51
|
Bilston LE, Tan K. Measurement of passive skeletal muscle mechanical properties in vivo: recent progress, clinical applications, and remaining challenges. Ann Biomed Eng 2014; 43:261-73. [PMID: 25404536 DOI: 10.1007/s10439-014-1186-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/06/2014] [Indexed: 12/30/2022]
Abstract
The ability to measure and quantify the properties of skeletal muscle in vivo as a method for understanding its complex physiological and pathophysiological behavior is important in numerous clinical settings, including rehabilitation. However, this remains a challenge to date due to the lack of a "gold standard" technique. Instead, there are a myriad of measuring techniques each with its own set of pros and cons. This review discusses the current state-of-the-art in elastography imaging techniques, i.e., ultrasound and magnetic resonance elastography, as applied to skeletal muscle, and briefly reviews other methods of measuring muscle mechanical behavior in vivo. While in vivo muscle viscoelastic properties can be measured, these techniques are largely limited to static or quasistatic measurements. Emerging elastography techniques are able to quantify muscle anisotropy and large deformation effects on stiffness, but, validation and optimization of these newer techniques is required. The development of reliable values for the mechanical properties of muscle across the population using these techniques are required to enable them to become more useful in rehabilitation and other clinical settings.
Collapse
|
52
|
Chin L, Kennedy BF, Kennedy KM, Wijesinghe P, Pinniger GJ, Terrill JR, McLaughlin RA, Sampson DD. Three-dimensional optical coherence micro-elastography of skeletal muscle tissue. BIOMEDICAL OPTICS EXPRESS 2014; 5:3090-102. [PMID: 25401023 PMCID: PMC4230882 DOI: 10.1364/boe.5.003090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/09/2014] [Accepted: 08/10/2014] [Indexed: 05/18/2023]
Abstract
In many muscle pathologies, impairment of skeletal muscle function is closely linked to changes in the mechanical properties of the muscle constituents. Optical coherence micro-elastography (OCME) uses optical coherence tomography (OCT) imaging of tissue under a quasi-static, compressive mechanical load to map variations in tissue mechanical properties on the micro-scale. We present the first study of OCME on skeletal muscle tissue. We show that this technique can resolve features of muscle tissue including fibers, fascicles and tendon, and can also detect necrotic lesions in skeletal muscle from the mdx mouse model of Duchenne muscular dystrophy. In many instances, OCME provides better or additional contrast complementary to that provided by OCT. These results suggest that OCME could provide new understanding and opportunity for assessment of skeletal muscle pathologies.
Collapse
Affiliation(s)
- Lixin Chin
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Brendan F. Kennedy
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Kelsey M. Kennedy
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Philip Wijesinghe
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
| | - Gavin J. Pinniger
- School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia
| | - Jessica R. Terrill
- School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Australia
- School of Biomedical, Biomolecular & Chemical Science, The University of Western Australia, Crawley, Australia
| | - Robert A. McLaughlin
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
| | - David D. Sampson
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Crawley, Australia
- Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Crawley, Australia
| |
Collapse
|
53
|
Brinkmeier H, Ohlendieck K. Chaperoning heat shock proteins: Proteomic analysis and relevance for normal and dystrophin-deficient muscle. Proteomics Clin Appl 2014; 8:875-95. [DOI: 10.1002/prca.201400015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/24/2014] [Accepted: 05/28/2014] [Indexed: 12/15/2022]
Affiliation(s)
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth Co. Kildare Ireland
| |
Collapse
|
54
|
Vianello S, Bouyon S, Benoit E, Sebrié C, Boerio D, Herbin M, Roulot M, Fromes Y, de la Porte S. Arginine butyrate per os protects mdx mice against cardiomyopathy, kyphosis and changes in axonal excitability. Neurobiol Dis 2014; 71:325-33. [PMID: 25167832 DOI: 10.1016/j.nbd.2014.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/08/2014] [Accepted: 08/16/2014] [Indexed: 11/30/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by lack of dystrophin, a sub-sarcolemmal protein, which leads to dramatic muscle deterioration. We studied in mdx mice, the effects of oral administration of arginine butyrate (AB), a compound currently used for the treatment of sickle cell anemia in children, on cardiomyopathy, vertebral column deformation and electromyographic abnormalities. Monthly follow-up by echocardiography from the 8th month to the 14th month showed that AB treatment protected the mdx mice against drastic reduction (20-23%) of ejection fraction and fractional shortening, and also against the ≈20% ventricular dilatation and 25% cardiac hypertrophy observed in saline-treated mdx mice. The phenotypic improvement was corroborated by the decrease in serum CK level and by better fatigue resistance. Moreover, AB treatment protected against the progressive spinal deformity observed in mdx mice, another similarity with DMD patients. The value of the kyphosis index in AB-treated mice reached 94% of the value in C57BL/10 mice. Finally, axonal excitability parameters such as the membrane resting potential, the threshold and amplitude of the action potential, the absolute and relative refractory periods and the supernormal and subnormal periods, recorded from caudal and plantar muscles in response to excitability tests, that were modified in saline-treated mdx mice were not significantly changed, compared with wild-type animals, in AB-treated mdx mice. All of these results suggest that AB could be a potential treatment for DMD patients.
Collapse
Affiliation(s)
- Sara Vianello
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | - Sophie Bouyon
- UPMC, Université Paris 6, UMR 974, Institut de Myologie, F-75013 Paris, France.
| | - Evelyne Benoit
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | | | - Delphine Boerio
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | - Marc Herbin
- CNRS, Muséum National d'Histoire Naturelle, CNRS, UMR7179, Pavillon d'anatomie comparée, BP 55, 52 Rue Cuvier, 75231 Paris Cedex 05, France.
| | - Morgane Roulot
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| | - Yves Fromes
- UPMC, Université Paris 6, UMR 974, Institut de Myologie, F-75013 Paris, France; ONIRIS, Centre de Boisbonne, Nantes F-44307, France.
| | - Sabine de la Porte
- CNRS, Institut de Neurobiologie Alfred Fessard, FRC2118, Neurobiologie & Développement, UPR 3294, Gif sur Yvette, F-91198, France.
| |
Collapse
|
55
|
Qin EC, Jugé L, Lambert SA, Paradis V, Sinkus R, Bilston LE. In vivo anisotropic mechanical properties of dystrophic skeletal muscles measured by anisotropic MR elastographic imaging: the mdx mouse model of muscular dystrophy. Radiology 2014; 273:726-35. [PMID: 25105354 DOI: 10.1148/radiol.14132661] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate the utility of mechanical anisotropy (shear storage modulus parallel to fiber/shear storage modulus perpendicular to fiber) measured by combined magnetic resonance (MR) elastography and diffusion-tensor imaging ( DTI diffusion-tensor imaging ) technique (anisotropic MR elastography) to distinguish between healthy and necrotic muscle with different degrees of muscle necrosis in the mdx mouse model of muscular dystrophy. MATERIALS AND METHODS The experimental protocol was approved by the regional animal ethics committee. Twenty-one mdx and 21 wild-type ( WT wild type ) mice were used in our study. Animals were divided into exercised and sedentary groups. Anisotropic MR elastography was used to obtain mechanical anisotropic shear moduli for the lateral gastrocnemius and plantaris muscles in a 7-T MR imager, from which the mechanical anisotropic ratio was calculated. The animals were imaged before and after 10 weeks of a horizontal treadmill running protocol. Spearman rank correlations were used to compare MR elastographic data with muscle necrotic area percentage from histologic analysis. Mechanical anisotropy in WT wild type and mdx mice muscle were compared by using t test and one-way analysis of variance, and receiver operating characteristic curves were constructed by using statistical software. RESULTS Anisotropic MR elastography was able to be used to distinguish between the muscles of mdx and WT wild type mice, with an area under the receiver operating characteristic curve of 0.8. Strong negative correlation (rs = -0.701; P < .001) between the mechanical anisotropic ratio and the percentage of muscle necrotic area was found. By comparing mice with no or mild (0%-5% mean necrotic area) and severe (>5% mean necrotic area) muscle necrosis, an area under the receiver operating characteristic curve of 0.964 was achieved. Diffusion parameters alone were unable to distinguish between the WT wild type and mdx mice at any time point. CONCLUSION The mechanical anisotropic ratio of the shear storage moduli measured by an anisotropic MR elastographic technique can distinguish between healthy muscle and dystrophic muscle.
Collapse
Affiliation(s)
- Eric C Qin
- From the Neuroscience Research Australia, Barker St, Randwick, 2031, Australia (E.C.Q., L.J., L.E.B.); University of New South Wales, Prince of Wales Clinical School, Randwick, Australia (E.C.Q., L.E.B.); Université Paris Diderot, Sorbonne Paris Cité, CRB3, UMR 773, Inserm, Clichy, France (S.A.L.); Department of Pathologic Anatomy, Hôpital Beaujon, Clichy, France (V.P.); and Department of Biomedical Engineering, King's College London, London, England (R.S.)
| | | | | | | | | | | |
Collapse
|
56
|
Proteomic profiling of the dystrophin-deficient mdx phenocopy of dystrophinopathy-associated cardiomyopathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:246195. [PMID: 24772416 PMCID: PMC3977469 DOI: 10.1155/2014/246195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/16/2014] [Indexed: 01/07/2023]
Abstract
Cardiorespiratory complications are frequent symptoms of Duchenne muscular dystrophy, a neuromuscular disorder caused by primary abnormalities in the dystrophin gene. Loss of cardiac dystrophin initially leads to changes in dystrophin-associated glycoproteins and subsequently triggers secondarily sarcolemmal disintegration, fibre necrosis, fibrosis, fatty tissue replacement, and interstitial inflammation. This results in progressive cardiac disease, which is the cause of death in a considerable number of patients afflicted with X-linked muscular dystrophy. In order to better define the molecular pathogenesis of this type of cardiomyopathy, several studies have applied mass spectrometry-based proteomics to determine proteome-wide alterations in dystrophinopathy-associated cardiomyopathy. Proteomic studies included both gel-based and label-free mass spectrometric surveys of dystrophin-deficient heart muscle from the established mdx animal model of dystrophinopathy. Comparative cardiac proteomics revealed novel changes in proteins associated with mitochondrial energy metabolism, glycolysis, signaling, iron binding, antibody response, fibre contraction, basal lamina stabilisation, and cytoskeletal organisation. This review summarizes the importance of studying cardiomyopathy within the field of muscular dystrophy research, outlines key features of the mdx heart and its suitability as a model system for studying cardiac pathogenesis, and discusses the impact of recent proteomic findings for exploring molecular and cellular aspects of cardiac abnormalities in inherited muscular dystrophies.
