51
|
Therriault J, Servaes S, Tissot C, Rahmouni N, Ashton NJ, Benedet AL, Karikari TK, Macedo AC, Lussier FZ, Stevenson J, Wang YT, Fernandez-Arias J, Stevenson A, Socualaya KQ, Haeger A, Nazneen T, Aumont É, Hosseini A, Rej S, Vitali P, Triana-Baltzer G, Kolb HC, Soucy JP, Pascoal TA, Gauthier S, Zetterberg H, Blennow K, Rosa-Neto P. Equivalence of plasma p-tau217 with cerebrospinal fluid in the diagnosis of Alzheimer's disease. Alzheimers Dement 2023; 19:4967-4977. [PMID: 37078495 PMCID: PMC10587362 DOI: 10.1002/alz.13026] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Plasma biomarkers are promising tools for Alzheimer's disease (AD) diagnosis, but comparisons with more established biomarkers are needed. METHODS We assessed the diagnostic performance of p-tau181 , p-tau217 , and p-tau231 in plasma and CSF in 174 individuals evaluated by dementia specialists and assessed with amyloid-PET and tau-PET. Receiver operating characteristic (ROC) analyses assessed the performance of plasma and CSF biomarkers to identify amyloid-PET and tau-PET positivity. RESULTS Plasma p-tau biomarkers had lower dynamic ranges and effect sizes compared to CSF p-tau. Plasma p-tau181 (AUC = 76%) and p-tau231 (AUC = 82%) assessments performed inferior to CSF p-tau181 (AUC = 87%) and p-tau231 (AUC = 95%) for amyloid-PET positivity. However, plasma p-tau217 (AUC = 91%) had diagnostic performance indistinguishable from CSF (AUC = 94%) for amyloid-PET positivity. DISCUSSION Plasma and CSF p-tau217 had equivalent diagnostic performance for biomarker-defined AD. Our results suggest that plasma p-tau217 may help reduce the need for invasive lumbar punctures without compromising accuracy in the identification of AD. HIGHLIGHTS p-tau217 in plasma performed equivalent to p-tau217 in CSF for the diagnosis of AD, suggesting the increased accessibility of plasma p-tau217 is not offset by lower accuracy. p-tau biomarkers in plasma had lower mean fold-changes between amyloid-PET negative and positive groups than p-tau biomarkers in CSF. CSF p-tau biomarkers had greater effect sizes than plasma p-tau biomarkers when differentiating between amyloid-PET positive and negative groups. Plasma p-tau181 and plasma p-tau231 performed worse than p-tau181 and p-tau231 in CSF for AD diagnosis.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden, 6 431 41
- Wallenberg Centre for Molecular Medicine, University of Gothenburg, Gothenburg, Sweden, 6, 431 41
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, United Kingdom London, UK, SE5 9RT
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK, SE5 8AF
| | - Andréa Lessa Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden, 6 431 41
| | - Thomas K. Karikari
- Wallenberg Centre for Molecular Medicine, University of Gothenburg, Gothenburg, Sweden, 6, 431 41
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA, 15213
| | - Arthur C. Macedo
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Firoza Z. Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA, 15213
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Jaime Fernandez-Arias
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Alyssa Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
| | - Kely Quispialaya Socualaya
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Arlette Haeger
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Tahnia Nazneen
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Étienne Aumont
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Ali Hosseini
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Soham Rej
- Department of Psychiatry, McGill University Montreal, Quebec, Canada, H3T 1E2
| | - Paolo Vitali
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Gallen Triana-Baltzer
- Neuroscience Biomarkers, Janssen Research & Development, La Jolla, California, USA, 92121
| | - Hartmuth C. Kolb
- Neuroscience Biomarkers, Janssen Research & Development, La Jolla, California, USA, 92121
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Tharick A. Pascoal
- Department of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA, 15213
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden, 6 431 41
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden, 6, 431 41
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK, SE5 9RT
- UK Dementia Research Institute at UCL, London, UK, SE5 9RT
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China, 0
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden, 6 431 41
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden, 6, 431 41
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Québec, Canada, H4H 1R3
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada, H3A 2B4
| |
Collapse
|
52
|
Chen SD, Zhang W, Feng YW, Wu BS, Yang L, Zhang YR, Wang HF, Guo Y, Deng YT, Feng JF, Cheng W, Dong Q, Yu JT. Genome-wide Survival Study Identifies PARL as a Novel Locus for Clinical Progression and Neurodegeneration in Alzheimer's Disease. Biol Psychiatry 2023; 94:732-742. [PMID: 36870520 DOI: 10.1016/j.biopsych.2023.02.992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/05/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Variability exists in the trajectories of Alzheimer's disease (AD). We aimed to identify genetic modulators of clinical progression in AD. METHODS We conducted the first genome-wide survival study on AD using a two-stage approach. The discovery and replication stage separately included 1158 and 211,817 individuals without dementia from the Alzheimer's Disease Neuroimaging Initiative and the UK Biobank, respectively (325 and 1103 progressed in average follow-up of 4.33 and 8.63 years, respectively). Cox proportional hazards models were applied with time to AD dementia as the phenotype of clinical progression. A series of bioinformatic analyses and functional experiments was performed to validate the novel findings. RESULTS We found that APOE and PARL, a novel locus tagged by rs6795172 (hazard ratio = 1.66, p = 1.45 × 10-9), were significantly associated with AD clinical progression and were successfully replicated. The novel locus was linked to accelerated cognitive changes, higher tau levels, and faster atrophy of AD-specific brain structures, which were also verified in UK Biobank neuroimaging follow-up. Gene analysis and summary data-based Mendelian randomization indicated PARL as the most functionally relevant gene in the locus. Expression quantitative trait locus analyses and dual-luciferase reporter assays confirmed that PARL expression could be regulated by rs6795172. Three different AD mouse models consistently showed decreased PARL expression accompanied by elevated tau levels, and in vitro experiments revealed that knockdown/overexpression of PARL inversely changed tau levels. CONCLUSIONS Collectively, genetic, bioinformatic, and functional evidence suggests that PARL modulates clinical progression and neurodegeneration in AD. Targeting PARL may potentially modify AD progression and have implications for disease-modifying therapies.
