51
|
Kailass K, Sadovski O, Zipfel WR, Beharry AA. Two-Photon Photodynamic Therapy Targeting Cancers with Low Carboxylesterase 2 Activity Guided by Ratiometric Fluorescence. J Med Chem 2022; 65:8855-8868. [PMID: 35700557 DOI: 10.1021/acs.jmedchem.1c01965] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human carboxylesterase 2 (hCES2) converts anticancer prodrugs, such as irinotecan, into their active metabolites via phase I drug metabolism. Owing to interindividual variability, hCES2 serves as a predictive marker of patient response to hCES2-activated prodrug-based therapy, whereby a low intratumoral hCES2 activity leads to therapeutic resistance. Despite the ability to identify nonresponders, effective treatments for resistant patients are needed. Clinically approved photodynamic therapy is an attractive alternative for irinotecan-resistant patients. Here, we describe the application of our hCES2-selective small-molecule ratiometric fluorescent chemosensor, Benz-AP, as a single theranostic agent given its discovered functionality as a photosensitizer. Benz-AP produces singlet oxygen and induces photocytotoxicity in cancer cells in a strong negative correlation with hCES2 activity. Two-photon excitation of Benz-AP produces fluorescence, singlet oxygen, and photocytotoxicity in tumor spheroids. Overall, Benz-AP serves as a novel theranostic agent with selective photocytotoxicity in hCES2-prodrug resistant cancer cells, making Benz-AP a promising agent for in vivo applications.
Collapse
Affiliation(s)
- Karishma Kailass
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Oleg Sadovski
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Warren R Zipfel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Andrew A Beharry
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
52
|
Drug Resistance in Colorectal Cancer: From Mechanism to Clinic. Cancers (Basel) 2022; 14:cancers14122928. [PMID: 35740594 PMCID: PMC9221177 DOI: 10.3390/cancers14122928] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of death worldwide. The 5-year survival rate is 90% for patients with early CRC, 70% for patients with locally advanced CRC, and 15% for patients with metastatic CRC (mCRC). In fact, most CRC patients are at an advanced stage at the time of diagnosis. Although chemotherapy, molecularly targeted therapy and immunotherapy have significantly improved patient survival, some patients are initially insensitive to these drugs or initially sensitive but quickly become insensitive, and the emergence of such primary and secondary drug resistance is a significant clinical challenge. The most direct cause of resistance is the aberrant anti-tumor drug metabolism, transportation or target. With more in-depth research, it is found that cell death pathways, carcinogenic signals, compensation feedback loop signal pathways and tumor immune microenvironment also play essential roles in the drug resistance mechanism. Here, we assess the current major mechanisms of CRC resistance and describe potential therapeutic interventions.
Collapse
|
53
|
Development of Irinotecan Liposome Armed with Dual-Target Anti-Epidermal Growth Factor Receptor and Anti-Fibroblast Activation Protein-Specific Antibody for Pancreatic Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14061202. [PMID: 35745775 PMCID: PMC9227843 DOI: 10.3390/pharmaceutics14061202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer is one of the most common causes of death in Taiwan. Previous studies have shown that more than 90% of pancreatic cancer cells presented epidermal growth factor receptor (EGFR) cell marker, and this marker is thought to be important as it is related to activation of cancer cell proliferation, angiogenesis, and cancer progression. Moreover, tumor-associated fibroblasts were involved in tumor proliferation and progression. In this study, we fabricated an anti-EGFR and anti-fibroblast activation protein bispecific antibody-targeted liposomal irinotecan (BS−LipoIRI), which could specifically bind to pancreatic cancer cells and tumor-associated fibroblasts. The drug encapsulation efficiency of BS−LipoIRI was 80.95%, and the drug loading was 8.41%. We proved that both pancreatic cancer cells and fibroblasts could be targeted by BS−LipoIRI, which showed better cellular uptake efficacy compared to LipoIRI. Furthermore, an in vivo mouse tumor test indicated that BS−LipoIRI could inhibit pancreatic cancer growth up to 46.2% compared to phosphate-buffered saline control, suggesting that BS−LipoIRI could be useful in clinical cancer treatment.
Collapse
|
54
|
Zeynali-Moghaddam S, Kheradmand F, Gholizadeh-Ghaleh Aziz S, Abroon S. Combination effects of capecitabine, irinotecan and 17-AAG on colorectal cancer cell line (HT-29). Ann Med Surg (Lond) 2022; 78:103850. [PMID: 35734719 PMCID: PMC9207062 DOI: 10.1016/j.amsu.2022.103850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022] Open
Abstract
Objevtive Evasion of apoptosis is a major feature of cancer cells, therefore designing treatment strategies to target apoptotic pathways seems effective. In this study, we investigate the effect of 17-AAG (17-allylaminogeldanamycin) alone and in double and triple combination with capecitabine (Cap) and irinotecan (IR) on HT-29 colon cancer cell line apoptosis. Methods Capase-3, 8, 9, p53 and NF-κB genes expression were analyzed by Real-time PCR. DNA laddering assay was performed to confirm Real-time PCR results. Results Our results showed that all single treatment groups elevated expression of caspase-3, 8, and 9 significantly and IR/Cap was the only double combination group that could upregulate caspase-8 and -9. NF-κB was down-regulated in single treatment and IR/Cap double combination group, significantly. 17-AAG mono-treatment and IR/Cap and Cap/17-AAG double combination group significantly upregulated p53 gene expression. Conclusion Our findings showed proapoptotic effects of 17-AAG alone and in combination with Cap and IR. These findings propose 17-AAG in combination with routine chemotherapy, as a new protocol for colorectal cancer combination therapy. Targeted therapy of apoptosis is the main effective way against of cancer cells. 17-AAG alone and in combination with Cap and IR can regulate the pro-apoptotic factors. Combination therapy has more effective than single therapy.
Collapse
|
55
|
Byun WS, Bae ES, Kim WK, Lee SK. Antitumor Activity of Rutaecarpine in Human Colorectal Cancer Cells by Suppression of Wnt/β-Catenin Signaling. JOURNAL OF NATURAL PRODUCTS 2022; 85:1407-1418. [PMID: 35544614 DOI: 10.1021/acs.jnatprod.2c00224] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alkaloids derived from natural products have been traditionally used to treat various diseases, including cancers. Rutaecarpine (1), a β-carboline-type alkaloid obtained from Evodia rutaecarpa, has been previously reported as an anti-inflammatory agent. Nonetheless, its anticancer activity and the underlying molecular mechanisms remain to be explored. In the procurement of Wnt/β-catenin inhibitors from natural alkaloids, 1 was found to exhibit activity against the Wnt/β-catenin-response reporter gene. Since the abnormal activation of Wnt/β-catenin signaling is highly involved in colon carcinogenesis, the antitumor activity and molecular mechanisms of 1 were investigated in colorectal cancer (CRC) cells. The antiproliferative activity of 1 was associated with the suppression of the Wnt/β-catenin-mediated signaling pathway and its target gene expression in human CRC cells. 1 also induced G0/G1 cell cycle arrest and apoptotic cell death, and the antimigration and anti-invasion potential of 1 was confirmed through epithelial-mesenchymal transition biomarker inhibition by the regulation of Wnt signaling. The antitumor activity of 1 was supported in an Ls174T-implanted xenograft mouse model via Wnt target gene regulation. Overall, these findings suggest that targeting the Wnt/β-catenin signaling pathway by 1 is a promising therapeutic option for the treatment of human CRC harboring β-catenin mutation.
Collapse
Affiliation(s)
- Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Kyung Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
56
|
Lastakchi S, Olaloko MK, McConville C. A Potential New Treatment for High-Grade Glioma: A Study Assessing Repurposed Drug Combinations against Patient-Derived High-Grade Glioma Cells. Cancers (Basel) 2022; 14:2602. [PMID: 35681582 PMCID: PMC9179370 DOI: 10.3390/cancers14112602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Repurposed drugs have demonstrated in vitro success against high-grade gliomas; however, their clinical success has been limited due to the in vitro model not truly representing the clinical scenario. In this study, we used two distinct patient-derived tumour fragments (tumour core (TC) and tumour margin (TM)) to generate a heterogeneous, clinically relevant in vitro model to assess if a combination of repurposed drugs (irinotecan, pitavastatin, disulfiram, copper gluconate, captopril, celecoxib, itraconazole and ticlopidine), each targeting a different growth promoting pathway, could successfully treat high-grade gliomas. To ensure the clinical relevance of our data, TC and TM samples from 11 different patients were utilized. Our data demonstrate that, at a concentration of 100µm or lower, all drug combinations achieved lower LogIC50 values than temozolomide, with one of the combinations almost eradicating the cancer by achieving cell viabilities below 4% in five of the TM samples 6 days after treatment. Temozolomide was unable to stop tumour growth over the 14-day assay, while combination 1 stopped tumour growth, with combinations 2, 3 and 4 slowing down tumour growth at higher doses. To validate the cytotoxicity data, we used two distinct assays, end point MTT and real-time IncuCyte life analysis, to evaluate the cytotoxicity of the combinations on the TC fragment from patient 3, with the cell viabilities comparable across both assays. The local administration of combinations of repurposed drugs that target different growth promoting pathways of high-grade gliomas have the potential to be translated into the clinic as a novel treatment strategy for high-grade gliomas.
Collapse
Affiliation(s)
| | | | - Christopher McConville
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (S.L.); (M.K.O.)
| |
Collapse
|
57
|
Sun M, Chen X, Yang Z. Single cell mass spectrometry studies reveal metabolomic features and potential mechanisms of drug-resistant cancer cell lines. Anal Chim Acta 2022; 1206:339761. [PMID: 35473873 PMCID: PMC9046687 DOI: 10.1016/j.aca.2022.339761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/28/2022]
Abstract
Irinotecan (Iri) is a key drug to treat metastatic colorectal cancer, but its clinical activity is often limited by de novo and acquired drug resistance. Studying the underlying mechanisms of drug resistance is necessary for developing novel therapeutic strategies. In this study, we used both regular and irinotecan-resistant (Iri-resistant) colorectal cell lines as models, and performed single cell mass spectrometry (SCMS) metabolomics studies combined with analyses from cytotoxicity assay, western blot, flow cytometry, quantitative real-time polymerase chain reaction (qPCR), and reactive oxygen species (ROS). Our SCMS results indicate that Iri-resistant cancer cells possess higher levels of unsaturated lipids compared with the regular cancer cells. In addition, multiple protein biomarkers and their corresponding mRNAs of colon cancer stem cells are overexpressed in Iri-resistance cells. Particularly, stearoyl-CoA desaturase 1 (SCD1) is upregulated with the development of drug resistance in Iri-resistant cells, whereas inhibiting the activity of SCD1 efficiently increase their sensitivity to Iri treatment. In addition, we demonstrated that SCD1 directly regulates the expression of ALDH1A1, which contributes to the cancer stemness and ROS level in Iri-resistant cell lines.
