51
|
Vitiello SP, Benedict JW, Padilla-Lopez S, Pearce DA. Interaction between Sdo1p and Btn1p in the Saccharomyces cerevisiae model for Batten disease. Hum Mol Genet 2009; 19:931-42. [PMID: 20015955 DOI: 10.1093/hmg/ddp560] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Juvenile Batten disease is an autosomal recessive pediatric neurodegenerative disorder caused by mutations in the CLN3 gene. The CLN3 protein primarily resides in the lysosomal membrane, but its function is unknown. We demonstrate that CLN3 interacts with SBDS, the protein mutated in Shwachman-Bodian-Diamond syndrome patients. We demonstrate that this protein-protein interaction is conserved between Btn1p and Sdo1p, the respective yeast Saccharomyces cerevisiae orthologs of CLN3 and SBDS. It was previously shown that deletion of BTN1 results in alterations in vacuolar pH and vacuolar (H(+))-ATPase (V-ATPase)-dependent H(+) transport and ATP hydrolysis. Here, we report that an SDO1 deletion strain has decreased vacuolar pH and V-ATPase-dependent H(+) transport and ATP hydrolysis. These alterations result from decreased V-ATPase subunit expression. Overexpression of BTN1 or the presence of ionophore carbonyl cyanide m-chlorophenil hydrazone (CCCP) causes decreased growth in yeast lacking SDO1. In fact, in normal cells, overexpression of BTN1 mirrors the effect of CCCP, with both resulting in increased vacuolar pH due to alterations in the coupling of V-ATPase-dependent H(+) transport and ATP hydrolysis. Thus, we propose that Sdo1p and SBDS work to regulate Btn1p and CLN3, respectively. This report highlights a novel mechanism for controlling vacuole/lysosome homeostasis by the ribosome maturation pathway that may contribute to the cellular abnormalities associated with juvenile Batten disease and Shwachman-Bodian-Diamond syndrome.
Collapse
Affiliation(s)
- Seasson Phillips Vitiello
- Center for Neural Development and Disease, Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
52
|
Simonati A, Cannelli N, Pezzini F, Aiello C, Bianchi M, Tessa A, Santorelli FM. Neuronal ceroid lipofuscinoses: many players, and more to come. FUTURE NEUROLOGY 2009. [DOI: 10.2217/fnl.09.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCL) are the most common group of progressive neurodegenerative diseases of childhood. The overall clinical features are highly similar regardless of the age at disease manifestation, the extent and shape of abnormally stored cytosomes and the severity of clinical course, and are generally characterized by failure and regression of psychomotor development, impaired vision, seizures and fatal outcome. The expanding array of genetic etiologies and disease-associated mutations in NCL provide the basis for the heterogeneity of these clinical conditions and are the focus of this review. Less understood are the pathogenic mechanisms, but common themes and molecular pathways are now emerging and new players are expected to come into the scene of NCL.
Collapse
Affiliation(s)
- Alessandro Simonati
- Department of Neurological & Visual Sciences, Section of Neurology – Child Neurology & Psychiatry Unit, Policlinico GB Rossi, Piazzale LA Scuro 1, 37134 Verona, Italy
| | - Natalia Cannelli
- Medical Genetic, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy and Molecular Medicine & Neurosciences, IRCCS Bambino Gesù Hospital, Rome, Italy
| | - Francesco Pezzini
- Department of Neurological & Visual Sciences, Section of Neurology – Child Neurology & Psychiatry Unit, Policlinico GB Rossi, Piazzale LA Scuro 1, 37134 Verona, Italy
| | - Chiara Aiello
- Molecular Medicine & Neurosciences, IRCCS Bambino Gesù Hospital, Piazza S. Onofrio 4-00165 Rome, Italy and Department of Biology, University of Rome, Rome, Italy
| | - Marzia Bianchi
- Molecular Medicine & Neurosciences, IRCCS Bambino Gesù Hospital, Piazza S. Onofrio 4-00165 Rome, Italy
| | - Alessandra Tessa
- Molecular Medicine & Neurosciences, IRCCS Bambino Gesù Hospital, Piazza S. Onofrio 4-00165 Rome, Italy
| | - Filippo M Santorelli
- Molecular Medicine & Neurosciences, IRCCS Bambino Gesù Hospital, Piazza S. Onofrio 4-00165 Rome, Italy
| |
Collapse
|
53
|
Kay GW, Verbeek MM, Furlong JM, Willemsen MAAP, Palmer DN. Neuropeptide changes and neuroactive amino acids in CSF from humans and sheep with neuronal ceroid lipofuscinoses (NCLs, Batten disease). Neurochem Int 2009; 55:783-8. [PMID: 19664668 DOI: 10.1016/j.neuint.2009.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 01/21/2023]
Abstract
Anomalies in neuropeptides and neuroactive amino acids have been postulated to play a role in neurodegeneration in a variety of diseases including the inherited neuronal ceroid lipofuscinoses (NCLs, Batten disease). These are often indicated by concentration changes in cerebrospinal fluid (CSF). Here we compare CSF neuropeptide concentrations in patients with the classical juvenile CLN3 form of NCL and the classical late infantile CLN2 form with neuropeptide and neuroactive amino acid concentrations in CSF from sheep with the late infantile variant CLN6 form. A marked disease related increase in CSF concentrations of neuron specific enolase and tau protein was noted in the juvenile CLN3 patients but this was not observed in an advanced CLN2 patient nor CLN6 affected sheep. No changes were noted in S-100b, GFAP or MBP in patients or of S-100b, GFAP or IGF-1 in affected sheep. There were no disease related changes in CSF concentrations of the neuroactive amino acids, aspartate, glutamate, serine, glutamine, glycine, taurine and GABA in these sheep. The changes observed in the CLN3 patients may be progressive markers of neurodegeneration, or of underlying metabolic changes perhaps associated with CLN3 specific changes in neuroactive amino acids, as have been postulated. The lack of changes in the CLN2 and CLN6 subjects indicate that these changes are not shared by the CLN2 or CLN6 forms and changes in CSF concentrations of these compounds are unreliable as biomarkers of neurodegeneration in the NCLs in general.
Collapse
Affiliation(s)
- Graham W Kay
- Agriculture and Life Sciences Faculty, Lincoln University, Lincoln 7647, New Zealand
| | | | | | | | | |
Collapse
|
54
|
Nugent T, Jones DT. Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics 2009; 10:159. [PMID: 19470175 PMCID: PMC2700806 DOI: 10.1186/1471-2105-10-159] [Citation(s) in RCA: 305] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 05/26/2009] [Indexed: 12/02/2022] Open
Abstract
Background Alpha-helical transmembrane (TM) proteins are involved in a wide range of important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion. Many are also prime drug targets, and it has been estimated that more than half of all drugs currently on the market target membrane proteins. However, due to the experimental difficulties involved in obtaining high quality crystals, this class of protein is severely under-represented in structural databases. In the absence of structural data, sequence-based prediction methods allow TM protein topology to be investigated. Results We present a support vector machine-based (SVM) TM protein topology predictor that integrates both signal peptide and re-entrant helix prediction, benchmarked with full cross-validation on a novel data set of 131 sequences with known crystal structures. The method achieves topology prediction accuracy of 89%, while signal peptides and re-entrant helices are predicted with 93% and 44% accuracy respectively. An additional SVM trained to discriminate between globular and TM proteins detected zero false positives, with a low false negative rate of 0.4%. We present the results of applying these tools to a number of complete genomes. Source code, data sets and a web server are freely available from . Conclusion The high accuracy of TM topology prediction which includes detection of both signal peptides and re-entrant helices, combined with the ability to effectively discriminate between TM and globular proteins, make this method ideally suited to whole genome annotation of alpha-helical transmembrane proteins.
