51
|
Ząbczyńska M, Link-Lenczowski P, Novokmet M, Martin T, Turek-Jabrocka R, Trofimiuk-Müldner M, Pocheć E. Altered N-glycan profile of IgG-depleted serum proteins in Hashimoto's thyroiditis. Biochim Biophys Acta Gen Subj 2019; 1864:129464. [PMID: 31669586 DOI: 10.1016/j.bbagen.2019.129464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Hashimoto's thyroiditis (HT) is an autoimmune disease characterized by chronic inflammation of thyroid gland. Although HT is the most common cause of hypothyroidism, the pathogenesis of this disease is not fully understood. Glycosylation of serum proteins was examined in HT only to a limited extent. The study was designed to determine the glycosylation pattern of IgG-depleted sera from HT patients. METHODS Serum N-glycans released by N-glycosidase F (PNGase F) digestion were analyzed by normal-phase high-performance liquid chromatography (NP-HPLC). N-glycan structures in each collected HPLC fraction were determined by liquid chromatography-mass spectrometry (LC-MS) and exoglycosidase digestion. Fucosylation and sialylation was also analyzed by lectin blotting. RESULTS The results showed an increase of monosialylated tri-antennary structure (A3G3S1) and disialylated diantennary N-glycan with antennary fucose (FA2G2S2). Subsequently, we analyzed the serum N-glycan profile by lectin blotting using lectins specific for fucose and sialic acid. We found a significant decrease of Lens culinaris agglutinin (LCA) staining in HT samples, which resulted from the reduction of α1,6-linked core fucose in HT serum. We also observed an increase of Maackia amurensis II lectin (MAL-II) reaction in HT due to the elevated level of α2,3-sialylation in HT sera. CONCLUSIONS The detected alterations of serum protein sialylation might be caused by chronic inflammation in HT. The obtained results complete our previous IgG N-glycosylation analysis in autoimmune thyroid patients and show that the altered N-glycosylation of serum proteins is characteristic for autoimmunity process in HT. General Significance Thyroid autoimmunity is accompanied by changes of serum protein sialylation.
Collapse
Affiliation(s)
- Marta Ząbczyńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Jagiellonian University Medical College, Michałowskiego 12, 31-126 Kraków, Poland.
| | - Mislav Novokmet
- Glycoscience Research Laboratory, Genos Ltd., Borongajska cesta 83h, 10000 Zagreb, Croatia.
| | - Tiphaine Martin
- Tisch Institute, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 10029 New York, NY, USA.
| | - Renata Turek-Jabrocka
- Department of Endocrinology, Jagiellonian University Hospital, Kopernika 17, 31-501 Kraków, Poland.
| | | | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
52
|
Link-Lenczowski P, Jastrzębska M, Chwalenia K, Pierzchalska M, Leja-Szpak A, Bonior J, Pierzchalski P, Jaworek J. A switch of N-glycosylation of proteome and secretome during differentiation of intestinal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118555. [PMID: 31499077 DOI: 10.1016/j.bbamcr.2019.118555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022]
Abstract
The maintenance of homeostasis of the intestinal epithelium depends on the complex process of epithelial cells differentiation, which repeatedly continues throughout the entire life. Many studies suggest, that cellular differentiation is regulated by glycosylation, or at least that changes of the latter are the hallmark of the process. The detailed description and understanding of this relationship are important in the context of gastrointestinal tract disease, including cancer. Here we employ a broadly used in vitro model of intestinal cell differentiation to track the glycosylation changes in details. We analyzed the glycoproteome- and glycosecretome-derived N-glycomes of undifferentiated Caco-2 adenocarcinoma cells and Caco-2-derived enterocyte-like cells. We used HILIC-HPLC and MALDI-ToF-MS approach together with exoglycosidases digestions to describe qualitative and quantitative N-glycosylation changes upon differentiation. Derived glycan traits analysis revealed, that differentiation results in substantial upregulation of sialylation of glycoproteome and increment of fucosylation within glycosecretome. This was also clearly visible when we analyzed the abundances of individual glycan species. Moreover, we observed the characteristic shift within oligomannose N-glycans, suggesting the augmentation of mannose trimming, resulting in downregulation of H8N2 and upregulation of H5N2 glycan. This was supported by elevated expression of Golgi alpha-mannosidases (especially MAN1C1). We hypothesize, that intensified mannose trimming at the initial steps of N-glycosylation pathway during differentiation, together with the remodeling of the expression of key glycosyltransferases leads to increased diversity of N-glycans and enhanced fucosylation and sialylation of complex structures. Finally, we propose H4N5F1 glycan as a potential biomarker of intestinal epithelial cell differentiation.
Collapse
Affiliation(s)
- Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland.
| | - Martyna Jastrzębska
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Chwalenia
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland; Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Małgorzata Pierzchalska
- Department of Food Biotechnology, Faculty of Food Technology, The University of Agriculture in Kraków, Kraków, Poland
| | - Anna Leja-Szpak
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Bonior
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Piotr Pierzchalski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Jolanta Jaworek
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
53
|
Gray CJ, Migas LG, Barran PE, Pagel K, Seeberger PH, Eyers CE, Boons GJ, Pohl NLB, Compagnon I, Widmalm G, Flitsch SL. Advancing Solutions to the Carbohydrate Sequencing Challenge. J Am Chem Soc 2019; 141:14463-14479. [PMID: 31403778 DOI: 10.1021/jacs.9b06406] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbohydrates possess a variety of distinct features with stereochemistry playing a particularly important role in distinguishing their structure and function. Monosaccharide building blocks are defined by a high density of chiral centers. Additionally, the anomericity and regiochemistry of the glycosidic linkages carry important biological information. Any carbohydrate-sequencing method needs to be precise in determining all aspects of this stereodiversity. Recently, several advances have been made in developing fast and precise analytical techniques that have the potential to address the stereochemical complexity of carbohydrates. This perspective seeks to provide an overview of some of these emerging techniques, focusing on those that are based on NMR and MS-hybridized technologies including ion mobility spectrometry and IR spectroscopy.
Collapse
Affiliation(s)
- Christopher J Gray
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Lukasz G Migas
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Perdita E Barran
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Kevin Pagel
- Institute for Chemistry and Biochemistry , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Peter H Seeberger
- Biomolecular Systems Department , Max Planck Institute for Colloids and Interfaces , Am Muehlenberg 1 , 14476 Potsdam , Germany
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology , University of Liverpool , Crown Street , Liverpool L69 7ZB , U.K
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Nicola L B Pohl
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Isabelle Compagnon
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS , Université de Lyon , 69622 Villeurbanne Cedex , France.,Institut Universitaire de France IUF , 103 Blvd St Michel , 75005 Paris , France
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , S-106 91 Stockholm , Sweden
| | - Sabine L Flitsch
- School of Chemistry & Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| |
Collapse
|
54
|
Pothukuchi P, Agliarulo I, Russo D, Rizzo R, Russo F, Parashuraman S. Translation of genome to glycome: role of the Golgi apparatus. FEBS Lett 2019; 593:2390-2411. [PMID: 31330561 DOI: 10.1002/1873-3468.13541] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Glycans are one of the four biopolymers of the cell and they play important roles in cellular and organismal physiology. They consist of both linear and branched structures and are synthesized in a nontemplated manner in the secretory pathway of mammalian cells with the Golgi apparatus playing a key role in the process. In spite of the absence of a template, the glycans synthesized by a cell are not a random collection of possible glycan structures but a distribution of specific glycans in defined quantities that is unique to each cell type (Cell type here refers to distinct cell forms present in an organism that can be distinguished based on morphological, phenotypic and/or molecular criteria.) While information to produce cell type-specific glycans is encoded in the genome, how this information is translated into cell type-specific glycome (Glycome refers to the quantitative distribution of all glycan structures present in a given cell type.) is not completely understood. We summarize here the factors that are known to influence the fidelity of glycan biosynthesis and integrate them into known glycosylation pathways so as to rationalize the translation of genetic information to cell type-specific glycome.
Collapse
Affiliation(s)
- Prathyush Pothukuchi
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Ilenia Agliarulo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Riccardo Rizzo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Francesco Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Seetharaman Parashuraman
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| |
Collapse
|
55
|
Wongtrakul-Kish K, Walsh I, Sim LC, Mak A, Liau B, Ding V, Hayati N, Wang H, Choo A, Rudd PM, Nguyen-Khuong T. Combining Glucose Units, m/z, and Collision Cross Section Values: Multiattribute Data for Increased Accuracy in Automated Glycosphingolipid Glycan Identifications and Its Application in Triple Negative Breast Cancer. Anal Chem 2019; 91:9078-9085. [DOI: 10.1021/acs.analchem.9b01476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Katherine Wongtrakul-Kish
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
| | - Ian Walsh
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
| | - Lyn Chiin Sim
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
| | - Amelia Mak
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
| | - Brian Liau
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
| | - Vanessa Ding
- Antibody Discovery Group, Bioprocessing Technology Institute, A*STAR, Singapore 138668
| | - Noor Hayati
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
| | - Han Wang
- Waters Asia Pacific Pte Ltd., 1 Science Park Rd, No. 02-01/06 The Capricorn, Singapore Science Park II, Singapore 117528
| | - Andre Choo
- Antibody Discovery Group, Bioprocessing Technology Institute, A*STAR, Singapore 138668
| | - Pauline M. Rudd
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
- National Institute for Bioprocessing Research and Training, Conway Institute, Dublin, Ireland
- University College Dublin, Belfield, Dublin, Ireland
| | - Terry Nguyen-Khuong
- Analytics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138668
| |
Collapse
|
56
|
Bousfield GR, Harvey DJ. Follicle-Stimulating Hormone Glycobiology. Endocrinology 2019; 160:1515-1535. [PMID: 31127275 PMCID: PMC6534497 DOI: 10.1210/en.2019-00001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/16/2019] [Indexed: 01/13/2023]
Abstract
FSH glycosylation varies in two functionally important aspects: microheterogeneity, resulting from oligosaccharide structure variation, and macroheterogeneity, arising from partial FSHβ subunit glycosylation. Although advances in mass spectrometry permit extensive characterization of FSH glycan populations, microheterogeneity remains difficult to illustrate, and comparisons between different studies are challenging because no standard format exists for rendering oligosaccharide structures. FSH microheterogeneity is illustrated using a consistent glycan diagram format to illustrate the large array of structures associated with one hormone. This is extended to commercially available recombinant FSH preparations, which exhibit greatly reduced microheterogeneity at three of four glycosylation sites. Macroheterogeneity is demonstrated by electrophoretic mobility shifts due to the absence of FSHβ glycans that can be assessed by Western blotting of immunopurified FSH. Initially, macroheterogeneity was hoped to matter more than microheterogeneity. However, it now appears that both forms of carbohydrate heterogeneity have to be taken into consideration. FSH glycosylation can reduce its apparent affinity for its cognate receptor by delaying initial interaction with the receptor and limiting access to all of the available binding sites. This is followed by impaired cellular signaling responses that may be related to reduced receptor occupancy or biased signaling. To resolve these alternatives, well-characterized FSH glycoform preparations are necessary.