Collapse
|
58
|
Li Y, Xie M, Jones JB, Zhang Z, Wang Z, Dang T, Wang X, Lipowska M, Mao H. Targeted Delivery of DNA Topoisomerase Inhibitor SN38 to Intracranial Tumors of Glioblastoma Using Sub-5 Ultrafine Iron Oxide Nanoparticles. Adv Healthc Mater 2022; 11:e2102816. [PMID: 35481625 DOI: 10.1002/adhm.202102816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/07/2022] [Indexed: 11/09/2022]
Abstract
Effectively delivering therapeutics for treating brain tumors is hindered by the physical and biological barriers in the brain. Even with the compromised blood-brain barrier and highly angiogenic blood-tumor barrier seen in glioblastoma (GBM), most drugs, including nanomaterial-based formulations, hardly reach intracranial tumors. This work investigates sub-5 nm ultrafine iron oxide nanoparticles (uIONP) with 3.5 nm core diameter as a carrier for delivering DNA topoisomerase inhibitor 7-ethyl-10-hydroxyl camptothecin (SN38) to treat GBM. Given a higher surface-to-volume ratio, uIONP shows one- or three-folds higher SN38 loading efficiency (48.3 ± 6.1%, mg/mg Fe) than those with core sizes of 10 or 20 nm. SN38 encapsulated in the coating polymer exhibits pH sensitive release with <10% over 48 h at pH 7.4, but 86% at pH 5, thus being protected from converting to inactive glucuronide by UDP-glucuronosyltransferase 1A1. Conjugating αv β3 -integrin-targeted cyclo(Arg-Gly-Asp-D-Phe-Cys) (RGD) as ligands, RGD-uIONP/SN38 demonstrates targeted cytotoxicity to αv β3 -integrin-overexpressed U87MG GBM cells with a half-maximal inhibitory concentration (IC50 ) of 30.9 ± 2.2 nm. The efficacy study using an orthotopic mouse model of GBM reveals tumor-specific delivery of 11.5% injected RGD-uIONP/SN38 (10 mg Fe kg-1 ), significantly prolonging the survival in mice by 41%, comparing to those treated with SN38 alone (p < 0.001).
Collapse
Affiliation(s)
- Yuancheng Li
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
- 5M Biomed, LLC Atlanta GA 30303 USA
| | - Manman Xie
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Joshua B. Jones
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Zhaobin Zhang
- Department of Neurosurgery Emory University Atlanta GA 30329 USA
| | - Zi Wang
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Tu Dang
- Division of Research Philadelphia College of Osteopathic Medicine – Georgia Campus Suwanee GA 30024 USA
| | - Xinyu Wang
- Department of Pharmaceutical Sciences Philadelphia College of Osteopathic Medicine – Georgia Campus Suwanee GA 30024 USA
| | - Malgorzata Lipowska
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences Emory University Atlanta GA 30329 USA
| |
Collapse
|
59
|
Nanoprodrug ratiometrically integrating autophagy inhibitor and genotoxic agent for treatment of triple-negative breast cancer. Biomaterials 2022; 283:121458. [DOI: 10.1016/j.biomaterials.2022.121458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022]
|
60
|
Wander P, Arentsen-Peters STCJM, Vrenken KS, Pinhanҫos SM, Koopmans B, Dolman MEM, Jones L, Garrido Castro P, Schneider P, Kerstjens M, Molenaar JJ, Pieters R, Zwaan CM, Stam RW. High-Throughput Drug Library Screening in Primary KMT2A-Rearranged Infant ALL Cells Favors the Identification of Drug Candidates That Activate P53 Signaling. Biomedicines 2022; 10:biomedicines10030638. [PMID: 35327440 PMCID: PMC8945716 DOI: 10.3390/biomedicines10030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
KMT2A-rearranged acute lymphoblastic leukemia (ALL) in infants (<1 year of age) represents an aggressive type of childhood leukemia characterized by a poor clinical outcome with a survival chance of <50%. Implementing novel therapeutic approaches for these patients is a slow-paced and costly process. Here, we utilized a drug-repurposing strategy to identify potent drugs that could expeditiously be translated into clinical applications. We performed high-throughput screens of various drug libraries, comprising 4191 different (mostly FDA-approved) compounds in primary KMT2A-rearranged infant ALL patient samples (n = 2). The most effective drugs were then tested on non-leukemic whole bone marrow samples (n = 2) to select drugs with a favorable therapeutic index for bone marrow toxicity. The identified agents frequently belonged to several recurrent drug classes, including BCL-2, histone deacetylase, topoisomerase, microtubule, and MDM2/p53 inhibitors, as well as cardiac glycosides and corticosteroids. The in vitro efficacy of these drug classes was successfully validated in additional primary KMT2A-rearranged infant ALL samples (n = 7) and KMT2A-rearranged ALL cell line models (n = 5). Based on literature studies, most of the identified drugs remarkably appeared to lead to activation of p53 signaling. In line with this notion, subsequent experiments showed that forced expression of wild-type p53 in KMT2A-rearranged ALL cells rapidly led to apoptosis induction. We conclude that KMT2A-rearranged infant ALL cells are vulnerable to p53 activation, and that drug-induced p53 activation may represent an essential condition for successful treatment results. Moreover, the present study provides an attractive collection of approved drugs that are highly effective against KMT2A-rearranged infant ALL cells while showing far less toxicity towards non-leukemic bone marrow, urging further (pre)clinical testing.
Collapse
Affiliation(s)
- Priscilla Wander
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands;
| | - Susan T. C. J. M. Arentsen-Peters
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Kirsten S. Vrenken
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Sandra Mimoso Pinhanҫos
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Bianca Koopmans
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - M. Emmy M. Dolman
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, Sydney, NSW 2052, Australia
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, NSW 2031, Australia
| | - Luke Jones
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Patricia Garrido Castro
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Pauline Schneider
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Mark Kerstjens
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands;
| | - Jan J. Molenaar
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- Department of Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
| | - Christian Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, 3015 CN Rotterdam, The Netherlands;
| | - Ronald W. Stam
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (P.W.); (S.T.C.J.M.A.-P.); (K.S.V.); (S.M.P.); (B.K.); (M.E.M.D.); (L.J.); (P.G.C.); (P.S.); (J.J.M.); (R.P.); (C.M.Z.)
- Correspondence: ; Tel.: +31-(0)88-9727672
| |
Collapse
|
61
|
Gladilina YA, Bey L, Hilal A, Neborak EV, Blinova VG, Zhdanov DD. Cytoprotective Activity of Polyamines Is Associated with the Alternative Splicing of RAD51A Pre-mRNA in Normal Human CD4 + T Lymphocytes. Int J Mol Sci 2022; 23:1863. [PMID: 35163785 PMCID: PMC8837172 DOI: 10.3390/ijms23031863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Physiological polyamines are ubiquitous polycations with pleiotropic biochemical activities, including regulation of gene expression and cell proliferation as well as modulation of cell signaling. They can also decrease DNA damage and promote cell survival. In the present study, we demonstrated that polyamines have cytoprotective effects on normal human CD4+ T lymphocytes but not on cancer Jurkat or K562 cells. Pretreatment of lymphocytes with polyamines resulted in a significant reduction in cells with DNA damage induced by doxorubicin, cisplatin, or irinotecan, leading to an increase in cell survival and viability. The induction of RAD51A expression was in response to DNA damage in both cancer and normal cells. However, in normal cells, putrescin pretreatment resulted in alternative splicing of RAD51A and the switch of the predominant expression from the splice variant with the deletion of exon 4 to the full-length variant. Induction of RAD51A alternative splicing by splice-switching oligonucleotides resulted in a decrease in DNA damage and cell protection against cisplatin-induced apoptosis. The results of this study suggest that the cytoprotective activity of polyamines is associated with the alternative splicing of RAD51A pre-mRNA in normal human CD4+ T lymphocytes. The difference in the sensitivity of normal and cancer cells to polyamines may become the basis for the use of these compounds to protect normal lymphocytes during lymphoblastic chemotherapy.
Collapse
Affiliation(s)
- Yulia A. Gladilina
- Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (A.H.); (V.G.B.)
| | - Lylia Bey
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia; (L.B.); (E.V.N.)
| | - Abdullah Hilal
- Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (A.H.); (V.G.B.)
| | - Ekaterina V. Neborak
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia; (L.B.); (E.V.N.)
| | - Varvara G. Blinova
- Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (A.H.); (V.G.B.)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (Y.A.G.); (A.H.); (V.G.B.)
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho—Maklaya St. 6, 117198 Moscow, Russia; (L.B.); (E.V.N.)
| |
Collapse
|
62
|
Zheng S, Wang J, Ding N, Chen W, Chen H, Xue M, Chen F, Ni J, Wang Z, Lin Z, Jiang H, Liu X, Wang L. Prodrug polymeric micelles integrating cancer-associated fibroblasts deactivation and synergistic chemotherapy for gastric cancer. J Nanobiotechnology 2021; 19:381. [PMID: 34802453 PMCID: PMC8607732 DOI: 10.1186/s12951-021-01127-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/07/2021] [Indexed: 12/27/2022] Open
Abstract
Background The prognosis of patients with advanced gastric cancer (GC) remains unsatisfactory owing to distant metastasis and resistance to concurrent systemic therapy. Cancer-associated fibroblasts (CAFs), as essential participators in the tumor microenvironment (TME), play a vital role in tumor progression. Thus, CAFs-targeting therapy is appealing for remodeling TME and sensitizing GC to conventional systemic therapy. Methods Amphiphilic SN38 prodrug polymeric micelles (PSN38) and encapsulated the hydrophobic esterase-responsive prodrug of Triptolide (TPL), triptolide-naphthalene sulfonamide (TPL-nsa), were synthesized to form PSN38@TPL-nsa nanoparticles. Then, CAFs were isolated from fresh GC tissues and immortalized. TPL at low dose concentration was used to investigate its effect on CAFs and CAFs-induced GC cells proliferation and migration. The synergistic mechanism and antitumor efficiency of SN38 and TPL co-delivery nanoparticle were investigated both in vitro and in vivo. Results Fibroblast activation protein (FAP), a marker of CAFs, was highly expressed in GC tissues and indicated poorer prognosis. TPL significantly reduced CAFs activity and inhibited CAFs-induced proliferation, migration and chemotherapy resistance of GC cells. In addition, TPL sensitized GC cells to SN38 treatment through attenuated NF-κB activation in both CAFs and GC cells. PSN38@TPL-nsa treatment reduced the expression of collagen, FAP, and α-smooth muscle actin (α-SMA) in tumors. Potent inhibition of primary tumor growth and vigorous anti-metastasis effect were observed after systemic administration of PSN38@TPL-nsa to CAFs-rich peritoneal disseminated tumor and patient-derived xenograft (PDX) model of GC. Conclusion TPL suppressed CAFs activity and CAFs-induced cell proliferation, migration and chemotherapy resistance to SN38 of GC. CAFs-targeted TPL and SN38 co-delivery nanoparticles exhibited potent efficacy of antitumor and reshaping TME, which was a promising strategy to treat advanced GC. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01127-5.