Collapse
Affiliation(s)
- Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, Shanghai, China
| | - Yi-Wei Feng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Hui-Fu Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, Shanghai, China
| | - Yu Guo
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China; Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, Shanghai, China; Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Cheng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China; Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
53
|
Schaffer Aguzzoli C, Ferreira PCL, Povala G, Ferrari-Souza JP, Bellaver B, Soares Katz C, Zalzale H, Lussier FZ, Rohden F, Abbas S, Leffa DT, Scop Medeiros M, Therriault J, Benedet AL, Tissot C, Servaes S, Rahmouni N, Cassa Macedo A, Bezgin G, Kang MS, Stevenson J, Pallen V, Cohen A, Lopez OL, Tudorascu DL, Klunk WE, Villemagne VL, Soucy JP, Zimmer ER, Schilling LP, Karikari TK, Ashton NJ, Zetterberg H, Blennow K, Gauthier S, Valcour V, Miller BL, Rosa-Neto P, Pascoal TA. Neuropsychiatric Symptoms and Microglial Activation in Patients with Alzheimer Disease. JAMA Netw Open 2023; 6:e2345175. [PMID: 38010651 PMCID: PMC10682836 DOI: 10.1001/jamanetworkopen.2023.45175] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023] Open
Abstract
Importance Neuropsychiatric symptoms are commonly encountered and are highly debilitating in patients with Alzheimer disease. Understanding their underpinnings has implications for identifying biomarkers and treatment for these symptoms. Objective To evaluate whether glial markers are associated with neuropsychiatric symptoms in individuals across the Alzheimer disease continuum. Design, Setting, and Participants This cross-sectional study was conducted from January to June 2023, leveraging data from the Translational Biomarkers in Aging and Dementia cohort at McGill University, Canada. Recruitment was based on referrals of individuals from the community or from outpatient clinics. Exclusion criteria included active substance abuse, major surgery, recent head trauma, safety contraindications for positron emission tomography (PET) or magnetic resonance imaging, being currently enrolled in other studies, and having inadequately treated systemic conditions. Main Outcomes and Measures All individuals underwent assessment for neuropsychiatric symptoms (Neuropsychiatry Inventory Questionnaire [NPI-Q]), and imaging for microglial activation ([11C]PBR28 PET), amyloid-β ([18F]AZD4694 PET), and tau tangles ([18F]MK6240 PET). Results Of the 109 participants, 72 (66%) were women and 37 (34%) were men; the median age was 71.8 years (range, 38.0-86.5 years). Overall, 70 had no cognitive impairment and 39 had cognitive impairment (25 mild; 14 Alzheimer disease dementia). Amyloid-β PET positivity was present in 21 cognitively unimpaired individuals (30%) and in 31 cognitively impaired individuals (79%). The NPI-Q severity score was associated with microglial activation in the frontal, temporal, and parietal cortices (β = 7.37; 95% CI, 1.34-13.41; P = .01). A leave-one-out approach revealed that irritability was the NPI-Q domain most closely associated with the presence of brain microglial activation (β = 6.86; 95% CI, 1.77-11.95; P = .008). Furthermore, we found that microglia-associated irritability was associated with study partner burden measured by NPI-Q distress score (β = 5.72; 95% CI, 0.33-11.10; P = .03). Conclusions and Relevance In this cross-sectional study of 109 individuals across the AD continuum, microglial activation was associated with and a potential biomarker of neuropsychiatric symptoms in Alzheimer disease. Moreover, our findings suggest that the combination of amyloid-β- and microglia-targeted therapies could have an impact on relieving these symptoms.
Collapse
Affiliation(s)
- Cristiano Schaffer Aguzzoli
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Global Brain Health Institute, University of California, San Francisco
| | - Pâmela C. L. Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Povala
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - João Pedro Ferrari-Souza
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carolina Soares Katz
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Hussein Zalzale
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Firoza Z. Lussier
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux de l’Ouest-de-l’Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Francieli Rohden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sarah Abbas
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Douglas T. Leffa
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marina Scop Medeiros
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux de l’Ouest-de-l’Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Andréa L. Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux de l’Ouest-de-l’Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux de l’Ouest-de-l’Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux de l’Ouest-de-l’Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Arthur Cassa Macedo
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux de l’Ouest-de-l’Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux de l’Ouest-de-l’Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux de l’Ouest-de-l’Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux de l’Ouest-de-l’Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Vanessa Pallen
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux de l’Ouest-de-l’Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Ann Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dana L. Tudorascu
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William E. Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Victor L. Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jean Paul Soucy
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux de l’Ouest-de-l’Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Eduardo R. Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Pharmacology, Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas P. Schilling
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Neurology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thomas K. Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin–Madison
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux de l’Ouest-de-l’Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Victor Valcour
- Global Brain Health Institute, University of California, San Francisco
- Department of Neurology, University of California, San Francisco
| | - Bruce L. Miller
- Global Brain Health Institute, University of California, San Francisco
- Department of Neurology, University of California, San Francisco
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux de l’Ouest-de-l’Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Tharick A. Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
54
|
Ferrari-Souza JP, Bellaver B, Ferreira PCL, Benedet AL, Povala G, Lussier FZ, Leffa DT, Therriault J, Tissot C, Soares C, Wang YT, Chamoun M, Servaes S, Macedo AC, Vermeiren M, Bezgin G, Kang MS, Stevenson J, Rahmouni N, Pallen V, Poltronetti NM, Cohen A, Lopez OL, Klunk WE, Soucy JP, Gauthier S, Souza DO, Triana-Baltzer G, Saad ZS, Kolb HC, Karikari TK, Villemagne VL, Tudorascu DL, Ashton NJ, Zetterberg H, Blennow K, Zimmer ER, Rosa-Neto P, Pascoal TA. APOEε4 potentiates amyloid β effects on longitudinal tau pathology. NATURE AGING 2023; 3:1210-1218. [PMID: 37749258 PMCID: PMC10592050 DOI: 10.1038/s43587-023-00490-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 08/16/2023] [Indexed: 09/27/2023]
Abstract
The mechanisms by which the apolipoprotein E ε4 (APOEε4) allele influences the pathophysiological progression of Alzheimer's disease (AD) are poorly understood. Here we tested the association of APOEε4 carriership and amyloid-β (Aβ) burden with longitudinal tau pathology. We longitudinally assessed 94 individuals across the aging and AD spectrum who underwent clinical assessments, APOE genotyping, magnetic resonance imaging, positron emission tomography (PET) for Aβ ([18F]AZD4694) and tau ([18F]MK-6240) at baseline, as well as a 2-year follow-up tau-PET scan. We found that APOEε4 carriership potentiates Aβ effects on longitudinal tau accumulation over 2 years. The APOEε4-potentiated Aβ effects on tau-PET burden were mediated by longitudinal plasma phosphorylated tau at threonine 217 (p-tau217+) increase. This longitudinal tau accumulation as measured by PET was accompanied by brain atrophy and clinical decline. Our results suggest that the APOEε4 allele plays a key role in Aβ downstream effects on the aggregation of phosphorylated tau in the living human brain.