Collapse
|
57
|
The Dynamics of Compound, Transcript, and Protein Effects After Treatment With 2OMePS Antisense Oligonucleotides in mdx Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e148. [PMID: 24549299 PMCID: PMC3950770 DOI: 10.1038/mtna.2014.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/24/2013] [Indexed: 12/28/2022]
Abstract
Antisense-mediated exon skipping is currently in clinical development for Duchenne muscular dystrophy (DMD) to amend the consequences of the underlying genetic defect and restore dystrophin expression. Due to turnover of compound, transcript, and protein, chronic treatment with effector molecules (antisense oligonucleotides) will be required. To investigate the dynamics and persistence of antisense 2′-O-methyl phosphorothioate oligonucleotides, exon skipping, and dystrophin expression after dosing was concluded, mdx mice were treated subcutaneously for 8 weeks with 100 mg/kg oligonucleotides twice weekly. Thereafter, mice were sacrificed at different time points after the final injection (36 hours–24 weeks). Oligonucleotide half-life was longer in heart (~65 days) compared with that in skeletal muscle, liver, and kidney (~35 days). Exon skipping half-lives varied between 33 and 53 days, whereas dystrophin protein showed a long half-life (>100 days). Oligonucleotide and exon-skipping levels peaked in the first week and declined thereafter. By contrast, dystrophin expression peaked after 3–8 weeks and then slowly declined, remaining detectable after 24 weeks. Concordance between levels of oligonucleotides, exon skipping, and proteins was observed, except in heart, wherein high oligonucleotide levels but low exon skipping and dystrophin expression were seen. Overall, these results enhance our understanding of the pharmacokinetics and pharmacodynamics of 2′-O-methyl phosphorothioate oligos used for the treatment of DMD.
Collapse
|
58
|
Rudolf R, Khan MM, Lustrino D, Labeit S, Kettelhut IC, Navegantes LCC. Alterations of cAMP-dependent signaling in dystrophic skeletal muscle. Front Physiol 2013; 4:290. [PMID: 24146652 PMCID: PMC3797997 DOI: 10.3389/fphys.2013.00290] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022] Open
Abstract
Autonomic regulation processes in striated muscles are largely mediated by cAMP/PKA-signaling. In order to achieve specificity of signaling its spatial-temporal compartmentation plays a critical role. We discuss here how specificity of cAMP/PKA-signaling can be achieved in skeletal muscle by spatio-temporal compartmentation. While a microdomain containing PKA type I in the region of the neuromuscular junction (NMJ) is important for postsynaptic, activity-dependent stabilization of the nicotinic acetylcholine receptor (AChR), PKA type I and II microdomains in the sarcomeric part of skeletal muscle are likely to play different roles, including the regulation of muscle homeostasis. These microdomains are due to specific A-kinase anchoring proteins, like rapsyn and myospryn. Importantly, recent evidence indicates that compartmentation of the cAMP/PKA-dependent signaling pathway and pharmacological activation of cAMP production are aberrant in different skeletal muscles disorders. Thus, we discuss here their potential as targets for palliative treatment of certain forms of dystrophy and myasthenia. Under physiological conditions, the neuropeptide, α-calcitonin-related peptide, as well as catecholamines are the most-mentioned natural triggers for activating cAMP/PKA signaling in skeletal muscle. While the precise domains and functions of these first messengers are still under investigation, agonists of β2-adrenoceptors clearly exhibit anabolic activity under normal conditions and reduce protein degradation during atrophic periods. Past and recent studies suggest direct sympathetic innervation of skeletal muscle fibers. In summary, the organization and roles of cAMP-dependent signaling in skeletal muscle are increasingly understood, revealing crucial functions in processes like nerve-muscle interaction and muscle trophicity.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim , Mannheim, Germany ; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | |
Collapse
|
59
|
Mourkioti F, Kustan J, Kraft P, Day JW, Zhao MM, Kost-Alimova M, Protopopov A, DePinho RA, Bernstein D, Meeker AK, Blau HM. Role of telomere dysfunction in cardiac failure in Duchenne muscular dystrophy. Nat Cell Biol 2013; 15:895-904. [PMID: 23831727 PMCID: PMC3774175 DOI: 10.1038/ncb2790] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 05/17/2013] [Indexed: 12/24/2022]
Abstract
Duchenne muscular dystrophy (DMD), the most common inherited muscular dystrophy of childhood, leads to death due to cardiorespiratory failure. Paradoxically, mdx mice with the same genetic deficiency of dystrophin exhibit minimal cardiac dysfunction, impeding the development of therapies. We postulated that the difference between mdx and DMD might result from differences in telomere lengths in mice and humans. We show here that, like DMD patients, mice that lack dystrophin and have shortened telomeres (mdx/mTR(KO)) develop severe functional cardiac deficits including ventricular dilation, contractile and conductance dysfunction, and accelerated mortality. These cardiac defects are accompanied by telomere erosion, mitochondrial fragmentation and increased oxidative stress. Treatment with antioxidants significantly retards the onset of cardiac dysfunction and death of mdx/mTR(KO) mice. In corroboration, all four of the DMD patients analysed had 45% shorter telomeres in their cardiomyocytes relative to age- and sex-matched controls. We propose that the demands of contraction in the absence of dystrophin coupled with increased oxidative stress conspire to accelerate telomere erosion culminating in cardiac failure and death. These findings provide strong support for a link between telomere length and dystrophin deficiency in the etiology of dilated cardiomyopathy in DMD and suggest preventive interventions.
Collapse
Affiliation(s)
- Foteini Mourkioti
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jackie Kustan
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peggy Kraft
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John W. Day
- Department of Neurology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Ming-Ming Zhao
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA 94305, USA
| | - Maria Kost-Alimova
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Alexei Protopopov
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Ronald A. DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA 94305, USA
| | - Alan K. Meeker
- Department of Pathology, Department of Oncology, Johns Hopkins Medical Institution, Baltimore, MD 21231, USA
| | - Helen M. Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Clinical Sciences Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
60
|
Ieronimakis N, Pantoja M, Hays AL, Dosey TL, Qi J, Fischer KA, Hoofnagle AN, Sadilek M, Chamberlain JS, Ruohola-Baker H, Reyes M. Increased sphingosine-1-phosphate improves muscle regeneration in acutely injured mdx mice. Skelet Muscle 2013; 3:20. [PMID: 23915702 PMCID: PMC3750760 DOI: 10.1186/2044-5040-3-20] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/22/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Presently, there is no effective treatment for the lethal muscle wasting disease Duchenne muscular dystrophy (DMD). Here we show that increased sphingosine-1-phoshate (S1P) through direct injection or via the administration of the small molecule 2-acetyl-4(5)-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, has beneficial effects in acutely injured dystrophic muscles of mdx mice. METHODS We treated mdx mice with and without acute injury and characterized the histopathological and functional effects of increasing S1P levels. We also tested exogenous and direct administration of S1P on mdx muscles to examine the molecular pathways under which S1P promotes regeneration in dystrophic muscles. RESULTS Short-term treatment with THI significantly increased muscle fiber size and extensor digitorum longus (EDL) muscle specific force in acutely injured mdx limb muscles. In addition, the accumulation of fibrosis and fat deposition, hallmarks of DMD pathology and impaired muscle regeneration, were lower in the injured muscles of THI-treated mdx mice. Furthermore, increased muscle force was observed in uninjured EDL muscles with a longer-term treatment of THI. Such regenerative effects were linked to the response of myogenic cells, since intramuscular injection of S1P increased the number of Myf5nlacz/+ positive myogenic cells and newly regenerated myofibers in injured mdx muscles. Intramuscular injection of biotinylated-S1P localized to muscle fibers, including newly regenerated fibers, which also stained positive for S1P receptor 1 (S1PR1). Importantly, plasma membrane and perinuclear localization of phosphorylated S1PR1 was observed in regenerating muscle fibers of mdx muscles. Intramuscular increases of S1P levels, S1PR1 and phosphorylated ribosomal protein S6 (P-rpS6), and elevated EDL muscle specific force, suggest S1P promoted the upregulation of anabolic pathways that mediate skeletal muscle mass and function. CONCLUSIONS These data show that S1P is beneficial for muscle regeneration and functional gain in dystrophic mice, and that THI, or other pharmacological agents that raise S1P levels systemically, may be developed into an effective treatment for improving muscle function and reducing the pathology of DMD.
Collapse
Affiliation(s)
- Nicholas Ieronimakis
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Carberry S, Brinkmeier H, Zhang Y, Winkler CK, Ohlendieck K. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy. Int J Mol Med 2013; 32:544-56. [PMID: 23828267 PMCID: PMC3782555 DOI: 10.3892/ijmm.2013.1429] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/05/2013] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy is due to genetic abnormalities in the dystrophin gene and represents one of the most frequent genetic childhood diseases. In the X-linked muscular dystrophy (mdx) mouse model of dystrophinopathy, different subtypes of skeletal muscles are affected to a varying degree albeit the same single base substitution within exon 23 of the dystrophin gene. Thus, to determine potential muscle subtype-specific differences in secondary alterations due to a deficiency in dystrophin, in this study, we carried out a comparative histological and proteomic survey of mdx muscles. We intentionally included the skeletal muscles that are often used for studying the pathomechanism of muscular dystrophy. Histological examinations revealed a significantly higher degree of central nucleation in the soleus and extensor digitorum longus muscles compared with the flexor digitorum brevis and interosseus muscles. Muscular hypertrophy of 20–25% was likewise only observed in the soleus and extensor digitorum longus muscles from mdx mice, but not in the flexor digitorum brevis and interosseus muscles. For proteomic analysis, muscle protein extracts were separated by fluorescence two-dimensional (2D) gel electrophoresis. Proteins with a significant change in their expression were identified by mass spectrometry. Proteomic profiling established an altered abundance of 24, 17, 19 and 5 protein species in the dystrophin-deficient soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscle, respectively. The key proteomic findings were verified by immunoblot analysis. The identified proteins are involved in the contraction-relaxation cycle, metabolite transport, muscle metabolism and the cellular stress response. Thus, histological and proteomic profiling of muscle subtypes from mdx mice indicated that distinct skeletal muscles are differentially affected by the loss of the membrane cytoskeletal protein, dystrophin. Varying degrees of perturbed protein expression patterns in the muscle subtypes from mdx mice may be due to dissimilar downstream events, including differences in muscle structure or compensatory mechanisms that counteract pathophysiological processes. The interosseus muscle from mdx mice possibly represents a naturally protected phenotype.