Collapse
Affiliation(s)
- Sheng Zheng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jiafeng Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ning Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Wenwen Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hongda Chen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Meng Xue
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Fei Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jiaojiao Ni
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhuo Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhenghua Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China.,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310016, China
| | - Xiangrui Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Liangjing Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310058, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
63
|
Li W, Chen Z, Liu X, Lian M, Peng H, Zhang C. Design and evaluation of glutathione responsive glycosylated camptothecin nanosupramolecular prodrug. Drug Deliv 2021; 28:1903-1914. [PMID: 34519602 PMCID: PMC8462909 DOI: 10.1080/10717544.2021.1977424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A novel tumor-targeted glutathione responsive Glycosylated-Camptothecin nanosupramolecular prodrug (CPT-GL NSp) was designed and fabricated via a disulfide bond. The effects of glycoligand with different polarities on solubility, self-assembly, stability, cellular uptake, and glutathione responsive cleaving were explored, and an optimal glycosylated ligand was selected for nanosupramolecular prodrug. It has been found that CPT-GL NSp exhibited higher drug loading than traditional nanoparticles. Among of which maltose modified NSp had the strongest anti-tumor effects than that of glucose and maltotriose. CPT-SS-Maltose had a similar anti-tumor ability to Irinotecan (IR), but the superior performance in solubility, hemolysis, and uptake of HepG2 cells.
Collapse
Affiliation(s)
- Wenhua Li
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China
| | - Zhong Chen
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China
| | - Mingming Lian
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China
| | - Changmei Zhang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China
| |
Collapse
|
64
|
Romano E, Netti PA, Torino E. A High Throughput Approach Based on Dynamic High Pressure for the Encapsulation of Active Compounds in Exosomes for Precision Medicine. Int J Mol Sci 2021; 22:9896. [PMID: 34576059 PMCID: PMC8470411 DOI: 10.3390/ijms22189896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
In recent decades, endogenous nanocarrier-exosomes have received considerable scientific interest as drug delivery systems. The unique proteo-lipid architecture allows the crossing of various natural barriers and protects exosomes cargo from degradation in the bloodstream. However, the presence of this bilayer membrane as well as their endogenous content make loading of exogenous molecules challenging. In the present work, we will investigate how to promote the manipulation of vesicles curvature by a high-pressure microfluidic system as a ground-breaking method for exosomes encapsulation. Exosomes isolated from Uppsala 87 Malignant Glioma (U87-MG) cell culture media were characterized before and after the treatment with high-pressure homogenization. Once their structural and biological stability were validated, we applied this novel method for the encapsulation in the lipidic exosomal bilayer of the chemotherapeutic Irinotecan HCl Trihydrate-CPT 11. Finally, we performed in vitro preliminary test to validate the nanobiointeraction of exosomes, uptake mechanisms, and cytotoxic effect in cell culture model.
Collapse
Affiliation(s)
- Eugenia Romano
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (E.R.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (E.R.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Enza Torino
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (E.R.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| |
Collapse
|
65
|
LEF1 silencing sensitizes colorectal cancer cells to oxaliplatin, 5-FU, and irinotecan. Biomed Pharmacother 2021; 143:112091. [PMID: 34474344 DOI: 10.1016/j.biopha.2021.112091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer all around the world. Chemotherapy plays an essential role in the treatment of CRC while Oxaliplatin, Irinotecan, and 5 - fluorouracil (5-FU) are the most commonly used chemotherapeutic drugs. However, chemo-resistance is a major obstacle to successful therapy. It has been shown that inhibition of Wnt signaling pathway can sensitize the cells to chemotherapy. Lymphoid enhancer factor (LEF1) is a member of TCF/LEF transcription family mediating Wnt nuclear responses. The long isoform of LEF1 is highly expressed in colorectal cancer cells compared to the normal intestinal cells, in which expression of the short isoform is dominant. We found that the downregulation of long isoforms of LEF1 makes CRC cell lines more sensitive to the effect of chemotherapeutic drugs. This sensitivity is imposed by reduced proliferation, increased apoptosis, or cell cycle arrest. Our results also demonstrated that there is a balance in the expression of long, and short isoforms of LEF1. In summary, we showed the role of LEF1 in chemo-resistance of colorectal cancer cells to Oxaliplatin, Irinotecan and 5-FU.
Collapse
|
66
|
Ramos A, Sadeghi S, Tabatabaeian H. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. Int J Mol Sci 2021; 22:9451. [PMID: 34502361 PMCID: PMC8430957 DOI: 10.3390/ijms22179451] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
With nearly 10 million deaths, cancer is the leading cause of mortality worldwide. Along with major key parameters that control cancer treatment management, such as diagnosis, resistance to the classical and new chemotherapeutic reagents continues to be a significant problem. Intrinsic or acquired chemoresistance leads to cancer recurrence in many cases that eventually causes failure in the successful treatment and death of cancer patients. Various determinants, including tumor heterogeneity and tumor microenvironment, could cause chemoresistance through a diverse range of mechanisms. In this review, we summarize the key determinants and the underlying mechanisms by which chemoresistance appears. We then describe which strategies have been implemented and studied to combat such a lethal phenomenon in the management of cancer treatment, with emphasis on the need to improve the early diagnosis of cancer complemented by combination therapy.
Collapse
Affiliation(s)
- Alisha Ramos
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - Samira Sadeghi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
67
|
Zhang Y, Li Y, Sun C, Chen X, Han L, Wang T, Liu J, Chen X, Zhao D. Effect of Pterostilbene, a Natural Derivative of Resveratrol, in the Treatment of Colorectal Cancer through Top1/Tdp1-Mediated DNA Repair Pathway. Cancers (Basel) 2021; 13:4002. [PMID: 34439157 PMCID: PMC8391236 DOI: 10.3390/cancers13164002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Topoisomerase 1 (Top1) inhibitor is an effective anticancer drug, but several factors limit its clinical application such as drug inactivation, tyrosyl-DNA phosphodiesterase 1 (Tdp1)-mediated tumor drug resistance, and its toxicity. Our previous study identified pterostilbene (PTE) and resveratrol (RE) to suppress these two proteins by binding to their active center. PTE and RE could inhibit the proliferation of various colorectal cancer cells, induce cell apoptosis, and make cell cycle stay in G2/M phase in vitro. PTE and RE could decrease Top1 and Tdp1 contents and mRNA expression in wild-type, constructed Tdp1 overexpressing CL187, Top1- or Tdp1- silenced CL187 cell lines. PTE exhibited excellent antitumor activity in subcutaneous CL187 transplantation model (TGI = 79.14 ± 2.85%, 200 mg/kg, i.p.) and orthotopic transplantation model (TGI = 76.57 ± 6.34%, 100 mg/kg, i.p.; TGI = 72.79 ± 4.06%, 500 mg/kg, i.g.) without significant toxicity. PTE had no significant inhibitory effect on non-tumor cell proliferation in vitro and would not induce damage to liver, kidney, and other major organs. Overall, PTE and RE can inhibit the activity of Top1 enzyme and inhibit the DNA damage repair pathway mediated by Top1/Tdp1, and can effectively inhibit colorectal cancer development with low toxicity, thus they have great potential to be developed into a new generation of anti-tumor drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Y.Z.); (Y.L.); (C.S.); (X.C.); (L.H.); (T.W.); (J.L.)
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (Y.Z.); (Y.L.); (C.S.); (X.C.); (L.H.); (T.W.); (J.L.)
| |
Collapse
|
68
|
Zhao Z, Wang H, Tian N, Yan H, Wang J. Synthesis and biological evaluation of N 4 -hydrazone derivatives of 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one as novel anticancer agents with antimetastatic adjunct efficacy. Arch Pharm (Weinheim) 2021; 354:e2100213. [PMID: 34368988 DOI: 10.1002/ardp.202100213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
To obtain new anticancer agents with antimetastatic adjunct efficacy, a series of novel N4 -hydrazone derivatives of 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one were designed and synthesized by an eight-step reaction, with appropriate yields. All the synthesized compounds were evaluated for their antiproliferative activity against A549 and MCF-7 cells and for antiplatelet aggregation activity in vitro. The results showed that compounds 25 and 35 not only showed potent antiproliferative activity against the A549 (IC50 = 15.3 and 21.4 μM) and MCF-7 (IC50 = 15.6 and 10.9 μM) cell lines but also showed certain antiplatelet aggregation activity (inhibition rates: 47.0% and 45.8%). These results indicated that the structural modification on the N4 -hydrazone moiety of 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one is promising to obtain novel anticancer compounds with antimetastatic adjunct efficacy. In addition, a molecular docking study was performed to investigate the possible targets, and these results indicated that compounds 25 and 35 have the potential to target EGFR, HER2, and P2Y12 .
Collapse
Affiliation(s)
- Zhichang Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Hongjun Wang
- Beijing Tide Pharmaceutical Co., Beijing Economic Technological Development Area (BDA), Beijing, China
| | - Nana Tian
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing, China.,Beijing Tide Pharmaceutical Co., Beijing Economic Technological Development Area (BDA), Beijing, China
| | - Hong Yan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Juan Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
69
|
Principe DR, Underwood PW, Korc M, Trevino JG, Munshi HG, Rana A. The Current Treatment Paradigm for Pancreatic Ductal Adenocarcinoma and Barriers to Therapeutic Efficacy. Front Oncol 2021; 11:688377. [PMID: 34336673 PMCID: PMC8319847 DOI: 10.3389/fonc.2021.688377] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, with a median survival time of 10-12 months. Clinically, these poor outcomes are attributed to several factors, including late stage at the time of diagnosis impeding resectability, as well as multi-drug resistance. Despite the high prevalence of drug-resistant phenotypes, nearly all patients are offered chemotherapy leading to modest improvements in postoperative survival. However, chemotherapy is all too often associated with toxicity, and many patients elect for palliative care. In cases of inoperable disease, cytotoxic therapies are less efficacious but still carry the same risk of serious adverse effects, and clinical outcomes remain particularly poor. Here we discuss the current state of pancreatic cancer therapy, both surgical and medical, and emerging factors limiting the efficacy of both. Combined, this review highlights an unmet clinical need to improve our understanding of the mechanisms underlying the poor therapeutic responses seen in patients with PDAC, in hopes of increasing drug efficacy, extending patient survival, and improving quality of life.
