51
|
Young JF, Dragsted LO, Haraldsdóttir J, Daneshvar B, Kall MA, Loft S, Nilsson L, Nielsen SE, Mayer B, Skibsted LH, Huynh-Ba T, Hermetter A, Sandström B. Green tea extract only affects markers of oxidative status postprandially: lasting antioxidant effect of flavonoid-free diet. Br J Nutr 2007. [DOI: 10.1079/bjn2002523] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epidemiological studies suggest that foods rich in flavonoids might reduce the risk of cardiovascular disease and cancer. The objective of the present study was to investigate the effect of green tea extract (GTE) used as a food antioxidant on markers of oxidative status after dietary depletion of flavonoids and catechins. The study was designed as a 2×3 weeks blinded human cross-over intervention study (eight smokers, eight non-smokers) with GTE corresponding to a daily intake of 18·6 mg catechins/d. The GTE was incorporated into meat patties and consumed with a strictly controlled diet otherwise low in flavonoids. GTE intervention increased plasma antioxidant capacity from 1·35 to 1·56 (P<0·02) in postprandially collected plasma, most prominently in smokers. The intervention did not significantly affect markers in fasting blood samples, including plasma or haemoglobin protein oxidation, plasma oxidation lagtime, or activities of the erythrocyte superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase. Neither were fasting plasma triacylglycerol, cholesterol, α-tocopherol, retinol, β-carotene, or ascorbic acid affected by intervention. Urinary 8-oxo-deoxyguanosine excretion was also unaffected. Catechins from the extract were excreted into urine with a half-life of less than 2 h in accordance with the short-term effects on plasma antioxidant capacity. Since no long-term effects of GTE were observed, the study essentially served as a fruit and vegetables depletion study. The overall effect of the 10-week period without dietary fruits and vegetables was a decrease in oxidative damage to DNA, blood proteins, and plasma lipids, concomitantly with marked changes in antioxidative defence.
Collapse
|
52
|
Abstract
'Reactive species' (RS) of various types are formed in vivo and many are powerful oxidizing agents, capable of damaging DNA and other biomolecules. Increased formation of RS can promote the development of malignancy, and the 'normal' rates of RS generation may account for the increased risk of cancer development in the aged. Indeed, knockout of various antioxidant defence enzymes raises oxidative damage levels and promotes age-related cancer development in animals. In explaining this, most attention has been paid to direct oxidative damage to DNA by certain RS, such as hydroxyl radical (OH*). However, increased levels of DNA base oxidation products such as 8OHdg (8-hydroxy-2'-deoxyguanosine) do not always lead to malignancy, although malignant tumours often show increased levels of DNA base oxidation. Hence additional actions of RS must be important, possibly their effects on p53, cell proliferation, invasiveness and metastasis. Chronic inflammation predisposes to malignancy, but the role of RS in this is likely to be complex because RS can sometimes act as anti-inflammatory agents.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, MD7 Level 2 Singapore 117597.
| |
Collapse
|
53
|
Selman C, McLaren JS, Meyer C, Duncan JS, Redman P, Collins AR, Duthie GG, Speakman JR. Life-long vitamin C supplementation in combination with cold exposure does not affect oxidative damage or lifespan in mice, but decreases expression of antioxidant protection genes. Mech Ageing Dev 2006; 127:897-904. [PMID: 17092545 DOI: 10.1016/j.mad.2006.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/19/2006] [Accepted: 09/25/2006] [Indexed: 02/05/2023]
Abstract
Oxidative stress is suggested to be central to the ageing process, with endogenous antioxidant defence and repair mechanisms in place to minimize damage. Theoretically, supplementation with exogenous antioxidants might support the endogenous antioxidant system, thereby reducing oxidative damage, ageing-related functional decline and prolonging life- and health-span. Yet supplementation trials with antioxidants in animal models have had minimal success. Human epidemiological data are similarly unimpressive, leading some to question whether vitamin C, for example, might have pro-oxidant properties in vivo. We supplemented cold exposed (7+/-2 degrees C) female C57BL/6 mice over their lifespan with vitamin C (ascorbyl-2-polyphosphate), widely advocated and self administered to reduce oxidative stress, retard ageing and increase healthy lifespan. No effect on mean or maximum lifespan following vitamin C treatment or any significant impact on body mass, or on parameters of energy metabolism was observed. Moreover, no differences in hepatocyte and lymphocyte DNA oxidative damage or hepatic lipid peroxidation was seen between supplemented and control mice. Using a DNA macroarray specific for oxidative stress-related genes, we found that after 18 months of supplementation, mice exhibited a significantly reduced expression of several genes in the liver linked to free-radical scavenging, including Mn-superoxide dismutase. We confirmed these effects by Northern blotting and found additional down-regulation of glutathione peroxidase (not present on macroarray) in the vitamin C treated group. We suggest that high dietary doses of vitamin C are ineffective at prolonging lifespan in mice because any positive benefits derived as an antioxidant are offset by compensatory reductions in endogenous protection mechanisms, leading to no net reduction in accumulated oxidative damage.
Collapse
Affiliation(s)
- Colin Selman
- Aberdeen Centre for Energy Regulation and Obesity (ACERO), School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Machowetz A, Poulsen HE, Gruendel S, Weimann A, Fitó M, Marrugat J, de la Torre R, Salonen JT, Nyyssönen K, Mursu J, Nascetti S, Gaddi A, Kiesewetter H, Bäumler H, Selmi H, Kaikkonen J, Zunft HJF, Covas MI, Koebnick C. Effect of olive oils on biomarkers of oxidative DNA stress in Northern and Southern Europeans. FASEB J 2006; 21:45-52. [PMID: 17110467 DOI: 10.1096/fj.06-6328com] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High consumption of olive oil in the Mediterranean diet has been suggested to protect DNA against oxidative damage and to reduce cancer incidence. We investigated the impact of the phenolic compounds in olive oil, and the oil proper, on DNA and RNA oxidation in North, Central, and South European populations. In a multicenter, double-blind, randomized, controlled crossover intervention trial, the effect of olive oil phenolic content on urinary oxidation products of guanine (8-oxo-guanine, 8-oxo-guanosine and 8-oxo-deoxyguanosine) was investigated. Twenty-five milliliters of three olive oils with low, medium, and high phenolic content were administered to healthy males (n=182) daily for 3 wk. At study baseline the urinary excretion of 8-oxo-guanosine (RNA oxidation) and 8-oxo-deoxyguanosine (DNA oxidation) was higher in the Northern regions of Europe compared with Central and Southern European regions (P=0.035). Urinary excretion of the 8 hydroxylated forms of guanine, guanosine, deoxyguanosine and their nonoxidized forms were not different when comparing olive oils with low, medium, and high phenolic content given for 2 wk. Testing the effect of oil from urinary 8-oxo-deoxyguanosine changes from baseline to post-treatment showed a reduction of DNA oxidation by 13% (P=0.008). These findings support the idea that ingestion of olive oil is beneficial and can reduce the rate of oxidation of DNA. This effect is not due to the phenolic content in the olive oil. The higher DNA and RNA oxidation in Northern European regions compared with that in Central and Southern regions supports the contention that olive oil consumption may explain some of the North-South differences in cancer incidences in Europe.
Collapse
Affiliation(s)
- Anja Machowetz
- German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Affiliation(s)
- Emmanuel C Opara
- Pritzker Institute of Biomedical Science & Engineering Illinois Institute of Technology, Chicago, Illinois, USA
| |
Collapse
|
56
|
Pilger A, Rüdiger HW. 8-Hydroxy-2'-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int Arch Occup Environ Health 2006; 80:1-15. [PMID: 16685565 DOI: 10.1007/s00420-006-0106-7] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 03/23/2006] [Indexed: 11/26/2022]
Abstract
Oxidative DNA damage is considered to play an important role in pathophysiological processes, ageing and cancer. So far major interest has been on measuring 8-hydroxy-2'-deoxyguanosine (8-OHdG), the preferred methods relying on HPLC or GC-mass spectrometry. The high biological relevance of 8-OHdG is due to its ability to induce G-->T transversions, which are among the most frequent somatic mutations found in human cancers. Effects of workplace exposures on the level of white blood cell 8-OHdG or urinary 8-OHdG have been reported with controversial results. Exposures examined include asbestos, azo-dyes, benzene, fine particulate matter (PM(2.5)), glassworks, polycyclic aromatic hydrocarbons (PAHs), rubber manufacturing, silica, metals, styrene, toluene and xylenes. The available data indicate that there is still a lack of well established dose-response relations between occupational or environmental exposures and the induction of 8-OHdG. Smoking has been most consistently identified as a confounder for 8-OHdG, but various occupational studies did not reveal higher levels of 8-OHdG in smokers. Despite the conflicting results, the reported studies show promise for 8-OHdG as a biomarker of oxidative stress associated with chemical exposure. However, there are critical aspects related to the analytical challenge, artifactual production of 8-OHdG, inter- and intra-individual variation, confounding factors and inter-laboratory differences, implying that further work is needed to reach a consensus on the background level of 8-OHdG.