Collapse
Affiliation(s)
- Timothy Nugent
- Bioinformatics Group, Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
55
|
Chan CH, Ramirez-Montealegre D, Pearce DA. Altered arginine metabolism in the central nervous system (CNS) of the Cln3-/- mouse model of juvenile Batten disease. Neuropathol Appl Neurobiol 2009; 35:189-207. [PMID: 19284480 DOI: 10.1111/j.1365-2990.2008.00984.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Juvenile neuronal ceroid lipofuscinoses (JNCL) or juvenile Batten disease is a recessively inherited childhood neurodegenerative disorder resulting from a mutation in CLN3, which encodes a putative lysosomal protein of unknown function. AIM Recent evidence suggests that a disruption in CLN3 function results in altered regulation of arginine transport into lysosomes, and may influence intracellular arginine levels. We sought to investigate the possible consequences of arginine dysregulation in the brain of the Cln3(-/-) mouse model of JNCL. METHODS Using a combination of enzyme assays, metabolite profiling, quantitative reverse-transcription polymerase chain reaction and Western blotting, we analysed the activities and expression of enzymes involved in arginine metabolism in the cerebral cortex and cerebellum of Cln3(-/-) mice over several developmental time points. RESULTS We report subtle, but significant changes in the activities of enzymes involved in the citrulline-NO recycling pathway, and altered regulation of neuronal nitric oxide synthase in the cortex and cerebellum of Cln3(-/-) mice. In addition, a significant decrease in arginine transport into cerebellar granule cells was observed, despite an apparent upregulation of the cationic amino acid transporter-1 transporter at the cell surface. Our results provide further evidence that CLN3 function and arginine homeostasis are intricately related, and that cellular mechanisms may act to compensate for the loss of this protein. CONCLUSIONS This and other studies indicate that CLN3 dysfunction in JNCL may result in multiple disturbances in metabolism that together contribute to the pathophysiological processes underlying this disease.
Collapse
Affiliation(s)
- C-H Chan
- Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, Rochester 14642, USA
| | | | | |
Collapse
|
56
|
Jalanko A, Braulke T. Neuronal ceroid lipofuscinoses. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:697-709. [DOI: 10.1016/j.bbamcr.2008.11.004] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/06/2008] [Accepted: 11/12/2008] [Indexed: 12/26/2022]
|
57
|
Codlin S, Mole SE. S. pombe btn1, the orthologue of the Batten disease gene CLN3, is required for vacuole protein sorting of Cpy1p and Golgi exit of Vps10p. J Cell Sci 2009; 122:1163-73. [PMID: 19299465 DOI: 10.1242/jcs.038323] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Batten disease is characterised by lysosomal dysfunction. The most common type of the disease is caused by mutations in the membrane protein CLN3, whose function is unknown. We show that the fission yeast orthologue Btn1p, previously implicated in vacuole function, is required for correct sorting of the vacuole hydrolase carboxypeptidase Y (Cpy1p). This is, in part, due to a defect in trafficking of Vps10p, the sorting receptor for Cpy1p, from the Golgi to the trans-Golgi network in btn1Delta cells. Our data also implicate btn1 in other Vps10-independent Cpy1-sorting pathways. Furthermore, btn1 affects the number, intracellular location and structure of Golgi compartments. We show that the prevacuole location of Btn1p is at the Golgi, because Btn1p colocalises predominantly with the Golgi marker Gms1p in compartments that are sensitive to Brefeldin A. Btn1p function might be linked to that of Vps34p, a phosphatidylinositol 3-kinase, because Btn1p acts as a multicopy suppressor of the severe Cpy1p vacuole protein-sorting defect of vps34Delta cells. Together, these results indicate an important role for Btn1p in the Golgi complex, which affects Golgi homeostasis and vacuole protein sorting. We propose a similar role for CLN3 in mammalian cells.
Collapse
Affiliation(s)
- Sandra Codlin
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
58
|
Wilkin M, Tongngok P, Gensch N, Clemence S, Motoki M, Yamada K, Hori K, Taniguchi-Kanai M, Franklin E, Matsuno K, Baron M. Drosophila HOPS and AP-3 complex genes are required for a Deltex-regulated activation of notch in the endosomal trafficking pathway. Dev Cell 2009; 15:762-72. [PMID: 19000840 DOI: 10.1016/j.devcel.2008.09.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/07/2008] [Accepted: 09/03/2008] [Indexed: 01/12/2023]
Abstract
DSL ligands promote proteolysis of the Notch receptor, to release active Notch intracellular domain (N(ICD)). Conversely, the E3 ubiquitin ligase Deltex can activate ligand-independent Notch proteolysis and signaling. Here we show that Deltex effects require endocytic trafficking by HOPS and AP-3 complexes. Our data suggest that Deltex shunts Notch into an endocytic pathway with two possible endpoints. If Notch transits into the lysosome lumen, it is degraded. However, if HOPS and AP-3 deliver Notch to the limiting membrane of the lysosome, degradation of the Notch extracellular domain allows subsequent Presenilin-mediated release of N(ICD). This model accounts for positive and negative regulatory effects of Deltex in vivo. Indeed, we uncover HOPS/AP-3 contributions to Notch signaling during Drosophila midline formation and neurogenesis. We discuss ways in which these endocytic pathways may modulate ligand-dependent and -independent events, as a mechanism that can potentiate Notch signaling or dampen noise in the signaling network.
Collapse
Affiliation(s)
- Marian Wilkin
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Haines RL, Codlin S, Mole SE. The fission yeast model for the lysosomal storage disorder Batten disease predicts disease severity caused by mutations in CLN3. Dis Model Mech 2008; 2:84-92. [PMID: 19132115 DOI: 10.1242/dmm.000851] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 11/14/2008] [Indexed: 12/21/2022] Open
Abstract
The function of the CLN3 protein, which is mutated in patients with the neurodegenerative lysosomal storage disorder Batten disease, has remained elusive since it was identified 13 years ago. Here, we exploited the Schizosaccharomyces pombe model to gain new insights into CLN3 function. We modelled all missense mutations of CLN3 in the orthologous protein Btn1p, as well as a series of targeted mutations, and assessed trafficking and the ability of the mutant proteins to rescue four distinct phenotypes of btn1Delta cells. Mutating the C-terminal cysteine residues of Btn1p caused it to be internalised into the vacuole, providing further evidence that this protein functions from pre-vacuole compartments. Mutations in the lumenal regions of the multi-spanning membrane protein, especially in the third lumenal domain which contains a predicted amphipathic helix, had the most significant impact on Btn1p function, indicating that these domains of CLN3 are functionally important. Only one mutant protein was able to rescue the cell curving phenotype (p.Glu295Lys), and since this mutation is associated with a very protracted disease progression, this phenotype could be used to predict the disease severity of novel mutations in CLN3. The ability to predict disease phenotypes in S. pombe confirms this yeast as an invaluable tool to understanding Batten disease.