Collapse
Affiliation(s)
- Steven Carberry
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | | | | | | |
Collapse
|
62
|
Mosqueira M, Zeiger U, Förderer M, Brinkmeier H, Fink RHA. Cardiac and respiratory dysfunction in Duchenne muscular dystrophy and the role of second messengers. Med Res Rev 2013; 33:1174-213. [PMID: 23633235 DOI: 10.1002/med.21279] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) affects young boys and is characterized by the absence of dystrophin, a large cytoskeletal protein present in skeletal and cardiac muscle cells and neurons. The heart and diaphragm become necrotic in DMD patients and animal models of DMD, resulting in cardiorespiratory failure as the leading cause of death. The major consequences of the absence of dystrophin are high levels of intracellular Ca(2+) and the unbalanced production of NO that can finally trigger protein degradation and cell death. Cytoplasmic increase in Ca(2+) concentration directly and indirectly triggers different processes such as necrosis, fibrosis, and activation of macrophages. The absence of the neuronal isoform of nitric oxide synthase (nNOS) and the overproduction of NO by the inducible isoform (iNOS) further increase the intracellular Ca(2+) via a hypernitrosylation of the ryanodine receptor. NO overproduction, which further induces the expression of iNOS but decreases the expression of the endothelial isoform (eNOS), deregulates the muscle tissue blood flow creating an ischemic situation. The high levels of Ca(2+) in dystrophic muscles and the ischemic state of the muscle tissue would culminate in a positive feedback loop. While efforts continue toward optimizing cardiac and respiratory care of DMD patients, both Ca(2+) and NO in cardiac and respiratory muscle pathways have been shown to be important to the etiology of the disease. Understanding the mechanisms behind the fine regulation of Ca(2+) -NO may be important for a noninterventional and noninvasive supportive approach to treat DMD patients, improving the quality of life and natural history of DMD patients.
Collapse
Affiliation(s)
- Matias Mosqueira
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, INF326, Heidelberg University, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
63
|
Isaac C, Wright A, Usas A, Li H, Tang Y, Mu X, Greco N, Dong Q, Vo N, Kang J, Wang B, Huard J. Dystrophin and utrophin "double knockout" dystrophic mice exhibit a spectrum of degenerative musculoskeletal abnormalities. J Orthop Res 2013; 31:343-9. [PMID: 23097179 PMCID: PMC4108902 DOI: 10.1002/jor.22236] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/28/2012] [Indexed: 02/04/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a degenerative muscle disorder characterized by the lack of dystrophin expression at the sarcolemma of muscle fibers. In addition, DMD patients acquire osteopenia, fragility fractures, and scoliosis indicating that a deficiency in skeletal homeostasis coexists but little is known about the effects of DMD on bone and other connective tissues within the musculoskeletal system. Recent evidence has emerged implicating adult stem cell dysfunction in DMD myopathogenesis. Given the common mesenchymal origin of muscle and bone, we sought to investigate bone and other musculoskeletal tissues in a DMD mouse model. Here, we report that dystrophin-utrophin double knockout (dko) mice exhibit a spectrum of degenerative changes, outside skeletal muscle, in bone, articular cartilage, and intervertebral discs, in addition to reduced lifespan, muscle degeneration, spinal deformity, and cardiomyopathy previously reported. We also report these mice to have a reduced capacity for bone healing and exhibit spontaneous heterotopic ossification in the hind limb muscles. Therefore, we propose the dko mouse as a model for premature musculoskeletal aging and posit that a similar phenomenon may occur in patients with DMD.
Collapse
Affiliation(s)
- Christian Isaac
- Stem Cell Research Center, Bridgeside Point II, 450 Technology Dr, Suite 206, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Adam Wright
- Stem Cell Research Center, Bridgeside Point II, 450 Technology Dr, Suite 206, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Arvydas Usas
- Stem Cell Research Center, Bridgeside Point II, 450 Technology Dr, Suite 206, Pittsburgh, Pennsylvania 15219
| | - Hongshuai Li
- Stem Cell Research Center, Bridgeside Point II, 450 Technology Dr, Suite 206, Pittsburgh, Pennsylvania 15219
| | - Ying Tang
- Stem Cell Research Center, Bridgeside Point II, 450 Technology Dr, Suite 206, Pittsburgh, Pennsylvania 15219
| | - Xiaodong Mu
- Stem Cell Research Center, Bridgeside Point II, 450 Technology Dr, Suite 206, Pittsburgh, Pennsylvania 15219
| | - Nicholas Greco
- Stem Cell Research Center, Bridgeside Point II, 450 Technology Dr, Suite 206, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Qing Dong
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Nam Vo
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - James Kang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Bing Wang
- Stem Cell Research Center, Bridgeside Point II, 450 Technology Dr, Suite 206, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Johnny Huard
- Stem Cell Research Center, Bridgeside Point II, 450 Technology Dr, Suite 206, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
64
|
AAV-mediated overexpression of human α7 integrin leads to histological and functional improvement in dystrophic mice. Mol Ther 2013; 21:520-5. [PMID: 23319059 DOI: 10.1038/mt.2012.281] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle disease caused by mutations in the DMD gene, with loss of its gene product, dystrophin. Dystrophin helps link integral membrane proteins to the actin cytoskeleton and stabilizes the sarcolemma during muscle activity. We investigated an alternative therapeutic approach to dystrophin replacement by overexpressing human α7 integrin (ITGA7) using adeno-associated virus (AAV) delivery. ITGA7 is a laminin receptor in skeletal and cardiac muscle that links the extracellular matrix (ECM) to the actin skeleton. It is modestly upregulated in DMD muscle and has been proposed to be an important modifier of dystrophic symptoms. We delivered rAAV8.MCK.ITGA7 to the lower limb of mdx mice through isolated limb perfusion (ILP) of the femoral artery. We demonstrated ~50% of fibers in the tibialis anterior (TA) and extensor digitorum longus (EDL) overexpressing α7 integrin at the sarcolemma following AAV gene transfer. The increase in ITGA7 in skeletal muscle significantly protected against loss of force following eccentric contraction-induced injury compared with untreated (contralateral) muscles while specific force following tetanic contraction was unchanged. Reversal of additional dystrophic features included reduced Evans blue dye (EBD) uptake and increased muscle fiber diameter. Taken together, this data shows that rAAV8.MCK.ITGA7 gene transfer stabilizes the sarcolemma potentially preserving mdx muscle from further damage. This therapeutic approach demonstrates promise as a viable treatment for DMD with further implications for other forms of muscular dystrophy.
Collapse
|
65
|
de Oliveira F, Flavia DO, Quintana HT, Bortolin JA, Gomes OA, Liberti EA, Ribeiro DA. Cyclooxygenase-2 expression in skeletal muscle of knockout mice suffering Duchenne muscular dystrophy. Histochem Cell Biol 2012. [PMID: 23188550 DOI: 10.1007/s00418-012-1056-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of the present study was to investigate the role of cyclooxygenase-2 (COX-2) expression in fibrotic lesion in mdx mice. A total of six male C57BL/10 mice and six C57BL/10-DMD/mdx were distributed into two groups: control and animals with Duchenne muscular dystrophy (DMD). The medial part of gastrocnemius muscle was evaluated being the specimens stained with hematoxylin and eosin (H&E) and Sirius Red under normal and polarized light to differentiate type I (red and yellow) and III (green) collagen. COX-2 expression was assessed by immunohistochemistry. The results revealed histopathological changes in C57BL/10-DMD/mdx as depicted by regenerating fibers. Sirius Red stain showed a substantial increase in the amount of type I collagen of mdx mice. DMD induced a strong COX-2 immunoexpression in intercellular space. Taken together, our results are consistent with the notion that necrotic and fibrotic lesions are able to increase COX-2 expression in DMD.
Collapse
Affiliation(s)
- Flavia de Oliveira
- Department of Biosciences, Federal University of São Paulo, UNIFESP, Av Ana Costa 95, Vila Mathias, Santos, SP 11060-001, Brazil
| | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
There is substantial evidence indicating that disruption of Ca2+ homeostasis and activation of cytosolic proteases play a key role in the pathogenesis and progression of Duchenne Muscular Dystrophy (DMD). However, the exact nature of the Ca2+ deregulation and the Ca2+ signaling pathways that are altered in dystrophic muscles have not yet been resolved. Here we examined the contribution of the store-operated Ca2+ entry (SOCE) for the pathogenesis of DMD. RT-PCR and Western blot found that the expression level of Orai1, the pore-forming unit of SOCE, was significantly elevated in the dystrophic muscles, while parallel increases in SOCE activity and SR Ca2+ storage were detected in adult mdx muscles using Fura-2 fluorescence measurements. High-efficient shRNA probes against Orai1 were delivered into the flexor digitorum brevis muscle in live mice and knockdown of Orai1 eliminated the differences in SOCE activity and SR Ca2+ storage between the mdx and wild type muscle fibers. SOCE activity was repressed by intraperitoneal injection of BTP-2, an Orai1 inhibitor, and cytosolic calpain1 activity in single muscle fibers was measured by a membrane-permeable calpain substrate. We found that BTP-2 injection for 2 weeks significantly reduced the cytosolic calpain1 activity in mdx muscle fibers. Additionally, ultrastructural changes were observed by EM as an increase in the number of triad junctions was identified in dystrophic muscles. Compensatory changes in protein levels of SERCA1, TRP and NCX3 appeared in the mdx muscles, suggesting that comprehensive adaptations occur following altered Ca2+ homeostasis in mdx muscles. Our data indicates that upregulation of the Orai1-mediated SOCE pathway and an overloaded SR Ca2+ store contributes to the disrupted Ca2+ homeostasis in mdx muscles and is linked to elevated proteolytic activity, suggesting that targeting Orai1 activity may be a promising therapeutic approach for the prevention and treatment of muscular dystrophy.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Division of Pharmacology, College of Pharmacy, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (XZ); (NW)
| | - Joseph G. Moloughney
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Sai Zhang
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Shinji Komazaki
- Department of Anatomy, Saitama Medical University, Saitama, Japan
| | - Noah Weisleder
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (XZ); (NW)
| |
Collapse
|
67
|
Expression and function of the SDF-1 chemokine receptors CXCR4 and CXCR7 during mouse limb muscle development and regeneration. Exp Cell Res 2012; 318:2178-90. [DOI: 10.1016/j.yexcr.2012.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/22/2012] [Accepted: 06/23/2012] [Indexed: 12/17/2022]
|
68
|
Qin EC, Sinkus R, Geng G, Cheng S, Green M, Rae CD, Bilston LE. Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: A phantom study. J Magn Reson Imaging 2012; 37:217-26. [DOI: 10.1002/jmri.23797] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/31/2012] [Indexed: 01/22/2023] Open
|
69
|
Simões GF, de Oliveira ALR. Granulocyte-colony stimulating factor improves MDX mouse response to peripheral nerve injury. PLoS One 2012; 7:e42803. [PMID: 22912741 PMCID: PMC3418329 DOI: 10.1371/journal.pone.0042803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/11/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND G-CSF has been shown to increase neuronal survival, which may positively influence the spinal cord microenvironment during the course of muscular dystrophies. METHODOLOGY/PRINCIPAL FINDINGS Male MDX mice that were six weeks of age received a left sciatic nerve transection and were treated with intraperitoneal injections of 200 µg/kg/day of G-CSF 7 days before and 7 days after the transection. The axotomy was performed after the cycles of muscular degeneration/regeneration, consistent with previous descriptions of this model of muscular dystrophy. C57BL/10 mice were used as control subjects. Seven days after the surgery, the animals were sacrificed and their lumbar spinal cords were processed for immunohistochemistry (anti-MHC I, anti-Synaptophysin, anti-GFAP and anti-IBA-1) and transmission electron microscopy. MHC I expression increased in both strains of mice after the axotomy. Nevertheless, the MDX mice displayed a significantly smaller MHC I upregulation than the control mice. Regarding GFAP expression, the MDX mice showed a stronger astrogliosis compared with the C57BL/10 mice across all groups. Both groups that were treated with G-CSF demonstrated preservation of synaptophysin expression compared with the untreated and placebo groups. The quantitative analysis of the ultrastructural level showed a preservation of the synaptic covering for the both groups that were treated with G-CSF and the axotomized groups showed a smaller loss of synaptic contact in relation to the treated groups after the lesion. CONCLUSIONS/SIGNIFICANCE The reduction of active inputs to the alpha-motoneurons and increased astrogliosis in the axotomized and control groups may be associated with the cycles of muscle degeneration/regeneration that occur postnatally. The G-CSF treated group showed a preservation of the spinal cord microenvironment after the lesion. Moreover, the increase of MHC I expression in the MDX mice that were treated with G-CSF may indicate that this drug performs an active role in regenerative potential after lesions.