Collapse
Affiliation(s)
- João Pedro Ferrari-Souza
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pâmela C L Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andréa L Benedet
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Guilherme Povala
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Firoza Z Lussier
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Douglas T Leffa
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Cécile Tissot
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Carolina Soares
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Arthur C Macedo
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Marie Vermeiren
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Gleb Bezgin
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Artificial Intelligence and Computational Neurosciences Laboratory, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Vanessa Pallen
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Nina Margherita Poltronetti
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Ann Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Ziad S Saad
- Neuroscience Biomarkers, Janssen Research and Development, La Jolla, CA, USA
| | - Hartmuth C Kolb
- Neuroscience Biomarkers, Janssen Research and Development, La Jolla, CA, USA
| | - Thomas K Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Victor L Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana L Tudorascu
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeuctis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
55
|
Ferreira PCL, Therriault J, Tissot C, Ferrari-Souza JP, Benedet AL, Povala G, Bellaver B, Leffa DT, Brum WS, Lussier FZ, Bezgin G, Servaes S, Vermeiren M, Macedo AC, Cabrera A, Stevenson J, Triana-Baltzer G, Kolb H, Rahmouni N, Klunk WE, Lopez O, Villemagne VL, Cohen A, Tudorascu DL, Zimmer ER, Karikari TK, Ashton NJ, Zetterberg H, Blennow K, Gauthier S, Rosa-Neto P, Pascoal TA. Plasma p-tau231 and p-tau217 inform on tau tangles aggregation in cognitively impaired individuals. Alzheimers Dement 2023; 19:4463-4474. [PMID: 37534889 PMCID: PMC10592380 DOI: 10.1002/alz.13393] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Phosphorylated tau (p-tau) biomarkers have been recently proposed to represent brain amyloid-β (Aβ) pathology. Here, we evaluated the plasma biomarkers' contribution beyond the information provided by demographics (age and sex) to identify Aβ and tau pathologies in individuals segregated as cognitively unimpaired (CU) and impaired (CI). METHODS We assessed 138 CU and 87 CI with available plasma p-tau231, 217+ , and 181, Aβ42/40, GFAP and Aβ- and tau-PET. RESULTS In CU, only plasma p-tau231 and p-tau217+ significantly improved the performance of the demographics in detecting Aβ-PET positivity, while no plasma biomarker provided additional information to identify tau-PET positivity. In CI, p-tau217+ and GFAP significantly contributed to demographics to identify both Aβ-PET and tau-PET positivity, while p-tau231 only provided additional information to identify tau-PET positivity. DISCUSSION Our results support plasma p-tau231 and p-tau217+ as state markers of early Aβ deposition, but in later disease stages they inform on tau tangle accumulation. HIGHLIGHTS It is still unclear how much plasma biomarkers contribute to identification of AD pathology across the AD spectrum beyond the information already provided by demographics (age + sex). Plasma p-tau231 and p-tau217+ contribute to demographic information to identify brain Aβ pathology in preclinical AD. In CI individuals, plasma p-tau231 contributes to age and sex to inform on the accumulation of tau tangles, while p-tau217+ and GFAP inform on both Aβ deposition and tau pathology.
Collapse
Affiliation(s)
- Pamela C. L Ferreira
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - Cécile Tissot
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - João Pedro Ferrari-Souza
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Andréa L. Benedet
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, 431 41, Sweden
| | - Guilherme Povala
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bruna Bellaver
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Douglas T. Leffa
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Wagner S. Brum
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, 431 41, Sweden
| | - Firoza Z. Lussier
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - Marie Vermeiren
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - Arthur C. Macedo
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - Arlec Cabrera
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - Gallen Triana-Baltzer
- Neuroscience Biomarkers, Janssen Research and Development, La Jolla, CA, 92121-1126, USA
| | - Hartmuth Kolb
- Neuroscience Biomarkers, Janssen Research and Development, La Jolla, CA, 92121-1126, USA
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - William E. Klunk
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Oscar Lopez
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Victor L. Villemagne
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ann Cohen
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dana L. Tudorascu
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Eduardo R. Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeuctis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Brain Insitute of Rio Grande do Sul, PUCRS, Porto Alegre, 90619-900, Brazil
| | - Thomas K. Karikari
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, 431 41, Sweden
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, 431 41, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, 431 41, Sweden
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, WC1N 3BG, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, 431 41, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1N 3BG, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, HKG, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, 431 41, Sweden
| | - Serge Gauthier
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, QC H4H 1R3, Canada
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Tharick A. Pascoal
- Department of Psychiatry, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
56
|
Kim HB, Kim SH, Um YH, Wang SM, Kim REY, Choe YS, Lee J, Kim D, Lim HK, Lee CU, Kang DW. Modulation of associations between education years and cortical volume in Alzheimer's disease vulnerable brain regions by Aβ deposition and APOE ε4 carrier status in cognitively normal older adults. Front Aging Neurosci 2023; 15:1248531. [PMID: 37829142 PMCID: PMC10565031 DOI: 10.3389/fnagi.2023.1248531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Background Education years, as a measure of cognitive reserve, have been shown to affect the progression of Alzheimer's disease (AD), both pathologically and clinically. However, inconsistent results have been reported regarding the association between years of education and intermediate structural changes in AD-vulnerable brain regions, particularly when AD risk factors were not considered during the preclinical phase. Objective This study aimed to examine how Aβ deposition and APOE ε4 carrier status moderate the relationship between years of education and cortical volume in AD-vulnerable regions among cognitively normal older adults. Methods A total of 121 participants underwent structural MRI, [18F] flutemetamol PET-CT imaging, and neuropsychological battery assessment. Multiple regression analysis was conducted to examine the interaction between years of education and the effects of potential modifiers on cortical volume. The associations between cortical volume and neuropsychological performance were further explored in subgroups categorized based on AD risk factors. Results The cortical volume of the left lateral occipital cortex and bilateral fusiform gyrus demonstrated a significant differential association with years of education, depending on the presence of Aβ deposition and APOE ε4 carrier status. Furthermore, a significant relationship between the cortical volume of the bilateral fusiform gyrus and AD-nonspecific cognitive function was predominantly observed in individuals without AD risk factors. Conclusion AD risk factors exerted varying influences on the association between years of education and cortical volume during the preclinical phase. Further investigations into the long-term implications of these findings would enhance our understanding of cognitive reserves in the preclinical stages of AD.