Collapse
Affiliation(s)
- Rebecca L Haines
- MRC Laboratory for Molecular Cell Biology, UCL Institute of Child Health, University College London, Gower Street, London, UK
| | | | | |
Collapse
|
60
|
Sorting of lysosomal proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:605-14. [PMID: 19046998 DOI: 10.1016/j.bbamcr.2008.10.016] [Citation(s) in RCA: 607] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/07/2008] [Accepted: 10/30/2008] [Indexed: 11/24/2022]
Abstract
Lysosomes are composed of soluble and transmembrane proteins that are targeted to lysosomes in a signal-dependent manner. The majority of soluble acid hydrolases are modified with mannose 6-phosphate (M6P) residues, allowing their recognition by M6P receptors in the Golgi complex and ensuing transport to the endosomal/lysosomal system. Other soluble enzymes and non-enzymatic proteins are transported to lysosomes in an M6P-independent manner mediated by alternative receptors such as the lysosomal integral membrane protein LIMP-2 or sortilin. Sorting of cargo receptors and lysosomal transmembrane proteins requires sorting signals present in their cytosolic domains. These signals include dileucine-based motifs, DXXLL or [DE]XXXL[LI], and tyrosine-based motifs, YXXØ, which interact with components of clathrin coats such as GGAs or adaptor protein complexes. In addition, phosphorylation and lipid modifications regulate signal recognition and trafficking of lysosomal membrane proteins. The complex interaction of both luminal and cytosolic signals with recognition proteins guarantees the specific and directed transport of proteins to lysosomes.
Collapse
|
61
|
Metcalf DJ, Calvi AA, Seaman MNJ, Mitchison HM, Cutler DF. Loss of the Batten Disease Gene CLN3 Prevents Exit from the TGN of the Mannose 6-Phosphate Receptor. Traffic 2008; 9:1905-14. [DOI: 10.1111/j.1600-0854.2008.00807.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
62
|
Herrmann P, Druckrey-Fiskaaen C, Kouznetsova E, Heinitz K, Bigl M, Cotman SL, Schliebs R. Developmental impairments of select neurotransmitter systems in brains of Cln3(Deltaex7/8) knock-in mice, an animal model of juvenile neuronal ceroid lipofuscinosis. J Neurosci Res 2008; 86:1857-70. [PMID: 18265413 DOI: 10.1002/jnr.21630] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neuronal ceroidlipofuscinoses (NCL) are a group of neurodegenerative disorders and are the most common lysosomal storage diseases of infancy and childhood. Juvenile NCL is caused by CLN3 mutation, producing retinal degeneration, uncontrollable seizures, cognitive and motor decline, and early death before the age of 30 years. To study the pathogenetic mechanisms of the disease, Cln3 knock-in mice (Cln3(Deltaex7/8)) have been generated, which reproduce the 1.02-kb deletion in the CLN3 gene observed in more than 85% of juvenile NCL patients. To characterize the impact of the common Cln3 mutation on development of autofluorescent storage material, gliosis, glucose metabolism, oxidative stress, and transmitter receptors during postnatal brain maturation, brain tissue of Cln3(Deltaex7/8) mice at the ages of 3, 4, 5, 6, 9, and 19 months was subjected to immunocytochemistry to label gliotic markers and nitric oxide synthases; photometric assays to assess enzyme activities of glycolysis and antioxidative defense systems; and level of reactive nitrogen species as well as quantitative receptor autoradiography to detect select cholinergic, glutamatergic, and GABAergic receptor subtypes. The developmental increase in cerebral cortical autofluorescent lipofuscin-like deposition is accompanied by a significant astro- and microgliosis, increased activities of lactate dehydrogenase and phosphofructokinase, decreased level of glutathione peroxidase, enhanced amount of reactive nitrogen species, and lowered binding levels of N-methyl-D-aspartate- and M1-muscarinic acetylcholine receptors in select brain regions but hardly in GABA(A) receptor sites compared with wild-type mice. Detailed elucidation of the sequence of pathological events during postnatal development highlights new potential strategies for symptomatic treatment of the disease.
Collapse
Affiliation(s)
- Philipp Herrmann
- Paul-Flechsig-Institut for Brain Research, Department of Neurochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
63
|
Talà A, Progida C, De Stefano M, Cogli L, Spinosa MR, Bucci C, Alifano P. The HrpB-HrpA two-partner secretion system is essential for intracellular survival of Neisseria meningitidis. Cell Microbiol 2008; 10:2461-82. [PMID: 18680551 DOI: 10.1111/j.1462-5822.2008.01222.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study we used HeLa cells to investigate the role of the HrpB-HrpA two-partner secretion (TPS) system in the meningococcal infection cycle. Although there is evidence that several pathogenic microorganisms may use TPS systems to colonize epithelial surfaces, the meningococcal HrpB-HrpA TPS system was not primarily involved in adhesion to or invasion of HeLa cells. Instead, this system was essential for intracellular survival and escape from infected cells. Gentamicin protection assays, immunofluorescence and transmission electron microscopy analyses demonstrated that, in contrast to the wild-type strain, HrpB-HrpA-deficient mutants were primarily confined to late endocytic vacuoles and trapped in HeLa cells. Haemolytic tests using human erythrocytes suggested that the secreted HrpA proteins could act as manganese-dependent lysins directly involved in mediating vacuole escape. In addition, we demonstrated that escape of wild-type meningococci from infected cells required the use of an intact tubulin cytoskeleton and that the hrpB-hrpA genes, which are absent in other Neisseria spp., were upregulated during infection.
Collapse
Affiliation(s)
- Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
64
|
Codlin S, Haines RL, Burden JJE, Mole SE. Btn1 affects cytokinesis and cell-wall deposition by independent mechanisms, one of which is linked to dysregulation of vacuole pH. J Cell Sci 2008; 121:2860-70. [PMID: 18697832 DOI: 10.1242/jcs.030122] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
btn1, the Schizosaccharomyces pombe orthologue of the human Batten-disease gene CLN3, is involved in vacuole pH homeostasis. We show that loss of btn1 also results in a defective cell wall marked by sensitivity to zymolyase, a beta-glucanase. The defect can be rescued by expression of Btn1p or CLN3, and the extent of the defect correlates with disease severity. The vacuole and cell-wall defects are linked by a common pH-dependent mechanism, because they are suppressed by growth in acidic pH and a similar glucan defect is also apparent in the V-type H(+) ATPase (v-ATPase) mutants vma1Delta and vma3Delta. Significantly, Btn1p acts as a multicopy suppressor of the cell-wall and other vacuole-related defects of these v-ATPase-null cells. In addition, Btn1p is required in a second, pH-independent, process that affects sites of polarised growth and of cell-wall deposition, particularly at the septum, causing cytokinesis problems under normal growth conditions and eventual cell lysis at 37 degrees C. Thus, Btn1p impacts two independent processes, which suggests that Batten disease is more than a pH-related lysosome disorder.