Collapse
Affiliation(s)
- George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas
- Correspondence: George R. Bousfield, PhD, Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260. E-mail: ; or David J. Harvey, DSc, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford. Roosevelt Drive, Oxford OX3 7FZ, United Kingdom. E-mail:
| | - David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Correspondence: George R. Bousfield, PhD, Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260. E-mail: ; or David J. Harvey, DSc, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford. Roosevelt Drive, Oxford OX3 7FZ, United Kingdom. E-mail:
| |
Collapse
|
57
|
Ashwood C, Pratt B, MacLean BX, Gundry RL, Packer NH. Standardization of PGC-LC-MS-based glycomics for sample specific glycotyping. Analyst 2019; 144:3601-3612. [PMID: 31065629 DOI: 10.1039/c9an00486f] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Porous graphitized carbon (PGC) based chromatography achieves high-resolution separation of glycan structures released from glycoproteins. This approach is especially valuable when resolving structurally similar isomers and for discovery of novel and/or sample-specific glycan structures. However, the implementation of PGC-based separations in glycomics studies has been limited because system-independent retention values have not been established to normalize technical variation. To address this limitation, this study combined the use of hydrolyzed dextran as an internal standard and Skyline software for post-acquisition normalization to reduce retention time and peak area technical variation in PGC-based glycan analyses. This approach allowed assignment of system-independent retention values that are applicable to typical PGC-based glycan separations and supported the construction of a library containing >300 PGC-separated glycan structures with normalized glucose unit (GU) retention values. To enable the automation of this normalization method, a spectral MS/MS library was developed of the dextran ladder, achieving confident discrimination against isomeric glycans. The utility of this approach is demonstrated in two ways. First, to inform the search space for bioinformatically predicted but unobserved glycan structures, predictive models for two structural modifications, core-fucosylation and bisecting GlcNAc, were developed based on the GU library. Second, the applicability of this method for the analysis of complex biological samples is evidenced by the ability to discriminate between cell culture and tissue sample types by the normalized intensity of N-glycan structures alone. Overall, the methods and data described here are expected to support the future development of more automated approaches to glycan identification and quantitation.
Collapse
Affiliation(s)
- Christopher Ashwood
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia. and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia and Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian Pratt
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Rebekah L Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA and Center for Biomedical Mass Spectrometry Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nicolle H Packer
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia. and ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
58
|
Manz C, Grabarics M, Hoberg F, Pugini M, Stuckmann A, Struwe WB, Pagel K. Separation of isomeric glycans by ion mobility spectrometry – the impact of fluorescent labelling. Analyst 2019; 144:5292-5298. [DOI: 10.1039/c9an00937j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bloodgroup oligosaccharides have been derivatized with labels common in HPLC and evaluated regarding their ion mobility behaviour.
Collapse
Affiliation(s)
- Christian Manz
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Fritz Haber Institute of the Max Planck Society
| | - Márkó Grabarics
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Fritz Haber Institute of the Max Planck Society
| | - Friederike Hoberg
- Fritz Haber Institute of the Max Planck Society
- Department of Molecular Physics
- 14195 Berlin
- Germany
| | - Michele Pugini
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Fritz Haber Institute of the Max Planck Society
| | - Alexandra Stuckmann
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Weston B. Struwe
- Oxford Glycobiology Institute
- Department of Biochemistry
- University of Oxford
- Oxford OX1 3QU
- UK
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Fritz Haber Institute of the Max Planck Society
| |
Collapse
|
59
|
Reiding KR, Bondt A, Hennig R, Gardner RA, O'Flaherty R, Trbojević-Akmačić I, Shubhakar A, Hazes JMW, Reichl U, Fernandes DL, Pučić-Baković M, Rapp E, Spencer DIR, Dolhain RJEM, Rudd PM, Lauc G, Wuhrer M. High-throughput Serum N-Glycomics: Method Comparison and Application to Study Rheumatoid Arthritis and Pregnancy-associated Changes. Mol Cell Proteomics 2019; 18:3-15. [PMID: 30242110 PMCID: PMC6317482 DOI: 10.1074/mcp.ra117.000454] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/14/2018] [Indexed: 11/06/2022] Open
Abstract
N-Glycosylation is a fundamentally important protein modification with a major impact on glycoprotein characteristics such as serum half-life and receptor interaction. More than half of the proteins in human serum are glycosylated, and the relative abundances of protein glycoforms often reflect alterations in health and disease. Several analytical methods are currently capable of analyzing the total serum N-glycosylation in a high-throughput manner.Here we evaluate and compare the performance of three high-throughput released N-glycome analysis methods. Included were hydrophilic-interaction ultra-high-performance liquid chromatography with fluorescence detection (HILIC-UHPLC-FLD) with 2-aminobenzamide labeling of the glycans, multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) with 8-aminopyrene-1,3,6-trisulfonic acid labeling, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with linkage-specific sialic acid esterification. All methods assessed the same panel of serum samples, which were obtained at multiple time points during the pregnancies and postpartum periods of healthy women and patients with rheumatoid arthritis (RA). We compared the analytical methods on their technical performance as well as on their ability to describe serum protein N-glycosylation changes throughout pregnancy, with RA, and with RA disease activity.Overall, the methods proved to be similar in their detection and relative quantification of serum protein N-glycosylation. However, the non-MS methods showed superior repeatability over MALDI-TOF-MS and allowed the best structural separation of low-complexity N-glycans. MALDI-TOF-MS achieved the highest throughput and provided compositional information on higher-complexity N-glycans. Consequentially, MALDI-TOF-MS could establish the linkage-specific sialylation differences within pregnancy and RA, whereas HILIC-UHPLC-FLD and xCGE-LIF demonstrated differences in α1,3- and α1,6-branch galactosylation. While the combination of methods proved to be the most beneficial for the analysis of total serum protein N-glycosylation, informed method choices can be made for the glycosylation analysis of single proteins or samples of varying complexity.
Collapse
Affiliation(s)
| | - Albert Bondt
- From the ‡Center for Proteomics and Metabolomics,; §Department of Rheumatology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - René Hennig
- ¶Max Planck Institute (MPI) for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany;; ‖glyXera GmbH., 39120 Magdeburg, Germany
| | - Richard A Gardner
- **Ludger, Ltd., Culham Science Centre, Abingdon, Oxfordshire, United Kingdom
| | - Roisin O'Flaherty
- ‡‡GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Blackrock, Co. Dublin, Ireland
| | | | - Archana Shubhakar
- **Ludger, Ltd., Culham Science Centre, Abingdon, Oxfordshire, United Kingdom
| | - Johanna M W Hazes
- ¶¶Department of Rheumatology, Erasmus University Medical Center, Rotterdam, The Netherland
| | - Udo Reichl
- ¶Max Planck Institute (MPI) for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany;; ‖‖Otto von Guericke University Magdeburg, Chair of Bioprocess Engineering, 39106 Magdeburg, Germany
| | - Daryl L Fernandes
- **Ludger, Ltd., Culham Science Centre, Abingdon, Oxfordshire, United Kingdom
| | | | - Erdmann Rapp
- ¶Max Planck Institute (MPI) for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany;; ‖glyXera GmbH., 39120 Magdeburg, Germany
| | - Daniel I R Spencer
- **Ludger, Ltd., Culham Science Centre, Abingdon, Oxfordshire, United Kingdom
| | - Radboud J E M Dolhain
- ¶¶Department of Rheumatology, Erasmus University Medical Center, Rotterdam, The Netherland
| | - Pauline M Rudd
- ‡‡GlycoScience Group, National Institute for Bioprocessing Research and Training (NIBRT), Fosters Avenue, Blackrock, Co. Dublin, Ireland
| | - Gordan Lauc
- §§Genos Glycoscience Research Laboratory, Zagreb, Croatia;; ***Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | | |
Collapse
|
60
|
Pavić T, Dilber D, Kifer D, Selak N, Keser T, Ljubičić Đ, Vukić Dugac A, Lauc G, Rumora L, Gornik O. N-glycosylation patterns of plasma proteins and immunoglobulin G in chronic obstructive pulmonary disease. J Transl Med 2018; 16:323. [PMID: 30463578 PMCID: PMC6249776 DOI: 10.1186/s12967-018-1695-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/13/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a complex condition, whose diagnosis requires spirometric assessment. However, considering its heterogeneity, subjects with similar spirometric parameters do not necessarily have the same functional status. To overcome this limitation novel biomarkers for COPD have been investigated. Therefore, we aimed to explore the potential value of N-glycans as COPD biomarkers and to examine the individual variation of plasma protein and immunoglobulin G (IgG) glycosylation profiles in subjects with COPD and healthy controls. METHODS Both the total plasma protein and IgG N-glycome have been profiled in the total of 137 patients with COPD and 95 matching controls from Croatia. Replication cohort consisted of 61 subjects with COPD and 148 controls recruited at another Croatian medical centre. RESULTS Plasma protein N-glycome in COPD subjects exhibited significant decrease in low branched and conversely, an increase in more complex glycan structures (tetragalactosylated, trisialylated, tetrasialylated and antennary fucosylated glycoforms). We also observed a significant decline in plasma monogalactosylated species, and the same change replicated in IgG glycome. N-glycans also showed value in distinguishing subjects in different COPD GOLD stages, where the relative abundance of more complex glycan structures increased as the disease progressed. Glycans also showed statistically significant associations with the frequency of exacerbations and demonstrated to be affected by smoking, which is the major risk factor for COPD development. CONCLUSIONS This study showed that complexity of glycans associates with COPD, mirroring also the disease severity. Moreover, changes in N-glycome associate with exacerbation frequency and are affected by smoking. In general, this study provided new insights into plasma protein and IgG N-glycome changes occurring in COPD and pointed out potential novel markers of the disease progression and severity.