Collapse
Affiliation(s)
- Daniel R. Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, United States
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Jose G. Trevino
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Hidayatullah G. Munshi
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Ajay Rana
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
70
|
Li J, Miao P, Guan X, Gao F, Khan AJ, Wang T, Zhang F. Interaction Between 7-Ethyl-10-Hydroxycamptothecin and β-Lactoglobulin Based on Molecular Docking and Molecular Dynamics Simulations. J MACROMOL SCI B 2021. [DOI: 10.1080/00222348.2021.1945080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jiawei Li
- Pharmacy Laboratory, Inner Mongolia International Mongolian Hospital, Hohhot, China
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Pandeng Miao
- Pharmacy Laboratory, Inner Mongolia International Mongolian Hospital, Hohhot, China
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Xiaoying Guan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Feng Gao
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Abdul Jamil Khan
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Tegexibaiyin Wang
- Pharmacy Laboratory, Inner Mongolia International Mongolian Hospital, Hohhot, China
| | - Feng Zhang
- Pharmacy Laboratory, Inner Mongolia International Mongolian Hospital, Hohhot, China
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot, P. R. China
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
71
|
Martin M, Sun M, Motolani A, Lu T. The Pivotal Player: Components of NF-κB Pathway as Promising Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:7429. [PMID: 34299049 PMCID: PMC8303169 DOI: 10.3390/ijms22147429] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Over the last several decades, colorectal cancer (CRC) has been one of the most prevalent cancers. While significant progress has been made in both diagnostic screening and therapeutic approaches, a large knowledge gap still remains regarding the early identification and treatment of CRC. Specifically, identification of CRC biomarkers that can help with the creation of targeted therapies as well as increasing the ability for clinicians to predict the biological response of a patient to therapeutics, is of particular importance. This review provides an overview of CRC and its progression stages, as well as the basic types of CRC biomarkers. We then lay out the synopsis of signaling pathways related to CRC, and further highlight the pivotal and multifaceted role of nuclear factor (NF) κB signaling in CRC. Particularly, we bring forth knowledge regarding the tumor microenvironment (TME) in CRC, and its complex interaction with cancer cells. We also provide examples of NF-κB signaling-related CRC biomarkers, and ongoing efforts made at targeting NF-κB signaling in CRC treatment. We conclude and anticipate that with more emerging novel regulators of the NF-κB pathway being discovered, together with their in-depth characterization and the integration of large groups of genomic, transcriptomic and proteomic data, the day of successful development of more ideal NF-κB inhibitors is fast approaching.
Collapse
Affiliation(s)
- Matthew Martin
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
| | - Mengyao Sun
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
| | - Aishat Motolani
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (M.M.); (M.S.); (A.M.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202, USA
| |
Collapse
|
72
|
Breuillard C, Moinard C, Goron A, Neveux N, De Reviers A, Mazurak VC, Cynober L, Baracos VE. Dietary citrulline does not modify rat colon tumor response to chemotherapy, but failed to improve nutritional status. Clin Nutr 2021; 40:4560-4568. [PMID: 34229260 DOI: 10.1016/j.clnu.2021.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/16/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
During cancer therapy many patients experience significant malnutrition, leading to decreased tolerance to chemotherapy and decreased survival. Dietary citrulline supplementation improves nutritional status in situations such as short bowel syndrome and aging, and is of potential interest in oncology. However, a mandatory prerequisite is to test this amino acid for interaction with tumor growth and chemotherapy response. Dietary citrulline (Cit; 2%), or an isonitrogenous mix of non-essential amino acids (control), was given to Ward colon tumor-bearing rats the day before chemotherapy initiation. Chemotherapy included 2 cycles, one week apart, each consisting of one injection of CPT-11 (50 mg/kg) and of 5-fluorouracil (50 mg/kg) the day after. Body weight, food intake and tumor volume were measured daily. The day after the last injection, rats were killed, muscles (EDL, gastrocnemius), intestinal mucosa, tumor, spleen and liver were weighed. Muscle and intestinal mucosa protein content were measured. Phosphorylated 4E-BP1 was measured in muscle and tumor as a surrogate for biosynthetic activation. FRAPS (Ferric Reducing Ability of Plasma) and thiols in plasma, muscle and tumor were evaluated and plasma amino acids and haptoglobin were measured. Numerous parameters did not differ by diet overall: a) response of tumor mass to treatment, b) tumor antioxidants and phosphorylated 4E-BP1 levels, c) relative body weight and relative food intake, d) weight of EDL, gastrocnemius, intestinal mucosa, spleen and liver and e) plasma haptoglobin concentrations. Moreover, plasma citrulline concentration was not correlated to relative body weight, only cumulated food intake and plasma haptoglobin concentrations were correlated to relative body weight. Citrulline does not alter the tumor response to CPT-11/5FU based therapy but, has no effect on nutritional status, which could be due to the anorexia and the low amount of citrulline and protein ingested.
Collapse
Affiliation(s)
- C Breuillard
- Department of Oncology, University of Alberta, Edmonton, Canada; Nutrition Laboratory EA 4466, Paris Descartes University, Paris, France; Univ. Grenoble Alpes, Inserm U1055, LBFA, Grenoble, France.
| | - C Moinard
- Nutrition Laboratory EA 4466, Paris Descartes University, Paris, France; Univ. Grenoble Alpes, Inserm U1055, LBFA, Grenoble, France
| | - A Goron
- Univ. Grenoble Alpes, Inserm U1055, LBFA, Grenoble, France
| | - N Neveux
- Nutrition Laboratory EA 4466, Paris Descartes University, Paris, France; Clinical Chemistry, Cochin Hospital, APHP, Paris, France
| | - A De Reviers
- Univ. Grenoble Alpes, Inserm U1055, LBFA, Grenoble, France
| | - V C Mazurak
- Division of Human Nutrition, Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - L Cynober
- Nutrition Laboratory EA 4466, Paris Descartes University, Paris, France; Clinical Chemistry, Cochin Hospital, APHP, Paris, France
| | - V E Baracos
- Department of Oncology, University of Alberta, Edmonton, Canada
| |
Collapse
|
73
|
Chen MC, Nhan DC, Hsu CH, Wang TF, Li CC, Ho TJ, Mahalakshmi B, Chen MC, Yang LY, Huang CY. SENP1 participates in Irinotecan resistance in human colon cancer cells. J Cell Biochem 2021; 122:1277-1294. [PMID: 34037277 DOI: 10.1002/jcb.29946] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/13/2021] [Indexed: 11/09/2022]
Abstract
Colorectal cancer is one of the most prevalent cancers in the world. Chemoresistance has always been a problem encountered in its treatment. It is known that SUMOylation may regulate protein stability and decomposition, and even affect the protein translocation and posttranslational modification in cells. Sentrin-specific protease 1 (SENP1) is involved in the maturation of SUMO protein, and on the other hand, plays a role in deSUMOylation, which dissociates the target protein from SUMO and prevents further degradation of the target protein. In this study, we established an Irinotecan (CPT-11) resistant human colon cancer LoVo strain (LoVoR-CPT-11 ) to investigate the role of SENP1 in the development of drug resistance in colorectal cancer. The abundant accumulation of SENP1 and HIF-1α proteins and the increase of SUMO pathway enzymes were observed in LoVoR-CPT-11 cells while the protein markers of proliferation, angiogenesis, and glycolysis were upregulated. Knockdown of SENP1 reduced the migration ability and trigged re-sensitivity of LoVoR-CPT-11 cells to CPT-11 treatment. The analysis of SENP1 and HIF-1α gene expressions from TCGA/GTEx datasets using the GEPIA web server showed a positive correlation between SENP1 and HIF-1α in colorectal cancer patients and the high expression of these two genes might predict a poor outcome clinically. In conclusion, SENP1 might play an important role in CPT-11 resistance in colorectal cancer. Targeting SENP1 to reduce the resistant property could be considered in prospective clinical studies.
Collapse
Affiliation(s)
- Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Do Chi Nhan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Oncology I Department, Oncology Center, Bai Chay Hospital, Quảng Ninh, Vietnam
| | - Chiung-Hung Hsu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Hematology and Oncology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chi-Cheng Li
- Department of Hematology and Oncology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Immunotherapy, Center of Stem Cell and Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Mei-Chih Chen
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.,Department of Science, Holistic Education Center, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
74
|
Ginghină O, Hudiță A, Zaharia C, Tsatsakis A, Mezhuev Y, Costache M, Gălățeanu B. Current Landscape in Organic Nanosized Materials Advances for Improved Management of Colorectal Cancer Patients. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2440. [PMID: 34066710 PMCID: PMC8125868 DOI: 10.3390/ma14092440] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
Globally, colorectal cancer (CRC) ranks as one of the most prevalent types of cancers at the moment, being the second cause of cancer-related deaths. The CRC chemotherapy backbone is represented by 5-fluorouracil, oxaliplatin, irinotecan, and their combinations, but their administration presents several serious disadvantages, such as poor bioavailability, lack of tumor specificity, and susceptibility to multidrug resistance. To address these limitations, nanomedicine has arisen as a powerful tool to improve current chemotherapy since nanosized carriers hold great promise in improving the stability and solubility of the drug payload and enhancing the active concentration of the drug that reaches the tumor tissue, increasing, therefore, the safety and efficacy of the treatment. In this context, the present review offers an overview of the most recent advances in the development of nanosized drug-delivery systems as smart therapeutic tools in CRC management and highlights the emerging need for improving the existing in vitro cancer models to reduce animal testing and increase the success of nanomedicine in clinical trials.
Collapse
Affiliation(s)
- Octav Ginghină
- Department of Surgery, “Sf. Ioan” Emergency Clinical Hospital, 13 Vitan Barzesti Street, 042122 Bucharest, Romania;
- Department II, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy Bucharest, 17-21 Calea Plevnei Street, 010232 Bucharest, Romania
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (M.C.); (B.G.)
| | - Cătălin Zaharia
- Advanced Polymer Materials Group, Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Aristidis Tsatsakis
- Department of Toxicology and Forensic Sciences, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Yaroslav Mezhuev
- Center of Biomaterials, D Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia;
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (M.C.); (B.G.)
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania; (M.C.); (B.G.)
| |
Collapse
|
75
|
Manna D, Sarkar D. Multifunctional Role of Astrocyte Elevated Gene-1 (AEG-1) in Cancer: Focus on Drug Resistance. Cancers (Basel) 2021; 13:cancers13081792. [PMID: 33918653 PMCID: PMC8069505 DOI: 10.3390/cancers13081792] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Chemotherapy is a major mode of treatment for cancers. However, cancer cells adapt to survive in stressful conditions and in many cases, they are inherently resistant to chemotherapy. Additionally, after initial response to chemotherapy, the surviving cancer cells acquire new alterations making them chemoresistant. Genes that help adapt the cancer cells to cope with stress often contribute to chemoresistance and one such gene is Astrocyte elevated gene-1 (AEG-1). AEG-1 levels are increased in all cancers studied to date and AEG-1 contributes to the development of highly aggressive, metastatic cancers. In this review, we provide a comprehensive description of the mechanism by which AEG-1 augments tumor development with special focus on its ability to regulate chemoresistance. We also discuss potential ways to inhibit AEG-1 to overcome chemoresistance. Abstract Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease. Resistance to chemotherapy, chemoresistance, is an important hallmark of aggressive cancers, and driver oncogene-induced signaling pathways and molecular abnormalities create the platform for chemoresistance. The oncogene Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) is overexpressed in a diverse array of cancers, and its overexpression promotes all the hallmarks of cancer, such as proliferation, invasion, metastasis, angiogenesis and chemoresistance. The present review provides a comprehensive description of the molecular mechanism by which AEG-1 promotes tumorigenesis, with a special emphasis on its ability to regulate chemoresistance.