Collapse
Affiliation(s)
- Gustavo Ferreira Simões
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
70
|
Röder IV, Strack S, Reischl M, Dahley O, Khan MM, Kassel O, Zaccolo M, Rudolf R. Participation of myosin Va and Pka type I in the regeneration of neuromuscular junctions. PLoS One 2012; 7:e40860. [PMID: 22815846 PMCID: PMC3397957 DOI: 10.1371/journal.pone.0040860] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/14/2012] [Indexed: 11/21/2022] Open
Abstract
Background The unconventional motor protein, myosin Va, is crucial for the development of the mouse neuromuscular junction (NMJ) in the early postnatal phase. Furthermore, the cooperative action of protein kinase A (PKA) and myosin Va is essential to maintain the adult NMJ. We here assessed the involvement of myosin Va and PKA in NMJ recovery during muscle regeneration. Methodology/Principal Findings To address a putative role of myosin Va and PKA in the process of muscle regeneration, we used two experimental models the dystrophic mdx mouse and Notexin-induced muscle degeneration/regeneration. We found that in both systems myosin Va and PKA type I accumulate beneath the NMJs in a fiber maturation-dependent manner. Morphologically intact NMJs were found to express stable nicotinic acetylcholine receptors and to accumulate myosin Va and PKA type I in the subsynaptic region. Subsynaptic cAMP signaling was strongly altered in dystrophic muscle, particularly in fibers with severely subverted NMJ morphology. Conclusions/Significance Our data show a correlation between the subsynaptic accumulation of myosin Va and PKA type I on the one hand and NMJ regeneration status and morphology, AChR stability and specificity of subsynaptic cAMP handling on the other hand. This suggests an important role of myosin Va and PKA type I for the maturation of NMJs in regenerating muscle.
Collapse
Affiliation(s)
- Ira Verena Röder
- Institut für Toxikologie und Genetik, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Siegfried Strack
- Institut für Toxikologie und Genetik, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Markus Reischl
- Institut für Angewandte Informatik, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Oliver Dahley
- Institut für Toxikologie und Genetik, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Muzamil Majid Khan
- Institut für Toxikologie und Genetik, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Olivier Kassel
- Institut für Toxikologie und Genetik, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Manuela Zaccolo
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Rüdiger Rudolf
- Institut für Toxikologie und Genetik, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Institut für Medizintechnologie, Universität Heidelberg und Hochschule Mannheim, Mannheim, Germany
- Institut für Molekular- und Zellbiologie, Hochschule Mannheim, Mannheim, Germany
- * E-mail:
| |
Collapse
|
71
|
Tonon E, Ferretti R, Shiratori JH, Santo Neto H, Marques MJ, Minatel E. Ascorbic acid protects the diaphragm muscle against myonecrosis in mdx mice. Nutrition 2012; 28:686-90. [DOI: 10.1016/j.nut.2011.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 08/09/2011] [Accepted: 09/12/2011] [Indexed: 11/30/2022]
|
72
|
Carberry S, Zweyer M, Swandulla D, Ohlendieck K. Proteomics reveals drastic increase of extracellular matrix proteins collagen and dermatopontin in the aged mdx diaphragm model of Duchenne muscular dystrophy. Int J Mol Med 2012; 30:229-34. [PMID: 22614334 PMCID: PMC3573751 DOI: 10.3892/ijmm.2012.1006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/11/2012] [Indexed: 01/15/2023] Open
Abstract
Duchenne muscular dystrophy is a lethal genetic disease of childhood caused by primary abnormalities in the gene coding for the membrane cytoskeletal protein dystrophin. The mdx mouse is an established animal model of various aspects of X-linked muscular dystrophy and is widely used for studying fundamental mechanisms of dystrophinopathy and testing novel therapeutic approaches to treat one of the most frequent gender-specific diseases in humans. In order to determine global changes in the muscle proteome with the progressive deterioration of mdx tissue with age, we have characterized diaphragm muscle from mdx mice at three ages (8-weeks, 12-months and 22-months) using mass spectrometry-based proteomics. Altered expression levels in diaphragm of 8-week vs. 22-month mice were shown to occur in 11 muscle-associated proteins. Aging in the mdx diaphragm seems to be associated with a drastic increase in the extracellular matrix proteins, collagen and dermatopontin, the molecular chaperone αB-crystallin, and the intermediate filament protein vimentin, suggesting increased accumulation of connective tissue, an enhanced cellular stress response and compensatory stabilization of the weakened membrane cytoskeleton. These proteomic findings establish the aged mdx diaphragm as an excellent model system for studying secondary effects of dystrophin deficiency in skeletal muscle tissue.
Collapse
Affiliation(s)
- Steven Carberry
- Department of Biology, National University of Ireland, Maynooth, Kildare, Republic of Ireland
| | | | | | | |
Collapse
|
73
|
Kornegay JN, Childers MK, Bogan DJ, Bogan JR, Nghiem P, Wang J, Fan Z, Howard JF, Schatzberg SJ, Dow JL, Grange RW, Styner MA, Hoffman EP, Wagner KR. The paradox of muscle hypertrophy in muscular dystrophy. Phys Med Rehabil Clin N Am 2012; 23:149-72, xii. [PMID: 22239881 DOI: 10.1016/j.pmr.2011.11.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mutations in the dystrophin gene cause Duchenne and Becker muscular dystrophy in humans and syndromes in mice, dogs, and cats. Affected humans and dogs have progressive disease that leads primarily to muscle atrophy. Mdx mice progress through an initial phase of muscle hypertrophy followed by atrophy. Cats have persistent muscle hypertrophy. Hypertrophy in humans has been attributed to deposition of fat and connective tissue (pseudohypertrophy). Increased muscle mass (true hypertrophy) has been documented in animal models. Muscle hypertrophy can exaggerate postural instability and joint contractures. Deleterious consequences of muscle hypertrophy should be considered when developing treatments for muscular dystrophy.
Collapse
Affiliation(s)
- Joe N Kornegay
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Mangner N, Adams V, Sandri M, Hoellriegel R, Hambrecht R, Schuler G, Gielen S. Muscle function and running activity in mouse models of hereditary muscle dystrophy: Impact of double knockout for dystrophin and the transcription factor MyoD. Muscle Nerve 2012; 45:544-51. [DOI: 10.1002/mus.22318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
75
|
Distinct effects of contraction-induced injury in vivo on four different murine models of dysferlinopathy. J Biomed Biotechnol 2012; 2012:134031. [PMID: 22431915 PMCID: PMC3303924 DOI: 10.1155/2012/134031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/27/2011] [Indexed: 11/17/2022] Open
Abstract
Mutations in the DYSF gene, encoding dysferlin, cause muscular dystrophies in man. We compared 4 dysferlinopathic mouse strains: SJL/J and B10.SJL-Dysfim/AwaJ (B10.SJL), and A/J and B6.A-Dysfprmd/GeneJ (B6.A/J). The former but not the latter two are overtly myopathic and weaker at 3 months of age. Following repetitive large-strain injury (LSI) caused by lengthening contractions, all except B6.A/J showed ~40% loss in contractile torque. Three days later, torque in SJL/J, B10.SJL and controls, but not A/J, recovered nearly completely. B6.A/J showed ~30% torque loss post-LSI and more variable recovery. Pre-injury, all dysferlinopathic strains had more centrally nucleated fibers (CNFs) and all but A/J showed more inflammation than controls. At D3, all dysferlinopathic strains showed increased necrosis and inflammation, but not more CNFs; controls were unchanged. Dystrophin-null DMDmdx mice showed more necrosis and inflammation than all dysferlin-nulls. Torque loss and inflammation on D3 across all strains were linearly related to necrosis. Our results suggest that (1) dysferlin is not required for functional recovery 3 days after LSI; (2) B6.A/J mice recover from LSI erratically; (3) SJL/J and B10.SJL muscles recover rapidly, perhaps due to ongoing myopathy; (4) although they recover function to different levels, all 4 dysferlinopathic strains show increased inflammation and necrosis 3 days after LSI.