Collapse
Affiliation(s)
- Sandra Codlin
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT
| | | | | | | |
Collapse
|
65
|
Novel interactions of CLN3 protein link Batten disease to dysregulation of fodrin-Na+, K+ ATPase complex. Exp Cell Res 2008; 314:2895-905. [PMID: 18621045 DOI: 10.1016/j.yexcr.2008.06.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/22/2008] [Accepted: 06/13/2008] [Indexed: 01/15/2023]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL, Batten disease) is the most common progressive neurodegenerative disorder of childhood. CLN3, the transmembrane protein underlying JNCL, is proposed to participate in multiple cellular events including membrane trafficking and cytoskeletal functions. We demonstrate here that CLN3 interacts with the plasma membrane-associated cytoskeletal and endocytic fodrin and the associated Na(+), K(+) ATPase. The ion pumping activity of Na(+), K(+) ATPase was unchanged in Cln3(-/-) mouse primary neurons. However, the immunostaining pattern of fodrin appeared abnormal in JNCL fibroblasts and Cln3(-/-) mouse brains suggesting disturbances in the fodrin cytoskeleton. Furthermore, the basal subcellular distribution as well as ouabain-induced endocytosis of neuron-specific Na(+), K(+) ATPase were remarkably affected in Cln3(-/-) mouse primary neurons. These data suggest that CLN3 is involved in the regulation of plasma membrane fodrin cytoskeleton and consequently, the plasma membrane association of Na(+), K(+) ATPase. Most of the processes regulated by multifunctional fodrin and Na(+), K(+) ATPase are also affected in JNCL and Cln3-deficiency implicating that dysregulation of fodrin cytoskeleton and non-pumping functions of Na(+), K(+) ATPase may play a role in the neuronal degeneration in JNCL.
Collapse
|
66
|
Location and connectivity determine GABAergic interneuron survival in the brains of South Hampshire sheep with CLN6 neuronal ceroid lipofuscinosis. Neurobiol Dis 2008; 32:50-65. [PMID: 18634879 DOI: 10.1016/j.nbd.2008.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/05/2008] [Accepted: 06/15/2008] [Indexed: 12/13/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs, Batten disease) are fatal inherited neurodegenerative diseases. Sheep affected with the CLN6 form provide a valuable model to investigate underlying disease mechanisms from preclinical stages. Excitatory neuron loss in these sheep is markedly regional, localized early reactive changes accurately predicting neuron loss and subsequent symptom development. This investigation of GABAergic interneuron loss revealed similar regional effects that correlate with symptoms. Loss of parvalbumin positive neurons from the affected cortex was apparent at four months and became profound by 19 months, as was somatostatin positive neuron loss to a lesser extent. Conversely calbindin and neuropeptide Y positive neurons were relatively preserved and calretinin staining temporarily increased. Staining of subcortical regions was more intense but subcortical architecture remained relatively intact. Discrete subcortical changes followed from cortical changes in interconnected regions. These data highlight cellular location and interconnectivity as the major determinants of neuron survival, rather than phenotype.
Collapse
|
67
|
Sheiner L, Dowse TJ, Soldati-Favre D. Identification of Trafficking Determinants for Polytopic Rhomboid Proteases in Toxoplasma gondii. Traffic 2008; 9:665-77. [DOI: 10.1111/j.1600-0854.2008.00736.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
68
|
Sulzer D, Mosharov E, Talloczy Z, Zucca FA, Simon JD, Zecca L. Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. J Neurochem 2008; 106:24-36. [PMID: 18384642 DOI: 10.1111/j.1471-4159.2008.05385.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The most striking morphologic change in neurons during normal aging is the accumulation of autophagic vacuoles filled with lipofuscin or neuromelanin pigments. These organelles are similar to those containing the ceroid pigments associated with neurologic disorders, particularly in diseases caused by lysosomal dysfunction. The pigments arise from incompletely degraded proteins and lipids principally derived from the breakdown of mitochondria or products of oxidized catecholamines. Pigmented autophagic vacuoles may eventually occupy a major portion of the neuronal cell body volume because of resistance of the pigments to lysosomal degradation and/or inadequate fusion of the vacuoles with lysosomes. Although the formation of autophagic vacuoles via macroautophagy protects the neuron from cellular stress, accumulation of pigmented autophagic vacuoles may eventually interfere with normal degradative pathways and endocytic/secretory tasks such as appropriate response to growth factors.
Collapse
Affiliation(s)
- David Sulzer
- Department of Neurology, Columbia University, New York, NY 10036, USA.
| | | | | | | | | | | |
Collapse
|
69
|
Codlin S, Haines RL, Mole SE. btn1 affects endocytosis, polarization of sterol-rich membrane domains and polarized growth in Schizosaccharomyces pombe. Traffic 2008; 9:936-50. [PMID: 18346214 PMCID: PMC2440566 DOI: 10.1111/j.1600-0854.2008.00735.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
btn1, the Schizosaccharomyces pombe orthologue of the human Batten disease gene CLN3, exerts multiple cellular effects. As well as a role in vacuole pH homoeostasis, we now show that Btn1p is essential for growth at high temperatures. Its absence results in progressive defects at 37°C that culminate in total depolarized growth and cell lysis. These defects are preceded by a progressive failure to correctly polarize sterol-rich domains after cytokinesis and are accompanied by loss of Myo1p localization. Furthermore, we found that in Sz. pombe, sterol spreading is linked to defective formation/polarization of F-actin patches and disruption of endocytosis and that these processes are aberrant in btn1Δ cells. Consistent with a role for Btn1p in polarized growth, Btn1p has an altered location at 37°C and is retained in actin-dependent endomembrane structures near the cell poles or septum.
Collapse
Affiliation(s)
- Sandra Codlin
- MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK
| | | | | |
Collapse
|
70
|
Affiliation(s)
- Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center and Children's Medical Center, MC 9073, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | | | | |
Collapse
|
71
|
Nugent T, Mole SE, Jones DT. The transmembrane topology of Batten disease protein CLN3 determined by consensus computational prediction constrained by experimental data. FEBS Lett 2008; 582:1019-24. [PMID: 18314010 DOI: 10.1016/j.febslet.2008.02.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/01/2008] [Accepted: 02/19/2008] [Indexed: 10/22/2022]
Abstract
The CLN3 gene encodes an integral membrane protein of unknown function. Mutations in CLN3 can cause juvenile neuronal ceroid lipofuscinosis, or Batten disease, an inherited neurodegenerative lysosomal storage disease affecting children. Here, we report a topological study of the CLN3 protein using bioinformatic approaches constrained by experimental data. Our results suggest that CLN3 has a six transmembrane helix topology with cytoplasmic N and C-termini, three large lumenal loops, one of which may contain an amphipathic helix, and one large cytoplasmic loop. Surprisingly, varied topological predictions were made using different subsets of orthologous sequences, highlighting the challenges still remaining for bioinformatics.
Collapse
Affiliation(s)
- Timothy Nugent
- Bioinformatics Group, Department of Computer Science, University College London, United Kingdom
| | | | | |
Collapse
|
72
|
Qureshi OS, Paramasivam A, Yu JCH, Murrell-Lagnado RD. Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis. J Cell Sci 2007; 120:3838-49. [DOI: 10.1242/jcs.010348] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The P2X4 receptor has a widespread distribution in the central nervous system and the periphery, and plays an important role in the function of immune cells and the vascular system. Its upregulation in microglia contributes to neuropathic pain following nerve injury. The mechanisms involved in its regulation are not well understood, although we have previously shown that it is constitutively retrieved from the plasma membrane and resides predominantly within intracellular compartments. Here, we show that the endogenous P2X4 receptors in cultured rat microglia, vascular endothelial cells and freshly isolated peritoneal macrophages are localized predominantly to lysosomes. Lysosomal targeting was mediated through a dileucine-type motif within the N-terminus, together with a previously characterized tyrosine-based endocytic motif within the C-terminus. P2X4 receptors remained stable within the proteolytic environment of the lysosome and resisted degradation by virtue of their N-linked glycans. Stimulation of phagocytosis triggered the accumulation of P2X4 receptors at the phagosome membrane. Stimulating lysosome exocytosis, either by incubating with the Ca2+ ionophore ionomycin, for normal rat kidney (NRK) cells and cultured rat microglia, or the weak base methylamine, for peritoneal macrophages, caused an upregulation of both P2X4 receptors and the lysosomal protein LAMP-1 at the cell surface. Lysosome exocytosis in macrophages potentiated ATP-evoked P2X4 receptor currents across the plasma membrane. Taken together, our data suggest that the P2X4 receptor retains its function within the degradative environment of the lysosome and can subsequently traffic out of lysosomes to upregulate its exposure at the cell surface and phagosome.