Collapse
|
76
|
|
77
|
Wu ZX, Yang Y, Zeng L, Patel H, Bo L, Lin L, Chen ZS. Establishment and Characterization of an Irinotecan-Resistant Human Colon Cancer Cell Line. Front Oncol 2021; 10:624954. [PMID: 33692943 PMCID: PMC7937870 DOI: 10.3389/fonc.2020.624954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Irinotecan is widely used as a chemotherapeutic drug to treat CRC. However, the mechanisms of acquired resistance to irinotecan in CRC remain inconclusive. In the present study, we established a novel irinotecan-resistant human colon cell line to investigate the underlying mechanism(s) of irinotecan resistance, particularly the overexpression of ABC transporters. The irinotecan-resistant S1-IR20 cell line was established by exposing irinotecan to human S1 colon cancer cells. MTT cytotoxicity assay was carried out to determine the drug resistance profile of S1-IR20 cells. The drug-resistant cells showed about 47-fold resistance to irinotecan and cross-resistance to ABCG2 substrates in comparison with S1 cells. By Western blot analysis, S1-IR20 cells showed significant increase of ABCG2, but not ABCB1 or ABCC1 in protein expression level as compared to that of parental S1 cells. The immunofluorescence assay showed that the overexpressed ABCG2 transporter is localized on the cell membrane of S1-IR20 cells, suggesting an active efflux function of the ABCG2 transporter. This finding was further confirmed by reversal studies that inhibiting efflux function of ABCG2 was able to completely abolish drug resistance to irinotecan as well as other ABCG2 substrates in S1-IR20 cells. In conclusion, our work established an in vitro model of irinotecan resistance in CRC and suggested ABCG2 overexpression as one of the underlying mechanisms of acquired resistance to irinotecan. This novel resistant cell line may enable future studies to overcome drug resistance in vitro and improve CRC treatment in vivo.
Collapse
Affiliation(s)
- Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States.,Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| | - Lusheng Lin
- Cell Research Center, Shenzhen Bolun Institute of Biotechnology, Shenzhen, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, United States
| |
Collapse
|
78
|
Barok M, Puhka M, Yazdi N, Joensuu H. Extracellular vesicles as modifiers of antibody-drug conjugate efficacy. J Extracell Vesicles 2021; 10:e12070. [PMID: 33613875 PMCID: PMC7881363 DOI: 10.1002/jev2.12070] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a new class of anti-cancer drugs that consist of a monoclonal antibody, a highly potent small-molecule cytotoxic drug, and a chemical linker between the two. ADCs can selectively deliver cytotoxic drugs to cancer cells leading to a reduced systemic exposure and a wider therapeutic window. To date, nine ADCs have received marketing approval, and over 100 are being investigated in nearly 600 clinical trials. The target antigens of at least eight out of the nine approved anti-cancer ADCs and of 69 investigational ADCs are present on extracellular vesicles (EVs) (tiny particles produced by almost all types of cells) that may carry their contents into local and distant cells. Therefore, the EVs have a potential to mediate both the anti-cancer effects and the adverse effects of ADCs. In this overview, we discuss the mechanisms of action of ADCs and the resistance mechanisms to them, the EV-mediated resistance mechanisms to small molecule anti-cancer drugs and anti-cancer monoclonal antibodies, and the EVs as modifiers of ADC efficacy and safety.
Collapse
Affiliation(s)
- Mark Barok
- Helsinki University Hospital and University of HelsinkiHelsinkiFinland
- Laboratory of Molecular OncologyUniversity of HelsinkiBiomedicumHelsinkiFinland
| | - Maija Puhka
- Institute for Molecular Medicine FIMMEV and HiPrep CoreUniversity of HelsinkiHelsinkiFinland
| | - Narjes Yazdi
- Helsinki University Hospital and University of HelsinkiHelsinkiFinland
- Laboratory of Molecular OncologyUniversity of HelsinkiBiomedicumHelsinkiFinland
| | - Heikki Joensuu
- Helsinki University Hospital and University of HelsinkiHelsinkiFinland
- Laboratory of Molecular OncologyUniversity of HelsinkiBiomedicumHelsinkiFinland
| |
Collapse
|
79
|
Clegg JR, Sun JA, Gu J, Venkataraman AK, Peppas NA. Peptide conjugation enhances the cellular co-localization, but not endosomal escape, of modular poly(acrylamide-co-methacrylic acid) nanogels. J Control Release 2021; 329:1162-1171. [PMID: 33127451 PMCID: PMC7904656 DOI: 10.1016/j.jconrel.2020.10.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Nanoparticles must recognize, adhere to, and/or traverse multiple barriers in sequence to achieve cytosolic drug delivery. New nanoparticles often exhibit a unique ability to cross a single barrier (i.e. the vasculature, cell membrane, or endosomal compartment), but fail to deliver an adequate dose to intracellular sites of action because they cannot traverse other biological barriers for which they were not optimized. Here, we developed poly(acrylamide-co-methacrylic acid) nanogels that were modified in a modular manner with bioactive peptides. This nanogel does not recognize target cells or disrupt endosomal vesicles in its unmodified state, but can incorporate peptides with molecular recognition or environmentally responsive properties. Nanogels were modified with up to 15 wt% peptide without significantly altering their size, surface charge, or stability in aqueous buffer. Nanogels modified with a colon cancer-targeting oligopeptide exhibited up to a 324% enhancement in co-localization with SW-48 colon cancer cells in vitro, while influencing nanogel uptake by fibroblasts and macrophages to a lesser extent. Nanogels modified with an endosome disrupting peptide failed to retain its native endosomolytic activity, when coupled either individually or in combination with the targeting peptide. Our results offer a proof-of-concept for modifying synthetic nanogels with a combination of peptides that address barriers to cytosolic delivery individually and in tandem. Our data further motivate the need to identify endosome disrupting moieties which retain their activity within poly(acidic) networks.
Collapse
Affiliation(s)
- John R Clegg
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA
| | - Jessie A Sun
- McKetta Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
| | - Joann Gu
- McKetta Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
| | | | - Nicholas A Peppas
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA; McKetta Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine University of Texas, Austin, TX 78705, USA; Department of Pediatrics, Dell Medical School, Austin, TX 78712, USA; Department of Surgery and Perioperative Care, Dell Medical School, Austin, TX 78712, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
80
|
A randomised phase 2b study comparing the efficacy and safety of belotecan vs. topotecan as monotherapy for sensitive-relapsed small-cell lung cancer. Br J Cancer 2020; 124:713-720. [PMID: 33191408 PMCID: PMC7884704 DOI: 10.1038/s41416-020-01055-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 07/30/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background This study compared the efficacy/safety of the camptothecin analogues belotecan and topotecan for sensitive-relapsed small-cell lung cancer (SCLC). Methods One-hundred-and-sixty-four patients were randomised (1:1) to receive five consecutive daily intravenous infusions of topotecan (1.5 mg/m2) or belotecan (0.5 mg/m2), every 3 weeks, for six cycles. Main outcomes were objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), tolerability and toxicity. The study statistical plan was non-inferiority design with ORR as the endpoint. Results In the belotecan vs. topotecan groups, ORR (primary endpoint) was 33% vs. 21% (p = 0.09) and DCR was 85% vs. 70% (p = 0.030). PFS was not different between groups. Median OS was significantly longer with belotecan than with topotecan (13.2 vs. 8.2 months, HR = 0.69, 95% CI: 0.48–0.99), particularly in patients aged <65 years, with more advanced disease (i.e., extensive-stage disease, time to relapse: 3–6 months), or Eastern Cooperative Oncology Group performance status 1 or 2. More belotecan recipients completed all treatment cycles (53% vs. 35%; p = 0.022). Conclusions The efficacy/safety of belotecan warrants further evaluation in Phase 3 trials. Belotecan potentially offers an alternative to topotecan for sensitive-relapsed SCLC, particularly in patients aged <65 years, with more advanced disease, or poor performance.
Collapse
|
81
|
Tao G, Huang J, Moorthy B, Wang C, Hu M, Gao S, Ghose R. Potential role of drug metabolizing enzymes in chemotherapy-induced gastrointestinal toxicity and hepatotoxicity. Expert Opin Drug Metab Toxicol 2020; 16:1109-1124. [PMID: 32841068 PMCID: PMC8059872 DOI: 10.1080/17425255.2020.1815705] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Toxicity of chemotherapy drugs is the leading cause of poor therapeutic outcome in many cancer patients. Gastrointestinal (GI) toxicity and hepatotoxicity are among the most common side effects of current chemotherapies. Emerging studies indicate that many chemotherapy-induced toxicities are driven by drug metabolism, but very few reviews summarize the role of drug metabolism in chemotherapy-induced GI toxicity and hepatotoxicity. In this review, we highlighted the importance of drug metabolizing enzymes (DMEs) in chemotherapy toxicity. AREAS COVERED Our review demonstrated that altered activity of DMEs play important role in chemotherapy-induced GI toxicity and hepatotoxicity. Besides direct changes in catalytic activities, the transcription of DMEs is also affected by inflammation, cell-signaling pathways, and/or by drugs in cancer patients due to the disease etiology. EXPERT OPINION More studies should focus on how DMEs are altered during chemotherapy treatment, and how such changes affect the metabolism of chemotherapy drug itself. This mutual interaction between chemotherapies and DMEs can lead to excessive exposure of parent drug or toxic metabolites which ultimately cause GI adverse effect.
Collapse
Affiliation(s)
- Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston TX, U.S
| | - Junqing Huang
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | | | - Cathryn Wang
- Department of Pharmacy Practice and Translational Research, College of Pharmacy, University of Houston, Houston TX, U.S
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston TX, U.S
| | - Song Gao
- Department of Pharmaceutical and Environmental Health Sciences, Texas Southern University, Houston TX, U.S
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston TX, U.S
| |
Collapse
|
82
|
Gao J, Nesbitt H, Logan K, Burnett K, White B, Jack IG, Taylor MA, Love M, Callan B, McHale AP, Callan JF. An ultrasound responsive microbubble-liposome conjugate for targeted irinotecan-oxaliplatin treatment of pancreatic cancer. Eur J Pharm Biopharm 2020; 157:233-240. [PMID: 33222772 DOI: 10.1016/j.ejpb.2020.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022]
Abstract
Survival rates in pancreatic cancer have remained largely unchanged over the past four decades with less than 5% of patients surviving five years following initial diagnosis. FOLFIRINOX chemotherapy, a combination of folinic acid, 5-fluoruracil, irinotecan and oxaliplatin, has shown the greatest survival benefit for patients with advanced disease but is only indicated for those with good physical performance status due to its extreme off-target toxicity. Ultrasound targeted microbubble destruction (UTMD) has emerged as an effective strategy for the targeted delivery of drug payloads to solid tumours and involves using low intensity ultrasound to disrupt (burst) MBs in the tumour vasculature, releasing encapsulated or attached drugs in a targeted manner. In this manuscript, we describe the preparation of a microbubble-liposome complex (IRMB-OxLipo) carrying two of the three cytotoxic drugs present in the FOLFIRINOX combination, namely irinotecan and oxaliplatin. Efficacy of the IRMB-OxLipo complex following UTMD was determined in Panc-01 3D spheroid and BxPC-3 human xenograft murine models of pancreatic cancer. The results revealed that tumours treated with the IRMB-OxLipo complex and ultrasound were 136% smaller than tumours treated with the same concentration of irinotecan/oxaliplatin but delivered in a conventional manner, i.e. as a non-complexed mixture. This suggests that UTMD facilitates a more effective delivery of irinotecan/oxaliplatin improving the overall effectiveness of this drug combination and to the best of our knowledge, is the first reported example of a microbubble-liposome complex used to deliver these two chemotherapies.