Collapse
|
76
|
Weller C, Zschüntzsch J, Makosch G, Metselaar JM, Klinker F, Klinge L, Liebetanz D, Schmidt J. Motor performance of young dystrophic mdx mice treated with long-circulating prednisolone liposomes. J Neurosci Res 2012; 90:1067-77. [PMID: 22253213 DOI: 10.1002/jnr.22825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 01/12/2023]
Abstract
For Duchenne muscular dystrophy (DMD), a common myopathy that leads to severe disability, no causal therapy is available. Glucocorticosteroids improve patients' muscle strength, but their long-term use is limited by negative side effects. Thus, pharmacological modifications of glucocorticosteroids are required to increase the efficacy by drug targeting. Liposomal encapsulation augments systemic half-life and local tissue concentrations of glucocorticosteroids and, at the same time, reduces systemic side effects. In this study, the efficacy of novel, long-circulating, polyethylene-glycol-coated liposomes encapsulating prednisolone was compared with free prednisolone in the treatment of mdx mice, a well-established animal model for DMD. Using an objective and sensitive computerized 24-hr detection system of voluntary wheel-running in single cages, we demonstrate a significant impairment of the running performance in mdx compared with black/10 control mice aged 3-6 weeks. Treatment with liposomal or free prednisolone did not improve running performance compared with saline control or empty liposomes. Histopathological parameters, including the rate of internalized nuclei and fiber size variation, and mRNA and protein expression levels of transforming growth factor (TGF)-β and monocytes chemotactic protein (MCP)-1 also remained unchanged. Bioactivity in skeletal muscle of liposomal and free prednisolone was demonstrated by elevated mRNA expression of muscle ring finger protein 1 (MuRF1), a mediator of muscle atrophy, and its forkhead box transcription factors (Foxo1/3). Our data support the assessment of voluntary running to be a robust and reproducible outcome measure of skeletal muscle performance during the early disease course of mdx mice and suggest that liposomal encapsulation is not superior in treatment efficacy compared with conventional prednisolone. Our study helps to improve the future design of experimental treatment in animal models of neuromuscular diseases.
Collapse
Affiliation(s)
- Charlotte Weller
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Liu J, Milner DJ, Boppart MD, Ross RS, Kaufman SJ. β1D chain increases α7β1 integrin and laminin and protects against sarcolemmal damage in mdx mice. Hum Mol Genet 2011; 21:1592-603. [PMID: 22180459 DOI: 10.1093/hmg/ddr596] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The dystrophin-glycoprotein complex connects myofibers with extracellular matrix laminin. In Duchenne muscular dystrophy, this linkage system is absent and the integrity of muscle fibers is compromised. One potential therapy for addressing muscular dystrophy is to augment the amount of α7β1 integrin, the major laminin-binding integrin in skeletal muscle. Whereas transgenic over-expression of α7 chain may alleviate development of muscular dystrophy and extend the lifespan of severely dystrophic mdx/utrn(-/-) mice, further enhancing levels of α7 chain provided little additional membrane integrin and negligible additional improvement in mdx mice. We demonstrate here that normal levels of β1 chain limit formation of integrin heterodimer and that increasing β1D chain in mdx mice results in more functional integrin at the sarcolemma, more matrix laminin and decreased damage of muscle fibers. Moreover, increasing the amount of β1D chain in vitro enhances transcription of α7 integrin and α2 laminin genes and the amounts of these proteins. Thus manipulation of β1D integrin expression offers a novel approach to enhance integrin-mediated therapy for muscular dystrophy.
Collapse
Affiliation(s)
- Jianming Liu
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
78
|
Giacomotto J, Ségalat L, Carre-Pierrat M, Gieseler K. Caenorhabditis elegans as a chemical screening tool for the study o f neuromuscular disorders. Manual and semi-automated methods. Methods 2011; 56:103-13. [PMID: 22041718 DOI: 10.1016/j.ymeth.2011.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/07/2011] [Accepted: 10/17/2011] [Indexed: 02/05/2023] Open
Abstract
We previously reported the use of the cheap and fast-growing nematode Caenorhabditis elegans to search for molecules, which reduce muscle degeneration in a model for Duchenne Muscular Dystrophy (DMD). We showed that Prednisone, a steroid that is generally prescribed as a palliative treatment to DMD patients, also reduced muscle degeneration in the C. elegans DMD model. We further showed that this strategy could lead to the discovery of new and unsuspected small molecules, which have been further validated in a mammalian model of DMD, i.e. the mdx mouse model. These proof-of-principles demonstrate that C. elegans can serve as a screening tool to search for drugs against neuromuscular disorders. Here, we report and discuss two methodologies used to screen chemical libraries for drugs against muscle disorders in C. elegans. We first describe a manual method used to find drugs against DMD. We further present a semi-automated method, which is currently in use for the search of drugs against the Schwartz-Jampel Syndrome (SJS). Both assays are simple to implement and can be readily transposed and/or adapted to screens against other muscle/neuromuscular diseases, which can be modeled in the worm. Finally we discuss, with respect to our experience and knowledge, the different parameters that have to be taken into account before choosing one or the other method.
Collapse
Affiliation(s)
- Jean Giacomotto
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, NSW 2050, Australia
| | | | | | | |
Collapse
|
79
|
Beastrom N, Lu H, Macke A, Canan BD, Johnson EK, Penton CM, Kaspar BK, Rodino-Klapac LR, Zhou L, Janssen PML, Montanaro F. mdx(⁵cv) mice manifest more severe muscle dysfunction and diaphragm force deficits than do mdx Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2464-74. [PMID: 21893021 DOI: 10.1016/j.ajpath.2011.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 11/25/2022]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle dysfunction leading to premature death by the third decade of life. The mdx mouse, the most widely used animal model of DMD, has been extremely useful to study disease mechanisms and to screen new therapeutics. However, unlike patients with DMD, mdx mice have a very mild motor function deficit, posing significant limitations for its use as a platform to assess the impact of treatments on motor function. It has been suggested that an mdx variant, the mdx(5cv) mouse, might be more severely affected. Here, we compared the motor activity, histopathology, and individual muscle force measurements of mdx and mdx(⁵cv) mice. Our study revealed that mdx(⁵cv) mice showed more severe exercise-induced fatigue, Rotarod performance deficits, and gait anomalies than mdx mice and that these deficits began at a younger age. Muscle force studies showed more severe strength deficits in the diaphragm of mdx(⁵cv) mice compared to mdx mice, but similar force generation in the extensor digitorum longus. Muscle histology was similar between the two strains. Differences in genetic background (genetic modifiers) probably account for these functional differences between mdx strains. Overall, our findings indicate that the mdx and mdx(⁵cv) mouse models of DMD are not interchangeable and identify the mdx(⁵cv) mouse as a valuable platform for preclinical studies that require assessment of muscle function in live animals.
Collapse
Affiliation(s)
- Nicholas Beastrom
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Klyen BR, Shavlakadze T, Radley-Crabb HG, Grounds MD, Sampson DD. Identification of muscle necrosis in the mdx mouse model of Duchenne muscular dystrophy using three-dimensional optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:076013. [PMID: 21806274 DOI: 10.1117/1.3598842] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Three-dimensional optical coherence tomography (3D-OCT) was used to image the structure and pathology of skeletal muscle tissue from the treadmill-exercised mdx mouse model of human Duchenne muscular dystrophy. Optical coherence tomography (OCT) images of excised muscle samples were compared with co-registered hematoxylin and eosin-stained and Evans blue dye fluorescence histology. We show, for the first time, structural 3D-OCT images of skeletal muscle dystropathology well correlated with co-located histology. OCT could identify morphological features of interest and necrotic lesions within the muscle tissue samples based on intrinsic optical contrast. These findings demonstrate the utility of 3D-OCT for the evaluation of small-animal skeletal muscle morphology and pathology, particularly for studies of mouse models of muscular dystrophy.
Collapse
Affiliation(s)
- Blake R Klyen
- The University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+Biomedical Engineering Laboratory, M018, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| | | | | | | | | |
Collapse
|
81
|
Koenig X, Dysek S, Kimbacher S, Mike AK, Cervenka R, Lukacs P, Nagl K, Dang XB, Todt H, Bittner RE, Hilber K. Voltage-gated ion channel dysfunction precedes cardiomyopathy development in the dystrophic heart. PLoS One 2011; 6:e20300. [PMID: 21677768 PMCID: PMC3100353 DOI: 10.1371/journal.pone.0020300] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/24/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is associated with severe cardiac complications including cardiomyopathy and cardiac arrhythmias. Recent research suggests that impaired voltage-gated ion channels in dystrophic cardiomyocytes accompany cardiac pathology. It is, however, unknown if the ion channel defects are primary effects of dystrophic gene mutations, or secondary effects of the developing cardiac pathology. METHODOLOGY/PRINCIPAL FINDINGS To address this question, we first investigated sodium channel impairments in cardiomyocytes derived from dystrophic neonatal mice prior to cardiomyopahty development, by using the whole cell patch clamp technique. Besides the most common model for DMD, the dystrophin-deficient mdx mouse, we also used mice additionally carrying an utrophin mutation. In neonatal cardiomyocytes, dystrophin-deficiency generated a 25% reduction in sodium current density. In addition, extra utrophin-deficiency significantly altered sodium channel gating parameters. Moreover, also calcium channel inactivation was considerably reduced in dystrophic neonatal cardiomyocytes, suggesting that ion channel abnormalities are universal primary effects of dystrophic gene mutations. To assess developmental changes, we also studied sodium channel impairments in cardiomyocytes derived from dystrophic adult mice, and compared them with the respective abnormalities in dystrophic neonatal cells. Here, we found a much stronger sodium current reduction in adult cardiomyocytes. The described sodium channel impairments slowed the upstroke of the action potential in adult cardiomyocytes, and only in dystrophic adult mice, the QRS interval of the electrocardiogram was prolonged. CONCLUSIONS/SIGNIFICANCE Ion channel impairments precede pathology development in the dystrophic heart, and may thus be considered potential cardiomyopathy triggers.
Collapse
MESH Headings
- Action Potentials/physiology
- Animals
- Animals, Newborn
- Barium/metabolism
- Calcium Channels, L-Type/metabolism
- Cardiomyopathies/pathology
- Cardiomyopathies/physiopathology
- Cells, Cultured
- Dystrophin/genetics
- Electrocardiography
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Mutation
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Patch-Clamp Techniques
- Sodium/metabolism
- Sodium Channels/metabolism
- Utrophin/deficiency
Collapse
Affiliation(s)
- Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Dysek
- Center for Anatomy and Cell Biology, Neuromuscular Research Department, Medical University of Vienna, Vienna, Austria
| | - Stefanie Kimbacher
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Center for Anatomy and Cell Biology, Neuromuscular Research Department, Medical University of Vienna, Vienna, Austria
| | - Agnes K. Mike
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rene Cervenka
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Peter Lukacs
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Katrin Nagl
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Xuan B. Dang
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannes Todt
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Reginald E. Bittner
- Center for Anatomy and Cell Biology, Neuromuscular Research Department, Medical University of Vienna, Vienna, Austria
| | - Karlheinz Hilber
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
82
|
Guevel L, Lavoie JR, Perez-Iratxeta C, Rouger K, Dubreil L, Feron M, Talon S, Brand M, Megeney LA. Quantitative proteomic analysis of dystrophic dog muscle. J Proteome Res 2011; 10:2465-78. [PMID: 21410286 DOI: 10.1021/pr2001385] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by null mutations in the dystrophin gene, leading to progressive and unrelenting muscle loss. Although the genetic basis of DMD is well resolved, the cellular mechanisms associated with the physiopathology remain largely unknown. Increasing evidence suggests that secondary mechanisms, as the alteration of key signaling pathways, may play an important role. In order to identify reliable biomarkers and potential therapeutic targets, and taking advantage of the clinically relevant Golden Retriever Muscular Dystrophy (GRMD) dog model, a proteomic study was performed. Isotope-coded affinity tag (ICAT) profiling was used to compile quantitative changes in protein expression profiles of the vastus lateralis muscles of 4-month old GRMD vs healthy dogs. Interestingly, the set of under-expressed proteins detected appeared primarily composed of metabolic proteins, many of which have been shown to be regulated by the transcriptional peroxisome proliferator-activated receptor-gamma co-activator 1 alpha (PGC-1α). Subsequently, we were able to showed that PGC1-α expression is dramatically reduced in GRMD compared to healthy muscle. Collectively, these results provide novel insights into the molecular pathology of the clinically relevant animal model of DMD, and indicate that defective energy metabolism is a central hallmark of the disease in the canine model.