Collapse
Affiliation(s)
- Hak-Bin Kim
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Kim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Yeong Sim Choe
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Jiyeon Lee
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Donghyeon Kim
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Research Institute, NEUROPHET Inc., Seoul, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
57
|
Kunach P, Vaquer-Alicea J, Smith MS, Hopewell R, Monistrol J, Moquin L, Therriault J, Tissot C, Rahmouni N, Massarweh G, Soucy JP, Guiot MC, Shoichet BK, Rosa-Neto P, Diamond MI, Shahmoradian SH. Cryo-EM structure of Alzheimer's disease tau filaments with PET ligand MK-6240. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.558671. [PMID: 37790438 PMCID: PMC10542181 DOI: 10.1101/2023.09.22.558671] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Positron Emission Tomography (PET) ligands have advanced Alzheimer's disease (AD) diagnosis and treatment. Using autoradiography and cryo-EM, we identified AD brain tissue with elevated tau burden, purified filaments, and determined the structure of second-generation high avidity PET ligand MK-6240 at 2.31 Å resolution, which bound at a 1:1 ratio within the cleft of tau paired-helical filament (PHF), engaging with glutamine 351, lysine K353, and isoleucine 360. This information elucidates the basis of MK-6240 PET in quantifying PHF deposits in AD and may facilitate the structure-based design of superior ligands against tau amyloids.
Collapse
Affiliation(s)
- Peter Kunach
- Department of Neurology, McGill University, Montreal, Quebec, Canada
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Jaime Vaquer-Alicea
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Matthew S. Smith
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, United States
- Program of Biophysics, UCSF, San Francisco, CA, United States
| | | | - Jim Monistrol
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Luc Moquin
- Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Joseph Therriault
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | - Cecile Tissot
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | | | | | - Marie-Christine Guiot
- Department of Neurology, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, United States
| | - Pedro Rosa-Neto
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | - Marc I. Diamond
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Sarah H. Shahmoradian
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, Dallas, TX, United States
| |
Collapse
|
58
|
Li J, Kumar A, Långström B, Nordberg A, Ågren H. Insight into the Binding of First- and Second-Generation PET Tracers to 4R and 3R/4R Tau Protofibrils. ACS Chem Neurosci 2023; 14:3528-3539. [PMID: 37639522 PMCID: PMC10515481 DOI: 10.1021/acschemneuro.3c00437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Primary supranuclear palsy (PSP) is a rare neurodegenerative disease that perturbs body movement, eye movement, and walking balance. Similar to Alzheimer's disease (AD), the abnormal aggregation of tau fibrils in the central neuronal and glial cells is a major hallmark of PSP disease. In this study, we use multiple approaches, including docking, molecular dynamics, and metadynamics simulations, to investigate the binding mechanism of 10 first- and second-generations of PET tracers for PSP tau and compare their binding in cortical basal degeneration (CBD) and AD tauopathies. Structure-activity relationships, binding preferences, the nature of ligand binding in terms of basic intermolecular interactions, the role of polar/charged residues, induced-fit mechanisms, grove closures, and folding patterns for the binding of these tracers in PSP, CBD, and AD tau fibrils are evaluated and discussed in detail in order to build a holistic picture of what is essential for the binding and also to rank the potency of the different tracers. For example, we found that the same tracer shows different binding preferences for the surface sites of tau fibrils that are intrinsically distinct in the folding patterns. Results from the metadynamics simulations predict that PMPBB3 and PBB3 exhibit the strongest binding free energies onto the Q276[I277]I278, Q351[S352]K353, and N368[K369]K370 sites of PSP than the other explored tracers, indicating a solid preference for vdW and cation-π interactions. Our results also reproduced known preferences of tracers, namely, that MK6240 binds better to AD tau than CBD tau and PSP tau and that CBD2115, PI2620, and PMPBB3 are 4R tau binders. These findings fill in the well-sought-after knowledge gap in terms of these tracers' potential binding mechanisms and will be important for the design of highly selective novel PET tracers for tauopathies.