Collapse
Affiliation(s)
- Jinhui Gao
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Heather Nesbitt
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Keiran Logan
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Kathryn Burnett
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Bronagh White
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Iain G Jack
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Mark A Taylor
- Department of HPB Surgery, Mater Hospital, Belfast, Northern Ireland BT14 6AB, UK
| | - Mark Love
- Imaging Centre, The Royal Victoria Hospital, Grosvenor Road, Belfast, Northern Ireland BT12 6BA, UK
| | - Bridgeen Callan
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - Anthony P McHale
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK
| | - John F Callan
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
83
|
Bhutiani N, Li Y, Zheng Q, Pandit H, Shi X, Chen Y, Yu Y, Pulliam ZR, Tan M, Martin RCG. Electrochemotherapy with Irreversible Electroporation and FOLFIRINOX Improves Survival in Murine Models of Pancreatic Adenocarcinoma. Ann Surg Oncol 2020; 27:4348-4359. [DOI: 10.1245/s10434-020-08782-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/05/2020] [Indexed: 08/30/2023]
|
84
|
Injectable Thermo-Sensitive Chitosan Hydrogel Containing CPT-11-Loaded EGFR-Targeted Graphene Oxide and SLP2 shRNA for Localized Drug/Gene Delivery in Glioblastoma Therapy. Int J Mol Sci 2020; 21:ijms21197111. [PMID: 32993166 PMCID: PMC7583917 DOI: 10.3390/ijms21197111] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, we aimed to develop a multifunctional drug/gene delivery system for the treatment of glioblastoma multiforme by combining the ligand-mediated active targeting and the pH-triggered drug release features of graphene oxide (GO). Toward this end, we load irinotecan (CPT-11) to cetuximab (CET)-conjugated GO (GO-CET/CPT11) for pH-responsive drug release after endocytosis by epidermal growth factor receptor (EGFR) over-expressed U87 human glioblastoma cells. The ultimate injectable drug/gene delivery system was designed by co-entrapping stomatin-like protein 2 (SLP2) short hairpin RNA (shRNA) and GO-CET/CPT11 in thermosensitive chitosan-g-poly(N-isopropylacrylamide) (CPN) polymer solution, which offers a hydrogel depot for localized, sustained delivery of the therapeutics after the in situ formation of CPN@GO-CET/CPT11@shRNA hydrogel. An optimal drug formulation was achieved by considering both the loading efficiency and loading content of CPT-11 on GO-CET. A sustained and controlled release behavior was found for CPT-11 and shRNA from CPN hydrogel. Confocal microscopy analysis confirmed the intracellular trafficking for the targeted delivery of CPT-11 through interactions of CET with EGFR on the U87 cell surface. The efficient transfection of U87 using SLP2 shRNA was achieved using CPN as a delivery milieu, possibly by the formation of shRNA/CPN polyplex after hydrogel degradation. In vitro cell culture experiments confirmed cell apoptosis induced by CPT-11 released from acid organelles in the cytoplasm by flow cytometry, as well as reduced SLP2 protein expression and inhibited cell migration due to gene silencing. Finally, in vivo therapeutic efficacy was demonstrated using the xenograft of U87 tumor-bearing nude mice through non-invasive intratumoral delivery of CPN@GO-CET/CPT11@shRNA by injection. Overall, we have demonstrated the novelty of this thermosensitive hydrogel to be an excellent depot for the co-delivery of anticancer drugs and siRNA. The in situ forming hydrogel will not only provide extended drug release but also combine the advantages offered by the chitosan-based copolymer structure for siRNA delivery to broaden treatment modalities in cancer therapy.
Collapse
|
85
|
Toxoplasma GRA16 Inhibits NF-κB Activation through PP2A-B55 Upregulation in Non-Small-Cell Lung Carcinoma Cells. Int J Mol Sci 2020; 21:ijms21186642. [PMID: 32927892 PMCID: PMC7554801 DOI: 10.3390/ijms21186642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Nuclear factor kappa B (NF-κB) activation is a well-known mechanism by which chemoresistance to anticancer agents is reported. It is well-known that irinotecan as a chemotherapeutic drug against non-small-cell lung carcinoma (NSCLC) has limited anticancer effect due to NF-κB activation. In this study, we propose the novel role of GRA16, a dense granule protein of Toxoplasma gondii, as an anticancer agent to increase the effectiveness of chemotherapy via the inhibition of NF-κB activation. To demonstrate this, H1299 cells were stably transfected with GRA16. The anticancer effects of GRA16 were demonstrated as a reduction in tumor size in a mouse xenograft model. GRA16 directly elevated B55 regulatory subunit of protein phosphatase 2A (PP2A-B55) expression in tumor cells, thereby decreasing GWL protein levels and ENSA phosphorylation. This cascade, in turn, induced PP2A-B55 activation and suppressed AKT/ERK phosphorylation and cyclin B1 levels, suggesting reduced cell survival and arrested cell cycle. Moreover, PP2A-B55 activation and AKT phosphorylation inhibition led to NF-κB inactivation via the reduction in inhibitory kappa B kinase beta (IKKβ) levels, de-phosphorylation of inhibitor of kappa B alpha (IκBα), and reduction in the nuclear transit of NF-κB p65. Furthermore, this molecular mechanism was examined under irinotecan treatment. The PP2A-B55/AKT/NF-κB p65 pathway-mediated anticancer effects were only induced in the presence of GRA16, but not in the presence of irinotecan. Moreover, GRA16 synergistically promoted the anticancer effects of irinotecan via the induction of the sub-G1 phase and reduction of cell proliferation. Collectively, irinotecan and GRA16 co-treatment promotes the anticancer effects of irinotecan via NF-κB inhibition and cell cycle arrest induced by GRA16, subsequently increasing the chemotherapeutic effect of irinotecan to NSCLC cells via NF-κB inhibition.
Collapse
|
86
|
Hu Y, Zhang Y, Wang X, Jiang K, Wang H, Yao S, Liu Y, Lin YZ, Wei G, Lu W. Treatment of Lung Cancer by Peptide-Modified Liposomal Irinotecan Endowed with Tumor Penetration and NF-κB Inhibitory Activities. Mol Pharm 2020; 17:3685-3695. [PMID: 32816496 DOI: 10.1021/acs.molpharmaceut.0c00052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current chemotherapy for lung cancer achieved limited efficacy due to poor tumor targeting and tissue penetration. Another obstacle in the therapy is activated nuclear factor-κB (NF-κB) in tumor cells, which plays a crucial role in promotion of antiapoptosis and drug resistance. In this study, we utilized a multifunctional liposome loaded with irinotecan and surface modified with a cell-permeable NF-κB inhibitor (CB5005), for treatment of non-small-cell lung carcinoma. CB5005 downregulated the level of NF-κB-related protein in the nuclei of A549 cells, and increased cellular uptake of the modified liposomes. In vivo antitumor activity in mice bearing A549 xenografts revealed that modification with CB5005 significantly improved the tumor inhibition rate of irinotecan. Immunohistochemical assays showed that the tumors treated with CB5005-modified liposomes possessed the most apoptotic cells and the lowest level of p50 in the cell nuclei. These results strongly suggest that antitumor efficacy of the irinotecan liposomes can be enhanced by tumor-penetrating and NF-κB-inhibiting functions of CB5005. Consequently, CB5005-modified liposomes provide a possible synergistic therapy for lung cancer, and would also be appropriate for other types of tumors associated with elevated NF-κB activity.
Collapse
Affiliation(s)
- Yang Hu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Yanyu Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xiaoyi Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Kuan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Huan Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Shengyu Yao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Yu Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Yao-Zhong Lin
- Celtek Bioscience, LLC, 2550 Meridian Boulevard, Suite 200, Franklin, Tennessee 37067, United States
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.,The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China.,Shanghai Engineering Research Center of ImmunoTherapeutics, Shanghai 201203, China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.,The Institutes of Integrative Medicine of Fudan University, Shanghai 200040, China
| |
Collapse
|
87
|
George SL, Lorenzi F, King D, Hartlieb S, Campbell J, Pemberton H, Toprak UH, Barker K, Tall J, da Costa BM, van den Boogaard ML, Dolman MEM, Molenaar JJ, Bryant HE, Westermann F, Lord CJ, Chesler L. Therapeutic vulnerabilities in the DNA damage response for the treatment of ATRX mutant neuroblastoma. EBioMedicine 2020; 59:102971. [PMID: 32846370 PMCID: PMC7452577 DOI: 10.1016/j.ebiom.2020.102971] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In neuroblastoma, genetic alterations in ATRX, define a distinct poor outcome patient subgroup. Despite the need for new therapies, there is a lack of available models and a dearth of pre-clinical research. METHODS To evaluate the impact of ATRX loss of function (LoF) in neuroblastoma, we utilized CRISPR-Cas9 gene editing to generate neuroblastoma cell lines isogenic for ATRX. We used these and other models to identify therapeutically exploitable synthetic lethal vulnerabilities associated with ATRX LoF. FINDINGS In isogenic cell lines, we found that ATRX inactivation results in increased DNA damage, homologous recombination repair (HRR) defects and impaired replication fork processivity. In keeping with this, high-throughput compound screening showed selective sensitivity in ATRX mutant cells to multiple PARP inhibitors and the ATM inhibitor KU60019. ATRX mutant cells also showed selective sensitivity to the DNA damaging agents, sapacitabine and irinotecan. HRR deficiency was also seen in the ATRX deleted CHLA-90 cell line, and significant sensitivity demonstrated to olaparib/irinotecan combination therapy in all ATRX LoF models. In-vivo sensitivity to olaparib/irinotecan was seen in ATRX mutant but not wild-type xenografts. Finally, sustained responses to olaparib/irinotecan therapy were seen in an ATRX deleted neuroblastoma patient derived xenograft. INTERPRETATION ATRX LoF results in specific DNA damage repair defects that can be therapeutically exploited. In ATRX LoF models, preclinical sensitivity is demonstrated to olaparib and irinotecan, a combination that can be rapidly translated into the clinic. FUNDING This work was supported by Christopher's Smile, Neuroblastoma UK, Cancer Research UK, and the Royal Marsden Hospital NIHR BRC.