Collapse
Affiliation(s)
- A Pilger
- Division of Occupational Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | | |
Collapse
|
57
|
Kimura S, Yamauchi H, Hibino Y, Iwamoto M, Sera K, Ogino K. Evaluation of Urinary 8-Hydroxydeoxyguanine inHealthy Japanese People. Basic Clin Pharmacol Toxicol 2006; 98:496-502. [PMID: 16635109 DOI: 10.1111/j.1742-7843.2006.pto_217.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The urinary concentration of 8-hydroxydeoxyguanine (8-OHdG), which is a biomarker of oxidative DNA damage, was measured in 248 healthy Japanese, and its correlations with life style, urinary metal elements, serum antioxidants, and other plasma or serum factors were investigated. The mean urinary concentration of 8-OHdG was 15.2+/-5.71 ng/mg creatinine. Mean urinary 8-OHdG was not significantly different in terms of age (<45, >or=45), gender, smoking (no, <20, >or=20), and alcohol consumption (no, occasionally, sometimes and usually). Moreover, multiple regression analysis showed a significant association between urinary 8-OHdG and urinary arsenic (As) or chromium (Cr), and a tendency for association between the former and aluminum (Al) and nickel (Ni). Age, gender and plasma or serum factors including antioxidants, lipid peroxide, HbA1c, BUN, and iron did not show such an association. The present study suggests that natural exposure to toxic metal elements such as As, Cr, and Ni may influence oxidative DNA damage in healthy people under usual environmental management. Therefore, the measurement of urinary metals such as As, Ni and Cr is prerequisite for the study of the relationship between urinary 8-OHdG and other variable factors.
Collapse
Affiliation(s)
- Shingo Kimura
- Department of Environmental and Preventive Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
58
|
Cantor KP. Feasibility of conducting human studies to address bromate risks. Toxicology 2006; 221:197-204. [PMID: 16352386 DOI: 10.1016/j.tox.2005.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 11/07/2005] [Accepted: 11/13/2005] [Indexed: 10/25/2022]
Abstract
Findings from epidemiologic studies have been important in evaluating risk of exposure to many contaminants in drinking water. In the case of bromate, a byproduct of ozone disinfection of water, it is unlikely that observational studies of populations exposed to bromate in drinking water will be as revealing as studies of other contaminants, unless risks are much higher than predicted from laboratory studies of rodents. Occupational exposure to bromate has occurred in the flour milling and baking industries, as well as in chemical production of potassium bromate, used as a flour additive. The feasibility of a cohort study of bromate-exposed workers should be evaluated by studying the conditions and levels of exposure in these occupational settings. Bromate exposure causes oxidative damage to guanine bases of DNA, producing 8-hydroxy-guanine (8-OH-Gua), which is excised by 8-oxoguanosine glycosylase (OGG1) and excreted in the urine. Polymorphic variants of OGG1 in human populations have been associated with elevated cancer risk. 8-OH-Gua and 8-hydroxy-deoxyguanosine (8-OHdG) have been used as biomarkers of oxidative damage in many human studies, and it would be feasible to employ these indicators in controlled clinical experimental settings to see if exposure to bromate in water at levels close to the maximum contaminant level influences urinary levels of excretion, and if so, to help quantify the level of oxidative damage. Such a study could fill an important data gap by providing human data to help estimate the carcinogenic risk from this exposure.
Collapse
Affiliation(s)
- Kenneth P Cantor
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, 6120 Executive Plaza South, Bethesda, MD 20892, USA.
| |
Collapse
|
59
|
Rho KA, Kim MK. Effects of Different Grape Formulations on Antioxidative Capacity, Lipid Peroxidation and Oxidative DNA Damage in Aged Rats. J Nutr Sci Vitaminol (Tokyo) 2006; 52:33-46. [PMID: 16637228 DOI: 10.3177/jnsv.52.33] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study, the freeze-dried powders from whole grapes, pomace and juice of Campbell Early (Vitis labruscana Bailey) were prepared to determine the amount of total flavonoids, vitamins A, C, and E, and dietary fiber. Effects of whole grape, pomace, or juice intakes on their antioxidative capacity and DNA damage were investigated in Sprague-Dawley male rats. A total of 120 rats at 13 mo old and weighing 549 +/- 4 g were blocked into 8 groups according to body weight and raised for 3, 5, or 7 mo with diets containing 2% (w/w) dry powder of three different parts of grapes and 0.02% (w/w) CdCl2. The contents of flavonoids, antioxidant vitamins A and E, and dietary fiber in freeze-dried powder were the highest in grape pomace, but the vitamin C contents were similar among the three powders. In all the 16, 18, and 20-mo-old animals, plasma and liver thiobarbituric acid reactive substances levels of grape-ingesting groups were lower than those of the controls and that of the grape pomace group was the lowest among the groups. Cd administration increased plasma and liver thiobarbituric acid reactive substances levels remarkably; however, Cd+grape groups were lower than the Cd-control group. Red blood cell superoxide dismutase activity of 18- and 20-mo-old rats was higher than that of 16-mo-olds, showing an age-related increase; however, red blood cell catalase and glutathione peroxidase activities decreased with age. Grape diets promoted superoxide dismutase, catalase, glutathione peroxidase activities, and the grape pomace increased the activities most significantly among three different parts of the grape. Cd decreased superoxide dismutase, catalase, glutathione peroxidase activities; however Cd+grape groups showed similar activities to the non-Cd control group. Liver superoxide dismutase activity was decreased with age but catalase activity of 18-mo-old rats was higher than those of 16- and 20-mo-old groups, and glutathione peroxidase activities of 16- and 18-mo-old groups were similar but that of 20-mo-old groups decreased markedly. Grape intake increased these three antioxidative enzyme activities while Cd administration decreased catalase and glutathione peroxidase activities except superoxide dismutase activity. The concentration in the kidney of 8-hydroxy-2'-deoxyguanosine in the 18- and 20-mo-old rats was higher than that in the 16-mo-old groups, and grape intake showed a protecting effect on DNA from age-related or Cd-induced oxidative damage. In conclusion, grape intakes, especially grape pomace with the highest content of flavonoids, beta-carotene, tocopherols and dietary fiber among the three parts, showed the prominent antioxidative capacity of inhibiting age-related or Cd-induced increase of lipid peroxidation and DNA damage effectively, promoting liver and red blood cell antioxidant enzyme activities.
Collapse
Affiliation(s)
- Kyoung Ah Rho
- Department of Food and Nutrition, Ewha Womans University, Seoul, Korea
| | | |
Collapse
|
60
|
Thomson CA, Giuliano AR, Shaw JW, Rock CL, Ritenbaugh CK, Hakim IA, Hollenbach KA, Alberts DS, Pierce JP. Diet and biomarkers of oxidative damage in women previously treated for breast cancer. Nutr Cancer 2005; 51:146-54. [PMID: 15860436 DOI: 10.1207/s15327914nc5102_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
This study sought to evaluate the relationship between dietary intake of fat, polyunsaturated fat, saturated fat, arachidonic acid, and selected dietary antioxidants and levels of oxidative damage as measured by urinary levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-epi-prostaglandin F2alpha (8-iso-PGF2alpha) in women previously treated for breast cancer. Two hundred two study subjects participating in the Women's Healthy Eating and Living (WHEL) study were included in this ancillary study. Dietary intakes and concentrations of urinary 8-OHdG and 8-iso-PGF2alpha were measured at baseline and 12 mo in the 179 women included in the analytical cohort. Study subjects demonstrated a significant reduction in dietary total, polyunsaturated, and saturated fat intake and a significant increase in vitamins E and C and beta-carotene intake from baseline to 12 mo. Linear mixed-models analysis using baseline and Year 1 data indicated that vitamin E intake was inversely associated with both 8-OHdG and 8-iso-PGF2alpha. 8-Iso-PGF2alpha is increased with increased body mass index (BMI) and polyunsaturated fatty acid (PUFA) intake, indicating an increase in lipid peroxidation with greater BMI and higher PUFA intake. 8-OHdG was inversely related to age but positively related to arachidonic acid, indicating an increase in DNA damage with higher intake of arachidonic acid (meat). The results of this nested case-controlled study provide potential mechanisms by which a high fruit and vegetable, low-fat diet might reduce the recurrence rate of or early-stage breast cancer.
Collapse
Affiliation(s)
- Cynthia A Thomson
- Department of Nutritional Sciences, The University of Arizona, Tucson 85721-0038, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Morillas-Ruiz J, Zafrilla P, Almar M, Cuevas MJ, López FJ, Abellán P, Villegas JA, González-Gallego J. The effects of an antioxidant-supplemented beverage on exercise-induced oxidative stress: results from a placebo-controlled double-blind study in cyclists. Eur J Appl Physiol 2005; 95:543-9. [PMID: 16132121 DOI: 10.1007/s00421-005-0017-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
The objective of this study was to test the effects of an antioxidant-supplemented beverage on exercise-induced oxidative stress in moderately trained cyclists. A double-blind study was conducted in moderately trained cyclists. They were randomly allocated to receive either an antioxidant (13 subjects) or a placebo (13 subjects) 15 min pre-exercise (30 ml.kg(-1)) and during a 90 min constant-load test (30 ml.kg(-1).15 min(-1)) on a bicycle ergometer at 70% VO2max The supplemented beverage contained black grape (81 g/l), raspberry (93 g/l) and red currant (39 g/l) concentrates, and its total antioxidant capacity, measured by the ABTS(.+) technique, was 0.41 mM Trolox. No significant difference from basal to post-exercise period was detected for plasma TBARS in either the placebo group or the group receiving the antioxidant supplemented beverage. Post-exercise carbonyls decreased by 29% in the group receiving antioxidants, and the pattern of change was significantly different between antioxidant and placebo conditions. The urinary excretion of 8-OHdG increased significantly by 21% in the placebo group. Again differences in the pre- to post-exercise change were significant between both conditions These results suggest that in moderately trained cyclists, antioxidant supplementation counters oxidative stress induced by a 90 min exercise at 70% VO2max.