Collapse
Affiliation(s)
- Tamara Pavić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000, Zagreb, Croatia.
| | - Dario Dilber
- Deparment of Cardiology, County Hospital Čakovec, Čakovec, Croatia
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000, Zagreb, Croatia
| | - Najda Selak
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000, Zagreb, Croatia
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000, Zagreb, Croatia
| | - Đivo Ljubičić
- Department of Pulmonology, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Andrea Vukić Dugac
- Clinical Department for Lung Diseases Jordanovac, University Hospital Centre, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000, Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Lada Rumora
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000, Zagreb, Croatia
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000, Zagreb, Croatia
| |
Collapse
|
61
|
Both P, Riese M, Gray CJ, Huang K, Pallister EG, Kosov I, Conway LP, Voglmeir J, Flitsch SL. Applications of a highly α2,6-selective pseudosialidase. Glycobiology 2018; 28:261-268. [PMID: 29506202 DOI: 10.1093/glycob/cwy016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/27/2018] [Indexed: 12/15/2022] Open
Abstract
Within human biology, combinations of regioisomeric motifs of α2,6- or α2,3-sialic acids linked to galactose are frequently observed attached to glycoconjugates. These include glycoproteins and glycolipids, with each linkage carrying distinct biological information and function. Microbial linkage-specific sialidases have become important tools for studying the role of these sialosides in complex biological settings, as well as being used as biocatalysts for glycoengineering. However, currently, there is no α2,6-specific sialidase available. This gap has been addressed herein by exploiting the ability of a Photobacterium sp. α2,6-sialyltransferase to catalyze trans-sialidation reversibly and in a highly linkage-specific manner, acting as a pseudosialidase in the presence of cytidine monophosphate. Selective, near quantitative removal of α2,6-linked sialic acids was achieved from a wide range of sialosides including small molecules conjugates, simple glycan, glycopeptide and finally complex glycoprotein including both linkages.
Collapse
Affiliation(s)
- Peter Both
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Michel Riese
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Christopher J Gray
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Kun Huang
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Edward G Pallister
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Iaroslav Kosov
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Louis P Conway
- Glycomics Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Josef Voglmeir
- Glycomics Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Sabine L Flitsch
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| |
Collapse
|
62
|
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem Rev 2018; 118:7886-7930. [PMID: 29553244 PMCID: PMC7757723 DOI: 10.1021/acs.chemrev.7b00732] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycomic and glycoproteomic analyses involve the characterization of oligosaccharides (glycans) conjugated to proteins. Glycans are produced through a complicated nontemplate driven process involving the competition of enzymes that extend the nascent chain. The large diversity of structures, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies of glycans all conspire to make the analysis arguably much more difficult than any other biopolymer. Furthermore, the large number of glycoforms associated with a specific protein site makes it more difficult to characterize than any post-translational modification. Nonetheless, there have been significant progress, and advanced separation and mass spectrometry methods have been at its center and the main reason for the progress. While glycomic and glycoproteomic analyses are still typically available only through highly specialized laboratories, new software and workflow is making it more accessible. This review focuses on the role of mass spectrometry and separation methods in advancing glycomic and glycoproteomic analyses. It describes the current state of the field and progress toward making it more available to the larger scientific community.
Collapse
Affiliation(s)
- L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gege Xu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Elisha Goonatilleke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California 95616, United States
- Foods for Health Institute, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
63
|
Ednie AR, Deng W, Yip KP, Bennett ES. Reduced myocyte complex N-glycosylation causes dilated cardiomyopathy. FASEB J 2018; 33:1248-1261. [PMID: 30138037 DOI: 10.1096/fj.201801057r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Protein glycosylation is an essential posttranslational modification that affects a myriad of physiologic processes. Humans with genetic defects in glycosylation, which result in truncated glycans, often present with significant cardiac deficits. Acquired heart diseases and their associated risk factors were also linked to aberrant glycosylation, highlighting its importance in human cardiac disease. In both cases, the link between causation and corollary remains enigmatic. The glycosyltransferase gene, mannosyl (α-1,3-)-glycoprotein β-1,2- N-acetylglucosaminyltransferase (Mgat1), whose product, N-acetylglucosaminyltransferase 1 (GlcNAcT1) is necessary for the formation of hybrid and complex N-glycan structures in the medial Golgi, was shown to be at reduced levels in human end-stage cardiomyopathy, thus making Mgat1 an attractive target for investigating the role of hybrid/complex N-glycosylation in cardiac pathogenesis. Here, we created a cardiomyocyte-specific Mgat1 knockout (KO) mouse to establish a model useful in exploring the relationship between hybrid/complex N-glycosylation and cardiac function and disease. Biochemical and glycomic analyses showed that Mgat1KO cardiomyocytes produce predominately truncated N-glycan structures. All Mgat1KO mice died significantly younger than control mice and demonstrated chamber dilation and systolic dysfunction resembling human dilated cardiomyopathy (DCM). Data also indicate that a cardiomyocyte L-type voltage-gated Ca2+ channel (Cav) subunit (α2δ1) is a GlcNAcT1 target, and Mgat1KO Cav activity is shifted to more-depolarized membrane potentials. Consistently, Mgat1KO cardiomyocyte Ca2+ handling is altered and contraction is dyssynchronous compared with controls. The data demonstrate that reduced hybrid/complex N-glycosylation contributes to aberrant cardiac function at whole-heart and myocyte levels drawing a direct link between altered glycosylation and heart disease. Thus, the Mgat1KO provides a model for investigating the relationship between systemic reductions in glycosylation and cardiac disease, showing that clinically relevant changes in cardiomyocyte hybrid/complex N-glycosylation are sufficient to cause DCM and early death.-Ednie, A. R., Deng, W., Yip, K.-P., Bennett, E. S. Reduced myocyte complex N-glycosylation causes dilated cardiomyopathy.
Collapse
Affiliation(s)
- Andrew R Ednie
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.,College of Science and Mathematics, Wright State University, Dayton, Ohio, USA; and
| | - Wei Deng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Eric S Bennett
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.,College of Science and Mathematics, Wright State University, Dayton, Ohio, USA; and
| |
Collapse
|
64
|
Keser T, Pavić T, Lauc G, Gornik O. Comparison of 2-Aminobenzamide, Procainamide and RapiFluor-MS as Derivatizing Agents for High-Throughput HILIC-UPLC-FLR-MS N-glycan Analysis. Front Chem 2018; 6:324. [PMID: 30094234 PMCID: PMC6070730 DOI: 10.3389/fchem.2018.00324] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022] Open
Abstract
Rising awareness of the universal importance of protein N-glycosylation governs the development of further advances in N-glycan analysis. Nowadays it is well known that correct glycosylation is essential for proper protein function, which emanates from its important role in many physiological processes. Furthermore, glycosylation is involved in pathophysiology of multiple common complex diseases. In the vast majority of cases, N-glycosylation profiles are analyzed from enzymatically released glycans, which can be further derivatized in order to enhance the sensitivity of the analysis. Techniques wherein derivatized N-glycans are profiled using hydrophilic interaction chromatography (HILIC) with fluorescence (FLR) and mass spectrometry (MS) detection are now routinely performed in a high-throughput manner. Therefore, we aimed to examine the performance of frequently used labeling compounds -2-aminiobenzamide (2-AB) and procainamide (ProA), and the recently introduced RapiFluor-MS (RF-MS) fluorescent tag. In all experiments N-glycans were released by PNGase F, fluorescently derivatized, purified by HILIC solid phase extraction and profiled using HILIC-UPLC-FLR-MS. We assessed sensitivity, linear range, limit of quantification (LOQ), repeatability and labeling efficiency for all three labels. For this purpose, we employed in-house prepared IgG and a commercially available IgG as a model glycoprotein. All samples were analyzed in triplicates using different amounts of starting material. We also tested the performance of all three labels in a high-throughput setting on 68 different IgG samples, all in duplicates and 22 identical IgG standards. In general, ProA labeled glycans had the highest FLR sensitivity (15-fold and 4-fold higher signal intensities compared to 2-AB and RF-MS respectively) and RF-MS had the highest MS sensitivity (68-fold and 2-fold higher signal intensities compared to 2-AB and ProA, respectively). ProA and RF-MS showed comparable limits of quantification with both FLR and MS detection, whilst 2-AB exhibited the lowest sensitivity. All labeling procedures showed good and comparable repeatability. Furthermore, the results indicated that labeling efficiency was very similar for all three labels. In conclusion, all three labels are a good choice for N-glycan derivatization in high-throughput HILIC-UPLC-FLR-MS N-glycan analysis, although ProA and RF-MS are a better option when higher sensitivity is needed.