Collapse
Affiliation(s)
- Sally L George
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom; Children and Young People's Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT United Kingdom.
| | - Federica Lorenzi
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | - David King
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Sabine Hartlieb
- Neuroblastoma Genomics, Hopp Children`s Cancer Center Heidelberg (KiTZ) & German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - James Campbell
- Bioinformatics Core Facility, The Institute of Cancer Research, London, United Kingdom
| | - Helen Pemberton
- CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research London, SW3 6JB, United Kingdom
| | - Umut H Toprak
- Neuroblastoma Genomics, Hopp Children`s Cancer Center Heidelberg (KiTZ) & German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karen Barker
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | - Jennifer Tall
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | - Barbara Martins da Costa
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | | | - M Emmy M Dolman
- Princess Maxima Center for Pediatric Cancer, Utrecht, The Netherlands
| | - Jan J Molenaar
- Princess Maxima Center for Pediatric Cancer, Utrecht, The Netherlands
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Frank Westermann
- Neuroblastoma Genomics, Hopp Children`s Cancer Center Heidelberg (KiTZ) & German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christopher J Lord
- CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research London, SW3 6JB, United Kingdom
| | - Louis Chesler
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom; Children and Young People's Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT United Kingdom
| |
Collapse
|
88
|
Microbiota Modulates the Immunomodulatory Effects of Filifolinone on Atlantic Salmon. Microorganisms 2020; 8:microorganisms8091320. [PMID: 32872599 PMCID: PMC7564783 DOI: 10.3390/microorganisms8091320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Filifolinone is an aromatic geranyl derivative, a natural compound isolated from Heliotropum sclerocarpum, which has immunomodulatory effects on Atlantic salmon, upregulating cytokines involved in Th1-type responses through a mechanism that remains unknown. In this work, we determined whether the immunomodulatory effects of filifolinone depend on the host microbiotic composition. We evaluated the effect of filifolinone on immune genes and intestinal microbiotic composition of normal fish and fish previously treated with bacitracin/neomycin. Filifolinone induced the early expression of IFN-α1 and TGF-β, followed by the induction of TNF-α, IL-1β, and IFN-γ. A pre-treatment with antibiotics modified this effect, mainly changing the expression of IL-1β and IFN-γ. The evaluation of microbial diversity shows that filifolinone modifies the composition of intestinal microbiota, increasing the abundance of immunostimulating organisms like yeast and firmicutes. We identified 69 operational taxonomic units (OTUs) associated with filifolinone-induced IFN-γ. Our results indicate that filifolinone stimulates the immune system in two ways, one dependent on fish microbiota and the other not. To our knowledge, this is the first report of microbiota-dependent immunostimulation in Salmonids.
Collapse
|
89
|
Babaei A, Soleimanjahi H, Soleimani M, Arefian E. The synergistic anticancer effects of ReoT3D, CPT-11, and BBI608 on murine colorectal cancer cells. ACTA ACUST UNITED AC 2020; 28:555-565. [PMID: 32803686 DOI: 10.1007/s40199-020-00361-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/23/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Many types of oncolytic viruses (OVs) were enrolled in clinical trials. Recently, an OV named Talimogene laherparepvec approved for the treatment of melanoma. This achievement highlighted the clinical application of OVs. Scientists focus on using these anticancer agents in combination with the current or/and new anticancer chemotherapeutics. They aim to increase the oncolytic effect of a new approach for the treatment of cancer cells. OBJECTIVES The present study aimed to assess the anticancer impacts of ReoT3D, irinotecan (CPT-11), and napabucasin (BBI608) against murine colorectal cancer cells (CT26). They are assessed alone and in combination with each other. METHODS Here, oncolytic reovirus was propagated and titrated. Then MTT assay was carried out to assess the toxicity of this OV and chemotherapeutics effect on CT26 cells. The anticancer effects of ReoT3D, CPT-11, and BBI608, alone and simultaneously, on CT26 cell line, were assessed by the induction of apoptosis, cell cycle arrest, colony-forming, migration, and real-time PCR experiments. RESULTS Alone treatment with ReoT3D, CPT-11, and BBI608 led to effectively inducing of apoptosis, cell cycle arrest, and apoptotic genes expression level and significantly reduce of colony-forming, migration, and anti-apoptotic genes expression rate. Importantly, the maximum anticancer effect against CT26 cell line was seen upon combination ReoT3D, CPT-11, and BBI608 treatment. CONCLUSION The present study highlights that combination of ReoT3D, CPT-11, and BBI560 showed synergistic anticancer activity against CT26 cell line. This modality might be considered as a new approach against colorectal cancer (CRC) in the in vivo and clinical trial investigations.
Collapse
Affiliation(s)
- Abouzar Babaei
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Masoud Soleimani
- Department of Hematology and cell therapy, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
90
|
Xu T, Wang M, Jiang L, Ma L, Wan L, Chen Q, Wei C, Wang Z. CircRNAs in anticancer drug resistance: recent advances and future potential. Mol Cancer 2020; 19:127. [PMID: 32799866 PMCID: PMC7429705 DOI: 10.1186/s12943-020-01240-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
CircRNAs are a novel class of RNA molecules with a unique closed continuous loop structure. CircRNAs are abundant in eukaryotic cells, have unique stability and tissue specificity, and can play a biological regulatory role at various levels, such as transcriptional and posttranscriptional levels. Numerous studies have indicated that circRNAs serve a crucial purpose in cancer biology. CircRNAs regulate tumor behavioral phenotypes such as proliferation and migration through various molecular mechanisms, such as miRNA sponging, transcriptional regulation, and protein interaction. Recently, several reports have demonstrated that they are also deeply involved in resistance to anticancer drugs, from traditional chemotherapeutic drugs to targeted and immunotherapeutic drugs. This review is the first to summarize the latest research on circRNAs in anticancer drug resistance based on drug classification and to discuss their potential clinical applications.
Collapse
Affiliation(s)
- Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Mengwei Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Lihua Jiang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Li Wan
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Qinnan Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Chenchen Wei
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China.
| |
Collapse
|
91
|
Kalthoff S, Paulusch S, Rupp A, Holdenrieder S, Hartmann G, Strassburg CP. The coffee ingredients caffeic acid and caffeic acid phenylethyl ester protect against irinotecan-induced leukopenia and oxidative stress response. Br J Pharmacol 2020; 177:4193-4208. [PMID: 32548889 PMCID: PMC7443465 DOI: 10.1111/bph.15162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose Irinotecan, used in colorectal cancer therapy, is metabolized by glucuronidation involving different UDP‐glucuronosyltransferase (UGT)1A isoforms leading to facilitated elimination from the body. Individuals homozygous for the genetic variants UGT1A1*28 (Gilbert syndrome) and UGT1A7*3 are more susceptible to irinotecan side effects, severe diarrhoea and leukopenia. The aim of this study was to investigate the protective effects and active constituents of coffee during irinotecan therapy using humanized transgenic (htg)UGT1A‐WT and htgUGT1A‐SNP (carry UGT1A1*28 and UGT1A7*3 polymorphisms) mice. Experimental Approach HtgUGT1A mice were pretreated with coffee or caffeic acid (CA) + caffeic acid phenylethyl ester (CAPE) and injected with irinotecan. The effects of coffee and CA + CAPE were investigated using reporter gene assays, immunoblot, TaqMan‐PCR, siRNA analyses and blood counts. Key Results Only the combination of the two coffee ingredients, CA and CAPE, mediates protective effects of coffee in a model of irinotecan toxicity by activation of UGT1A genes. Coffee and CA + CAPE significantly increased UGT1A expression and activity along with SN‐38 glucuronide excretion in irinotecan‐injected htgUGT1A mice, resulting in significant improvement of leukopenia, intestinal oxidative stress and inflammation. Conclusion and Implications In this study, we identify the compounds responsible for mediating the previously reported coffee‐induced activation of UGT1A gene expression. CA and CAPE represent key factors for the protective properties of coffee which are capable of reducing irinotecan toxicity, exerting antioxidant and protective effects. Provided that CA + CAPE do not affect irinotecan efficacy, they might represent a novel strategy for the treatment of irinotecan toxicity.
Collapse
Affiliation(s)
- Sandra Kalthoff
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Stefan Paulusch
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Alexander Rupp
- Institute of Laboratory Medicine, German Heart Center of the Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute of Laboratory Medicine, German Heart Center of the Technical University Munich, Munich, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
92
|
Irinotecan-Still an Important Player in Cancer Chemotherapy: A Comprehensive Overview. Int J Mol Sci 2020; 21:ijms21144919. [PMID: 32664667 PMCID: PMC7404108 DOI: 10.3390/ijms21144919] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023] Open
Abstract
Irinotecan has been used in the treatment of various malignancies for many years. Still, the knowledge regarding this drug is expanding. The pharmacogenetics of the drug is the crucial component of response to irinotecan. Furthermore, new formulations of the drug are introduced in order to better deliver the drug and avoid potentially life-threatening side effects. Here, we give a comprehensive overview on irinotecan’s molecular mode of action, metabolism, pharmacogenetics, and toxicity. Moreover, this article features clinically used combinations of the drug with other anticancer agents and introduces novel formulations of drugs (e.g., liposomal formulations, dendrimers, and nanoparticles). It also outlines crucial mechanisms of tumor cells’ resistance to the active metabolite, ethyl-10-hydroxy-camptothecin (SN-38). We are sure that the article will constitute an important source of information for both new researchers in the field of irinotecan chemotherapy and professionals or clinicians who are interested in the topic.
Collapse
|
93
|
Drug-Drug Interactions of Irinotecan, 5-Fluorouracil, Folinic Acid and Oxaliplatin and Its Activity in Colorectal Carcinoma Treatment. Molecules 2020; 25:molecules25112614. [PMID: 32512790 PMCID: PMC7321123 DOI: 10.3390/molecules25112614] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
The combination of folinic acid, 5-fluorouracil, oxaliplatin and/or irinotecan (FOLFOXIRI) is the standard of care for metastatic colorectal cancer (CRC). This strategy inhibits tumor growth but provokes drug resistance and serious side effects. We aimed to improve FOLFOXIRI by optimization of the dosing and the sequence of drug administration. We employed an orthogonal array composite design and linear regression analysis to obtain cell line-specific drug combinations for four CRC cell lines (DLD1, SW620, HCT116, LS174T). Our results confirmed the synergy between folinic acid and 5-fluorouracil and additivity, or even antagonism, between the other drugs of the combination. The drug combination administered at clinical doses resulted in significantly higher antagonistic interactions compared to the low-dose optimized drug combination (ODC). We found that the concomitant administration of the optimized drug combination (ODC) was comparatively active to sequential administration. However, the administration of oxaliplatin or the active metabolite of irinotecan seemed to sensitize the cells to the combination of folinic acid and 5-fluorouracil. ODCs were similarly active in non-cancerous cells as compared to the clinically used doses, indicating a lack of reduction of side effects. Interestingly, ODCs were inactive in CRC cells chronically pretreated with FOLFOXIRI, suggesting the occurrence of resistance. We were unable to improve FOLFOXIRI in terms of efficacy or specificity. Improvement of CRC treatment should come from the optimization of targeted drugs and immunotherapy strategies.