Collapse
Affiliation(s)
- J Morillas-Ruiz
- Department of Physiology, Catholic University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
Currently, modern chronic diseases, including cardiovascular diseases, Type 2 diabetes, metabolic syndrome, and cancer, are the leading killers in Westernized society and are increasing rampantly in developing nations. In fact, obesity, diabetes, and hypertension are now even commonplace in children. Clearly, however, there is a solution to this epidemic of metabolic disease that is inundating today's societies worldwide: exercise and diet. Overwhelming evidence from a variety of sources, including epidemiological, prospective cohort, and intervention studies, links most chronic diseases seen in the world today to physical inactivity and inappropriate diet consumption. The purpose of this review is to 1) discuss the effects of exercise and diet in the prevention of chronic disease, 2) highlight the effects of lifestyle modification for both mitigating disease progression and reversing existing disease, and 3) suggest potential mechanisms for beneficial effects.
Collapse
Affiliation(s)
- Christian K Roberts
- Dept. of Physiological Science, University of California-Los Angeles, 4101 Life Sciences Bldg., 621 Charles E. Young Dr. South, Los Angeles, CA 90095-1606, USA.
| | | |
Collapse
|
63
|
Tondel M, Arynchyn A, Jönsson P, Persson B, Tagesson C. Urinary 8-hydroxydeoxyguanosine in Belarussian children relates to urban living rather than radiation dose after the chernobyl accident: a pilot study. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2005; 48:515-9. [PMID: 15886892 DOI: 10.1007/s00244-004-0079-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 11/16/2004] [Indexed: 05/02/2023]
Abstract
As a result of the Chernobyl accident in 1986, exposure to radioactive cesium is still a concern in the contaminated regions of Belarus. We tested the hypothesis that long-term radiation exposure from the Chernobyl accident might increase the urinary excretion of the oxidative stress marker, 8-hydroxydeoxyguanosine (8-OHdG), in Belarussian children. Urinary 8-OHdG was determined in two groups of children (-n = 31 and n = 46) -living in contaminated and uncontaminated areas of Belarus, respectively (the majority of the unexposed children lived in the capital Minsk). The children from the contaminated areas had a significantly higher annual summary effective dose but significantly lower urinary 8-OHdG levels than the children from the uncontaminated areas. Unexpectedly, children living in uncontaminated urban areas had significantly higher urinary 8-OHdG levels than children living in uncontaminated rural areas. There was no statistically significant effect of sex or body mass index on urinary 8-OHdG, but there was a weak significant inverse correlation to age as well as to the annual summary effective dose. These findings suggest that radiation from the Chernobyl accident is now a less important contributor to oxidative stress in Belarussian children than urban living.
Collapse
Affiliation(s)
- M Tondel
- Division of Occupational and Environmental Medicine, Department of Molecular and Clinical Medicine, Faculty of Health Sciences, Linköping University, Sweden.
| | | | | | | | | |
Collapse
|
64
|
Kennedy DD, Ladas EJ, Rheingold SR, Blumberg J, Kelly KM. Antioxidant status decreases in children with acute lymphoblastic leukemia during the first six months of chemotherapy treatment. Pediatr Blood Cancer 2005; 44:378-85. [PMID: 15622521 DOI: 10.1002/pbc.20307] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Children undergoing treatment for acute lymphoblastic leukemia (ALL) receive combination chemotherapy and many of the components are associated with free radical production. PROCEDURE Among 103 children newly diagnosed with ALL, plasma concentrations of antioxidants, total antioxidant capacity (ORAC), and DNA oxidized base 8-oxodeoxyguanosine (8-oxo-dG) were analyzed at baseline and 3 and 6 months after diagnosis. RESULTS Plasma vitamin A, antioxidants, 8-oxo-dG, and ORAC changed from diagnosis through the first 6 months of ALL therapy. In patients with higher plasma concentrations of vitamin A, E, total carotenoids, ORAC, and 8-oxo-dG there was a beneficial association with fewer dose reductions, fewer infections, improved quality of life, less delay in chemotherapy treatment schedule, reduced toxicity, and fewer days spent in the hospital. There were also adverse relationships demonstrated. CONCLUSIONS Among children with ALL, antioxidant levels and oxidative stress appear to be associated with duration and complications of treatment.
Collapse
Affiliation(s)
- Deborah D Kennedy
- Division of Pediatric Oncology, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | | | | | | | | |
Collapse
|
65
|
Kennedy DD, Santella RM, Wang Q, Ladas EJ, Kelly KM. 8-oxo-dG elevated in children during leukemia treatment. Integr Cancer Ther 2005; 3:301-9. [PMID: 15523101 DOI: 10.1177/1534735404270285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Changes in oxidative stress in children undergoing chemotherapy for acute lymphoblastic leukemia (ALL) have not been well documented. To determine whether the measurement of the DNA oxidized base 8-oxodeoxyguanosine (8-oxo-dG) may be a useful biomarker in this population, the authors conducted an observational study on 103 children with ALL. Blood samples were collected at diagnosis, during interim maintenance (IM), and during delayed intensification (DI). Blood mononuclear cell 8-oxo-dG, measured with an immunohistochemical method, decreased from diagnosis to IM (P = .01) and increased between IM and DI (P < .01). In a pilot study, bone marrow was also collected from 16 patients at diagnosis and after 28 days of treatment, but 8-oxo-dG remained the same. The relationship between plasma and dietary intake of antioxidants and the level of 8-oxo-dG was also explored. There was a direct relationship between the intake of vitamin E at diagnosis and bone marrow 8-oxo-dG (P = .03) and an inverse relationship between beta-carotene intake and blood 8-oxo-dG at IM (P = .03) and vitamin A in-take and blood 8-oxo-dG at DI (P = .003). Plasma vitamin C (P = .02) and total carotenoids (P = .01) were inversely related to blood 8-oxo-dG at IM. In contrast, higher plasma E/total lipid levels were associated with higher 8-oxo-dG at IM and DI (P < .01). At IM, patients with higher 8-oxo-dG had an increased risk of chemotherapy dose reduction (P = .04). In conclusion, the level of 8-oxo-dG in blood mononuclear cells decreases after the start of chemotherapy and increases during aggressive chemotherapy in children with ALL.
Collapse
Affiliation(s)
- Deborah D Kennedy
- Division of Pediatric Oncology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
66
|
Mühlhöfer A, Mrosek S, Schlegel B, Trommer W, Rozario F, Böhles H, Schremmer D, Zoller WG, Biesalski HK. High-dose intravenous vitamin C is not associated with an increase of pro-oxidative biomarkers. Eur J Clin Nutr 2004; 58:1151-8. [PMID: 15054428 DOI: 10.1038/sj.ejcn.1601943] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE High-dose vitamin C therapy might mediate beneficial clinical effects by counteracting reactive oxygen species. However, concerns are raised whether this approach might provoke diametrical (ie pro-oxidative) effects. The objective was to determine ascorbyl free radical (AFR) concentrations and potential variables of pro-oxidative damage. DESIGN Crossover study; six healthy males received daily infusions of 750 or 7500 mg vitamin C for six consecutive days. Fasting concentrations of vitamin C and AFR were determined daily. On day 1, concentrations of vitamin C and AFR were measured at 0.25, 0.5, 1, 2, 4 and 8 h post infusion. Plasma concentrations of thiobarbituric acid-reactive substances (TBARS), tocopherol and urine concentrations of 8-oxoguanosine were determined on days 1 and 6. RESULTS Kinetic studies on day 1 showed that concentrations of vitamin C and AFR displayed parallel dose- and time-dependent kinetics and elimination was highly efficient. Vitamin C and AFR fasting concentrations on days 2-6 were slightly above the baseline, suggesting new, stable steady states. TBARS decreased in both groups, whereas tocopherol and 8-oxoguanosine concentrations remained unchanged. CONCLUSION Kinetics of AFR largely depend on plasma vitamin C concentrations and AFR is eliminated efficiently. Our data do not support induction of pro-oxidative effects in healthy volunteers given intravenous high-dose vitamin C. SPONSORSHIP Pascoe Pharmazeutische Präparate GmbH, Giessen, Germany.