Collapse
Affiliation(s)
- Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Tamara Pavić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.,Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
65
|
Partyka J, Krenkova J, Cmelik R, Foret F. Multi-charged labeling of oligosaccharides and N-linked glycans by hexahistidine-based tags for capillary electrophoresis-mass spectrometry analysis. J Chromatogr A 2018; 1560:91-96. [DOI: 10.1016/j.chroma.2018.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
|
66
|
A novel broad specificity fucosidase capable of core α1-6 fucose release from N-glycans labeled with urea-linked fluorescent dyes. Sci Rep 2018; 8:9504. [PMID: 29934601 PMCID: PMC6015026 DOI: 10.1038/s41598-018-27797-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/07/2018] [Indexed: 11/08/2022] Open
Abstract
Exoglycosidases are often used for detailed characterization of glycan structures. Bovine kidney α-fucosidase is commonly used to determine the presence of core α1-6 fucose on N-glycans, an important modification of glycoproteins. Recently, several studies have reported that removal of core α1-6-linked fucose from N-glycans labeled with the reactive N-hydroxysuccinimide carbamate fluorescent labels 6-aminoquinolyl-N-hydroxysuccinimidylcarbamate (AQC) and RapiFluor-MS is severely impeded. We report here the cloning, expression and biochemical characterization of an α-fucosidase from Omnitrophica bacterium (termed fucosidase O). We show that fucosidase O can efficiently remove α1-6- and α1-3-linked core fucose from N-glycans. Additionally, we demonstrate that fucosidase O is able to efficiently hydrolyze core α1-6-linked fucose from N-glycans labeled with any of the existing NHS-carbamate activated fluorescent dyes.
Collapse
|
67
|
Doherty M, Theodoratou E, Walsh I, Adamczyk B, Stöckmann H, Agakov F, Timofeeva M, Trbojević-Akmačić I, Vučković F, Duffy F, McManus CA, Farrington SM, Dunlop MG, Perola M, Lauc G, Campbell H, Rudd PM. Plasma N-glycans in colorectal cancer risk. Sci Rep 2018; 8:8655. [PMID: 29872119 PMCID: PMC5988698 DOI: 10.1038/s41598-018-26805-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Aberrant glycosylation has been associated with a number of diseases including cancer. Our aim was to elucidate changes in whole plasma N-glycosylation between colorectal cancer (CRC) cases and controls in one of the largest cohorts of its kind. A set of 633 CRC patients and 478 age and gender matched controls was analysed. Additionally, patients were stratified into four CRC stages. Moreover, N-glycan analysis was carried out in plasma of 40 patients collected prior to the initial diagnosis of CRC. Statistically significant differences were observed in the plasma N-glycome at all stages of CRC, this included a highly significant decrease in relation to the core fucosylated bi-antennary glycans F(6)A2G2 and F(6)A2G2S(6)1 (P < 0.0009). Stage 1 showed a unique biomarker signature compared to stages 2, 3 and 4. There were indications that at risk groups could be identified from the glycome (retrospective AUC = 0.77 and prospective AUC = 0.65). N-glycome biomarkers related to the pathogenic progress of the disease would be a considerable asset in a clinical setting and it could enable novel therapeutics to be developed to target the disease in patients at risk of progression.
Collapse
Affiliation(s)
- Margaret Doherty
- National Institute for Bioprocessing Research & Training, Dublin, Ireland.
- Institute of Technology Sligo, Department of Life Sciences, Sligo, Ireland.
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh, UK
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Barbara Adamczyk
- National Institute for Bioprocessing Research & Training, Dublin, Ireland
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henning Stöckmann
- National Institute for Bioprocessing Research & Training, Dublin, Ireland
| | - Felix Agakov
- Pharmatics Limited, Edinburgh Bioquarter, 9 Little France Road, Edinburgh, UK
| | - Maria Timofeeva
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh, UK
| | | | | | - Fergal Duffy
- National Institute for Bioprocessing Research & Training, Dublin, Ireland
| | - Ciara A McManus
- National Institute for Bioprocessing Research & Training, Dublin, Ireland
| | - Susan M Farrington
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh, UK
| | - Malcolm G Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh, UK
| | - Markus Perola
- Department of Health, The National Institute for Health and Welfare, Helsinki, Finland
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and Medical Research Council Human Genetics Unit, Edinburgh, UK
| | - Pauline M Rudd
- National Institute for Bioprocessing Research & Training, Dublin, Ireland
| |
Collapse
|
68
|
Wang T, Hoi KM, Stöckmann H, Wan C, Sim LC, Shi Jie Tay NHBK, Poo CH, Woen S, Yang Y, Zhang P, Rudd PM. LC/MS-based Intact IgG and Released Glycan Analysis for Bioprocessing Applications. Biotechnol J 2018; 13:e1700185. [PMID: 29341427 DOI: 10.1002/biot.201700185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 01/06/2018] [Indexed: 01/27/2023]
Abstract
Robust plate based antibody glycan analysis platforms are urgently needed for biopharmaceutical development and manufacturing as well as for clinical biomarker research. A 96-well plate based workflow has been developed to analyze both intact IgG antibodies and released N-glycans using an Orbitrap Fusion Mass Spectrometer and an LC/MS method on the Waters UNIFI platform. Here, such a workflow including protein A purification, PNGaseF digestion, 2-AB labeling, and SPE clean-up is described. The measured IgG glycan profile is consistent with that obtained from non-plate based method and commercial kit and has the advantage of less hands-on time. Also the application of the workflow in cell culture monitoring and clonal selection work is demonstrated. Apart from checking the major glycan structure changes among clones, post translational modifications (PTMs) such as C-terminal lysine residue clipping and N-terminal pyroglutamic acid formation can also be deduced from the workflow.
Collapse
Affiliation(s)
- Tianhua Wang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore
| | - Kong Meng Hoi
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore
| | - Henning Stöckmann
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin 4, Ireland
| | - Corrine Wan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore
| | - Lyn Chiin Sim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore
| | | | - Ce Huang Poo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore
| | - Susanto Woen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore
| | - Yuangsheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore
| | - Peiqing Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore
| | - Pauline M Rudd
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore.,NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin 4, Ireland
| |
Collapse
|
69
|
Abstract
As biological and clinical relevance of glycosylation is becoming more apparent, interest in large scale studies of the glycome is growing. Glycans attached to immunoglobulin G (IgG) were shown to be essential for its function and IgG glycosylation was shown to change with various processes, making IgG one of the most studied glycoproteins. Many approaches including liquid chromatography, capillary gel electrophoresis, and mass spectrometry were developed to study IgG glycosylation. Generation of high-quality glycomics data in a high-throughput fashion requires reproducible and robust sample preparation and accurate and reliable quantitative analysis. This chapter presents a protocol for an optimized and high-throughput IgG N-glycan release, fluorescent labeling and cleanup, and analysis of fluorescently labeled IgG N-glycans by hydrophilic interaction liquid chromatography (HILIC) on an ultra performance liquid chromatography (UPLC) system with fluorescence (FLR) detection.
Collapse
|
70
|
Everest-Dass AV, Moh ESX, Ashwood C, Shathili AMM, Packer NH. Human disease glycomics: technology advances enabling protein glycosylation analysis - part 1. Expert Rev Proteomics 2018; 15:165-182. [PMID: 29285957 DOI: 10.1080/14789450.2018.1421946] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Protein glycosylation is recognized as an important post-translational modification, with specific substructures having significant effects on protein folding, conformation, distribution, stability and activity. However, due to the structural complexity of glycans, elucidating glycan structure-function relationships is demanding. The fine detail of glycan structures attached to proteins (including sequence, branching, linkage and anomericity) is still best analysed after the glycans are released from the purified or mixture of glycoproteins (glycomics). The technologies currently available for glycomics are becoming streamlined and standardized and many features of protein glycosylation can now be determined using instruments available in most protein analytical laboratories. Areas covered: This review focuses on the current glycomics technologies being commonly used for the analysis of the microheterogeneity of monosaccharide composition, sequence, branching and linkage of released N- and O-linked glycans that enable the determination of precise glycan structural determinants presented on secreted proteins and on the surface of all cells. Expert commentary: Several emerging advances in these technologies enabling glycomics analysis are discussed. The technological and bioinformatics requirements to be able to accurately assign these precise glycan features at biological levels in a disease context are assessed.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,b Institute for Glycomics , Griffith University , Gold Coast , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Edward S X Moh
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Christopher Ashwood
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Abdulrahman M M Shathili
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Nicolle H Packer
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,b Institute for Glycomics , Griffith University , Gold Coast , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| |
Collapse
|
71
|
Feng HT, Lim S, Laserna AKC, Li P, Yin X, Simsek E, Khan SH, Chen SM, Li SF. High throughput human plasma N-glycan analysis using DNA analyzer and multivariate analysis for biomarker discovery. Anal Chim Acta 2017; 995:106-113. [DOI: 10.1016/j.aca.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 12/31/2022]
|
72
|
O'Flaherty R, Trbojević-Akmačić I, Greville G, Rudd PM, Lauc G. The sweet spot for biologics: recent advances in characterization of biotherapeutic glycoproteins. Expert Rev Proteomics 2017; 15:13-29. [PMID: 29130774 DOI: 10.1080/14789450.2018.1404907] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Glycosylation is recognized as a Critical Quality Attribute for therapeutic glycoproteins such as monoclonal antibodies, fusion proteins and therapeutic replacement enzymes. Hence, efficient and quantitative glycan analysis techniques have been increasingly important for their discovery, development and quality control. The aim of this review is to highlight relevant and recent advances in analytical technologies for characterization of biotherapeutic glycoproteins. Areas covered: The review gives an overview of the glycosylation trends of biotherapeutics approved in 2016 and 2017 by FDA. It describes current and novel analytical technologies for characterization of therapeutic glycoproteins and is explored in the context of released glycan, glycopeptide or intact glycoprotein analysis. Ultra performance liquid chromatography, mass spectrometry and capillary electrophoresis technologies are explored in this context. Expert commentary: There is a need for the biopharmaceutical industry to incorporate novel state of the art analytical technologies into existing and new therapeutic glycoprotein workflows for safer and more efficient biotherapeutics and for the improvement of future biotherapeutic design. Additionally, at present, there is no 'gold-standard' approach to address all the regulatory requirements and as such this will involve the use of orthogonal glycoanalytical technologies with a view to gain diagnostic information about the therapeutic glycoprotein.