Collapse
Affiliation(s)
- Junhao Li
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Amit Kumar
- Department
of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Neo, 141 84 Stockholm, Sweden
| | - Bengt Långström
- Department
of Chemistry - BMC, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Agneta Nordberg
- Department
of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Neo, 141 84 Stockholm, Sweden
- Theme
Inflammation and Aging, Karolinska University
Hospital, S-141 86 Stockholm, Sweden
| | - Hans Ågren
- Department
of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
59
|
Harada R, Lerdsirisuk P, Shimizu Y, Yokoyama Y, Du Y, Kudo K, Ezura M, Ishikawa Y, Iwata R, Shidahara M, Ishiki A, Kikuchi A, Hatano Y, Ishihara T, Onodera O, Iwasaki Y, Yoshida M, Taki Y, Arai H, Kudo Y, Yanai K, Furumoto S, Okamura N. Preclinical Characterization of the Tau PET Tracer [ 18F]SNFT-1: Comparison of Tau PET Tracers. J Nucl Med 2023; 64:1495-1501. [PMID: 37321821 DOI: 10.2967/jnumed.123.265593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Tau PET tracers are expected to be sufficiently sensitive to track the progression of age-related tau pathology in the medial temporal cortex. The tau PET tracer N-(4-[18F]fluoro-5-methylpyridin-2-yl)-7-aminoimidazo[1,2-a]pyridine ([18F]SNFT-1) has been successfully developed by optimizing imidazo[1,2-a]pyridine derivatives. We characterized the binding properties of [18F]SNFT-1 using a head-to-head comparison with other reported 18F-labeled tau tracers. Methods: The binding affinity of SNFT-1 to tau, amyloid, and monoamine oxidase A and B was compared with that of the second-generation tau tracers MK-6240, PM-PBB3, PI-2620, RO6958948, JNJ-64326067, and flortaucipir. In vitro binding properties of 18F-labeled tau tracers were evaluated through the autoradiography of frozen human brain tissues from patients with diverse neurodegenerative disease spectra. Pharmacokinetics, metabolism, and radiation dosimetry were assessed in normal mice after intravenous administration of [18F]SNFT-1. Results: In vitro binding assays demonstrated that [18F]SNFT-1 possesses high selectivity and high affinity for tau aggregates in Alzheimer disease (AD) brains. Autoradiographic analysis of tau deposits in medial temporal brain sections from patients with AD showed a higher signal-to-background ratio for [18F]SNFT-1 than for the other tau PET tracers and no significant binding with non-AD tau, α-synuclein, transactiviation response DNA-binding protein-43, and transmembrane protein 106B aggregates in human brain sections. Furthermore, [18F]SNFT-1 did not bind significantly to various receptors, ion channels, or transporters. [18F]SNFT-1 showed a high initial brain uptake and rapid washout from the brains of normal mice without radiolabeled metabolites. Conclusion: These preclinical data suggest that [18F]SNFT-1 is a promising and selective tau radiotracer candidate that allows the quantitative monitoring of age-related accumulation of tau aggregates in the human brain.
Collapse
Affiliation(s)
- Ryuichi Harada
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan;
- Division of Brain Science, Department of Aging Research and Geriatric Medicine, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuki Shimizu
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Yuka Yokoyama
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Yiqing Du
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaede Kudo
- Division of Brain Science, Department of Aging Research and Geriatric Medicine, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Michinori Ezura
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Ishikawa
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Ren Iwata
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Miho Shidahara
- Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Japan
| | - Aiko Ishiki
- Division of Brain Science, Department of Aging Research and Geriatric Medicine, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
- Division of Community Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akio Kikuchi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuya Hatano
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tomohiko Ishihara
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan; and
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan; and
| | - Yasuyuki Taki
- Division of Brain Science, Department of Aging Research and Geriatric Medicine, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Hiroyuki Arai
- Division of Brain Science, Department of Aging Research and Geriatric Medicine, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Yukitsuka Kudo
- Division of Brain Science, Department of Aging Research and Geriatric Medicine, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Kazuhiko Yanai
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Shozo Furumoto
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Nobuyuki Okamura
- Division of Brain Science, Department of Aging Research and Geriatric Medicine, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
60
|
Bellaver B, Puig-Pijoan A, Ferrari-Souza JP, Leffa DT, Lussier FZ, Ferreira PCL, Tissot C, Povala G, Therriault J, Benedet AL, Ashton NJ, Servaes S, Chamoun M, Stevenson J, Rahmouni N, Vermeiren M, Macedo AC, Fernández-Lebrero A, García-Escobar G, Navalpotro-Gómez I, Lopez O, Tudorascu DL, Cohen A, Villemagne VL, Klunk WE, Gauthier S, Zimmer ER, Karikari TK, Blennow K, Zetterberg H, Suárez-Calvet M, Rosa-Neto P, Pascoal TA. Blood-brain barrier integrity impacts the use of plasma amyloid-β as a proxy of brain amyloid-β pathology. Alzheimers Dement 2023; 19:3815-3825. [PMID: 36919582 PMCID: PMC10502181 DOI: 10.1002/alz.13014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/08/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Amyloid-β (Aβ) and tau can be quantified in blood. However, biological factors can influence the levels of brain-derived proteins in the blood. The blood-brain barrier (BBB) regulates protein transport between cerebrospinal fluid (CSF) and blood. BBB altered permeability might affect the relationship between brain and blood biomarkers. METHODS We assessed 224 participants in research (TRIAD, n = 96) and clinical (BIODEGMAR, n = 128) cohorts with plasma and CSF/positron emission tomography Aβ, p-tau, and albumin measures. RESULTS Plasma Aβ42/40 better identified CSF Aβ42/40 and Aβ-PET positivity in individuals with high BBB permeability. An interaction between plasma Aβ42/40 and BBB permeability on CSF Aβ42/40 was observed. Voxel-wise models estimated that the association of positron emission tomography (PET), with plasma Aβ was most affected by BBB permeability in AD-related brain regions. BBB permeability did not significantly impact the relationship between brain and plasma p-tau levels. DISCUSSION These findings suggest that BBB integrity may influence the performance of plasma Aβ, but not p-tau, biomarkers in research and clinical settings. HIGHLIGHTS BBB permeability affects the association between brain and plasma Aβ levels. BBB integrity does not affect the association between brain and plasma p-tau levels. Plasma Aβ was most affected by BBB permeability in AD-related brain regions. BBB permeability increases with age but not according to cognitive status.