Collapse
Affiliation(s)
- A Mühlhöfer
- Division of Gastroenterology at Katharinenhospital, Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Higdon J, Frei B. Vitamin C, Vitamin E, and b-Carotene in Cancer Chemoprevention. PHYTOPHARMACEUTICALS IN CANCER CHEMOPREVENTION 2004. [DOI: 10.1201/9780203506707.ch21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
68
|
Wu LL, Chiou CC, Chang PY, Wu JT. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 2004; 339:1-9. [PMID: 14687888 DOI: 10.1016/j.cccn.2003.09.010] [Citation(s) in RCA: 681] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reactive oxygen species (ROS) produced either endogenously or exogenously can attack lipid, protein and nucleic acid simultaneously in the living cells. In nuclear and mitochondrial DNA, 8-hydroxydeoxyguanosine (8-OHdG), an oxidized nucleoside of DNA, is the most frequently detected and studied DNA lesion. Upon DNA repair, 8-OHdG is excreted in the urine. Numerous evidences have indicated that urinary 8-OHdG not only is a biomarker of generalized, cellular oxidative stress but might also be a risk factor for cancer, atherosclerosis and diabetes. For example, elevated level of urinary 8-OHdG has been detected in patients with various cancers. In human atherosclerotic plaques, there were increased amounts of oxidatively modified DNA and 8-OHdG. Elevated urinary 8-OHdG and leukocyte DNA were also detected in diabetic patients with hyperglycemia, and the level of urinary 8-OHdG in diabetes correlated with the severity of diabetic nephropathy and retinopathy. We have discussed various methods for determining 8-OHdG in the tissue and urine, including HPLC with and without extraction, and ELISA. Using the ELISA we developed, we found that the normal range of urinary 8-OHdG for females was 43.9 +/- 42.1 ng/mg creatinine and 29.6 +/- 24.5 ng/mg creatinine for males, respectively. We found that the normal value between females and males is significantly different (p < 0.001).
Collapse
Affiliation(s)
- Lily L Wu
- Department of Pathology, University of Utah Health Science Center, Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
69
|
Andican G, Gelişgen R, Civelek S, Seven A, Seymen O, Altuğ T, Yiğit G, Burçak G. Oxidative damage to nuclear DNA in hyperthyroid rat liver: inability of vitamin C to prevent the damage. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2004; 67:413-420. [PMID: 14718177 DOI: 10.1080/15287390490273479] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effects of hyperthyroidism on oxidative DNA damage in liver tissue and modification by vitamin C supplementation were investigated in rats. Animals were rendered hyperthyroid by administration of L-thyroxine (0.4 mg/100 g food) for 25 d. In the plasma samples, T(3), T(4), and thyroid-stimulating hormone (TSH) were measured by radioimmunoassay and ascorbate spectrophotometrically. Oxidative damage to hepatic nuclear DNA was determined by measuring deoxy-guanosine (dG) and 8-oxodG by high-performance liquid chromatography with diode array detector electrochemical detection (HPLC-DAD-ECD). In hyperthyroidism, 8-oxodG/(10(5) dG) levels were significantly higher and plasma vitamin C levels lower than in control rats. The results of this experimental study show that oxidative damage to hepatic nuclear DNA increases in the hyperthyroid state and that vitamin C was not effective in preventing this damage.
Collapse
Affiliation(s)
- Gülnur Andican
- Department of Biochemistry, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Møller P, Viscovich M, Lykkesfeldt J, Loft S, Jensen A, Poulsen HE. Vitamin C supplementation decreases oxidative DNA damage in mononuclear blood cells of smokers. Eur J Nutr 2004; 43:267-74. [PMID: 15309445 DOI: 10.1007/s00394-004-0470-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Accepted: 11/09/2003] [Indexed: 10/26/2022]
Abstract
BACKGROUND Antioxidants, in particular vitamin C, have been suggested to decrease oxidative DNA damage. Such effects have been shown in mononuclear blood cells in the first few hours after ingestion, whereas studies of longer-term effects in well-nourished humans have been mainly negative. AIM To investigate the antioxidant effect of vitamin C in terms of oxidative DNA damage measured by the comet assay and DNA repair measured by expression of OGG1 mRNA in blood cells of male smokers given 2 x 250 mg vitamin C daily as plain or slow release tablets combined with plain release vitamin E 2 x 91 mg, or placebo for 4 wk. RESULTS This study showed a difference in DNA protective effects between a slow release and a plain release vitamin C formulation. Ingestion of slow release vitamin C formulation was associated with fewer endonuclease III and formamidopyrimidine DNA glycosylase sensitive sites measured by the comet assay in mononuclear blood cells obtained 4 h and 8 h after a single tablet and 4 wk after two tablets a day. Ingestion of the vitamin formulation with plain release only indicated a damage-reducing effect 4 h after intake of a single tablet, and the effect was more apparent on endonuclease III than formamidopyrimidine DNA glycosylase sites. Overall the slow release tablets of vitamin C formulation had a more pronounced and a sustained protective effect on base damage compared with the plain release tablets. Plasma vitamin E was unaltered in the first 12 h after ingestion of a single tablet, suggesting that the antioxidant effect was mediated by vitamin C. Differences in plasma vitamin C levels at steady state could not explain the difference between the two vitamin C formulations, whereas wider amplitudes of plasma vitamin C were seen after ingestion of plain release formulation compared to slow release formulation. Assessment of OGG1 mRNA levels by RT-PCR did not indicate increased expression of this DNA repair gene after 4 wk of vitamin supplementation. CONCLUSION This study suggests that long-term vitamin C supplementation at high dose, i. e. 500 mg together with vitamin E in moderate dose, 182 mg, decreases the steady-state level of oxidative DNA damage in mononuclear blood cells of smokers.
Collapse
Affiliation(s)
- Peter Møller
- Institute of Public Health (c/o Dept. of Pharmacology), The Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
71
|
Dierckx N, Horvath G, van Gils C, Vertommen J, van de Vliet J, De Leeuw I, Manuel-y-Keenoy B. Oxidative stress status in patients with diabetes mellitus: relationship to diet. Eur J Clin Nutr 2003; 57:999-1008. [PMID: 12879095 DOI: 10.1038/sj.ejcn.1601635] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the relationship between dietary intakes and in vivo oxidative stress (OS) status in diabetic patients. DESIGN Case-control study. SETTING Outpatient-Clinic and Laboratory Endocrinology, University Antwerp. SUBJECTS AND METHODS A total of 30 patients (24 type 1 diabetes mellitus (T1DM)/6 type 2 diabetes mellitus (T2DM) were asked to complete a 2 weekdays+1 weekend day food consumption questionnaire during the week preceding their yearly diabetes control consultation, when samples were collected for the assay of oxidative stress (OS) (blood levels of antioxidants, peroxides, malondialdehyde (MDA) and minerals). Blood samples were also collected from 25 age- and sex-matched healthy controls. RESULTS Diabetic patients had lower glutathione (5.80+/-1.15 vs 6.75+/-1.03 micromol/g Hb in the controls, P=0.002) and higher MDA (0.687+/-0.212 vs 0.545+/-0.101 micromol/l, P=0.002). Although the group average intakes were within the Belgian RDA, intakes of fat >35% energy, fibre <15 g/1000 kcal, fruit <2 portions and vitamin E <10 mg/day were seen in more than 20 patients. Blood antioxidants did not correlate with intakes of energy, fat, protein or fibres or of their respective antioxidant. Vitamins A and E correlated with serum lipids (r=0.58, P <0.0005 between serum alpha-tocopherol and cholesterol). Blood peroxide levels were only related to intakes of saturated fat and cholesterol (P<0.05). In diabetic subjects but not in controls (P<0.05) MDA was related to glutathione and uric acid. CONCLUSIONS In diabetic patients, blood levels of antioxidants are not related to their dietary intakes but to serum lipids. Levels of oxidative damage products are only related to intakes of saturated fats and cholesterol and to levels of endogenous antioxidants.
Collapse
Affiliation(s)
- N Dierckx
- Laboratory of Endocrinology, University of Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
The relative importance of mechanisms relevant to smoking-induced vascular injury is poorly understood. Cigarette smoke is a source of free radicals but also results in cellular activation and consequent generation of free radicals in vivo. Here we consider several approaches to estimating the consequences of free radical generation in vivo, using measurements of modified lipids, proteins, and DNA. Smoking appears to result in elevation of several biomarkers of oxidant stress, some in a dose-related fashion. There is also some evidence that disordered endothelial function in smokers may be partly attributable to oxidant stress. Other effects of smoking on hemostatic activation, sympathoadrenal function, and lipoprotein structure and function may also be modulated by smoking-induced oxidant stress. The emergence and application of rational quantitatively reliable indexes of oxidant stress in vivo is likely to elucidate the relative contribution of oxidant stress to smoking-induced vascular injury.