Collapse
|
94
|
Lo YL, Chang CH, Wang CS, Yang MH, Lin AMY, Hong CJ, Tseng WH. PEG-coated nanoparticles detachable in acidic microenvironments for the tumor-directed delivery of chemo- and gene therapies for head and neck cancer. Am J Cancer Res 2020; 10:6695-6714. [PMID: 32550898 PMCID: PMC7295054 DOI: 10.7150/thno.45164] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Head and neck cancer (HNC) is a major cause of morbidity and mortality and has a poor treatment outcome. Irinotecan, a topoisomerase-I inhibitor, induces cell death by decreasing the religation of double-strand DNA. However, epithelial-mesenchymal transition (EMT), therapy resistance, and systemic toxicity caused by available antineoplastic agents hinder the efficacy and safety of HNC treatment. Chemotherapy combined with gene therapy shows potential application in circumventing therapy resistance and EMT. miR-200 exerts a remarkable suppressing effect on EMT-associated genes. Herein, liposomes and solid lipid nanoparticles (SLNs) modified with a pH-sensitive, self-destructive polyethylene glycol (PEG) shell and different peptides were designed as irinotecan and miR-200 nanovectors to enhance tumor-specific accumulation. These peptides included one ligand targeting the angiogenic tumor neovasculature, one mitochondrion-directed apoptosis-inducing peptide, and one cell-penetrating peptide (CPP) with high potency and selectivity toward cancer cells. Methods: Physicochemical characterization, cytotoxicity analysis, cellular uptake, regulation mechanisms, and in vivo studies on miR-200- and irinotecan-incorporated nanoparticles were performed to identify the potential antitumor efficacy and biosafety issues involved in HNC treatment and to elucidate the underlying signaling pathways. Results: We found that the cleavable PEG layer responded to low extracellular pH, and that the CPP and targeting peptides were exposed to improve the uptake and release of miR-200 and irinotecan into HNC human tongue squamous carcinoma (SAS) cells. The apoptosis of SAS cells treated with the combinatorial therapy was significantly induced by regulating various pathways, such as the Wnt/β-catenin, MDR, and EMT pathways. The therapeutic efficacy and safety of the proposed co-treatment outperformed the commercially available Onivyde and other formulations used in a SAS tumor-bearing mouse model in this study. Conclusion: Chemotherapy and gene therapy co-treatment involving pH-sensitive and targeting peptide-modified nanoparticles may be an innovative strategy for HNC treatment.
Collapse
|
95
|
Chemoresistance-Associated Silencing of miR-4454 Promotes Colorectal Cancer Aggression through the GNL3L and NF-κB Pathway. Cancers (Basel) 2020; 12:cancers12051231. [PMID: 32422901 PMCID: PMC7281507 DOI: 10.3390/cancers12051231] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/13/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
Guanine nucleotide-binding protein-like-3-like (GNL3L) is a crucial regulator of NF-κB signaling that is aberrantly activated during diverse chemoresistance-associated cellular processes. However, the molecular mechanisms of GNL3L tumor initiation and resistant state are largely unknown. Moreover, the identification of predictive biomarkers is necessary to effectively generate therapeutic strategies for metastatic human colorectal cancer (CRC). This study aims to identify how cells acquire resistance to anticancer drugs and whether the downregulation of miR-4454 is associated with the progression of CRC. Here, we have shown that the overexpression of miR-4454 in resistant tumors is a crucial precursor for the posttranscriptional repression of GNL3L in human chemoresistant CRC progression, and we used doxycycline induced miR-4454 overexpression that significantly reduced tumor volume in a subcutaneous injection nude mice model. Together, these observations highlight that the downregulation of miR-4454 in resistant clones is prominently responsible for maintaining their resistance against anticancer drug therapy. Our study indicates that the development of miR-4454 as a microRNA-based therapeutic approach to silence GNL3L may remarkably reduce oncogenic cell survival that depends on GNL3L/NF-κB signaling, making miR-4454 a candidate for treating metastatic human CRC.
Collapse
|
96
|
Woźniak M, Makuch S, Winograd K, Wiśniewski J, Ziółkowski P, Agrawal S. 6-Shogaol enhances the anticancer effect of 5-fluorouracil, oxaliplatin, and irinotecan via increase of apoptosis and autophagy in colon cancer cells in hypoxic/aglycemic conditions. BMC Complement Med Ther 2020; 20:141. [PMID: 32393373 PMCID: PMC7216385 DOI: 10.1186/s12906-020-02913-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The development and growth of colorectal cancer based on constitutive activation of numerous signaling pathways that stimulate proliferation and metastasis. Plant-derived agents excel by targeting multiple aspects of tumor progression. Previous investigations have shown that ginger derivatives- shogaols possess anti-cancer and anti-inflammatory effects. In the present study, we have examined the anti-cancer effects of 6-shogaol alongside with the most widely used chemotherapeutic agents/regimens in the tumor-like microenvironment conditions. METHODS Cytotoxicity on two colon cancer cell lines (SW480 and SW620) was measured by MTT test. Apoptosisassay, immunocytochemical and Western blotting analysis for autophagy and apoptosis detection were performed. RESULTS Here, we report that 6-shogaol by itself or in combination with chemotherapeutic agents/regimens exerted a cytotoxic effect on CRC cells. Cell death might be linked with the activation of autophagy and apoptosis-related pathways. In the tumor-like microenvironment, which is characterized by hypoxia and glucose starvation, 6-shogaol with chemotherapeutics is significantly more potent than conventional chemotherapy alone. CONCLUSIONS Collectively, our data suggest that the addition of 6-shogaol to established chemotherapeutic regimens could potentially be a remarkable therapeutic strategy for colorectal cancer.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pathology, Wroclaw Medical University, ul. K. Marcinkowskiego, 150-368, Wrocław, Poland.
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, ul. K. Marcinkowskiego, 150-368, Wrocław, Poland
| | - Kinga Winograd
- Department of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Jerzy Wiśniewski
- Department of Biochemistry, Wroclaw Medical University, Wrocław, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wroclaw Medical University, ul. K. Marcinkowskiego, 150-368, Wrocław, Poland
| | - Siddarth Agrawal
- Department of Pathology, Wroclaw Medical University, ul. K. Marcinkowskiego, 150-368, Wrocław, Poland
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
97
|
Gawley M, Almond L, Daniel S, Lastakchi S, Kaur S, Detta A, Cruickshank G, Miller R, Hingtgen S, Sheets K, McConville C. Development and in vivo evaluation of Irinotecan-loaded Drug Eluting Seeds (iDES) for the localised treatment of recurrent glioblastoma multiforme. J Control Release 2020; 324:1-16. [PMID: 32407745 DOI: 10.1016/j.jconrel.2020.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is impossible to fully remove surgically and almost always recurs at the borders of the resection cavity, while systemic delivery of therapeutic drug levels to the brain tumour is limited by the blood-brain barrier. This research describes the development of a novel formulation of Irinotecan-loaded Drug Eluting Seeds (iDES) for insertion into the margin of the GBM resection cavity to provide a sustained high local dose with reduced systemic toxicities. We used primary GBM cells from both the tumour core and Brain Around the Tumour tissue from recurrent GBM patients to demonstrate that irinotecan is more effective than temozolomide. Irinotecan had a 75% response rate, while only 50% responded to temozolomide. With temozolomide the cell viability was never below 80% whereas irinotecan achieved cell viabilities of less than 44%. The iDES were manufactured using a hot melt extrusion process with accurate irinotecan drug loadings and the same cytotoxicity as unformulated irinotecan. The iDES released irinotecan in a sustained fashion for up to 7 days. However, only the 30, 40 and 50% w/w loaded iDES formulations released the 300 to 1000 μg of irinotecan needed to be effective in vivo. The 30 and 40% w/w iDES formulations containing 10% plasticizer and either 60 or 50% PLGA prolonged survival from 27 to 70 days in a GBM xenograft mouse resection model with no sign of tumour recurrence. The 30% w/w iDES formulations showed equivalent toxicity to a placebo in non-tumour bearing mice. This innovative drug delivery approach could transform the treatment of recurrent GBM patients by improving survival and reducing toxicity.
Collapse
Affiliation(s)
- Matthew Gawley
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Lorna Almond
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Senam Daniel
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Sarah Lastakchi
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Sharnjit Kaur
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Allah Detta
- Department of Neurosurgery, University Hospitals Birmingham, NHS Foundation Trust, United Kingdom
| | - Garth Cruickshank
- Department of Neurosurgery, University Hospitals Birmingham, NHS Foundation Trust, United Kingdom
| | - Ryan Miller
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Departments of Neurology and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shawn Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin Sheets
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher McConville
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
98
|
Elsalem L, Jum'ah AA, Alfaqih MA, Aloudat O. The Bacterial Microbiota of Gastrointestinal Cancers: Role in Cancer Pathogenesis and Therapeutic Perspectives. Clin Exp Gastroenterol 2020; 13:151-185. [PMID: 32440192 PMCID: PMC7211962 DOI: 10.2147/ceg.s243337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
The microbiota has an essential role in the pathogenesis of many gastrointestinal diseases including cancer. This effect is mediated through different mechanisms such as damaging DNA, activation of oncogenic pathways, production of carcinogenic metabolites, stimulation of chronic inflammation, and inhibition of antitumor immunity. Recently, the concept of "pharmacomicrobiomics" has emerged as a new field concerned with exploring the interplay between drugs and microbes. Mounting evidence indicates that the microbiota and their metabolites have a major impact on the pharmacodynamics and therapeutic responses toward anticancer drugs including conventional chemotherapy and molecular-targeted therapeutics. In addition, microbiota appears as an attractive target for cancer prevention and treatment. In this review, we discuss the role of bacterial microbiota in the pathogenesis of different cancer types affecting the gastrointestinal tract system. We also scrutinize the evidence regarding the role of microbiota in anticancer drug responses. Further, we discuss the use of probiotics, fecal microbiota transplantation, and antibiotics, either alone or in combination with anticancer drugs for prevention and treatment of gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Lina Elsalem
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad A Jum'ah
- Department of Conservative Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Mahmoud A Alfaqih
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Osama Aloudat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
99
|
Garrett AM, Lastakchi S, McConville C. The Personalisation of Glioblastoma Treatment Using Whole Exome Sequencing: A Pilot Study. Genes (Basel) 2020; 11:genes11020173. [PMID: 32041307 PMCID: PMC7074406 DOI: 10.3390/genes11020173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/01/2023] Open
Abstract
The molecular heterogeneity of glioblastoma has been linked to differences in survival and treatment response, while the development of personalised treatments may be a novel way of combatting this disease. Here we show for the first time that low passage number cells derived from primary tumours are greater than an 86% match genetically to the tumour tissue. We used these cells to identify eight genes that could be used for the personalisation of glioblastoma treatment and discovered a number of personalised drug combinations that were significantly more effective at killing glioblastoma cells and reducing recurrence than the individual drugs as well as the control and non-personalised combinations. This pilot study demonstrates for the first time that whole exome sequencing has the potential be used to improve the treatment of glioblastoma patients by personalising treatment. This novel approach could potentially offer a new avenue for treatment for this terrible disease.
Collapse
|
100
|
Liang GB, Yu YC, Wei JH, Kuang WB, Chen ZF, Zhang Y. Design, synthesis and biological evaluation of naphthalenebenzimidizole platinum (II) complexes as potential antitumor agents. Eur J Med Chem 2020; 188:112033. [DOI: 10.1016/j.ejmech.2019.112033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
|