Collapse
Affiliation(s)
- Omar S. Qureshi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Anbalakan Paramasivam
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Jowie C. H. Yu
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Ruth D. Murrell-Lagnado
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
73
|
Eliason SL, Stein CS, Mao Q, Tecedor L, Ding SL, Gaines DM, Davidson BL. A knock-in reporter model of Batten disease. J Neurosci 2007; 27:9826-34. [PMID: 17855597 PMCID: PMC6672654 DOI: 10.1523/jneurosci.1710-07.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 11/21/2022] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis is a severe inherited neurodegenerative disease resulting from mutations in CLN3 (ceroid-lipofuscinosis, neuronal 3, juvenile). CLN3 function, and where and when it is expressed during development, is not known. In this study, we generated a knock-in reporter mouse to elucidate CLN3 expression during embryogenesis and after birth and to correlate expression and behavior in a CLN3-deficient mouse. In embryonic brain, expression appeared in the cortical plate. In postnatal brain, expression was prominent in the cortex, subiculum, parasubiculum, granule neurons of the dentate gyrus, and some brainstem nuclei. In adult brain, reporter gene expression waned in most areas but remained in vascular endothelia and the dentate gyrus. Mice homozygous for Cln3 deletion showed two hallmark pathological features of the neuronal ceroid lipofuscinosises: autofluorescent inclusions and lysosomal enzyme elevation. Moreover, CLN3-deficient reporter mice displayed progressive neurological deficits, including impaired motor function, decreased overall activity, acquisition of resting tremors, and increased susceptibility to pentilentetrazole-induced seizures. Notably, seizure induction in heterozygous mice was accompanied by enhanced reporter expression. This model provides us with the unique ability to correlate expression with pathology and behavior, thus facilitating the elucidation of CLN3 function and the pathogenesis of Batten disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Beverly L. Davidson
- Departments of Internal Medicine
- Neurology, and
- Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
74
|
Heine C, Quitsch A, Storch S, Martin Y, Lonka L, Lehesjoki AE, Mole SE, Braulke T. Topology and endoplasmic reticulum retention signals of the lysosomal storage disease-related membrane protein CLN6. Mol Membr Biol 2007; 24:74-87. [PMID: 17453415 DOI: 10.1080/09687860600967317] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CLN6 is a polytopic membrane protein of unknown function resident in the endoplasmic reticulum (ER). Mutant CLN6 causes the lysosomal storage disorder neuronal ceroid lipofuscinosis. Defining the topology of CLN6, and the structural domains and motifs required for interaction with cytosolic and luminal proteins may allow insights into its function. In this study we analysed the topology, ER retention and oligomerization of CLN6. We demonstrated, by differential membrane permeabilization of transfected BHK cells using specific detergents and two distinct antibodies, that CLN6 contains an N-terminal cytoplasmic domain, seven transmembrane domains, and a luminal C terminus. Mutational analyses and confocal immunofluorescence microscopy showed that changes of potential ER localization signals in the N- or C-terminal domain (a triple arginine cluster, and a dileucine motif) did not alter the subcellular localization of CLN6. The deletion of a dilysine motif impaired partially the ER localization of CLN6. Furthermore, expression analyses of fusion and deletion constructs in non-neuronal and neuronal cells suggested that two portions of CLN6 contributed to its retention within the ER. We showed that the N-terminal domain was necessary but not sufficient for ER retention of CLN6 and that deletion of transmembrane domains 6 and 7 was accompanied with the loss of ER localization and, in some instances, trafficking to the cisGolgi. From these data we concluded that CLN6 maintains its ER localization by expressing retention signals present in both the N-terminal cytosolic domain and in the carboxy-proximal transmembrane domains 6 and 7. Additionally, the ability of CLN6 to homodimerize may also prevent exit from the ER via an interaction with membrane-associated factors.
Collapse
Affiliation(s)
- Claudia Heine
- Department of Biochemistry, University Hospital Hamburg Eppendorf, Children's Hospital, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Storch S, Pohl S, Quitsch A, Falley K, Braulke T. C-Terminal Prenylation of the CLN3 Membrane Glycoprotein Is Required for Efficient Endosomal Sorting to Lysosomes. Traffic 2007; 8:431-44. [PMID: 17286803 DOI: 10.1111/j.1600-0854.2007.00537.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the polytopic lysosomal membrane glycoprotein CLN3 result in a severe neurodegenerative disorder. Previous studies identified two cytosolic signal structures contributing to lysosomal targeting. We now examined the role of glycosylation and the C-terminal CAAX motif in lysosomal transport of CLN3 in non-neuronal and neuronal cells. Mutational analysis revealed that in COS7 cells, CLN3 is glycosylated at asparagine residues 71 and 85. Both partially and non-glycosylated CLN3 were transported correctly to lysosomes. Mevalonate incorporation and farnesyltransferase inhibitor studies indicate that CLN3 is prenylated most likely at cysteine 435. Substitution of cysteine 435 reduced the steady-state level of CLN3 in lysosomes most likely because of impaired sorting in early endosomal structures, particularly in neuronal cells. Additionally, the cell surface expression of CLN3 was increased in the presence of farnesyltransferase inhibitors. Alteration of the spacing between the transmembrane domain and the CAAX motif or the substitution of the entire C-terminal domain of CLN3 with cytoplasmic tails of mannose 6-phosphate receptors have demonstrated the importance of the C-terminal domain of proper length and composition for exit of the endoplasmic reticulum. The data suggest that co-operative signal structures in different cytoplasmic domains of CLN3 are required for efficient sorting and for transport to the lysosome.
Collapse
Affiliation(s)
- Stephan Storch
- Department of Biochemistry, Children's Hospital, University Hospital Hamburg, Martinistr. 52, Bldg. W 23, 20246 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
76
|
Chang JW, Choi H, Kim HJ, Jo DG, Jeon YJ, Noh JY, Park WJ, Jung YK. Neuronal vulnerability of CLN3 deletion to calcium-induced cytotoxicity is mediated by calsenilin. Hum Mol Genet 2006; 16:317-26. [PMID: 17189291 DOI: 10.1093/hmg/ddl466] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Calsenilin/DREAM/KChIP3, a neuronal Ca(2+)-binding protein, has multifunctions in nucleus and cytosol. Here, we identified CLN3 as a calsenilin-binding partner whose mutation or deletion is observed in Batten disease. In vitro binding and immunoprecipitation assays show that calsenilin interacts with the C-terminal region of CLN3 and the increase of Ca(2+) concentration in vitro and in cells causes significant dissociation of calsenilin from CLN3. Ectopic expression of CLN3 or its deletion mutant containing only the C-terminus (153-438) and capable of binding to calsenilin suppresses thapsigargin or A23187-induced death of neuronal cells. In contrast, CLN3 deletion mutant containing the N-terminus (1-153) or (1-263), which is frequently found in Batten disease, induces the perturbation of Ca(2+) transient and fails to inhibit the cell death. In addition, the expression of calsenilin is increased in the brain tissues of CLN3 knock-out mice and SH-SY5Y/CLN3 knock-down cells. Down-regulation of CLN3 expression sensitizes SH-SY5Y cells to thapsigargin or A23187. However, additional decrease of calsenilin expression rescues the sensitivity of SH-SY5Y/CLN3 knock-down cells to Ca(2+)-mediated cell death. These results suggest that the vulnerability of CLN3 knock-out or CLN3 deletion (1-153)-expressing neuronal cells to Ca(2+)-induced cell death may be mediated by calsenilin.