Collapse
Affiliation(s)
- Anne Burke
- Gastrointestinal Division and the Center for Experimental Therapeutics, Hospital of the University of Pennsylvania, Philadelphia, PA 19104-6084, USA
| | | |
Collapse
|
73
|
Sacheck JM, Milbury PE, Cannon JG, Roubenoff R, Blumberg JB. Effect of vitamin E and eccentric exercise on selected biomarkers of oxidative stress in young and elderly men. Free Radic Biol Med 2003; 34:1575-88. [PMID: 12788477 DOI: 10.1016/s0891-5849(03)00187-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Muscle damage resulting from eccentric exercise provides a useful model of oxyradical-induced injury and can be used to examine age-related responses to oxidative stress. Sixteen young (26.4 +/- 3.3 years) and 16 older (71.1 +/- 4.0 years) healthy men were randomly assigned to 1000 IU/d vitamin E or placebo for 12 weeks and ran downhill for 45 min at 75% VO(2)max, once before and following supplementation. Blood samples were obtained before (baseline) and immediately postexercise (0 h), and at 6, 24, and 72 h postexercise to determine antioxidant status, muscle damage, lipid peroxidation, and DNA damage. Following exercise, young and older men experienced similar increases in serum creatine kinase (CK), F(2alpha)-isoprostanes (iPF(2alpha); p <.001) and malondialdehyde (MDA; p <.01), although iPF(2alpha) peaked at 72 h postexercise and MDA peaked at 0 h. Oxygen Radical Absorbance Capacity (ORAC) decreased at 72 h (p <.01) and correlated with the rise in iPF(2alpha), MDA, and CK in the young men (p <.05). Leukocyte 8-hydroxy-2'-deoxyguanosine (8-OHdG) was unaffected by exercise. Vitamin E decreased peak CK in young men, while in older men it decreased resting levels of iPF(2alpha) and suppressed the 24 h postexercise increases in iPF(2alpha) (p <.05). Thus, vitamin E supplementation induced modest changes eccentric exercise-induced oxidative stress, although differentially between the young and older subjects, while age had no direct influence on these responses among this group of physically fit subjects.
Collapse
Affiliation(s)
- Jennifer M Sacheck
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Tufts University, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
74
|
Kay CD, Holub BJ. The effect of wild blueberry (Vaccinium angustifolium) consumption on postprandial serum antioxidant status in human subjects. Br J Nutr 2002; 88:389-98. [PMID: 12323088 DOI: 10.1079/bjn2002665] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of the present study was to determine whether the consumption of wild blueberries (Vaccinium angustifolium), a concentrated source of non-nutritive antioxidant phytochemicals, would enhance postprandial serum antioxidant status in healthy human subjects. A single-blinded crossover study was performed in a group of eight middle-aged male subjects (38-54 years). Subjects consumed a high-fat meal and a control supplement followed 1 week later by the same high-fat meal supplemented with 100.0 g freeze-dried wild blueberry powder. Upon brachial vein catheterization, fasting and postprandial serum samples were taken sequentially and analysed for lipids and glucose and for serum antioxidant status. Serum antioxidant status was determined using the oxygen radical absorbance capacity (ORAC) assay and the total antioxidant status (TAS) assay. The wild-blueberry treatment was associated with a significant treatment effect as determined by the ORAC assay (water-soluble fraction ORAC(perchloric acid (PCA)), P=0.04). Significant increases in serum antioxidant status above the controls were observed at 1 h (ORAC(PCA) (8.5 % greater), P=0.02; TAS (4.5 % greater), P=0.05), and 4 h (ORAC(total) (15.0 % greater), P=0.009; ORAC(acetone) (16.0 % greater), P=0.007) post-consumption of the high-fat meal. In conclusion, the consumption of wild blueberries, a food source with high in vitro antioxidant properties, is associated with a diet-induced increase in ex vivo serum antioxidant status. It has been suggested that increasing the antioxidant status of serum may result in the reduced risk of many chronic degenerative diseases.
Collapse
Affiliation(s)
- Colin D Kay
- Department of Human Biology and Nutritional Sciences, University of Guelph, Ontario, Canada
| | | |
Collapse
|
75
|
Guetens G, De Boeck G, Highley M, van Oosterom AT, de Bruijn EA. Oxidative DNA damage: biological significance and methods of analysis. Crit Rev Clin Lab Sci 2002; 39:331-457. [PMID: 12385502 DOI: 10.1080/10408360290795547] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
All forms of aerobic life are subjected constantly to oxidant pressure from molecular oxygen and also reactive oxygen species (ROS), produced during the biochemical utilization of O2 and prooxidant stimulation of O2 metabolism. ROS are thought to influence the development of human cancer and more than 50 other human diseases. To prevent oxidative DNA damage (protection) or to reverse damage, thereby preventing mutagenesis and cancer (repair), the aerobic cell possesses antioxidant defense systems and DNA repair mechanisms. During the last 20 years, many analytical techniques have been developed to monitor oxidative DNA base damage. High-performance liquid chromatography-electrochemical detection and gas chromatography-mass spectrometry are the two pioneering contributions to the field. Currently, the arsenal of methods available include the promising high-performance liquid chromatography-tandem mass spectrometry technique, capillary electrophoresis, 32P-postlabeling, fluorescence postlabeling, 3H-postlabeling, antibody-base immunoassays, and assays involving the use of DNA repair glycosylases such as the comet assay, the alkaline elution assay, and the alkaline unwinding method. Recently, the use of liquid chromatography-mass spectrometry has been introduced for the measurement of a number of modified nucleosides in oxidatively damaged DNA. The bulk of available chromatographic methods aimed at measuring individual DNA base lesions require either chemical hydrolysis or enzymatic digestion of oxidized DNA, following extraction from cells or tissues. The effect of experimental conditions (DNA isolation, hydrolysis, and/or derivatization) on the levels of oxidatively modified bases in DNA is enormous and has been studied intensively in the last 10 years.
Collapse
|
76
|
Abstract
Free radicals and other reactive species are generated in vivo and many of them can cause oxidative damage to DNA. Although there are methodological uncertainties about accurate quantitation of oxidative DNA damage, the levels of such damage that escape immediate repair and persist in DNA appear to be in the range that could contribute significantly to mutation rates in vivo. The observation that diets rich in fruits and vegetables can decrease both oxidative DNA damage and cancer incidence is consistent with this. By contrast, agents increasing oxidative DNA damage usually increase risk of cancer development. Such agents include cigarette smoke, several other carcinogens, and chronic inflammation. Rheumatoid arthritis and diabetes are accompanied by increased oxidative DNA damage but the pattern of increased cancer risk seems unusual. Other uncertainties are the location of oxidative DNA damage within the genome and the variation in rate and level of oxidative damage between different body tissues. In well-nourished human volunteers, fruits and vegetables have been shown to decrease oxidative DNA damage in several studies, but data from short-term human intervention studies suggest that the protective agents are not vitamin C, vitamin E, beta-carotene, or flavonoids.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore 119260.
| |
Collapse
|
77
|
Abstract
Randomized controlled trials are generally regarded as the gold standard of study designs to determine causality. The inclusion of a placebo group in these trials, when appropriate, is critical to access the efficacy of a drug or supplement. The placebo response itself has received some attention in the medical literature over the past fifty years. The recent increasing utilization of dietary supplements and herbal medications by patients makes it imperative to reevaluate the placebo response in conventional and alternative medicine. This article will review some of the negative and positive results from randomized trials utilizing dietary supplements (androstenedione, beta-carotene, CoQ10, garlic, soy, vitamin C and E...) for a number of non-urologic and urologic conditions, including cancer.
Collapse
Affiliation(s)
- Mark A Moyad
- Department of Urology, University of Michigan Medical Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0330, USA.
| |
Collapse
|
78
|
Koul A, Bhatia V, Bansal MP. Effect of alpha-tocopherol on pulmonary antioxidant defence system and lipid peroxidation in cigarette smoke inhaling mice. BMC BIOCHEMISTRY 2001; 2:14. [PMID: 11734073 PMCID: PMC60661 DOI: 10.1186/1471-2091-2-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2001] [Accepted: 11/16/2001] [Indexed: 11/29/2022]
Abstract
BACKGROUND Free radicals generated in biological systems by cigarette smoke (CS) inhalation can cause oxidative stress in tissues, resulting in lipid peroxidation (LPO). In view of the antioxidant properties of alpha-tocopherol (AT), in the present study, effects of AT on antioxidant defence system and LPO were investigated in mice inhaling CS for different time intervals. RESULTS Male Balb/c mice were fed orally with AT (5 I.U./Kg.b.wt.) and /or exposed to CS for 2, 4, 6 or 8 weeks. No effect was observed on body growth, diet consumption, water intake and lung weight due to AT and /or CS treatment in any of the groups as compared to their control counterparts. After two weeks of treatment, no change in LPO, reduced glutathione (GSH) levels and antioxidant enzymes were observed except for glutathione reductase (GR) which increased in all the treated groups. A significant increase in pulmonary LPO levels was observed in mice exposed to CS inhalation for 4, 6 or 8 weeks. There was a gradual increase in the LPO levels as the extent of CS inhalation increased from 4 to 8 weeks. However, the extent of increase in LPO levels due to CS exposure for 4, 6 or 8 weeks in the mice treated with AT was comparatively less. A significant decrease in the GSH levels was also observed in all the animals exposed to CS for 4, 6 or 8 weeks. There was a significant increase in the activities of catalase, glutathione peroxidase (GSH-Px) and GR observed in all the groups exposed to CS for 4,6 or 8 weeks. The increase in above antioxidant enzymes seems to be insufficient to combat the oxidative stress posed by CS inhalation. There was a marked decrease observed in the LPO levels in the animals treated with AT alone for 4, 6, or 8 weeks, when compared to their control counterparts. However, the supplementation of AT for 4, 6 or 8 weeks demonstrated a significant increase in GSH levels. CONCLUSION It appears from our studies that AT exhibits its antioxidant role either directly by scavenging the oxidative species or indirectly by modulating the GSH levels.