Collapse
Affiliation(s)
- Bruna Bellaver
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Albert Puig-Pijoan
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - João Pedro Ferrari-Souza
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Douglas T Leffa
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Firoza Z Lussier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pamela C L Ferreira
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Guilherme Povala
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Marie Vermeiren
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Arthur C Macedo
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Aida Fernández-Lebrero
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | | | - Irene Navalpotro-Gómez
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Oscar Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ann Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Marc Suárez-Calvet
- Cognitive Decline and Movement Disorders Unit, Neurology Department, Hospital del Mar, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
61
|
Wagatsuma K, Miwa K, Akamatsu G, Yamao T, Kamitaka Y, Sakurai M, Fujita N, Hanaoka K, Matsuda H, Ishii K. Toward standardization of tau PET imaging corresponding to various tau PET tracers: a multicenter phantom study. Ann Nucl Med 2023; 37:494-503. [PMID: 37243882 DOI: 10.1007/s12149-023-01847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVE Tau positron emission tomography (PET) imaging is a recently developed non-invasive tool that can detect the density and extension of tau neurofibrillary tangles. Tau PET tracers have been validated to harmonize and accelerate their development and implementation in clinical practice. Whereas standard protocols including injected dose, uptake time, and duration have been determined for tau PET tracers, reconstruction parameters have not been standardized. The present study conducted phantom experiments based on tau pathology to standardize quantitative tau PET imaging parameters and optimize reconstruction conditions of PET scanners at four Japanese sites according to the results of phantom experiments. METHODS The activity of 4.0 and 2.0 kBq/mL for Hoffman 3D brain and cylindrical phantoms, respectively, was estimated from published studies of brain activity using [18F]flortaucipir, [18F]THK5351, and [18F]MK6240. We developed an original tau-specific volume of interest template for the brain based on pathophysiological tau distribution in the brain defined as Braak stages. We acquired brain and cylindrical phantom images using four PET scanners. Iteration numbers were determined as contrast and recover coefficients (RCs) in gray (GM) and white (WM) matter, and the magnitude of the Gaussian filter was determined from image noise. RESULTS Contrast and RC converged at ≥ 4 iterations, the error rates of RC for GM and WM were < 15% and 1%, respectively, and noise was < 10% in Gaussian filters of 2-4 mm in images acquired using the four scanners. Optimizing the reconstruction conditions for phantom tau PET images acquired by each scanner improved contrast and image noise. CONCLUSIONS The phantom activity was comprehensive for first- and second-generation tau PET tracers. The mid-range activity that we determined could be applied to later tau PET tracers. We propose an analytical tau-specific VOI template based on tau pathophysiological changes in patients with AD to standardize tau PET imaging. Phantom images reconstructed under the optimized conditions for tau PET imaging achieved excellent image quality and quantitative accuracy.
Collapse
Affiliation(s)
- Kei Wagatsuma
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan.
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima City, Fukushima, 960-1295, Japan
| | - Go Akamatsu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima City, Fukushima, 960-1295, Japan
| | - Yuto Kamitaka
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Minoru Sakurai
- Clinical Imaging Center for Healthcare, Nippon Medical School, 1-12-15, Sendagi, Bunkyo-Ku, Tokyo, 113-0022, Japan
| | - Naotoshi Fujita
- Department of Radiological Technology, Nagoya University Hospital, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Kohei Hanaoka
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University, 377-2 Onohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295, Japan
- Drug Discovery and Cyclotron Research Center, Southern Tohoku Research Institute for Neuroscience, 7-115, Yatsuyamada, Koriyama, 963-8052, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| |
Collapse
|
62
|
Matsuda H, Yamao T. Tau positron emission tomography in patients with cognitive impairment and suspected Alzheimer's disease. Fukushima J Med Sci 2023; 69:85-93. [PMID: 37302841 PMCID: PMC10480511 DOI: 10.5387/fms.2023-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Alzheimer's disease (AD) is diagnosed by the presence of both amyloid β and tau proteins. Recent advances in molecular PET imaging have made it possible to assess the accumulation of these proteins in the living brain. PET ligands have been developed that bind to 3R/4R tau in AD, but not to 3R tau or 4R tau alone. Of the first-generation PET ligands, 18F-flortaucipir has recently been approved by the Food and Drug Administration. Several second-generation PET probes with less off-target binding have been developed and are being applied clinically. Visual interpretation of tau PET should be based on neuropathological neurofibrillary tangle staging instead of a simple positive or negative classification. Four visual read classifications have been proposed: "no uptake," "medial temporal lobe (MTL) only," "MTL AND," and "outside MTL." As an adjunct to visual interpretation, quantitative analysis has been proposed using MRI-based native space FreeSurfer parcellations. The standardized uptake value ratio of the target area is measured using the cerebellar gray matter as a reference region. In the near future, the Centiloid scale of tau PET is expected to be used as a harmonized value for standardizing each analytical method or PET ligand used, similar to amyloid PET.
Collapse
Affiliation(s)
- Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University
| |
Collapse
|
63
|
Sanchez-Rodriguez LM, Bezgin G, Carbonell F, Therriault J, Fernandez-Arias J, Servaes S, Rahmouni N, Tissot C, Stevenson J, Karikari TK, Ashton NJ, Benedet AL, Zetterberg H, Blennow K, Triana-Baltzer G, Kolb HC, Rosa-Neto P, Iturria-Medina Y. Revealing the combined roles of Aβ and tau in Alzheimer's disease via a pathophysiological activity decoder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529377. [PMID: 37502947 PMCID: PMC10370127 DOI: 10.1101/2023.02.21.529377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, evidence in humans remains scarce, necessitating improved non-invasive techniques and integrative mechanistic models. Here, we introduce personalized brain activity models incorporating functional MRI, amyloid-β (Aβ) and tau-PET from AD-related participants ( N = 132 ) . Within the model assumptions, electrophysiological activity is mediated by toxic protein deposition. Our integrative subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aβ and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP). Furthermore, our results reproduce hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aβ-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.