Collapse
Affiliation(s)
- Jae-Woong Chang
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Reeves DC, Liebelt DA, Lakshmanan V, Roepe PD, Fidock DA, Akabas MH. Chloroquine-resistant isoforms of the Plasmodium falciparum chloroquine resistance transporter acidify lysosomal pH in HEK293 cells more than chloroquine-sensitive isoforms. Mol Biochem Parasitol 2006; 150:288-99. [PMID: 17014918 PMCID: PMC1687154 DOI: 10.1016/j.molbiopara.2006.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 08/31/2006] [Accepted: 09/03/2006] [Indexed: 01/04/2023]
Abstract
The emergence of chloroquine-resistant Plasmodium falciparum malaria imperils the lives of millions of people in Africa, Southeast Asia and South America. Chloroquine resistance is associated with mutations in the P. falciparum chloroquine resistance transporter (PfCRT). We expressed chloroquine-sensitive (HB3) and resistant (Dd2) pfcrt alleles in HEK293 human embryonic kidney cells. PfCRT localized to the lysosomal limiting membrane and was not detected in the plasma membrane. We observed significant acidification of lysosomes containing PfCRT HB3 and Dd2, with Dd2 acidifying significantly more than HB3. A mutant HB3 allele expressing the K76T mutation (earlier found to be key for chloroquine resistance) acidified to the same extent as Dd2, whereas the acidification by a Dd2 allele expressing the T76K "back mutation" was significantly less than Dd2. Thus, the amino acid at position 76 is both an important determinant of chloroquine resistance in parasites and of lysosomal acidification following heterologous expression. PfCRT may be capable of modulating the pH of the parasite digestive vacuole, and thus chloroquine availability. Chloroquine accumulation and glycyl-phenylalanine-2-naphthylamide-induced release of lysosomal Ca(2+) stores were unaffected by PfCRT expression. Cytoplasmic domain mutations did not alter PfCRT sorting to the lysosomal membrane. This heterologous expression system will be useful to characterize PfCRT protein structure and function, and elucidate its molecular role in chloroquine resistance.
Collapse
Affiliation(s)
- David C Reeves
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
78
|
Luiro K, Kopra O, Blom T, Gentile M, Mitchison HM, Hovatta I, Törnquist K, Jalanko A. Batten disease (JNCL) is linked to disturbances in mitochondrial, cytoskeletal, and synaptic compartments. J Neurosci Res 2006; 84:1124-38. [PMID: 16941499 DOI: 10.1002/jnr.21015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intracellular pathways leading to neuronal degeneration are poorly understood in the juvenile neuronal ceroid lipofuscinosis (JNCL, Batten disease), caused by mutations in the CLN3 gene. To elucidate the early pathology, we carried out comparative global transcript profiling of the embryonic, primary cultures of the Cln3-/- mouse neurons. Statistical and functional analyses delineated three major cellular pathways or compartments affected: mitochondrial glucose metabolism, cytoskeleton, and synaptosome. Further functional studies showed a slight mitochondrial dysfunction and abnormalities in the microtubule cytoskeleton plus-end components. Synaptic dysfunction was also indicated by the pathway analysis, and by the gross upregulation of the G protein beta 1 subunit, known to regulate synaptic transmission via the voltage-gated calcium channels. Intracellular calcium imaging showed a delay in the recovery from depolarization in the Cln3-/- neurons, when the N-type Ca2+ channels had been blocked. The data suggests a link between the mitochondrial dysfunction and cytoskeleton-mediated presynaptic inhibition, thus providing a foundation for further investigation of the disease mechanism underlying JNCL disease.
Collapse
Affiliation(s)
- Kaisu Luiro
- Department of Molecular Medicine, National Public Health Institute, Biomedicum Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Kyttälä A, Lahtinen U, Braulke T, Hofmann SL. Functional biology of the neuronal ceroid lipofuscinoses (NCL) proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1762:920-33. [PMID: 16839750 DOI: 10.1016/j.bbadis.2006.05.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/19/2006] [Accepted: 05/23/2006] [Indexed: 11/28/2022]
Abstract
Neuronal ceroid lipofucinoses (NCLs) are a group of severe neurodegenerative disorders characterized by accumulation of autofluorescent ceroid lipopigment in patients' cells. The different forms of NCL share many similar pathological features but result from mutations in different genes. The genes affected in NCLs encode both soluble and transmembrane proteins and are localized to ER or to the endosomes/lysosomes. Due to selective vulnerability of the central nervous system in the NCL disorders, the corresponding proteins are proposed to have important, tissue specific roles in the brain. The pathological similarities of the different NCLs have led not only to the grouping of these disorders but also to suggestion that the NCL proteins function in the same biological pathway. Despite extensive research, including the development of several model organisms for NCLs and establishment of high-throughput techniques, the precise biological function of many of the NCL proteins has remained elusive. The aim of this review is to summarize the current knowledge of the functions, or proposed functions, of the different NCL proteins.
Collapse
Affiliation(s)
- Aija Kyttälä
- National Public Health Institute, Department of Molecular Medicine, Biomedicum Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
80
|
Phillips SN, Muzaffar N, Codlin S, Korey CA, Taschner PEM, de Voer G, Mole SE, Pearce DA. Characterizing pathogenic processes in Batten disease: Use of small eukaryotic model systems. Biochim Biophys Acta Mol Basis Dis 2006; 1762:906-19. [PMID: 17049819 DOI: 10.1016/j.bbadis.2006.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 08/08/2006] [Accepted: 08/27/2006] [Indexed: 10/24/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are neurodegenerative disorders. Nevertheless, small model organisms, including those lacking a nervous system, have proven invaluable in the study of mechanisms that underlie the disease and in studying the functions of the conserved proteins associated to each disease. From the single-celled yeast, Saccharomyces cerevisiae and Schizosaccharomyces pombe, to the worm, Caenorhabditis elegans and the fruitfly, Drosophila melanogaster, biochemical and, in particular, genetic studies on these organisms have provided insight into the NCLs.