Collapse
Affiliation(s)
- Ashwani Koul
- Department of Biophysics, Panjab University, Chandigarh-160014, India
| | - Vipin Bhatia
- Department of Biophysics, Panjab University, Chandigarh-160014, India
| | - MP Bansal
- Department of Biophysics, Panjab University, Chandigarh-160014, India
| |
Collapse
|
79
|
|
80
|
Abstract
Reactive oxygen species (ROS) play an important role as mediators of skeletal muscle damage and inflammation after strenuous exercise. These ROS arise largely from increases in mitochondrial oxygen consumption and electron transport flux. Bouts of intense exercise are associated with increases in lipid peroxidation, generating malondialdehyde and F(2alpha)-isoprostanes, and the release of muscle enzymes like lactate dehydrogenase and creatine kinase. Dietary and enzymatic antioxidant defenses appear to play a protective role in muscle cells by reducing associated oxidative damage to lipids, nucleic acids, and protein. However, studies of the use of dietary antioxidants like vitamin E to reduce exercise-induced muscle injury have met with mixed success. The equivocal nature of these results appear to reflect a diversity of factors including the antioxidant(s) tested, the nature and timing of the exercise, the age and fitness of the subjects, and the methodology for assessing oxidative stress.
Collapse
Affiliation(s)
- J M Sacheck
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | | |
Collapse
|
81
|
Abstract
Vitamin C, a water-soluble glucose derivative, has considerable antioxidant activity in vitro, in part because of its ease of oxidation and because the semidehydroascorbate radical derived from it is of low reactivity. Vitamin C in vivo is an essential cofactor for a range of enzymes involved in diverse metabolic pathways, but much recent literature has focused on its antioxidant effects. Consumption of foods rich in Vitamin C (fruits and vegetables) is associated with decreased risk of cardiovascular disease, of many types of cancer and possibly of neurodegenerative disease, but the extent to which Vitamin C contributes to these effects is uncertain. Data using biomarkers of oxidative damage to DNA bases have given no compelling evidence to date that ascorbate supplements can decrease the levels of oxidative DNA damage in vivo, except perhaps in subjects with very low Vitamin C intakes. Similarly, there is no conclusive evidence from studies of strand breaks, micronuclei, or chromosomal aberrations for a protective effect of Vitamin C. There is limited evidence that supplements of Vitamin C might have beneficial effects in disorders of vascular function, and that diet-derived Vitamin C may decrease gastric cancer incidence in certain populations, but it is not clear whether it is the antioxidant or other properties of ascorbate that are responsible for these two actions.
Collapse
Affiliation(s)
- B Halliwell
- Department of Biochemistry, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore.
| |
Collapse
|
82
|
Abstract
Free radicals and reactive oxygen species (ROS) which are generated continuously cause mutagenic alterations resulting in cancer, aging and abnormalities in the nervous system. Accumulating evidence indicates that Vitamin E, the most potent lipid peroxyl radical scavenger, may reduce free radical induced chromosomal damages through inhibition of free radical formation, and activation of endonuclease that can be triggered by intracellular oxidative stress, and by increasing the rate of removal of damaged DNA. Although some studies suggest a potential usefulness of Vitamin E in the prevention of mutagenic effects caused by genotoxic free radicals, other studies report no effects. Thus the data are not conclusive enough to be used as a basis to change the current recommended dietary allowances (RDA). Future research should address molecular mechanisms underlying the protective effects of Vitamin E and develop appropriate biologically relevant biomarkers of DNA damage to further help in determining the dietary levels of Vitamin E needed to protect the genetic pool from internally and externally induced DNA damages.
Collapse
Affiliation(s)
- K J Claycombe
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, 02111, Boston, MA, USA
| | | |
Collapse
|
83
|
Nocentini S, Guggiari M, Rouillard D, Surgis S. Exacerbating effect of vitamin E supplementation on DNA damage induced in cultured human normal fibroblasts by UVA radiation. Photochem Photobiol 2001; 73:370-7. [PMID: 11332032 DOI: 10.1562/0031-8655(2001)073<0370:eeoves>2.0.co;2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of vitamin E supplementation were evaluated in cultured human normal fibroblasts exposed to ultraviolet A radiation (320-380 nm) (UVA). Cells were incubated in medium containing alpha-tocopherol, alpha-tocopherol acetate or the synthetic analog Trolox for 24 h prior to UVA exposure. DNA damage in the form of frank breaks and alkali-labile sites, collectively termed single-strand breaks (SSB), was assayed by the technique of single cell gel electrophoresis (comet assay), immediately following irradiation or after different repair periods. The generation of hydrogen peroxide (H2O2) and superoxide ion (O2.-) was measured by flow cytometry through the oxidation of indicators into fluorescent dyes. It was observed that pretreatment of cells with any form of vitamin E resulted in an increased susceptibility to the photoinduction of DNA SSB and in a longer persistence of damage, whereas no significant change was observed in the production of H2O2 and O2.- reactive oxygen species, compared to untreated controls. These findings indicate that in human normal fibroblasts, exogenously added vitamin E exerts a promoting activity on DNA damage upon UVA irradiation and might lead to increased cytotoxic and mutagenic risks.
Collapse
Affiliation(s)
- S Nocentini
- UMR CNRS/Institut Curie 218, Institut Curie, Section de Recherche, 26 rue d'Ulm, 75248, Paris, France.
| | | | | | | |
Collapse
|
84
|
Elsayed NM, Bendich A. Dietary antioxidants: potential effects on oxidative products in cigarette smoke. Nutr Res 2001. [DOI: 10.1016/s0271-5317(00)00301-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
85
|
Proteggente AR, Rehman A, Halliwell B, Rice-Evans CA. Potential problems of ascorbate and iron supplementation: pro-oxidant effect in vivo? Biochem Biophys Res Commun 2000; 277:535-40. [PMID: 11061989 DOI: 10.1006/bbrc.2000.3711] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The comparison was undertaken between the effects of ascorbate versus ascorbate plus iron supplementation on DNA damage. Twenty healthy subjects with initial levels of plasma ascorbate of 67.2 +/- 23.3 micromol/l were randomly assigned to and cycled through one of three supplementation regimes: placebo, 260 mg/d ascorbate, 260 mg/d ascorbate plus 14 mg/d iron for 6 weeks separated by 8-week washout periods. Supplementation did not cause a rise in total oxidative DNA damage measured by GC-MS. However, a significant decrease occurred in levels of 8-oxo-7,8-dihydroguanine by ascorbate supplementation and 5-hydroxymethyl uracil by both ascorbate and ascorbate plus iron supplementation, relative to the pre-supplemental levels but not to the placebo group. In addition, levels of 5-hydroxymethyl hydantoin and 5-hydroxy cytosine increased significantly, only relative to pre-supplementation, by ascorbate plus iron treatment. No compelling evidence for a pro-oxidant effect of ascorbate supplementation, in the presence or absence of iron, on DNA base damage was observed.
Collapse
Affiliation(s)
- A R Proteggente
- Wolfson Centre for Age-Related Diseases, GKT School of Biomedical Sciences, King's College London, St. Thomas' Street, London, SE1 9RT, United Kingdom
| | | | | | | |
Collapse
|
86
|
Halliwell B. Why and how should we measure oxidative DNA damage in nutritional studies? How far have we come? Am J Clin Nutr 2000; 72:1082-7. [PMID: 11063432 DOI: 10.1093/ajcn/72.5.1082] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Free radicals and other reactive species are constantly generated in vivo and cause oxidative damage to DNA at a rate that is probably a significant contributor to the age-related development of cancer. Agents that decrease oxidative DNA damage should thus decrease the risk of cancer development. That is, oxidative DNA damage is a "biomarker" for identifying persons at risk (for dietary or genetic reasons, or both) of developing cancer and for suggesting how the diets of these persons could be modified to decrease that risk. This biomarker concept presupposes that we can measure oxidative damage accurately in DNA from relevant tissues. Little information is available on whether oxidative DNA damage in blood cells mirrors such damage in tissues at risk of cancer development. Measurement of 8-hydroxylated guanine (eg, as 8-hydroxy-2'-deoxyguanosine; 8OHdG) is the commonest method of assessing DNA damage, but there is no consensus on what the true levels are in human DNA. If the lowest levels reported are correct, 8OHdG may be only a minor product of oxidative DNA damage. Indeed, 8OHdG may be difficult to measure because of the ease with which it is formed artifactually during isolation, hydrolysis, and analysis of DNA. Mass spectrometry can accurately measure a wide spectrum of DNA base damage products, but the development of liquid chromatography-mass spectrometry techniques and improved DNA hydrolysis procedures is urgently required. The available evidence suggests that in Western populations, intake of certain fruit and vegetables can decrease oxidative DNA damage, whereas ascorbate, vitamin E, and beta-carotene cannot.
