 08901-8520, USA
| |
Collapse
|
98
|
Coyle JH, Guzik BW, Bor YC, Jin L, Eisner-Smerage L, Taylor SJ, Rekosh D, Hammarskjöld ML. Sam68 enhances the cytoplasmic utilization of intron-containing RNA and is functionally regulated by the nuclear kinase Sik/BRK. Mol Cell Biol 2003; 23:92-103. [PMID: 12482964 PMCID: PMC140664 DOI: 10.1128/mcb.23.1.92-103.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells normally restrict the nuclear export and expression of intron-containing mRNA. In many cell lines, this restriction can be overcome by inclusion of cis-acting elements, such as the Mason-Pfizer monkey virus constitutive transport element (CTE), in the RNA. In contrast, we observed that CTE-mediated expression from human immunodeficiency virus Gag-Pol reporters was very inefficient in 293 and 293T cells. However, addition of Sam68 led to a dramatic increase in the amount of Gag-Pol proteins produced in these cells. Enhancement of CTE function was not seen when a Sam68 point mutant (G178E) that is defective for RNA binding was used. Additionally, the effect of Sam68 was inhibited in a dose-dependent manner by coexpression of an activated form of the nuclear kinase Sik/BRK that hyperphosphorylated Sam68. RNA analysis showed that cytoplasmic Gag-Pol-CTE RNA levels were only slightly enhanced by the addition of Sam68, compared to a 60- to 70-fold increase in the levels of Gag-Pol protein expression. Thus, in this system, Sam68 functioned to enhance the cytoplasmic utilization of RNA containing the CTE. These results suggest that Sam68 may interact with specific RNAs in the nucleus to provide a "mark" that affects their cytoplasmic fate. They also provide further evidence of links between signal transduction and RNA utilization.
Collapse
Affiliation(s)
- John H Coyle
- Myles H. Thaler Center for AIDS and Human Retrovirus Research and Department of Microbiology, University of Virginia, Charlottesville 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Côté J, Boisvert FM, Boulanger MC, Bedford MT, Richard S. Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1. Mol Biol Cell 2003; 14:274-87. [PMID: 12529443 PMCID: PMC140244 DOI: 10.1091/mbc.e02-08-0484] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
RNA binding proteins often contain multiple arginine glycine repeats, a sequence that is frequently methylated by protein arginine methyltransferases. The role of this posttranslational modification in the life cycle of RNA binding proteins is not well understood. Herein, we report that Sam68, a heteronuclear ribonucleoprotein K homology domain containing RNA binding protein, associates with and is methylated in vivo by the protein arginine N-methyltransferase 1 (PRMT1). Sam68 contains asymmetrical dimethylarginines near its proline motif P3 as assessed by using a novel asymmetrical dimethylarginine-specific antibody and mass spectrometry. Deletion of the methylation sites and the use of methylase inhibitors resulted in Sam68 accumulation in the cytoplasm. Sam68 was also detected in the cytoplasm of PRMT1-deficient embryonic stem cells. Although the cellular function of Sam68 is unknown, it has been shown to export unspliced human immunodeficiency virus RNAs. Cells treated with methylase inhibitors prevented the ability of Sam68 to export unspliced human immunodeficiency virus RNAs. Other K homology domain RNA binding proteins, including SLM-1, SLM-2, QKI-5, GRP33, and heteronuclear ribonucleoprotein K were also methylated in vivo. These findings demonstrate that RNA binding proteins are in vivo substrates for PRMT1, and their methylation is essential for their proper localization and function.
Collapse
Affiliation(s)
- Jocelyn Côté
- Sir Mortimer B Davis Jewish General Hospital, Department of Oncology, McGill University, Montréal, Québec, H3T 1E2 Canada
| | | | | | | | | |
Collapse
|
100
|
Wang L, Xu J, Zeng L, Ye X, Wu Q, Dai J, Ji C, Gu S, Zhao C, Xie Y, Mao Y. Cloning and characterization of a novel human STAR domain containing cDNA KHDRBS2. Mol Biol Rep 2002; 29:369-75. [PMID: 12549823 DOI: 10.1023/a:1021246109101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
KHDRBS2, KH domain containing, RNA binding, signal transduction associated 2, is an RNA-binding protein that is tyrosine phosphorylated by Src during mitosis. It contains a KH domain,which is embedded in a larger conserved domain called the STAR domain. This protein has a 99% sequence identity with rat SLM-1 (the Sam68-like mammalian protein 1) and 98% sequence identity with mouse SLM-1 in its STAR domain. KHDRBS2 has the characteristic Sam68 SH2 and SH3 domain binding sites. RT-PCR analysis showed its transcript is ubiquitously expressed. The characterization of KHDRBS2 indicates it may link tyrosine kinase signaling cascades with some aspect of RNA metabolism.
Collapse
Affiliation(s)
- Liu Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|