Collapse
Affiliation(s)
- Laetitia Guevel
- CNRS UMR6204, Faculté des Sciences et des Techniques, F-44322 Nantes Cedex 3, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Comim CM, Moraz T, Abreu I, Fraga DB, Ghedim FV, Mildner N, Tuon L, Vainzof M, Zugno AI, Quevedo J. Reduction of acethylcolinesterase activity in the brain of mdx mice. Neuromuscul Disord 2011; 21:359-62. [PMID: 21441030 DOI: 10.1016/j.nmd.2011.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 01/26/2011] [Accepted: 02/18/2011] [Indexed: 11/19/2022]
Abstract
Lack of dystrophin in brain structures have been involved with impaired cognitive functions. Acethylcolinesterase (AChE) is implicated in many cognitive functions and probably plays important roles in neurodegenerative disorders. In the present study, we investigated AChE activity in the prefrontal cortex, hippocampus, striatum and cortex of mdx mice. To this aim, brain tissues from male dystrophic mdx and normal control mice were used. We observed that mdx mice display a reduction in AChE activity of 40-60% in all brain structures evaluated. In conclusion, dystrophin deficiency may be affecting AChE activity and contributing negatively, in part, to memory storage and restoring.
Collapse
Affiliation(s)
- Clarissa M Comim
- Laboratory of Neurosciences and National Institute for Translational Medicine (INCT-TM), Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, 88806-000 Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Hiroki E, Abe S, Iwanuma O, Sakiyama K, Yanagisawa N, Shiozaki K, Ide Y. A comparative study of myostatin, follistatin and decorin expression in muscle of different origin. Anat Sci Int 2011; 86:151-9. [PMID: 21416223 DOI: 10.1007/s12565-011-0103-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/09/2011] [Indexed: 11/28/2022]
Abstract
Muscle regeneration supports muscle function in aging, and plays a role in the functional impairment caused by progressive neuromuscular diseases. Major substances controlling this process are growth factors and the extracellular matrix (ECM). Thus, follistatin is known to antagonize the function of several members of the TGF-β family of secreted signaling factors, including myostatin-the most powerful inhibitor of muscle growth characterized to date. Decorin-a small leucine-rich proteoglycan-traps myostatin and modulates its activity towards myogenic cells in the ECM. In addition, there are few reports concerning the regenerative muscle process of masseter muscles, which are of branchial arch origin, in mdx mice. Thus, in order to clarify the muscle regenerative process of masseter muscle, gene and protein expression of myostatin, follistatin and decorin were examined using the tibialis anterior (TA)muscle as a positive control. In both muscles, a gradual increase in mRNA myostatin, follistatin and decorin expression was detected, with the increase being greater in TA muscle than in masseter muscle. At 2 weeks, both muscles exhibited normal skeletal muscle cells. At 3 weeks, masseter muscle demonstrated scant areas of necrosis, whereas large necrotic zones were seen in TA muscle. At 4 weeks, the formation of necrotic tissue and presence of follistatin protein was observed clearly in masseter muscle. This result indicates that follistatin production is stimulated in the presence of necrosis. Interestingly, both muscles showed the same process of muscular formation, but with different time frames, which could be related to muscle origin.
Collapse
Affiliation(s)
- Emi Hiroki
- Department of Anatomy, Tokyo Dental College, Masago, Mihama-ku, Chiba-City, Japan
| | | | | | | | | | | | | |
Collapse
|
85
|
Kim MH, Kay DI, Rudra RT, Chen BM, Hsu N, Izumiya Y, Martinez L, Spencer MJ, Walsh K, Grinnell AD, Crosbie RH. Myogenic Akt signaling attenuates muscular degeneration, promotes myofiber regeneration and improves muscle function in dystrophin-deficient mdx mice. Hum Mol Genet 2011; 20:1324-38. [PMID: 21245083 DOI: 10.1093/hmg/ddr015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy, the most common form of childhood muscular dystrophy, is caused by X-linked inherited mutations in the dystrophin gene. Dystrophin deficiencies result in the loss of the dystrophin-glycoprotein complex at the plasma membrane, which leads to structural instability and muscle degeneration. Previously, we induced muscle-specific overexpression of Akt, a regulator of cellular metabolism and survival, in mdx mice at pre-necrotic (<3.5 weeks) ages and demonstrated upregulation of the utrophin-glycoprotein complex and protection against contractile-induced stress. Here, we found that delaying exogenous Akt treatment of mdx mice after the onset of peak pathology (>6 weeks) similarly increased the abundance of compensatory adhesion complexes at the extrasynaptic sarcolemma. Akt introduction after onset of pathology reverses the mdx histopathological measures, including decreases in blood serum albumin infiltration. Akt also improves muscle function in mdx mice as demonstrated through in vivo grip strength tests and in vitro contraction measurements of the extensor digitorum longus muscle. To further explore the significance of Akt in myofiber regeneration, we injured wild-type muscle with cardiotoxin and found that Akt induced a faster regenerative response relative to controls at equivalent time points. We demonstrate that Akt signaling pathways counteract mdx pathogenesis by enhancing endogenous compensatory mechanisms. These findings provide a rationale for investigating the therapeutic activation of the Akt pathway to counteract muscle wasting.
Collapse
Affiliation(s)
- Michelle H Kim
- Department of Integrative Biology and Physiology, David Geffen School of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Siegel AS, Henley S, Zimmerman A, Miles M, Plummer R, Kurz J, Balch F, Rhodes JA, Shinn GL, Carlson CG. The influence of passive stretch and NF-κB inhibitors on the morphology of dystrophic muscle fibers. Anat Rec (Hoboken) 2011; 294:132-44. [PMID: 21157924 PMCID: PMC3076613 DOI: 10.1002/ar.21294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/13/2010] [Indexed: 11/12/2022]
Abstract
The triangularis sterni (TS) is an expiratory muscle that is passively stretched during inspiration. The magnitude of passive stretch depends upon the location of individual fibers within the TS muscle, with fibers located more caudally being stretched ∼ 5% to 10% more than fibers in the cephalad region. In the mdx mouse model for muscular dystrophy, the TS exhibits severe pathological alterations that are ameliorated by treatment with inhibitors of the NF-κB pathway. The purpose of this study was to assess the influence of passive stretch in vivo on fiber morphology in nondystrophic and mdx TS muscles, and the morphological benefits of treating mdx mice with two distinct NF-κB inhibitors, pyrrolidine dithiocarbamate (PDTC), and ursodeoxycholic acid (UDCA). Transmission electron microscopy revealed Z-line streaming, hypercontraction, and disassociation of the plasma membrane from the basal lamina in mdx fibers. In both nondystrophic and mdx TS muscles, fiber density was larger in more caudal regions. In comparison with nondystrophic TS, fibers in the mdx TS exhibited substantial reductions in diameter throughout all regions. In vivo treatment with either PDTC or UDCA tended to increase fiber diameter in the middle and decrease fiber diameter in the caudal TS, while reducing centronucleation in the middle region. These results suggest that passive stretch induces hypercontraction and plasma membrane abnormalities in dystrophic muscle, and that differences in the magnitude of passive stretch may influence fiber morphology and the actions of NF-κB inhibitors on dystrophic morphology.
Collapse
Affiliation(s)
- AS Siegel
- Department of Physiology, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, MO, USA
| | - S Henley
- Department of Physiology, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, MO, USA
| | - A Zimmerman
- Department of Physiology, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, MO, USA
| | - M Miles
- Department of Physiology, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, MO, USA
| | - R Plummer
- Department of Physiology, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, MO, USA
| | - J Kurz
- Department of Physiology, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, MO, USA
| | - F Balch
- Department of Physiology, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, MO, USA
| | | | | | - CG Carlson
- Department of Physiology, Kirksville College of Osteopathic Medicine, AT Still University, Kirksville, MO, USA
| |
Collapse
|
87
|
Koppanati BM, Li J, Reay DP, Wang B, Daood M, Zheng H, Xiao X, Watchko JF, Clemens PR. Improvement of the mdx mouse dystrophic phenotype by systemic in utero AAV8 delivery of a minidystrophin gene. Gene Ther 2010; 17:1355-62. [PMID: 20535217 PMCID: PMC2939256 DOI: 10.1038/gt.2010.84] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 03/23/2010] [Accepted: 04/17/2010] [Indexed: 01/19/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating primary muscle disease with pathological changes in skeletal muscle that are ongoing at the time of birth. Progressive deterioration in striated muscle function in affected individuals ultimately results in early death due to cardio-pulmonary failure. As affected individuals can be identified before birth by prenatal genetic testing for DMD, gene replacement treatment can be started in utero. This approach offers the possibility of preventing pathological changes in muscle that begin early in life. To test in utero gene transfer in the mdx mouse model of DMD, a minidystrophin gene driven by the human cytomegalovirus promoter was delivered systemically by an intraperitoneal injection to the fetus at embryonic day 16. Treated mdx mice studied at 9 weeks after birth showed widespread expression of recombinant dystrophin in skeletal muscle, restoration of the dystrophin-associated glycoprotein complex in dystrophin-expressing muscle fibers, improved muscle pathology, and functional benefit to the transduced diaphragm compared with untreated littermate controls. These results support the potential of the AAV8 vector to efficiently cross the blood vessel barrier to achieve systemic gene transfer to skeletal muscle in utero in a mouse model of muscular dystrophy, to significantly improve the dystrophic phenotype and to ameliorate the processes that lead to exhaustion of the skeletal muscle regenerative capacity.