Collapse
Affiliation(s)
- B Halliwell
- Department of Biochemistry, National University of Singapore.
| |
Collapse
|
87
|
López-Torres M, Romero M, Barja G. Effect of thyroid hormones on mitochondrial oxygen free radical production and DNA oxidative damage in the rat heart. Mol Cell Endocrinol 2000; 168:127-34. [PMID: 11064159 DOI: 10.1016/s0303-7207(00)00302-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondria seem to be involved in oxygen radical damage and aging. However, the possible relationships between oxygen consumption and oxygen radical production by functional mitochondria, and oxidative DNA damage, have not been studied previously. In order to analyze these relationships, male Wistar rats of 12 weeks of age were rendered hyper- and hypothyroid by chronic T(3) and 6-n-propyl-2-thiouracil treatments, respectively. Hypothyroidism decreased heart mitochondrial H(2)O(2) production in States 4 (to 51% of controls; P<0.05) and 3 (to 21% of controls; P<0.05). In agreement with this, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) decreased in the heart genomic DNA of hypothyroid animals to 40% of controls (P<0.001). Studies with respiratory inhibitors showed that the decrease in oxygen radical generation observed in hypothyroidism occurred at Complex III (mainly) and at Complex I; that decrease was due to the presence of a lower free radical leak in the respiratory chain (P<0.05). Hyperthyroidism did not significantly change heart mitochondrial H(2)O(2) production since the increase in State 4 oxygen consumption in comparison with control and hypothyroid animals (P<0.05) was compensated by a decrease in the free radical leak in relation to control animals (P<0.05). In agreement with this, heart 8-oxodG was not changed in hyperthyroid animals. The lack of increase in H(2)O(2) production per unit of mitochondrial protein will protect mitochondria themselves against self-inflicted damage during hyperthyroidism.
Collapse
Affiliation(s)
- M López-Torres
- Department of Animal Biology II (Animal Physiology), Faculty of Biology, Complutense University, 28040, Madrid, Spain.
| | | | | |
Collapse
|
88
|
Porkkala-Sarataho E, Salonen JT, Nyyssönen K, Kaikkonen J, Salonen R, Ristonmaa U, Diczfalusy U, Brigelius-Flohe R, Loft S, Poulsen HE. Long-term effects of vitamin E, vitamin C, and combined supplementation on urinary 7-hydro-8-oxo-2'-deoxyguanosine, serum cholesterol oxidation products, and oxidation resistance of lipids in nondepleted men. Arterioscler Thromb Vasc Biol 2000; 20:2087-93. [PMID: 10978253 DOI: 10.1161/01.atv.20.9.2087] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We studied the long-term effects of vitamins E and C and their combination on lipid peroxidation in vivo and in vitro. The Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) trial is a double-masked placebo-controlled randomized clinical trial to study the effects of vitamin C (500 mg of slow release ascorbate per day), vitamin E (182 mg of RRR-alpha-tocopherol acetate per day), and the combination of both antioxidants. Lipid peroxidation measurements were carried out for 48 male participants at entry and at 12 and 36 months. Compared with placebo, vitamin E and the vitamin combination increased plasma lipid-standardized alpha-tocopherol during the first 12 months by 68.2% and 65.2% (P:<0. 001 for both), respectively, and reduced serum 7beta-hydroxycholesterol by 50.4% (P:=0.013) and 44.0% (P:=0.041), respectively. The net change of lipid standardized alpha-tocopherol was 63.8% after 36 months of vitamin E supplementation and 43.3% for the combination. Vitamin C supplementation elevated plasma total ascorbate level by 30.1% (P:=0.043) in 12 months and by 91.1% (P:=0. 001) in 36 months. Neither vitamin E, vitamin C, nor the combination influenced the urinary excretion rate of 7-hydro-8-oxo-2'-deoxyguanosine or the antioxidative capacity of plasma. Vitamin E and the combination of vitamins E and C enhanced the oxidation resistance of isolated lipoproteins and total serum lipids. Our data indicate that long-term supplementation of nondepleted men with a reasonable dose of vitamin E alone or in combination with slow release vitamin C reduces lipid peroxidation in vitro and in vivo, whereas a relatively high dose of vitamin C alone does not.
Collapse
|
89
|
Tarng DC, Huang TP, Liu TY, Chen HW, Sung YJ, Wei YH. Effect of vitamin E-bonded membrane on the 8-hydroxy 2'-deoxyguanosine level in leukocyte DNA of hemodialysis patients. Kidney Int 2000; 58:790-9. [PMID: 10916104 DOI: 10.1046/j.1523-1755.2000.00228.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND 8-Hydroxy 2'-deoxyguanosine (8-OHdG) of leukocyte DNA has been identified as a surrogate marker of oxidative stress in chronic hemodialysis (HD) patients. In this study, we focused on the determinants of the 8-OHdG level in leukocyte DNA of HD patients. We further investigated the influence of vitamin E-modified, regenerated cellulose (CL-E) membrane on the oxidative DNA damage, intracellular reactive oxygen species (ROS) production of granulocytes, and plasma alpha-tocopherol concentration. METHODS 8-OHdG content in cellular DNA of leukocytes was measured by a high-performance liquid chromatography-electrochemical detection (HPLC-ECD) method. Intracellular production of ROS, H2O2 and O2-. were analyzed by flow cytometry in leukocytes with and without phorbol-12-myristate-13-acetate (PMA) stimulation before dialysis, as well as at 15 and 30 minutes of dialysis. Plasma alpha-tocopherol concentration was measured by a HPLC method, and the value of alpha-tocopherol was corrected by total blood lipid concentration. RESULTS In the prospective cross sectional study, the mean 8-OHdG level in leukocyte DNA was equally lower in the patients of the CL-E, polymethylmethacrylate (PMMA), and polysulfone (PS) groups as compared with the cellulosic group (ANOVA, P < 0.001). The leukocyte 8-OHdG level correlated negatively with plasma alpha-tocopherol and blood lipid-adjusted plasma alpha-tocopherol, but correlated positively with serum iron and percentage of transferrin saturation. Forward stepwise multiple regression showed that dialysis membrane type, serum iron, and blood lipid-adjusted plasma alpha-tocopherol were the independent determinants of the leukocyte 8-OHdG level in HD patients. Like synthetic membranes, granulocyte ROS production was less augmented during dialysis with the CL-E membrane as compared with the cellulose membrane. Exposure to cellulose membrane impaired intracellular ROS production of granulocytes in response to PMA challenge, whereas the CL-E and synthetic membranes improved the granulocyte responsiveness to PMA. In the longitudinal cross-over study, the 8-OHdG level significantly decreased, and blood lipid-adjusted plasma alpha-tocopherol increased after switching the cellulose membrane to CL-E or synthetic membrane for eight weeks. In contrast, the 8-OHdG level dramatically rose, and blood lipid-adjusted plasma alpha-tocopherol declined after shift of CL-E or synthetic membrane to the cellulose membrane. CONCLUSIONS CL-E membrane exhibited biocompatible and bioactive characteristics. Like synthetic membranes, treatment with a CL-E dialyzer effectively reduced the 8-OHdG content in leukocyte DNA, suppressed intracellular ROS production of granulocytes, and preserved the plasma level of vitamin E. It could further improve granulocyte responsiveness to a PMA challenge. Reduced DNA damage and improved immune function of leukocytes may reduce the cancer and infection risks in chronic HD patients.
Collapse
Affiliation(s)
- D C Tarng
- Institute of Clinical Medicine, Department of Biochemistry and Center for Cellular and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
90
|
Affiliation(s)
- J S Hampl
- From the Department of Nutrition, Arizona State University, Tempe 85287-2502, USA
| |
Collapse
|
91
|
Cooke MS, Evans MD, Herbert KE, Lunec J. Urinary 8-oxo-2'-deoxyguanosine--source, significance and supplements. Free Radic Res 2000; 32:381-97. [PMID: 10766407 DOI: 10.1080/10715760000300391] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative damage to cellular biomolecules, in particular DNA, has been proposed to play an important role in a number of pathological conditions, including carcinogenesis. A much studied consequence of oxygen-centred radical damage to DNA is 8-oxo-2'-deoxyguanosine (8-oxodG). Using numerous techniques, this lesion has been quantified in various biological matrices, most notably DNA and urine. Until recently, it was understood that urinary 8-oxodG derives solely from DNA repair, although the processes which may yield the modified deoxynucleoside have never been thoroughly discussed. This review suggests that nucleotide excision repair and the action of a specific endonuclease may, in addition to the nucleotide pool, contribute significantly to levels of 8-oxodG in the urine. On this basis, urinary 8-oxodG represents an important biomarker of generalised, cellular oxidative stress. Current data from antioxidant supplementation trials are examined and the potential for such compounds to modulate DNA repair is considered. It is stressed that further work is required to link DNA, serum and urinary levels of 8-oxodG such that the kinetics of formation and clearance may be elucidated, facilitating greater understanding of the role played by oxidative stress in disease.