Collapse
Affiliation(s)
- Seasson N Phillips
- Center for Aging and Developmental Biology, Aab Institute of Biomedical Science, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Gupta SN, Kloster MM, Rodionov DG, Bakke O. Re-routing of the invariant chain to the direct sorting pathway by introduction of an AP3-binding motif from LIMP II. Eur J Cell Biol 2006; 85:457-67. [PMID: 16542748 DOI: 10.1016/j.ejcb.2006.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 11/16/2022] Open
Abstract
AP3 is a heteromeric adaptor protein complex involved in the biogenesis of late endosomal/lysosomal structures. It recognizes tyrosine- and leucine-based sorting signals present in the cytoplasmic tails or loops of a number of proteins and is thought to be responsible for the direct transport of these proteins from the Golgi network to late endosomal/lysosomal structures. We have previously reported (Rodionov, Höning, Silye, Kongsvik, von Figura, Bakke, 2002. Structural requirements for interactions between leucine-sorting signals and clathrin-associated adaptor protein complex AP3. J. Biol. Chem. 277, 47436-47443) that in vitro binding of AP3 to the leucine signals is dependent on the nature of three residues immediately upstream of the leucine signal and suggested that these three amino acids define whether the protein is sorted to endosomes via the plasma membrane (PM) or traffics directly to the late endosomes/lysosomes. In this paper, we show in vivo evidence that residues favoring AP3 binding introduced into a protein that is transported via the PM such as the invariant chain can re-route such protein into direct sorting to late endosomal/lysosomal structures.
Collapse
Affiliation(s)
- Shailly N Gupta
- Department of Molecular Biosciences, University of Oslo, N-0316 Oslo, Norway
| | | | | | | |
Collapse
|
82
|
Piccirillo R, Palmisano I, Innamorati G, Bagnato P, Altimare D, Schiaffino MV. An unconventional dileucine-based motif and a novel cytosolic motif are required for the lysosomal and melanosomal targeting of OA1. J Cell Sci 2006; 119:2003-14. [PMID: 16621890 PMCID: PMC1475362 DOI: 10.1242/jcs.02930] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein product of the gene responsible for ocular albinism type 1, named OA1, is a pigment-cell-specific membrane glycoprotein, displaying features of G-protein-coupled receptors, yet exclusively localized to late endosomes, lysosomes and melanosomes. To dissect the signals responsible for the intracellular localization of OA1, we generated chimeric proteins consisting of the cytosolic domains of OA1 fused to the lumenal and transmembrane domains of LAMP1; in addition, we generated missense and deletion mutants of full-length OA1. Using this approach, we identified two separate sorting signals that are both necessary and sufficient for intracellular retention, as well as lysosomal and melanosomal localization, in melanocytic and non-melanocytic cells. These sorting signals are an unconventional dileucine motif within the third cytosolic loop and a novel motif, characterized by a tryptophan-glutamic acid doublet, within the C-terminal tail. Both motifs must be mutated to promote the plasma membrane localization of OA1, suggesting that they can independently drive its intracellular targeting. In addition, both motifs act similarly as lysosomal sorting signals in non-melanocytic cells, but appear to carry different specificities in melanocytic cells. Our findings indicate that OA1 contains multiple unconventional signals responsible for its lysosomal and melanosomal localization, and reveal a remarkable and unforeseen complexity in the regulation of polytopic protein sorting to specialized secretory organelles.
Collapse
Affiliation(s)
- Rosanna Piccirillo
- San Raffalele Scientific Institute, DIBIT, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | |
Collapse
|
83
|
Mole SE, Williams RE, Goebel HH. Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics 2005; 6:107-26. [PMID: 15965709 DOI: 10.1007/s10048-005-0218-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 02/03/2005] [Indexed: 12/23/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of severe neurodegenerative diseases with onset usually in childhood and characterised by the intracellular accumulation of autofluorescent storage material. Within the last decade, mutations that cause NCL have been found in six human genes (CLN1, CLN2, CLN3, CLN5, CLN6 and CLN8). Mutations in two additional genes cause disease in animal models that share features with NCL-CTSD in sheep and mice and PPT2 in mice. Approximately 160 NCL disease-causing mutations have now been described (listed and fully cited in the NCL Mutation Database, http://www.ucl.ac.uk/ncl/ ). Most mutations result in a classic morphology and disease phenotype, but some mutations are associated with disease that is of later onset, less severe or protracted in its course, or with atypical morphology. Seven common mutations exist, some having a worldwide distribution and others associated with families originating from specific geographical regions. This review attempts to correlate the gene, disease-causing mutation, morphology and clinical phenotype for each type of NCL.
Collapse
Affiliation(s)
- Sara E Mole
- MRC Laboratory for Molecular Cell Biology and Department of Paediatrics and Child Health, University College London, Gower Street, London, WC1E 6BT, UK.
| | | | | |
Collapse
|
84
|
Salazar G, Craige B, Wainer BH, Guo J, De Camilli P, Faundez V. Phosphatidylinositol-4-kinase type II alpha is a component of adaptor protein-3-derived vesicles. Mol Biol Cell 2005; 16:3692-704. [PMID: 15944223 PMCID: PMC1182308 DOI: 10.1091/mbc.e05-01-0020] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A membrane fraction enriched in vesicles containing the adaptor protein (AP) -3 cargo zinc transporter 3 was generated from PC12 cells and was used to identify new components of these organelles by mass spectrometry. Proteins prominently represented in the fraction included AP-3 subunits, synaptic vesicle proteins, and lysosomal proteins known to be sorted in an AP-3-dependent way or to interact genetically with AP-3. A protein enriched in this fraction was phosphatidylinositol-4-kinase type IIalpha (PI4KIIalpha). Biochemical, pharmacological, and morphological analyses supported the presence of PI4KIIalpha in AP-3-positive organelles. Furthermore, the subcellular localization of PI4KIIalpha was altered in cells from AP-3-deficient mocha mutant mice. The PI4KIIalpha normally present both in perinuclear and peripheral organelles was substantially decreased in the peripheral membranes of AP-3-deficient mocha fibroblasts. In addition, as is the case for other proteins sorted in an AP-3-dependent way, PI4KIIalpha content was strongly reduced in nerve terminals of mocha hippocampal mossy fibers. The functional relationship between AP-3 and PI4KIIalpha was further explored by PI4KIIalpha knockdown experiments. Reduction of the cellular content of PI4KIIalpha strongly decreased the punctate distribution of AP-3 observed in PC12 cells. These results indicate that PI4KIIalpha is present on AP-3 organelles where it regulates AP-3 function.
Collapse
Affiliation(s)
- Gloria Salazar
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
85
|
Phillips SN, Benedict JW, Weimer JM, Pearce DA. CLN3, the protein associated with batten disease: structure, function and localization. J Neurosci Res 2005; 79:573-83. [PMID: 15657902 DOI: 10.1002/jnr.20367] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Batten disease, an inherited neurodegenerative storage disease affecting children, results from the autosomal recessive inheritance of mutations in Cln3. The function of the CLN3 protein remains unknown. A key to understanding the pathology of this devastating disease will be to elucidate the function of CLN3 at the cellular level. CLN3 has proven difficult to study as it is predicted to be a membrane protein expressed at relatively low levels. This article is a critical review of various approaches used in examining the structure, trafficking, and localization of CLN3. We conclude that CLN3 is likely resident in the lysosomal/endosomal membrane. Different groups have postulated conflicting orientations for CLN3 within this membrane. In addition, CLN3 undergoes several posttranslational modifications and is trafficked through the endoplasmic reticulum and Golgi. Recent evidence also suggests that CLN3 traffics via the plasma membrane. Although the function of this protein remains elusive, it is apparent that genetic alterations in Cln3 may have a direct affect on lysosomal function.