Collapse
Affiliation(s)
- Róisín O'Flaherty
- a NIBRT GlycoScience Group , National Institute for Bioprocessing, Research and Training , Blackrock, Co. Dublin , Ireland
| | | | - Gordon Greville
- a NIBRT GlycoScience Group , National Institute for Bioprocessing, Research and Training , Blackrock, Co. Dublin , Ireland
| | - Pauline M Rudd
- a NIBRT GlycoScience Group , National Institute for Bioprocessing, Research and Training , Blackrock, Co. Dublin , Ireland
| | - Gordan Lauc
- b Genos Glycoscience Research Laboratory , 10000 , Zagreb , Croatia.,c Faculty of Pharmacy and Biochemistry , University of Zagreb , Zagreb , Croatia
| |
Collapse
|
73
|
Naschberger A, Orry A, Lechner S, Bowler MW, Nurizzo D, Novokmet M, Keller MA, Oemer G, Seppi D, Haslbeck M, Pansi K, Dieplinger H, Rupp B. Structural Evidence for a Role of the Multi-functional Human Glycoprotein Afamin in Wnt Transport. Structure 2017; 25:1907-1915.e5. [PMID: 29153507 DOI: 10.1016/j.str.2017.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 11/19/2022]
Abstract
Afamin, a human plasma glycoprotein and putative transporter of hydrophobic molecules, has been shown to act as extracellular chaperone for poorly soluble, acylated Wnt proteins, forming a stable, soluble complex with functioning Wnt proteins. The 2.1-Å crystal structure of glycosylated human afamin reveals an almost exclusively hydrophobic binding cleft capable of harboring large hydrophobic moieties. Lipid analysis confirms the presence of lipids, and density in the primary binding pocket of afamin was modeled as palmitoleic acid, presenting the native O-acylation on serine 209 in human Wnt3a. The modeled complex between the experimental afamin structure and a Wnt3a homology model based on the XWnt8-Fz8-CRD fragment complex crystal structure is compelling, with favorable interactions comparable with the crystal structure complex. Afamin readily accommodates the conserved palmitoylated serine 209 of Wnt3a, providing a structural basis how afamin solubilizes hydrophobic and poorly soluble Wnt proteins.
Collapse
Affiliation(s)
- Andreas Naschberger
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria; Division of Biological Chemistry, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Andrew Orry
- MolSoft LLC, 11199 Sorrento Valley Road, San Diego, CA 92121, USA
| | - Stefan Lechner
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Didier Nurizzo
- Structural Biology Group, ESRF, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Mislav Novokmet
- Genos, Glycoscience Laboratory, Hondlova 2/11, 10000 Zagreb, Croatia
| | - Markus A Keller
- Division of Human Genetics, Medical University of Innsbruck, Peter-Mayr-Straße 1, 6020 Innsbruck, Austria
| | - Gregor Oemer
- Genos, Glycoscience Laboratory, Hondlova 2/11, 10000 Zagreb, Croatia
| | - Daniele Seppi
- Division of Biological Chemistry, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Martin Haslbeck
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Kathrin Pansi
- Division of Biological Chemistry, Medical University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Hans Dieplinger
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria
| | - Bernhard Rupp
- Division of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstraße 41, 6020 Innsbruck, Austria; k.-k. Hofkristallamt, San Diego, CA 92084, USA.
| |
Collapse
|
74
|
Rup B, Alon S, Amit-Cohen BC, Brill Almon E, Chertkoff R, Tekoah Y, Rudd PM. Immunogenicity of glycans on biotherapeutic drugs produced in plant expression systems-The taliglucerase alfa story. PLoS One 2017; 12:e0186211. [PMID: 29088235 PMCID: PMC5663370 DOI: 10.1371/journal.pone.0186211] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/01/2017] [Indexed: 01/28/2023] Open
Abstract
Plants are a promising alternative for the production of biotherapeutics. Manufacturing in-planta adds plant specific glycans. To understand immunogenic potential of these glycans, we developed a validated method to detect plant specific glycan antibodies in human serum. Using this assay, low prevalence of pre-existing anti-plant glycan antibodies was found in healthy humans (13.5%) and in glucocerebrosidase-deficient Gaucher disease (GD) patients (5%). A low incidence (9% in naïve patient and none in treatment experienced patients) of induced anti-plant glycan antibodies was observed in GD patients after up to 30 months replacement therapy treatment with taliglucerase alfa, a version of human glucocerebrosidase produced in plant cells. Detailed evaluation of clinical safety and efficacy endpoints indicated that anti-plant glycan antibodies did not affect the safety or efficacy of taliglucerase alfa in patients. This study shows the benefit of using large scale human trials to evaluate the immunogenicity risk of plant derived glycans, and indicates no apparent risk related to anti-plant glycan antibodies.
Collapse
Affiliation(s)
- Bonita Rup
- Bonnie Rup Consulting, LLC, Reading, Massachusetts, United States of America
| | - Sari Alon
- Product Development, Protalix LTD, Carmiel, Israel
| | | | | | | | - Yoram Tekoah
- Research and Development, Protalix LTD, Carmiel, Israel
- * E-mail:
| | - Pauline M. Rudd
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
- Bioprocessing Technology Institute, AStar, Singapore
| |
Collapse
|
75
|
Abrahams JL, Campbell MP, Packer NH. Building a PGC-LC-MS N-glycan retention library and elution mapping resource. Glycoconj J 2017; 35:15-29. [PMID: 28905148 DOI: 10.1007/s10719-017-9793-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 11/27/2022]
Abstract
Porous graphitised carbon-liquid chromatography (PGC-LC) has been proven to be a powerful technique for the analysis and characterisation of complex mixtures of isomeric and isobaric glycan structures. Here we evaluate the elution behaviour of N-glycans on PGC-LC and thereby provide the potential of using chromatographic separation properties, together with mass spectrometry (MS) fragmentation, to determine glycan structure assignments more easily. We used previously reported N-glycan structures released from the purified glycoproteins Immunoglobulin G (IgG), Immunoglobulin A (IgA), lactoferrin, α1-acid glycoprotein, Ribonuclease B (RNase B), fetuin and ovalbumin to profile their behaviour on capillary PGC-LC-MS. Over 100 glycan structures were determined by MS/MS, and together with targeted exoglycosidase digestions, created a N-glycan PGC retention library covering a full spectrum of biologically significant N-glycans from pauci mannose to sialylated tetra-antennary classes. The resultant PGC retention library ( http://www.glycostore.org/showPgc ) incorporates retention times and supporting fragmentation spectra including exoglycosidase digestion products, and provides detailed knowledge on the elution properties of N-glycans by PGC-LC. Consequently, this platform should serve as a valuable resource for facilitating the detailed analysis of the glycosylation of both purified recombinant, and complex mixtures of, glycoproteins using established workflows.
Collapse
Affiliation(s)
- Jodie L Abrahams
- Department of Chemistry and Biomolecular Sciences, Faculty of Science & Engineering, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Institute for Glycomics, Griffith University, QLD, Gold Coast, 4222, Australia
| | - Matthew P Campbell
- Department of Chemistry and Biomolecular Sciences, Faculty of Science & Engineering, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Institute for Glycomics, Griffith University, QLD, Gold Coast, 4222, Australia
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Faculty of Science & Engineering, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
- Institute for Glycomics, Griffith University, QLD, Gold Coast, 4222, Australia.
| |
Collapse
|
76
|
Hilliard M, Alley WR, McManus CA, Yu YQ, Hallinan S, Gebler J, Rudd PM. Glycan characterization of the NIST RM monoclonal antibody using a total analytical solution: From sample preparation to data analysis. MAbs 2017; 9:1349-1359. [PMID: 28895795 PMCID: PMC5680791 DOI: 10.1080/19420862.2017.1377381] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glycosylation is an important attribute of biopharmaceutical products to monitor from development through production. However, glycosylation analysis has traditionally been a time-consuming process with long sample preparation protocols and manual interpretation of the data. To address the challenges associated with glycan analysis, we developed a streamlined analytical solution that covers the entire process from sample preparation to data analysis. In this communication, we describe the complete analytical solution that begins with a simplified and fast N-linked glycan sample preparation protocol that can be completed in less than 1 hr. The sample preparation includes labelling with RapiFluor-MS tag to improve both fluorescence (FLR) and mass spectral (MS) sensitivities. Following HILIC-UPLC/FLR/MS analyses, the data are processed and a library search based on glucose units has been included to expedite the task of structural assignment. We then applied this total analytical solution to characterize the glycosylation of the NIST Reference Material mAb 8761. For this glycoprotein, we confidently identified 35 N-linked glycans and all three major classes, high mannose, complex, and hybrid, were present. The majority of the glycans were neutral and fucosylated; glycans featuring N-glycolylneuraminic acid and those with two galactoses connected via an α1,3-linkage were also identified.