Collapse
Affiliation(s)
- M S Cooke
- Division of Chemical Pathology, University of Leicester, UK.
| | | | | | | |
Collapse
|
92
|
Jacob RA. The role of micronutrients in DNA synthesis and maintenance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 472:101-13. [PMID: 10736620 DOI: 10.1007/978-1-4757-3230-6_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R A Jacob
- Western Human Nutrition Research Center, U.S. Department of Agriculture, University of California, Davis 95616, USA
| |
Collapse
|
93
|
Affiliation(s)
- B Halliwell
- Department of Biochemistry, Medical Faculty, National University of Singapore, Singapore.
| |
Collapse
|
94
|
Abstract
A major development of carcinogenesis research in the past 20 years has been the discovery of significant levels of DNA damage arising from endogenous cellular sources. Dramatic improvements in analytical chemistry have provided sensitive and specific methodology for identification and quantitation of DNA adducts. Application of these techniques to the analysis of nuclear DNA from human tissues has debunked the notion that the human genome is pristine in the absence of exposure to environmental carcinogens. Much endogenous DNA damage arises from intermediates of oxygen reduction that either attack the bases or the deoxyribosyl backbone of DNA. Alternatively, oxygen radicals can attack other cellular components such as lipids to generate reactive intermediates that couple to DNA bases. Endogenous DNA lesions are genotoxic and induce mutations that are commonly observed in mutated oncogenes and tumor suppressor genes. Their mutagenicity is mitigated by repair via base excision and nucleotide excision pathways. The levels of oxidative DNA damage reported in many human tissues or in animal models of carcinogenesis exceed the levels of lesions induced by exposure to exogenous carcinogenic compounds. Thus, it seems likely that oxidative DNA damage is important in the etiology of many human cancers. This review highlights some of the major accomplishments in the study of oxidative DNA damage and its role in carcinogenesis. It also identifies controversies that need to be resolved. Unraveling the contributions to tumorigenesis of DNA damage from endogenous and exogenous sources represents a major challenge for the future.
Collapse
Affiliation(s)
- L J Marnett
- A.B. Hancock Jr Memorial Laboratory for Cancer Research, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Departments of Biochemistry and Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
95
|
Traber MG, van der Vliet A, Reznick AZ, Cross CE. Tobacco-related diseases. Is there a role for antioxidant micronutrient supplementation? Clin Chest Med 2000; 21:173-87, x. [PMID: 10763098 DOI: 10.1016/s0272-5231(05)70016-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is clear that smoking causes an increase in free radicals, reactive nitrogen and oxygen species (RNS and ROS, respectively), and that cigarette smoking is associated with increases in the incidence and severity of several diseases including atherosclerosis, cancer, and chronic obstructive lung disease. Although there is still no unequivocal evidence that oxidative stress is a contributor to these diseases or that an increased intake of antioxidant nutrients is beneficial, the observation that smokers have lower circulating levels of some of these nutrients, raises concern. This article discusses the possible links between the observed oxidant-induced damage related to tobacco smoking, effects on cellular mechanisms, and their potential involvement in the causation and enhancement of disease processes.
Collapse
Affiliation(s)
- M G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, USA.
| | | | | | | |
Collapse
|
96
|
Welch RW, Turley E, Sweetman SF, Kennedy G, Collins AR, Dunne A, Livingstone MB, McKenna PG, McKelvey-Martin VJ, Strain JJ. Dietary antioxidant supplementation and DNA damage in smokers and nonsmokers. Nutr Cancer 1999; 34:167-72. [PMID: 10578484 DOI: 10.1207/s15327914nc3402_7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Deficiencies of antioxidant nutrients have been implicated in the etiology of lung and other cancers. However, most intervention trials with antioxidant nutrients have not shown beneficial effects, and some have indicated that beta-carotene may be deleterious. This randomized, double-blind, placebo-controlled study evaluated the effects of five short-term (4-wk) antioxidant nutrient supplement regimens [ascorbic acid (350 mg), RRR-alpha-tocopherol (250 mg), beta-carotene (60 mg), selenium (80 micrograms as sodium selenite), ascorbic acid (350 mg) + RRR-alpha-tocopherol (250 mg)] on plasma antioxidants and mononuclear leukocyte DNA damage in male smokers (n = 9) and nonsmokers (n = 12). Plasma concentrations of ascorbic acid and tocopherol were significantly increased by supplementation, but there was no significant change in plasma beta-carotene or blood glutathione peroxidase activity after supplementation with beta-carotene or selenium. DNA damage in mononuclear leukocytes, as assessed by comet assay, was not affected by any supplementation regimen. DNA damage, as assessed by 8-hydroxydeoxyguanosine in mononuclear leukocytes, was not influenced by ascorbic acid, alpha-tocopherol, or selenium supplementation in smokers or nonsmokers, but beta-carotene supplementation resulted in significant differences between smokers and nonsmokers in the level of oxidative DNA damage, with decreases in smokers and increases in smokers. This is a further indication of the differential effects of supplemental beta-carotene in smokers and nonsmokers.
Collapse
Affiliation(s)
- R W Welch
- Northern Ireland Centre for Diet and Health, University of Ulster, Coleraine, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Thompson HJ, Heimendinger J, Haegele A, Sedlacek SM, Gillette C, O'Neill C, Wolfe P, Conry C. Effect of increased vegetable and fruit consumption on markers of oxidative cellular damage. Carcinogenesis 1999; 20:2261-6. [PMID: 10590217 DOI: 10.1093/carcin/20.12.2261] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The goal of this study was to test the hypothesis that increased consumption of vegetables and fruit would reduce markers of oxidative cellular damage that can be assessed in blood or urine. Twenty-eight women participated in a 14 day dietary intervention. The primary end-points assessed were: 8-hydroxydeoxyguanosine (8-OHdG) in DNA isolated from peripheral lymphocytes, determined by HPLC with electrochemical detection; 8-OHdG excreted in urine, measured by ELISA; malondialdehyde (MDA) in urine, measured by fluorimetric detection following derivatization with thiobarituric acid and separation via HPLC; urinary 8-isoprostane F-2alpha (8-EPG) detected by ELISA. Pre- and post-intervention plasma levels of selected carotenoids were determined by HPLC. Subjects were free living and consumed a completely defined recipe-based diet that increased their average daily consumption of vegetables and fruit from 5.8 servings at baseline to 12.0 servings throughout the intervention. Overall, the level of 8-OHdG in DNA isolated from lymphocytes and in urine and the level of 8-EPG in urine were reduced by the intervention, whereas urine concentrations of MDA were minimally affected. The reduction in lymphocyte 8-OHdG was greater in magnitude (32 versus 5%) in individuals with lower average pre-intervention levels of plasma alpha-carotene (56 ng/ml) than in individuals with higher average pre-intervention plasma levels of alpha-carotene (148 ng/ml). The results of this study indicate that consumption of a diet that significantly increased vegetable and fruit intake from a diverse number of botanical families resulted in significant reductions in markers of oxidative cellular damage to DNA and lipids.
Collapse
Affiliation(s)
- H J Thompson
- Center for Nutrition in the Prevention of Disease, AMC Cancer Research Center, Lakewood, CO 80214, USA.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
When life first evolved on Earth, there was little oxygen in the atmosphere. Evolution of antioxidant defences must have been closely associated with the evolution of photosynthesis and of O2-dependent electron transport mechanisms. Studies with mice lacking antioxidant defences confirm the important roles of MnSOD and transferrin in maintaining health, but show that glutathione peroxidase (GPX) and CuZnSOD are not essential for everyday life (at least in mice). Superoxide can be cytotoxic by several mechanisms: one is the formation of hydroxyl radicals. There is good evidence that OH* formation occurs in vivo. Other important antioxidants may include thioredoxin, and selenoproteins other than GPX. Nitric oxide may be an important antioxidant in the vascular system. Diet-derived antioxidants are important in maintaining human health, but recent studies employing "biomarkers" of oxidative DNA damage are questioning the "antioxidant" roles of beta-carotene and ascorbate. An important area of future research will be elucidation of the reasons why levels of steady-state oxidative damage to DNA and lipids vary so much between individuals, and their predictive value for the later development of human disease.
Collapse
Affiliation(s)
- B Halliwell
- Department of Biochemistry, National University of Singapore, Singapore
| |
Collapse
|
99
|
Rehman A, Bourne LC, Halliwell B, Rice-Evans CA. Tomato consumption modulates oxidative DNA damage in humans. Biochem Biophys Res Commun 1999; 262:828-31. [PMID: 10471410 DOI: 10.1006/bbrc.1999.1235] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Consumption of a single serving of tomatoes by healthy human volunteers was sufficient to alter levels of oxidative DNA base damage in white cell DNA within 24 h. Levels of the mutagenic oxidized purine base 8-hydroxyguanine decreased, especially in those subjects whose initial levels of this base were higher than the mean. However, total DNA base damage remained unchanged since levels of 8-hydroxyadenine rose. The ability of tomato consumption to modulate oxidative DNA damage in the short term may indicate why daily consumption of fruits and vegetables is beneficial in decreasing cancer incidence.
Collapse
Affiliation(s)
- A Rehman
- International Antioxidant Research Centre, Guy's, King's and St Thomas's School of Biomedical Sciences, Guy's Campus, London Bridge, London, SE1 9RT, United Kingdom
| | | | | | | |
Collapse
|
100
|
Robards K, Prenzler PD, Tucker G, Swatsitang P, Glover W. Phenolic compounds and their role in oxidative processes in fruits. Food Chem 1999. [DOI: 10.1016/s0308-8146(99)00093-x] [Citation(s) in RCA: 559] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|