Collapse
Affiliation(s)
- Seasson N Phillips
- Center for Aging and Developmental Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
86
|
Storch S, Pohl S, Braulke T. A dileucine motif and a cluster of acidic amino acids in the second cytoplasmic domain of the batten disease-related CLN3 protein are required for efficient lysosomal targeting. J Biol Chem 2004; 279:53625-34. [PMID: 15469932 DOI: 10.1074/jbc.m410930200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The juvenile form of ceroid lipofuscinosis (Batten disease) is a neurodegenerative lysosomal storage disorder caused by mutations in the CLN3 gene. CLN3 encodes a multimembrane-spanning protein of unknown function, which is mainly localized in lysosomes in non-neuronal cells and in endosomes in neuronal cells. For this study we constructed chimeric proteins of three CLN3 cytoplasmic domains fused to the lumenal and transmembrane domains of the reporter proteins LAMP-1 and lysosomal acid phosphatase to identify lysosomal targeting motifs and to determine the intracellular transport and subcellular localization of the chimera in transfected cell lines. We report that a novel type of dileucine-based sorting motif, EEEX(8)LI, present in the second cytoplasmic domain of CLN3, is sufficient for proper targeting to lysosomes. The first cytoplasmic domain of CLN3 and the mutation of the dileucine motif resulted in a partial missorting of chimeric proteins to the plasma membrane. At equilibrium, 4-13% of the different chimera are present at the cell surface. Analysis of lysosome-specific proteolytic processing revealed that lysosomal acid phosphatase chimera containing the second cytoplasmic domain of CLN3 showed the highest rate of lysosomal delivery, whereas the C terminus of CLN3 was found to be less efficient in lysosomal targeting. However, none of these cytosolic CLN3 domains was able to interact with AP-1, AP-3, or GGA3 adaptor complexes. These data revealed that lysosomal sorting motifs located in an intramolecular cytoplasmic domain of a multimembrane-spanning protein have different structural requirements for adaptor binding than sorting signals found in the C-terminal cytoplasmic domains of single- or dual-spanning lysosomal membrane proteins.
Collapse
Affiliation(s)
- Stephan Storch
- Department of Biochemistry, Children's Hospital, University of Hamburg, D-20246 Hamburg, Germany
| | | | | |
Collapse
|
87
|
Kyttälä A, Yliannala K, Schu P, Jalanko A, Luzio JP. AP-1 and AP-3 facilitate lysosomal targeting of Batten disease protein CLN3 via its dileucine motif. J Biol Chem 2004; 280:10277-83. [PMID: 15598649 DOI: 10.1074/jbc.m411862200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CLN3 is a transmembrane protein with a predominant localization in lysosomes in non-neuronal cells but is also found in endosomes and the synaptic region in neuronal cells. Mutations in the CLN3 gene result in juvenile neuronal ceroid lipofuscinosis or Batten disease, which currently is the most common cause of childhood dementia. We have recently reported that the lysosomal targeting of CLN3 is facilitated by two targeting motifs: a dileucine-type motif in a cytoplasmic loop domain and an unusual motif in the carboxyl-terminal cytoplasmic tail comprising a methionine and a glycine separated by nine amino acids (Kyttala, A., Ihrke, G., Vesa, J., Schell, M. J., and Luzio, J. P. (2004) Mol. Biol. Cell 15, 1313-1323). In the present study, we investigated the pathways and mechanisms of CLN3 sorting using biochemical binding assays and immunofluorescence methods. The dileucine motif of CLN3 bound both AP-1 and AP-3 in vitro, and expression of mutated CLN3 in AP-1- or AP-3-deficient mouse fibroblasts showed that both adaptor complexes are required for sequential sorting of CLN3 via this motif. Our data indicate the involvement of complex sorting machinery in the trafficking of CLN3 and emphasize the diversity of parallel and sequential sorting pathways in the trafficking of membrane proteins.
Collapse
Affiliation(s)
- Aija Kyttälä
- National Public Health Institute, Department of Molecular Medicine, Biomedicum Helsinki, FIN-00290 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
88
|
Membrane trafficking and mitochondrial abnormalities precede subunit c deposition in a cerebellar cell model of juvenile neuronal ceroid lipofuscinosis. BMC Neurosci 2004; 5:57. [PMID: 15588329 PMCID: PMC539297 DOI: 10.1186/1471-2202-5-57] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 12/10/2004] [Indexed: 11/23/2022] Open
Abstract
Background JNCL is a recessively inherited, childhood-onset neurodegenerative disease most-commonly caused by a ~1 kb CLN3 mutation. The resulting loss of battenin activity leads to deposition of mitochondrial ATP synthase, subunit c and a specific loss of CNS neurons. We previously generated Cln3Δex7/8 knock-in mice, which replicate the common JNCL mutation, express mutant battenin and display JNCL-like pathology. Results To elucidate the consequences of the common JNCL mutation in neuronal cells, we used P4 knock-in mouse cerebella to establish conditionally immortalized CbCln3 wild-type, heterozygous, and homozygous neuronal precursor cell lines, which can be differentiated into MAP-2 and NeuN-positive, neuron-like cells. Homozygous CbCln3Δex7/8 precursor cells express low levels of mutant battenin and, when aged at confluency, accumulate ATPase subunit c. Recessive phenotypes are also observed at sub-confluent growth; cathepsin D transport and processing are altered, although enzyme activity is not significantly affected, lysosomal size and distribution are altered, and endocytosis is reduced. In addition, mitochondria are abnormally elongated, cellular ATP levels are decreased, and survival following oxidative stress is reduced. Conclusions These findings reveal that battenin is required for intracellular membrane trafficking and mitochondrial function. Moreover, these deficiencies are likely to be early events in the JNCL disease process and may particularly impact neuronal survival.
Collapse
|
89
|
Heine C, Koch B, Storch S, Kohlschütter A, Palmer DN, Braulke T. Defective endoplasmic reticulum-resident membrane protein CLN6 affects lysosomal degradation of endocytosed arylsulfatase A. J Biol Chem 2004; 279:22347-52. [PMID: 15010453 DOI: 10.1074/jbc.m400643200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Variant late infantile neuronal ceroid lipofuscinosis, a lysosomal storage disorder characterized by progressive mental deterioration and blindness, is caused by mutations in a polytopic membrane protein (CLN6) with unknown intracellular localization and function. In this study, transient transfection of BHK21 cells with CLN6 cDNA and immunoblot analysis using peptide-specific CLN6 antibodies demonstrated the expression of a approximately 27-kDa protein that does not undergo proteolytic processing. Cross-linking experiments revealed the presence of CLN6 dimers. Using double immunofluorescence microscopy, epitope-tagged CLN6 was shown to be retained in the endoplasmic reticulum (ER) with no colocalization with the cis-Golgi or lysosomal markers. The translocation into the ER and proper folding were confirmed by the N-linked glycosylation of a mutant CLN6 polypeptide. Pulse-chase labeling of fibroblasts from CLN6 patients and from sheep (OCL6) and mouse (nclf) models of the disease followed by immunoprecipitation of cathepsin D indicated that neither the synthesis, sorting nor the proteolytic processing of this lysosomal enzyme was affected in CLN6-defective cells. However, the degradation of the endocytosed index protein arylsulfatase A was strongly reduced in all of the mutant CLN6 cell lines compared with controls. These data suggest that defects in the ER-resident CLN6 protein lead to lysosomal dysfunctions, which may result in lysosomal accumulation of storage material.
Collapse
Affiliation(s)
- Claudia Heine
- Department of Biochemistry, Children's Hospital, University of Hamburg, D-20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|