Collapse
Affiliation(s)
- Mark Hilliard
- a GlycoScience Group, NIBRT-The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin , Ireland
| | | | - Ciara A McManus
- a GlycoScience Group, NIBRT-The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin , Ireland
| | | | - Sinead Hallinan
- a GlycoScience Group, NIBRT-The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin , Ireland
| | | | - Pauline M Rudd
- a GlycoScience Group, NIBRT-The National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin , Ireland
| |
Collapse
|
77
|
Effects of microvirin monomers and oligomers on hepatitis C virus. Biosci Rep 2017; 37:BSR20170015. [PMID: 28507200 PMCID: PMC6434159 DOI: 10.1042/bsr20170015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/25/2022] Open
Abstract
Microvirin (MVN) is a carbohydrate-binding protein which shows high specificity for high-mannose type N-glycan structures. In the present study, we tried to identify whether MVN could bind to high-mannose containing hepatitis C virus (HCV) envelope glycoproteins, which are heavily decorated high-mannose glycans. In addition, recombinantly expressed MVN oligomers in di-, tri- and tetrameric form were evaluated for their viral inhibition. MVN oligomers bound more efficiently to HCV virions, and displayed in comparison with the MVN monomer a higher neutralization potency against HCV infection. The antiviral effect was furthermore affected by the peptide linker sequence connecting the MVN monomers. The results indicate that MVN oligomers such as trimers and tetramers may be used as future neutralization agents against HCV infections.
Collapse
|
78
|
|
79
|
Feng HT, Li P, Rui G, Stray J, Khan S, Chen SM, Li SFY. Multiplexing N-glycan analysis by DNA analyzer. Electrophoresis 2017; 38:1788-1799. [PMID: 28426178 DOI: 10.1002/elps.201600404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 04/03/2017] [Accepted: 04/08/2017] [Indexed: 12/25/2022]
Abstract
Analysis of N-glycan structures has been gaining attentions over the years due to their critical importance to biopharma-based applications and growing roles in biological research. Glycan profiling is also critical to the development of biosimilar drugs. The detailed characterization of N-glycosylation is mandatory because it is a nontemplate driven process and that significantly influences critical properties such as bio-safety and bio-activity. The ability to comprehensively characterize highly complex mixtures of N-glycans has been analytically challenging and stimulating because of the difficulties in both the structure complexity and time-consuming sample pretreatment procedures. CE-LIF is one of the typical techniques for N-glycan analysis due to its high separation efficiency. In this paper, a 16-capillary DNA analyzer was coupled with a magnetic bead glycan purification method to accelerate the sample preparation procedure and therefore increase N-glycan assay throughput. Routinely, the labeling dye used for CE-LIF is 8-aminopyrene-1,3,6-trisulfonic acid, while the typical identification method involves matching migration times with database entries. Two new fluorescent dyes were used to either cross-validate and increase the glycan identification precision or simplify sample preparation steps. Exoglycosidase studies were carried out using neuramididase, galactosidase, and fucosidase to confirm the results of three dye cross-validation. The optimized method combines the parallel separation capacity of multiple-capillary separation with three labeling dyes, magnetic bead assisted preparation, and exoglycosidase treatment to allow rapid and accurate analysis of N-glycans. These new methods provided enough useful structural information to permit N-glycan structure elucidation with only one sample injection.
Collapse
Affiliation(s)
- Hua-Tao Feng
- Department of Chemistry, National University of Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Pingjing Li
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Guo Rui
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - James Stray
- Thermo Fisher Scientific, South San Francisco, CA, USA
| | - Shaheer Khan
- Thermo Fisher Scientific, South San Francisco, CA, USA
| | | | - Sam F Y Li
- Department of Chemistry, National University of Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore
| |
Collapse
|
80
|
Keser T, Vučković F, Barrios C, Zierer J, Wahl A, Akinkuolie AO, Štambuk J, Nakić N, Pavić T, Periša J, Mora S, Gieger C, Menni C, Spector TD, Gornik O, Lauc G. Effects of statins on the immunoglobulin G glycome. Biochim Biophys Acta Gen Subj 2017; 1861:1152-1158. [PMID: 28263871 PMCID: PMC5441970 DOI: 10.1016/j.bbagen.2017.02.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Statins are among the most widely prescribed medications worldwide and usually many individuals involved in clinical and population studies are on statin therapy. Immunoglobulin G (IgG) glycosylation has been associated with numerous cardiometabolic risk factors. METHODS The aim of this study was to investigate the possible association of statin use with N-glycosylation of IgG. The association was analyzed in two large population cohorts (TwinsUK and KORA) using hydrophilic interaction liquid chromatography (HILIC-UPLC) in the TwinsUK cohort and reverse phase liquid chromatography coupled with electrospray mass spectrometry (LC-ESI-MS) in the KORA cohort. Afterwards we investigated the same association for only one statin (rosuvastatin) in a subset of individuals from the randomized double-blind placebo-controlled JUPITER study using LC-ESI-MS for IgG glycome and HILIC-UPLC for total plasma N-glycome. RESULTS In the TwinsUK population, the use of statins was associated with higher levels of core-fucosylated biantennary glycan structure with bisecting N-acetylglucosamine (FA2B) and lower levels of core-fucosylated biantennary digalactosylated monosialylated glycan structure (FA2G2S1). The association between statin use and FA2B was replicated in the KORA cohort. In the JUPITER trial we found no statistically significant differences between the randomly allocated placebo and rosuvastatin groups. CONCLUSIONS In the TwinsUK and KORA cohorts, statin use was associated with a small increase of pro-inflammatory IgG glycan, although this finding was not confirmed in a subset of participants from the JUPITER trial. GENERAL SIGNIFICANCE Even if the association between IgG N-glycome and statins exists, it is not large enough to pose a problem for glycomic studies.
Collapse
Affiliation(s)
- Toma Keser
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | | | - Clara Barrios
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK; Department of Nephrology, Hospital del Mar, Institut Mar d'Investigacions Mediques, Barcelona, Spain
| | - Jonas Zierer
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK; Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annika Wahl
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | | | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Natali Nakić
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Tamara Pavić
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Josipa Periša
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Samia Mora
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Olga Gornik
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Gordan Lauc
- Department of Biochemistry and Molecular Biology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia; Genos Glycoscience Research Laboratory, Zagreb, Croatia.
| |
Collapse
|
81
|
Adua E, Russell A, Roberts P, Wang Y, Song M, Wang W. Innovation Analysis on Postgenomic Biomarkers: Glycomics for Chronic Diseases. ACTA ACUST UNITED AC 2017; 21:183-196. [DOI: 10.1089/omi.2017.0035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Eric Adua
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Alyce Russell
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Peter Roberts
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Manshu Song
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
82
|
Abstract
Glycosylation is one of the most common and essential protein modifications. Glycans conjugated to biomolecules modulate the function of such molecules through both direct recognition of glycan structures and indirect mechanisms that involve the control of protein turnover rates, stability, and conformation. The biological attributes of glycans in numerous biological processes and implications in a number of diseases highlight the necessity for comprehensive characterization of protein glycosylation. This chapter reviews cutting-edge methods and tools developed to facilitate quantitative glycomics. This chapter highlights the different methods employed for the release and purification of glycans from biological samples. The most effective labeling methods developed for sensitive quantitative glycomics are also described and discussed. The chromatographic approaches that have been used effectively in glycomics are also highlighted.
Collapse
Affiliation(s)
- L Veillon
- Texas Tech University, Lubbock, TX, United States
| | - S Zhou
- Texas Tech University, Lubbock, TX, United States
| | - Y Mechref
- Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
83
|
Campbell MP. A Review of Software Applications and Databases for the Interpretation of Glycopeptide Data. TRENDS GLYCOSCI GLYC 2017. [DOI: 10.4052/tigg.1601.1e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
84
|
Campbell MP, Peterson RA, Gasteiger E, Mariethoz J, Lisacek F, Packer NH. Navigating the Glycome Space and Connecting the Glycoproteome. Methods Mol Biol 2017; 1558:139-158. [PMID: 28150237 DOI: 10.1007/978-1-4939-6783-4_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
UniCarbKB ( http://unicarbkb.org ) is a comprehensive resource for mammalian glycoprotein and annotation data. In particular, the database provides information on the oligosaccharides characterized from a glycoprotein at either the global or site-specific level. This evidence is accumulated from a peer-reviewed and manually curated collection of information on oligosaccharides derived from membrane and secreted glycoproteins purified from biological fluids and/or tissues. This information is further supplemented with experimental method descriptions that summarize important sample preparation and analytical strategies. A new release of UniCarbKB is published every three months, each includes a collection of curated data and improvements to database functionality. In this Chapter, we outline the objectives of UniCarbKB, and describe a selection of step-by-step workflows for navigating the information available. We also provide a short description of web services available and future plans for improving data access. The information presented in this Chapter supplements content available in our knowledgebase including regular updates on interface improvements, new features, and revisions to the database content ( http://confluence.unicarbkb.org ).
Collapse
Affiliation(s)
- Matthew P Campbell
- Department of Chemistry and Biomolecular Sciences, Research Drive, Building E8C, Macquarie University, North Ryde, Sydney, 2109, NSW, Australia
| | - Robyn A Peterson
- Department of Chemistry and Biomolecular Sciences, Research Drive, Building E8C, Macquarie University, North Ryde, Sydney, 2109, NSW, Australia
| | - Elisabeth Gasteiger
- Swiss-Prot group, SIB Swiss Institute of Bioinformatics, Battelle - Building A7, Route de Drize, 1227 Carouge, Switzerland
| | - Julien Mariethoz
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Battelle - Building A7, Route de Drize, 1227 Carouge, Switzerland
| | - Frederique Lisacek
- Proteome Informatics Group, SIB Swiss Institute of Bioinformatics, Battelle - Building A7, Route de Drize, 1227 Carouge, Switzerland
- Computer Science Department, University of Geneva, Battelle - Building A7, Route de Drize, 1227 Carouge, Switzerland
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Research Drive, Building E8C, Macquarie University, North Ryde, Sydney, 2109, NSW, Australia.
| |
Collapse
|
85
|
Trbojević-Akmačić I, Ugrina I, Lauc G. Comparative Analysis and Validation of Different Steps in Glycomics Studies. Methods Enzymol 2017; 586:37-55. [DOI: 10.1016/bs.mie.2016.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
86
|
Abstract
Many publicly available data repositories and resources have been developed to support protein-related information management, data-driven hypothesis generation, and biological knowledge discovery. To help researchers quickly find the appropriate protein-related informatics resources, we present a comprehensive review (with categorization and description) of major protein bioinformatics databases in this chapter. We also discuss the challenges and opportunities for developing next-generation protein bioinformatics databases and resources to support data integration and data analytics in the Big Data era.