Collapse
Affiliation(s)
- B M Koppanati
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Guido AN, Campos GER, Neto HS, Marques MJ, Minatel E. Fiber type composition of the sternomastoid and diaphragm muscles of dystrophin-deficient mdx mice. Anat Rec (Hoboken) 2010; 293:1722-8. [PMID: 20730859 DOI: 10.1002/ar.21224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 05/06/2010] [Indexed: 11/05/2022]
Abstract
The muscle fiber phenotype is mainly determined by motoneuron innervation and changes in neuromuscular interaction alter the muscle fiber type. In dystrophin-deficient mdx mice, changes in the molecular assembly of the neuromuscular junction and in nerve terminal sprouting occur in the sternomastoid (STN) muscle during early stages of the disease. In this study, we were interested to see whether early changes in neuromuscular assembly are correlated with alterations in fiber type in dystrophic STN at 2 months of age. A predominance of hybrid fast myofibers (about 52% type IIDB) was observed in control (C57Bl/10) STN. In mdx muscle, the lack of dystrophin did not change this profile (about 54% hybrid type IIDB). Pure fast type IID fibers predominated in normal and dystrophic diaphragm (DIA; about 39% in control and 30% in mdx muscle) and a population of slow Type I fibers was also present (about 10% in control and 13% in mdx muscle). In conclusion, early changes in neuromuscular assembly do not affect the fiber type composition of dystrophic STN. In contrast to the pure fast fibers of the more affected DIA, the hybrid phenotype of the STN may permit dynamic adaptations during progression of the disease.
Collapse
Affiliation(s)
- Anderson Neri Guido
- Departamento de Anatomia, Biologia Celular, Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
89
|
Inhibition of the IKK/NF-κB pathway by AAV gene transfer improves muscle regeneration in older mdx mice. Gene Ther 2010; 17:1476-83. [PMID: 20720575 DOI: 10.1038/gt.2010.110] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The IκB kinase (IKKα, β and the regulatory subunit IKKγ) complex regulates nuclear factor of κB (NF-κB) transcriptional activity, which is upregulated in many chronic inflammatory diseases. NF-κB signaling promotes inflammation and limits muscle regeneration in Duchenne muscular dystrophy (DMD), resulting in fibrotic and fatty tissue replacement of muscle that exacerbates the wasting process in dystrophic muscles. Here, we examined whether dominant-negative forms of IKKα (IKKα-dn) and IKKβ (IKKβ-dn) delivered by adeno-associated viral (AAV) vectors to the gastrocnemius (GAS) and tibialis anterior (TA) muscles of 1, 2 and 11-month-old mdx mice, a murine DMD model, block NF-κB activation and increase muscle regeneration. At 1 month post-treatment, the levels of nuclear NF-κB in locally treated muscle were decreased by gene transfer with either AAV-CMV-IKKα-dn or AAV-CMV-IKKβ-dn, but not by IKK wild-type controls (IKKα and β) or phosphate-buffered saline (PBS). Although treatment with AAV-IKKα-dn or AAV-IKKβ-dn vectors had no significant effect on muscle regeneration in young mdx mice treated at 1 and 2 months of age and collected 1 month later, treatment of old (11 months) mdx with AAV-CMV-IKKα-dn or AAV-CMV-IKKβ-dn significantly increased levels of muscle regeneration. In addition, there was a significant decrease in myofiber necrosis in the AAV-IKKα-dn- and AAV-IKKβ-dn-treated mdx muscle in both young and old mice. These results demonstrate that inhibition of IKKα or IKKβ in dystrophic muscle reduces the adverse effects of NF-κB signaling, resulting in a therapeutic effect. Moreover, these results clearly demonstrate the therapeutic benefits of inhibiting NF-κB activation by AAV gene transfer in dystrophic muscle to promote regeneration, particularly in older mdx mice, and block necrosis.
Collapse
|
90
|
Leite PEC, Lagrota-Candido J, Moraes L, D'Elia L, Pinheiro DF, da Silva RF, Yamasaki EN, Quirico-Santos T. Nicotinic acetylcholine receptor activation reduces skeletal muscle inflammation of mdx mice. J Neuroimmunol 2010; 227:44-51. [PMID: 20615555 DOI: 10.1016/j.jneuroim.2010.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/02/2010] [Accepted: 06/03/2010] [Indexed: 11/29/2022]
Abstract
Mdx mice develop an inflammatory myopathy characterized at different ages by myonecrosis with scattered inflammatory infiltrates followed by muscular regeneration and later persistent fibrosis. This work aimed to verify the putative anti-inflammatory role of nicotinic acetylcholine receptor (nAChR) in the mdx muscular lesion. Mitigation of myonecrosis and decreased TNFα production were accompanied by increased numbers of F4/80 macrophages expressing nAChRα7. In vivo treatment with nicotine attenuated muscular inflammation characterized by reduced metalloprotease MMP-9 activity, TNFα and NFkB content and increased muscular regeneration. Our data indicate that nAChR activation influences local inflammatory responses in the muscular lesion of mdx mice.
Collapse
Affiliation(s)
- Paulo Emílio Corrêa Leite
- Laboratório de Patologia Celular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Histological changes in masticatory muscles of mdx mice. Arch Oral Biol 2010; 55:318-24. [DOI: 10.1016/j.archoralbio.2010.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 02/01/2010] [Accepted: 02/06/2010] [Indexed: 11/18/2022]
|
92
|
Proteomic profiling of x-linked muscular dystrophy. J Muscle Res Cell Motil 2010; 30:267-9. [DOI: 10.1007/s10974-009-9197-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 12/24/2009] [Indexed: 01/10/2023]
|
93
|
Pertille A, de Carvalho CLT, Matsumura CY, Neto HS, Marques MJ. Calcium-binding proteins in skeletal muscles of the mdx mice: potential role in the pathogenesis of Duchenne muscular dystrophy. Int J Exp Pathol 2009; 91:63-71. [PMID: 20002835 DOI: 10.1111/j.1365-2613.2009.00688.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Duchenne muscular dystrophy is one of the most common hereditary diseases. Abnormal ion handling renders dystrophic muscle fibers more susceptible to necrosis and a rise in intracellular calcium is an important initiating event in dystrophic muscle pathogenesis. In the mdx mice, muscles are affected with different intensities and some muscles are spared. We investigated the levels of the calcium-binding proteins calsequestrin and calmodulin in the non-spared axial (sternomastoid and diaphragm), limb (tibialis anterior and soleus), cardiac and in the spared extraocular muscles (EOM) of control and mdx mice. Immunoblotting analysis showed a significant increase of the proteins in the spared mdx EOM and a significant decrease in the most affected diaphragm. Both proteins were comparable to the cardiac muscle controls. In limb and sternomastoid muscles, calmodulin and calsequestrin were affected differently. These results suggest that differential levels of the calcium-handling proteins may be involved in the pathogenesis of myonecrosis in mdx muscles. Understanding the signaling mechanisms involving Ca(2+)-calmodulin activation and calsequestrin expression may be a valuable way to develop new therapeutic approaches to the dystrophinopaties.
Collapse
Affiliation(s)
- Adriana Pertille
- Departamento de Anatomia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
94
|
Lauritzen F, Paulsen G, Raastad T, Bergersen LH, Owe SG. Gross ultrastructural changes and necrotic fiber segments in elbow flexor muscles after maximal voluntary eccentric action in humans. J Appl Physiol (1985) 2009; 107:1923-34. [DOI: 10.1152/japplphysiol.00148.2009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eccentric muscle actions are associated with ultrastructural changes. The severity and types of change depend on the nature of the stimulation protocol, and on the method for assessing such changes, and can be regarded as a continuum from mild changes to pathological-like changes. Most studies describing more severe changes have been performed on animals and only a few in humans, some using electrical stimuli. Hence, a debate has emerged on whether voluntary actions are associated with the pathological-like end of the continuum. The aim of this study was to determine whether severe muscle damage, i.e., extensive ultrastructural changes, is confined to animal studies and studies on humans using electrical stimuli. Second, because there is no generally approved method to quantify the degree of muscle damage, we compared two published methods, analyzing the Z disks or sarcomeres, as well as novel analyses of pathological-like changes. A group of untrained subjects performed 70 voluntary maximal eccentric muscle actions using the elbow flexors. On the basis of large reductions in maximal force-generating capacity (on average, −62 ± 3% immediately after exercise, and −35 ± 6% 9 days later), five subjects were selected for further analysis. Biopsies were taken from m. biceps brachii in both the exercised and nonexercised arm. In exercised muscle, more disrupted (13 ± 4 vs. 3 ± 3%) and destroyed (15 ± 6 vs. 0%) Z disks were found compared with nonexercised muscle. A significant proportion of exercised myofibers had focal (85 ± 5 vs. 11 ± 7%), moderate (65 ± 7 vs. 11 ± 6%), and extreme (38 ± 9 vs. 0%) myofibrillar disruptions. Hypercontracted myofibrils, autophagic vacuoles, granular areas, central nuclei, and necrotic fiber segments were found to various degrees. The present study demonstrates that the more severe end of the continuum of ultrastructural changes occurs in humans after voluntary exercise when maximal eccentric muscle actions are involved.
Collapse
Affiliation(s)
- Fredrik Lauritzen
- Department of Anatomy and Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, and
- Norwegian School of Sports Sciences, Oslo, Norway
| | | | | | - Linda Hildegard Bergersen
- Department of Anatomy and Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, and
| | - Simen Gylterud Owe
- Department of Anatomy and Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, and
| |
Collapse
|
95
|
Evans NP, Call JA, Bassaganya-Riera J, Robertson JL, Grange RW. Green tea extract decreases muscle pathology and NF-kappaB immunostaining in regenerating muscle fibers of mdx mice. Clin Nutr 2009; 29:391-8. [PMID: 19897286 DOI: 10.1016/j.clnu.2009.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 08/09/2009] [Accepted: 10/08/2009] [Indexed: 11/17/2022]
Abstract
BACKGROUND & AIMS Duchenne muscular dystrophy is a debilitating genetic disorder characterized by severe muscle wasting and early death in afflicted boys. The primary cause of this disease is mutations in the dystrophin gene resulting in massive muscle degeneration and inflammation. The purpose of this study was to determine if dystrophic muscle pathology and inflammation were decreased by pre-natal and early dietary intervention with green tea extract. METHODS Mdx breeder mice and pups were fed diets containing 0.25% or 0.5% green tea extract and compared to untreated mdx and C57BL/6J mice. Serum creatine kinase was assessed as a systemic indicator of muscle damage. Quantitative histopathological and immunohistochemical techniques were used to determine muscle pathology, macrophage infiltration, and NF-kappaB localization. RESULTS Early treatment of mdx mice with green tea extract significantly decreased serum creatine kinase by approximately 85% at age 42 days (P< or =0.05). In these mice, the area of normal fiber morphology was increased by as much as approximately 32% (P< or =0.05). The primary histopathological change was a approximately 21% decrease in the area of regenerating fibers (P< or =0.05). NF-kappaB staining in regenerating muscle fibers was also significantly decreased in green tea extract-treated mdx mice when compared to untreated mdx mice (P< or =0.05). CONCLUSION Early treatment with green tea extract decreases dystrophic muscle pathology potentially by regulating NF-kappaB activity in regenerating muscle fibers.