Collapse
Affiliation(s)
- Lazaro M. Sanchez-Rodriguez
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Gleb Bezgin
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | | | - Joseph Therriault
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Jaime Fernandez-Arias
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Stijn Servaes
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Nesrine Rahmouni
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Cecile Tissot
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Jenna Stevenson
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Thomas K. Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience Maurice Wohl Institute Clinical Neuroscience Institute London UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation London UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Andréa L. Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal
| | | | - Hartmuth C. Kolb
- Neuroscience Biomarkers, Janssen Research & Development, La Jolla, California, USA
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| |
Collapse
|
64
|
Salvadó G, Horie K, Barthélemy NR, Vogel JW, Binette AP, Chen CD, Aschenbrenner AJ, Gordon BA, Benzinger TL, Holtzman DM, Morris JC, Palmqvist S, Stomrud E, Janelidze S, Ossenkoppele R, Schindler SE, Bateman RJ, Hansson O. Novel CSF tau biomarkers can be used for disease staging of sporadic Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.14.23292650. [PMID: 37503281 PMCID: PMC10370223 DOI: 10.1101/2023.07.14.23292650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Biological staging of individuals with Alzheimer's disease (AD) may improve diagnostic and prognostic work-up of dementia in clinical practice and the design of clinical trials. Here, we created a staging model using the Subtype and Stage Inference (SuStaIn) algorithm by evaluating cerebrospinal fluid (CSF) amyloid-β (Aβ) and tau biomarkers in 426 participants from BioFINDER-2, that represent the entire spectrum of AD. The model composition and main analyses were replicated in 222 participants from the Knight ADRC cohort. SuStaIn revealed in the two cohorts that the data was best explained by a single biomarker sequence (one subtype), and that five CSF biomarkers (ordered: Aβ42/40, tau phosphorylation occupancies at the residues 217 and 205 [pT217/T217 and pT205/T205], microtubule-binding region of tau containing the residue 243 [MTBR-tau243], and total tau) were sufficient to create an accurate disease staging model. Increasing CSF stages (0-5) were associated with increased abnormality in other AD-related biomarkers, such as Aβ- and tau-PET, and aligned with different phases of longitudinal biomarker changes consistent with current models of AD progression. Higher CSF stages at baseline were associated with higher hazard ratio of clinical decline. Our findings indicate that a common pathophysiologic molecular pathway develops across all AD patients, and that a single CSF collection is sufficient to reliably indicate the presence of both AD pathologies and the degree and stage of disease progression.
Collapse
Affiliation(s)
- Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Kanta Horie
- The Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Eisai Inc., Nutley, NJ, United States
| | - Nicolas R. Barthélemy
- The Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jacob W. Vogel
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Clinical Science, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Charles D. Chen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew J Aschenbrenner
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian A. Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tammie L.S. Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Suzanne E. Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J. Bateman
- The Tracy Family SILQ Center, Washington University School of Medicine, St Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
65
|
Nikiforova A, Sedov I. Molecular Design of Magnetic Resonance Imaging Agents Binding to Amyloid Deposits. Int J Mol Sci 2023; 24:11152. [PMID: 37446329 DOI: 10.3390/ijms241311152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The ability to detect and monitor amyloid deposition in the brain using non-invasive imaging techniques provides valuable insights into the early diagnosis and progression of Alzheimer's disease and helps to evaluate the efficacy of potential treatments. Magnetic resonance imaging (MRI) is a widely available technique offering high-spatial-resolution imaging. It can be used to visualize amyloid deposits with the help of amyloid-binding diagnostic agents injected into the body. In recent years, a number of amyloid-targeted MRI probes have been developed, but none of them has entered clinical practice. We review the advances in the field and deduce the requirements for the molecular structure and properties of a diagnostic probe candidate. These requirements make up the base for the rational design of MRI-active small molecules targeting amyloid deposits. Particular attention is paid to the novel cryo-EM structures of the fibril aggregates and their complexes, with known binders offering the possibility to use computational structure-based design methods. With continued research and development, MRI probes may revolutionize the diagnosis and treatment of neurodegenerative diseases, ultimately improving the lives of millions of people worldwide.
Collapse
Affiliation(s)
- Alena Nikiforova
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| |
Collapse
|
66
|
Villemagne VL, Leuzy A, Bohorquez SS, Bullich S, Shimada H, Rowe CC, Bourgeat P, Lopresti B, Huang K, Krishnadas N, Fripp J, Takado Y, Gogola A, Minhas D, Weimer R, Higuchi M, Stephens A, Hansson O, Doré V. CenTauR: Toward a universal scale and masks for standardizing tau imaging studies. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12454. [PMID: 37424964 PMCID: PMC10326476 DOI: 10.1002/dad2.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION Recently, an increasing number of tau tracers have become available. There is a need to standardize quantitative tau measures across tracers, supporting a universal scale. We developed several cortical tau masks and applied them to generate a tau imaging universal scale. METHOD One thousand forty-five participants underwent tau scans with either 18F-flortaucipir, 18F-MK6240, 18F-PI2620, 18F-PM-PBB3, 18F-GTP1, or 18F-RO948. The universal mask was generated from cognitively unimpaired amyloid beta (Aβ)- subjects and Alzheimer's disease (AD) patients with Aβ+. Four additional regional cortical masks were defined within the constraints of the universal mask. A universal scale, the CenTauRz, was constructed. RESULTS None of the regions known to display off-target signal were included in the masks. The CenTauRz allows robust discrimination between low and high levels of tau deposits. DISCUSSION We constructed several tau-specific cortical masks for the AD continuum and a universal standard scale designed to capture the location and degree of abnormality that can be applied across tracers and across centers. The masks are freely available at https://www.gaain.org/centaur-project.