Collapse
Affiliation(s)
- Chuming Chen
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA.
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19711, USA
| | - Cathy H Wu
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, 19711, USA
- Protein Information Resource, Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, 20007, USA
| |
Collapse
|
87
|
|
88
|
Zhou S, Dong X, Veillon L, Huang Y, Mechref Y. LC-MS/MS analysis of permethylated N-glycans facilitating isomeric characterization. Anal Bioanal Chem 2017; 409:453-466. [PMID: 27796453 PMCID: PMC5444817 DOI: 10.1007/s00216-016-9996-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/23/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
Abstract
The biosynthesis of glycans is a template-free process; hence compositionally identical glycans may contain highly heterogeneous structures. Meanwhile, the functions of glycans in biological processes are significantly influenced by the glycan structure. Structural elucidation of glycans is an essential component of glycobiology. Although NMR is considered the most powerful approach for structural glycan studies, it suffers from low sensitivity and requires highly purified glycans. Although mass spectrometry (MS)-based methods have been applied in numerous glycan structure studies, there are challenges in preserving glycan structure during ionization. Permethylation is an efficient derivatization method that improves glycan structural stability. In this report, permethylated glycans are isomerically separated; thus facilitating structural analysis of a mixture of glycans by LC-MS/MS. Separation by porous graphitic carbon liquid chromatography at high temperatures in conjunction with tandem mass spectrometry (PGC-LC-MS/MS) was utilized for unequivocal characterization of glycan isomers. Glycan fucosylation sites were confidently determined by eliminating fucose rearrangement and assignment of diagnostic ions, achieved by permethylation and PGC-LC at high temperatures, respectively. Assigning monosaccharide residues to specific glycan antennae was also achieved. Galactose linkages were also distinguished from each other by CID/HCD tandem MS. This was attainable because of the different bond energies associated with monosaccharide linkages. Graphical Abstract LC-MS and tandem MS of terminal galactose isomers.
Collapse
Affiliation(s)
- Shiyue Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Xue Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Box 41061, Lubbock, TX, 79409-1061, USA.
| |
Collapse
|
89
|
Li T, Huang M, Liu L, Wang S, Moremen KW, Boons GJ. Divergent Chemoenzymatic Synthesis of Asymmetrical-Core-Fucosylated and Core-Unmodified N-Glycans. Chemistry 2016; 22:18742-18746. [PMID: 27798819 PMCID: PMC5442444 DOI: 10.1002/chem.201604999] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 11/08/2022]
Abstract
A divergent chemoenzymaytic approach for the preparation of core-fucosylated and core-unmodified asymmetrical N-glycans from a common advances precursor is described. An undecasaccharide was synthesized by sequential chemical glycosylations of an orthogonally protected core fucosylated hexasaccharide that is common to all mammalian core fucosylated N-glycans. Antennae-selective enzymatic extension of the undecasaccharide using a panel of glycosyl transferases afforded core fucosylated asymmetrical triantennary N-glycan isomers, which are potential biomarkers for breast cancer. A unique aspect of our approach is that a fucosidase (FucA1) has been identified that selectively can cleave a core-fucoside without affecting the fucoside of a sialyl LewisX epitope to give easy access to core-unmodified compounds.
Collapse
Affiliation(s)
- Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
| | - Min Huang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
| | - Shuo Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
- Chemical Biology and Drug Discovery, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
90
|
Feng HT, Su M, Rifai FN, Li P, Li SFY. Parallel analysis and orthogonal identification of N-glycans with different capillary electrophoresis mechanisms. Anal Chim Acta 2016; 953:79-86. [PMID: 28010746 DOI: 10.1016/j.aca.2016.11.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
Abstract
The deep involvement of glycans or carbohydrate moieties in biological processes makes glycan patterns an important direction for the clinical and medicine researches. A multiplexing CE mapping method for glycan analysis was developed in this study. By applying different CE separation mechanisms, the potential of combined parallel applications of capillary zone electrophoresis (CZE), micellar electrokinetic chromatography (MEKC) and capillary gel electrophoresis (CGE) for rapid and accurate identification of glycan was investigated. The combination of CZE and MEKC demonstrated enhancing chromatography separation capacity without the compromises of sample pre-treatment and glycan concentration. The separation mechanisms for multiplexing platform were selected based on the orthogonalities of the separation of glycan standards. MEKC method exhibited promising ability for the analysis of small GU value glycans and thus complementing the unavailability of CZE. The method established required only small amount of samples, simple instrument and single fluorescent labelling for sensitive detection. This integrated method can be used to search important glycan patterns appearing in biopharmaceutical products and other glycoproteins with clinical importance.
Collapse
Affiliation(s)
- Hua-Tao Feng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; NUS Environmental Research Institute, 5A Engineering Drive 1, T-Lab Building, Singapore 117411, Singapore
| | - Min Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Farida Nur Rifai
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Pingjing Li
- NUS Environmental Research Institute, 5A Engineering Drive 1, T-Lab Building, Singapore 117411, Singapore
| | - Sam F Y Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; NUS Environmental Research Institute, 5A Engineering Drive 1, T-Lab Building, Singapore 117411, Singapore.
| |
Collapse
|
91
|
Jarvas G, Szigeti M, Chapman J, Guttman A. Triple-Internal Standard Based Glycan Structural Assignment Method for Capillary Electrophoresis Analysis of Carbohydrates. Anal Chem 2016; 88:11364-11367. [DOI: 10.1021/acs.analchem.6b03596] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabor Jarvas
- Horváth
Csaba Memorial Institute for Bioanalytical Research, University of Debrecen, Debrecen, Hungary
- MTA-PE
Translational Glycomics Group, University of Pannonia, Veszprem, Hungary
| | - Marton Szigeti
- Horváth
Csaba Memorial Institute for Bioanalytical Research, University of Debrecen, Debrecen, Hungary
- MTA-PE
Translational Glycomics Group, University of Pannonia, Veszprem, Hungary
| | | | - Andras Guttman
- Horváth
Csaba Memorial Institute for Bioanalytical Research, University of Debrecen, Debrecen, Hungary
- SCIEX, Brea, California 92821, United States
| |
Collapse
|
92
|
Hayes JM, Wormald MR, Rudd PM, Davey GP. Fc gamma receptors: glycobiology and therapeutic prospects. J Inflamm Res 2016; 9:209-219. [PMID: 27895507 PMCID: PMC5118039 DOI: 10.2147/jir.s121233] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Therapeutic antibodies hold great promise for the treatment of cancer and autoimmune diseases, and developments in antibody–drug conjugates and bispecific antibodies continue to enhance treatment options for patients. Immunoglobulin (Ig) G antibodies are proteins with complex modifications, which have a significant impact on their function. The most important of these modifications is glycosylation, the addition of conserved glycans to the antibody Fc region, which is critical for its interaction with the immune system and induction of effector activities such as antibody-dependent cell cytotoxicity, complement activation and phagocytosis. Communication of IgG antibodies with the immune system is controlled and mediated by Fc gamma receptors (FcγRs), membrane-bound proteins, which relay the information sensed and gathered by antibodies to the immune system. These receptors are also glycoproteins and provide a link between the innate and adaptive immune systems. Recent information suggests that this receptor glycan modification is also important for the interaction with antibodies and downstream immune response. In this study, the current knowledge on FcγR glycosylation is discussed, and some insight into its role and influence on the interaction properties with IgG, particularly in the context of biotherapeutics, is provided. For the purpose of this study, other Fc receptors such as FcαR, FcεR or FcRn are not discussed extensively, as IgG-based antibodies are currently the only therapeutic antibody-based products on the market. In addition, FcγRs as therapeutics and therapeutic targets are discussed, and insight into and comment on the therapeutic aspects of receptor glycosylation are provided.
Collapse
Affiliation(s)
- Jerrard M Hayes
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Mark R Wormald
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, UK
| | - Pauline M Rudd
- NIBRT Glycoscience Group, National Institute for Bioprocessing, Research and Training, Dublin, Ireland
| | - Gavin P Davey
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
93
|
Cabrera G, Lundberg U, Rodríguez-Ulloa A, Herrera M, Machado W, Portela M, Palomares S, Espinosa LA, Ramos Y, Durán R, Besada V, Vonasek E, González LJ. Protein content of the Hylesia metabus egg nest setae (Cramer [1775]) (Lepidoptera: Saturniidae) and its association with the parental investment for the reproductive success and lepidopterism. J Proteomics 2016; 150:183-200. [PMID: 27568362 DOI: 10.1016/j.jprot.2016.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
Abstract
Hylesia metabus is a neotropical moth possessing toxic setae, which once in contact with the skin cause a severe dermatitis to humans known as lepidopterism. The only known function of the setae in the life cycle is to provide protection during the mating and egg-hatching stages. Approximately 65% of the protein content of the setae is a cluster of five proteases (28-45kDa) showing sequence homology to other S1A serine proteases. The N-glycans of a 40kDa protease are a mixture of neutral and sulfated G0F structures. The sulfated N-glycans have an important role in triggering the inflammatory response typical of lepidopterism while the proteolytic activity may promote the erosion of blood vessels and tissues causing focal hemorrhages. The presence of Chitinase and a 30kDa lipoprotein is probably related to the antifungal defense. In addition, chitin digestion of the setae may potentiate the inflammatory reaction caused by the toxins due to the formation of chitin adjuvants fragments. The combined effect of proteases and a chitinase may dissuade predating arthropods, by damaging their exoskeletons. Vitellogenin, a bacteriostatic protein, is able to recognize pathogen-associated patterns, which suggests its possible role in protecting the embryonated eggs from pathogenic microorganisms. SIGNIFICANCE The present study is the first report describing the different protein species present in the urticating egg nest setae of the neotropical moth Hylesia metabus - the most harmful of the Hylesia moths - causing a severe urticating dermatitis in humans known as lepidopterism. A distinctive feature of the venom is the presence of five different S1A serine proteases probably used to guarantee a more efficient degradation of a wider number of protein substrates. This work confirms that the presence of sulfated N-glycans is not an isolated finding since its presence has been demonstrated in two different proteases affirming that this PTM is of importance for the activation of the inflammatory response typical of lepidopterism. Additionally, this study gives useful information on the defense mechanisms used for protection of its progeny vs. vertebrate predators, fungus, bacteria or other arthropods such as ants. The proteins detected in the egg nest should be seen as an extended parental effort made by the females in order to achieve an optimal reproductive success, thus compensating for the considerable loss of progeny during the larval stages that seriously limits the number of sexually mature adults reaching the reproductive phase.