Collapse
MESH Headings
- Aging
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Biomarkers/blood
- Dose-Response Relationship, Drug
- Female
- Macrophages/drug effects
- Male
- Mice
- Mice, Inbred mdx
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/blood
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/prevention & control
- NF-kappa B/metabolism
- Necrosis/pathology
- Necrosis/prevention & control
- Phytotherapy
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Pregnancy
- Prenatal Exposure Delayed Effects
- Random Allocation
- Regeneration/drug effects
- Tea/chemistry
Collapse
Affiliation(s)
- Nicholas P Evans
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, 338 Wallace Hall, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
96
|
Giacomotto J, Pertl C, Borrel C, Walter MC, Bulst S, Johnsen B, Baillie DL, Lochmüller H, Thirion C, Ségalat L. Evaluation of the therapeutic potential of carbonic anhydrase inhibitors in two animal models of dystrophin deficient muscular dystrophy. Hum Mol Genet 2009; 18:4089-101. [PMID: 19648295 DOI: 10.1093/hmg/ddp358] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Duchenne Muscular Dystrophy is an inherited muscle degeneration disease for which there is still no efficient treatment. However, compounds active on the disease may already exist among approved drugs but are difficult to identify in the absence of cellular models. We used the Caenorhabditis elegans animal model to screen a collection of 1000 already approved compounds. Two of the most active hits obtained were methazolamide and dichlorphenamide, carbonic anhydrase inhibitors widely used in human therapy. In C. elegans, these drugs were shown to interact with CAH-4, a putative carbonic anhydrase. The therapeutic efficacy of these compounds was further validated in long-term experiments on mdx mice, the mouse model of Duchenne Muscular Dystrophy. Mice were treated for 120 days with food containing methazolamide or dichlorphenamide at two doses each. Musculus tibialis anterior and diaphragm muscles were histologically analyzed and isometric muscle force was measured in M. extensor digitorum longus. Both substances increased the tetanic muscle force in the treated M. extensor digitorum longus muscle group, dichlorphenamide increased the force significantly by 30%, but both drugs failed to increase resistance of muscle fibres to eccentric contractions. Histological analysis revealed a reduction of centrally nucleated fibers in M. tibialis anterior and diaphragm in the treated groups. These studies further demonstrated that a C. elegans-based screen coupled with a mouse model validation strategy can lead to the identification of potential pharmacological agents for rare diseases.
Collapse
Affiliation(s)
- Jean Giacomotto
- Centre de Génétique Moléculaire et Cellulaire, UMR 5534, Université Lyon 1, 69622 Villeurbanne Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Ferretti R, Marques MJ, Pertille A, Santo Neto H. Sarcoplasmic-endoplasmic-reticulum Ca2+-ATPase and calsequestrin are overexpressed in spared intrinsic laryngeal muscles of dystrophin-deficientmdxmice. Muscle Nerve 2009; 39:609-15. [DOI: 10.1002/mus.21154] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
98
|
Banks GB, Chamberlain JS, Froehner SC. Truncated dystrophins can influence neuromuscular synapse structure. Mol Cell Neurosci 2009; 40:433-41. [PMID: 19171194 PMCID: PMC2826111 DOI: 10.1016/j.mcn.2008.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/12/2008] [Accepted: 12/16/2008] [Indexed: 11/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by muscle degeneration and structural defects in the neuromuscular synapse that are caused by mutations in dystrophin. Whether aberrant neuromuscular synapse structure is an indirect consequence of muscle degeneration or a direct result of loss of dystrophin function is not known. Rational design of truncated dystrophins has enabled the design of expression cassettes highly effective at preventing muscle degeneration in mouse models of DMD using gene therapy. Here we examined the functional capacity of a minidystrophin (minidysGFP) and a microdystrophin (microdystrophin(DeltaR4-R23)) transgene on the maturation and maintenance of neuromuscular junctions (NMJ) in mdx mice. We found that minidysGFP prevents fragmentation and the loss of postsynaptic folds at the NMJ. In contrast, microdystrophin (DeltaR4-R23) was unable to prevent synapse fragmentation in the limb muscles despite preventing muscle degeneration, although fragmentation was observed to temporally correlate with the formation of ringed fibers. Surprisingly, microdystrophin(DeltaR4-R23) increased the length of synaptic folds in the diaphragm muscles of mdx mice independent of muscle degeneration or the formation of ringed fibers. We also demonstrate that the number and depth of synaptic folds influences the density of voltage-gated sodium channels at the neuromuscular synapse in mdx, microdystrophin(DeltaR4-R23)/mdx and mdx:utrophin double knockout mice. Together, these data suggest that maintenance of the neuromuscular synapse is governed through its lateral association with the muscle cytoskeleton, and that dystrophin has a direct role in promoting the maturation of synaptic folds to allow more sodium channels into the junction.
Collapse
Affiliation(s)
- Glen B Banks
- Department of Neurology, Senator Paul D Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
99
|
Marotta M, Ruiz-Roig C, Sarria Y, Peiro JL, Nuñez F, Ceron J, Munell F, Roig-Quilis M. Muscle genome-wide expression profiling during disease evolution in mdx mice. Physiol Genomics 2009; 37:119-32. [DOI: 10.1152/physiolgenomics.90370.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mdx mice show a milder phenotype than Duchenne patients despite bearing an analogous genetic defect. Our aim was to sort out genes, differentially expressed during the evolution of skeletal muscle mdx mouse disease, to elucidate the mechanisms by which these animals overcome the lack of dystrophin. Genome-wide microarray-based gene expression analysis was carried out at 3 wk and 1.5 and 3 mo of life. Candidate genes were selected by comparing: 1) mdx vs. controls at each point in time, and 2) mdx mice and 3) control mice among the three points in time. The first analysis showed a strong upregulation (96%) of inflammation-related genes and in >75% of genes related to cell adhesion, muscle structure/regeneration, and extracellular matrix remodeling during mdx disease evolution. Lgals3, Postn, Ctss, and Sln genes showed the strongest variations. The analysis performed among points in time demonstrated significant changes in Ecm1, Spon1, Thbs1, Csrp3, Myo10, Pde4b, and Adamts-5 exclusively during mdx mice lifespan. RT-PCR analysis of Postn, Sln, Ctss, Thbs1, Ecm1, and Adamts-5 expression from 3 wk to 9 mo, confirmed microarray data and demonstrated variations beyond 3 mo of age. A high-confidence functional network analysis demonstrated a strong relationship between them and showed two main subnetworks, having Dmd- Utrn- Myo10 and Adamts5- Thbs1- Spon1-Postn as principal nodes, which are functionally linked to Abca1, Actn4, Crebbp, Csrp3, Lama1, Lama3, Mical2, Mical3, Myf6, Pxn, and Sparc genes. Candidate genes may participate in the decline of muscle necrosis in mdx mice and could be considered potential therapeutic targets for Duchenne patients.
Collapse
Affiliation(s)
- Mario Marotta
- Laboratori de Neurologia Infantil, Institut de Recerca, Barcelona, Spain
| | - Claudia Ruiz-Roig
- Laboratori de Neurologia Infantil, Institut de Recerca, Barcelona, Spain
| | - Yaris Sarria
- Laboratori de Neurologia Infantil, Institut de Recerca, Barcelona, Spain
| | - Jose Luis Peiro
- Unitat de Cirurgia Fetal i Neonatal, Departament de Cirurgia Pediàtrica, Barcelona, Spain
| | - Fatima Nuñez
- Unitat Cientifico-Tecnica de Suport (UCTS), Institut de Recerca, Barcelona, Spain
| | - Julian Ceron
- Genetics and Functional Genomics Group, Molecular Biology and Biochemistry Research Center for Nanomedicine (CIBBIM), Barcelona, Spain
| | - Francina Munell
- Unitat de Recerca Biomedica, Institut de Recerca, Barcelona, Spain
| | - Manuel Roig-Quilis
- Laboratori de Neurologia Infantil, Institut de Recerca, Barcelona, Spain
- Secció de Neurologia Infantil, Hospital Materno-Infantil, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
100
|
Feron M, Guevel L, Rouger K, Dubreil L, Arnaud MC, Ledevin M, Megeney LA, Cherel Y, Sakanyan V. PTEN contributes to profound PI3K/Akt signaling pathway deregulation in dystrophin-deficient dog muscle. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1459-70. [PMID: 19264909 DOI: 10.2353/ajpath.2009.080460] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Duchenne muscular dystrophy is the most common and severe form of muscular dystrophy, and although the genetic basis of this disease is well defined, the overall mechanisms that define its pathogenesis remain obscure. Alterations in individual signaling pathways have been described, but little information is available regarding their putative implications in Duchenne muscular dystrophy pathogenesis. Here, we studied the status of various major signaling pathways in the Golden Retriever muscular dystrophy dog that specifically reproduces the full spectrum of human pathology. Using antibody arrays, we found that Akt1, glycogen synthase kinase-3beta (GSK3beta), 70-kDa ribosomal protein S6 kinase (p70S6K), extracellular signal-regulated kinases 1/2, and p38delta and p38gamma kinases all exhibited decreased phosphorylation in muscle from a 4-month-old animal with Golden Retriever muscular dystrophy, revealing a deep alteration of the phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways. Immunohistochemistry analysis revealed the presence of muscle fibers exhibiting a cytosolic accumulation of Akt1, GSK3beta, and phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (PTEN), an enzyme counteracting PI3K-mediated Akt activation. Enzymatic assays established that these alterations in phosphorylation and expression levels were associated with decreased Akt and increased GSK3beta and PTEN activities. PTEN/GSK3beta-positive fibers were also observed in muscle sections from 3- and 36-month-old animals, indicating long-term PI3K/Akt pathway alteration. Collectively, our data suggest that increased PTEN expression and activity play a central role in PI3K/Akt/GSK3beta and p70S6K pathway modulation, which could exacerbate the consequences of dystrophin deficiency.
Collapse
Affiliation(s)
- Marie Feron
- CNRS UMR6204, Laboratoire de Biotechnologie, Université de Nantes, F-44322 Nantes Cedex 3, France.
| | | | | | | | | | | | | | | | | |
Collapse
|