Collapse
Affiliation(s)
- Gleysin Cabrera
- Mass Spectrometry Laboratory and GlycoLab, Department of Proteomics, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Ulf Lundberg
- Unit for Invertebrate Toxins, Venezuelan Institute for Scientific Research, PO Box 20632, Caracas 1020A, Venezuela
| | - Arielis Rodríguez-Ulloa
- Mass Spectrometry Laboratory and GlycoLab, Department of Proteomics, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Melfran Herrera
- Coordinación de Vigilancia Entomológica, Gerencia de Saneamiento Ambiental y Control de Endemias, FUNDASALUD, Carúpano, Estado Sucre, Venezuela
| | - Wendy Machado
- Mass Spectrometry Laboratory and GlycoLab, Department of Proteomics, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Madelón Portela
- IIBCE y Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, Uruguay
| | - Sucel Palomares
- Bioinformatic Department, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Luis Ariel Espinosa
- Mass Spectrometry Laboratory and GlycoLab, Department of Proteomics, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Yassel Ramos
- Mass Spectrometry Laboratory and GlycoLab, Department of Proteomics, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Rosario Durán
- IIBCE y Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, Uruguay
| | - Vladimir Besada
- Mass Spectrometry Laboratory and GlycoLab, Department of Proteomics, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Eva Vonasek
- Proteomics Unit, Center of Structural Biology, Venezuelan Institute for Scientific Research, PO Box 20632, Caracas 1020A, Venezuela
| | - Luis Javier González
- Mass Spectrometry Laboratory and GlycoLab, Department of Proteomics, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba.
| |
Collapse
|
94
|
Walsh I, Zhao S, Campbell M, Taron CH, Rudd PM. Quantitative profiling of glycans and glycopeptides: an informatics' perspective. Curr Opin Struct Biol 2016; 40:70-80. [PMID: 27522273 DOI: 10.1016/j.sbi.2016.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/25/2016] [Accepted: 07/30/2016] [Indexed: 12/16/2022]
Abstract
Experimental techniques to identify and quantify glycan structures in a given sample are continuously improving. However, as they advance data analysis and annotation seems to become more complex. To address this issue, much progress has been made in developing software for interpretation of quantitative glycan profiles. Here, we focus on these informatics tools for high/ultra performance liquid chromatography (H/UPLC), mass spectrometry (MS), tandem mass spectrometry (MSn) and combinations thereof. Software for biomarker discovery, pathway, genomic and disease analysis and a final note on some future prospects for glycoinformatics are also mentioned.
Collapse
Affiliation(s)
- Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore; New England Biolabs, Ipswich, MA, United States
| | - Sophie Zhao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Matthew Campbell
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Pauline M Rudd
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore; National Institute for Bioprocessing Research & Training, Dublin, Ireland.
| |
Collapse
|
95
|
Adamczyk B, Albrecht S, Stöckmann H, Ghoneim IM, Al-Eknah M, Al-Busadah KAS, Karlsson NG, Carrington SD, Rudd PM. Pregnancy-Associated Changes of IgG and Serum N-Glycosylation in Camel (Camelus dromedarius). J Proteome Res 2016; 15:3255-65. [DOI: 10.1021/acs.jproteome.6b00439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Barbara Adamczyk
- GlycoScience
Group, NIBRT−The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
- Department
of Medical Biochemistry and Cell Biology, Institute of Biomedicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Simone Albrecht
- GlycoScience
Group, NIBRT−The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Henning Stöckmann
- GlycoScience
Group, NIBRT−The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | | | | | | | - Niclas G. Karlsson
- Department
of Medical Biochemistry and Cell Biology, Institute of Biomedicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Stephen D. Carrington
- School
of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Pauline M. Rudd
- GlycoScience
Group, NIBRT−The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| |
Collapse
|
96
|
Bennun SV, Hizal DB, Heffner K, Can O, Zhang H, Betenbaugh MJ. Systems Glycobiology: Integrating Glycogenomics, Glycoproteomics, Glycomics, and Other ‘Omics Data Sets to Characterize Cellular Glycosylation Processes. J Mol Biol 2016; 428:3337-3352. [DOI: 10.1016/j.jmb.2016.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/17/2022]
|
97
|
Gray C, Thomas B, Upton R, Migas L, Eyers C, Barran P, Flitsch S. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim Biophys Acta Gen Subj 2016; 1860:1688-709. [DOI: 10.1016/j.bbagen.2016.02.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/21/2022]
|
98
|
Yamamoto S, Kinoshita M, Suzuki S. Current landscape of protein glycosylation analysis and recent progress toward a novel paradigm of glycoscience research. J Pharm Biomed Anal 2016; 130:273-300. [PMID: 27461579 DOI: 10.1016/j.jpba.2016.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/09/2016] [Accepted: 07/09/2016] [Indexed: 12/25/2022]
Abstract
This review covers the basics and some applications of methodologies for the analysis of glycoprotein glycans. Analytical techniques used for glycoprotein glycans, including liquid chromatography (LC), capillary electrophoresis (CE), mass spectrometry (MS), and high-throughput analytical methods based on microfluidics, were described to supply the essentials about biopharmaceutical and biomarker glycoproteins. We will also describe the MS analysis of glycoproteins and glycopeptides as well as the chemical and enzymatic releasing methods of glycans from glycoproteins and the chemical reactions used for the derivatization of glycans. We hope the techniques have accommodated most of the requests from glycoproteomics researchers.
Collapse
Affiliation(s)
- Sachio Yamamoto
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| | - Mitsuhiro Kinoshita
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Shigeo Suzuki
- Faculty of Pharmaceutical Sciences, Kinki University, 3-4-1, Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
99
|
Akune Y, Lin CH, Abrahams JL, Zhang J, Packer NH, Aoki-Kinoshita KF, Campbell MP. Comprehensive analysis of the N-glycan biosynthetic pathway using bioinformatics to generate UniCorn: A theoretical N-glycan structure database. Carbohydr Res 2016; 431:56-63. [PMID: 27318307 DOI: 10.1016/j.carres.2016.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/23/2016] [Accepted: 05/29/2016] [Indexed: 02/06/2023]
Abstract
Glycan structures attached to proteins are comprised of diverse monosaccharide sequences and linkages that are produced from precursor nucleotide-sugars by a series of glycosyltransferases. Databases of these structures are an essential resource for the interpretation of analytical data and the development of bioinformatics tools. However, with no template to predict what structures are possible the human glycan structure databases are incomplete and rely heavily on the curation of published, experimentally determined, glycan structure data. In this work, a library of 45 human glycosyltransferases was used to generate a theoretical database of N-glycan structures comprised of 15 or less monosaccharide residues. Enzyme specificities were sourced from major online databases including Kyoto Encyclopedia of Genes and Genomes (KEGG) Glycan, Consortium for Functional Glycomics (CFG), Carbohydrate-Active enZymes (CAZy), GlycoGene DataBase (GGDB) and BRENDA. Based on the known activities, more than 1.1 million theoretical structures and 4.7 million synthetic reactions were generated and stored in our database called UniCorn. Furthermore, we analyzed the differences between the predicted glycan structures in UniCorn and those contained in UniCarbKB (www.unicarbkb.org), a database which stores experimentally described glycan structures reported in the literature, and demonstrate that UniCorn can be used to aid in the assignment of ambiguous structures whilst also serving as a discovery database.
Collapse
Affiliation(s)
- Yukie Akune
- Department of Chemistry and Biomolecular Sciences, Faculty of Science & Engineering, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia; Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236, Tangi, Hachioji, 192-8577, Tokyo, Japan
| | - Chi-Hung Lin
- Department of Chemistry and Biomolecular Sciences, Faculty of Science & Engineering, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia
| | - Jodie L Abrahams
- Department of Chemistry and Biomolecular Sciences, Faculty of Science & Engineering, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia
| | - Jingyu Zhang
- Department of Chemistry and Biomolecular Sciences, Faculty of Science & Engineering, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Faculty of Science & Engineering, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia
| | - Kiyoko F Aoki-Kinoshita
- Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236, Tangi, Hachioji, 192-8577, Tokyo, Japan
| | - Matthew P Campbell
- Department of Chemistry and Biomolecular Sciences, Faculty of Science & Engineering, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
100
|
Trbojević-Akmačić I, Vilaj M, Lauc G. High-throughput analysis of immunoglobulin G glycosylation. Expert Rev Proteomics 2016; 13:523-34. [DOI: 10.1080/14789450.2016.1174584] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|