Collapse
Affiliation(s)
- Victor L. Villemagne
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Molecular Imaging & TherapyAustin HealthMelbourneVictoriaAustralia
| | - Antoine Leuzy
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
| | | | | | - Hitoshi Shimada
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
- Brain Research InstituteNiigata UniversityNiigataJapan
| | - Christopher C. Rowe
- Department of Molecular Imaging & TherapyAustin HealthMelbourneVictoriaAustralia
- Florey Department of Neurosciences & Mental HealthThe University of MelbourneMelbourneParkvilleAustralia
- The Australian Dementia Network (ADNeT)MelbourneVictoriaAustralia
| | - Pierrick Bourgeat
- Health and Biosecurity FlagshipThe Australian eHealth Research CentreCSIROBrisbaneQueenslandAustralia
| | - Brian Lopresti
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Kun Huang
- Department of Molecular Imaging & TherapyAustin HealthMelbourneVictoriaAustralia
| | - Natasha Krishnadas
- Department of Molecular Imaging & TherapyAustin HealthMelbourneVictoriaAustralia
- Florey Institute of Neurosciences & Mental HealthParkvilleVictoriaAustralia
| | - Jurgen Fripp
- Health and Biosecurity FlagshipThe Australian eHealth Research CentreCSIROBrisbaneQueenslandAustralia
| | - Yuhei Takado
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | - Alexandra Gogola
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Davneet Minhas
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Makoto Higuchi
- Department of Functional Brain ImagingNational Institutes for Quantum and Radiological Science and TechnologyChibaJapan
| | | | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityMalmöSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| | - Vincent Doré
- Department of Molecular Imaging & TherapyAustin HealthMelbourneVictoriaAustralia
- Health and Biosecurity FlagshipThe Australian eHealth Research CentreCSIROHeidelbergVictoriaAustralia
| | | |
Collapse
|
67
|
Macedo AC, Tissot C, Therriault J, Servaes S, Wang YT, Fernandez-Arias J, Rahmouni N, Lussier FZ, Vermeiren M, Bezgin G, Vitali P, Ng KP, Zimmer ER, Guiot MC, Pascoal TA, Gauthier S, Rosa-Neto P. The Use of Tau PET to Stage Alzheimer Disease According to the Braak Staging Framework. J Nucl Med 2023:jnumed.122.265200. [PMID: 37321820 PMCID: PMC10394315 DOI: 10.2967/jnumed.122.265200] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Amyloid-β plaques and neurofibrillary tangles (NFTs) are the 2 histopathologic hallmarks of Alzheimer disease (AD). On the basis of the pattern of NFT distribution in the brain, Braak and Braak proposed a histopathologic staging system for AD. Braak staging provides a compelling framework for staging and monitoring of NFT progression in vivo using PET imaging. Because AD staging remains based on clinical features, there is an unmet need to translate neuropathologic staging to a biologic clinical staging system. Such a biomarker staging system might play a role in staging preclinical AD or in improving recruitment strategies for clinical trials. Here, we review the literature regarding AD staging with the Braak framework using tau PET imaging, here called PET-based Braak staging. Our aim is to summarize the efforts of implementing Braak staging using PET and assess correspondence with the Braak histopathologic descriptions and with AD biomarkers. Methods: We conducted a systematic literature search in May 2022 on PubMed and Scopus combining the terms "Alzheimer" AND "Braak" AND ("positron emission tomography" OR "PET"). Results: The database search returned 262 results, and after assessment for eligibility, 21 studies were selected. Overall, most studies indicate that PET-based Braak staging may be an efficient method to stage AD since it presents an adequate ability to discriminate between phases of the AD continuum and correlates with clinical, fluid, and imaging biomarkers of AD. However, the translation of the original Braak descriptions to tau PET was done taking into account the limitations of this imaging technique. This led to important interstudy variability in the anatomic definitions of Braak stage regions of interest. Conclusion: Refinements in this staging system are necessary to incorporate atypical variants and Braak-nonconformant cases. Further studies are needed to understand the possible applications of PET-based Braak staging to clinical practice and research. Furthermore, there is a need for standardization in the topographic definitions of Braak stage regions of interest to guarantee reproducibility and methodologic homogeneity across studies.
Collapse
Affiliation(s)
- Arthur C Macedo
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Cécile Tissot
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Joseph Therriault
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Stijn Servaes
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Yi-Ting Wang
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Jaime Fernandez-Arias
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Nesrine Rahmouni
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Firoza Z Lussier
- Department of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marie Vermeiren
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Gleb Bezgin
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Paolo Vitali
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Eduardo R Zimmer
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; and
| | | | - Tharick A Pascoal
- Department of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Serge Gauthier
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada;
| |
Collapse
|
68
|
Montoliu-Gaya L, Benedet AL, Tissot C, Vrillon A, Ashton NJ, Brum WS, Lantero-Rodriguez J, Stevenson J, Nilsson J, Sauer M, Rahmouni N, Brinkmalm G, Lussier FZ, Pascoal TA, Skoog I, Kern S, Zetterberg H, Paquet C, Gobom J, Rosa-Neto P, Blennow K. Mass spectrometric simultaneous quantification of tau species in plasma shows differential associations with amyloid and tau pathologies. NATURE AGING 2023; 3:661-669. [PMID: 37198279 PMCID: PMC10275761 DOI: 10.1038/s43587-023-00405-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/22/2023] [Indexed: 05/19/2023]
Abstract
Blood phosphorylated tau (p-tau) biomarkers, at differing sites, demonstrate high accuracy to detect Alzheimer's disease (AD). However, knowledge on the optimal marker for disease identification across the AD continuum and the link to pathology is limited. This is partly due to heterogeneity in analytical methods. In this study, we employed an immunoprecipitation mass spectrometry method to simultaneously quantify six phosphorylated (p-tau181, p-tau199, p-tau202, p-tau205, p-tau217 and p-tau231) and two non-phosphorylated plasma tau peptides in a total of 214 participants from the Paris Lariboisière and Translational Biomarkers of Aging and Dementia cohorts. Our results indicate that p-tau217, p-tau231 and p-tau205 are the plasma tau forms that best reflect AD-related brain changes, although with distinct emergences along the disease course and correlations with AD features-amyloid and tau. These findings support the differential association of blood p-tau variants with AD pathology, and our method offers a potential tool for disease staging in clinical trials.
Collapse
Grants
- R01 AG068398 NIA NIH HHS
- BrightFocus Foundation (BrightFocus)
- Alzheimerfonden
- Stiftelsen för Gamla Tjänarinnor (Foundation for Old Servants)
- AV is funded by Fondation Ophtalmologique Adolphe de Rothschild, Fondation Philipe Chatrier, Amicale des Anciens Internes des Hôpitaux de Paris, Fondation Vaincre Alzheimer, the Swedish Dementia Foundation (Demensfonden), Gun and Bertil Stohnes Foundation and Gamla Tjänarinnor Foundation.
- JN is supported by Demensfonden and the Foundation for Gamla Tjänarinnor (#2020-00959 and #2021-01153).
- HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Union’s Horizon Europe research and innovation programme under grant agreement No 101053962, Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer’s Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2022-0270), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), and the UK Dementia Research Institute at UCL (UKDRI-1003).
- KB is supported by the Swedish Research Council (#2017-00915 and #2022-00732), the Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615), the Swedish Alzheimer Foundation (#AF-930351, #AF-939721 and #AF-968270), Hjärnfonden, Sweden (#FO2017-0243 and #ALZ2022-0006), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the European Union Joint Program for Neurodegenerative Disorders (JPND2019-466-236), the National Institute of Health (NIH), USA, (grant #1R01AG068398-01), the Alzheimer’s Association 2021 Zenith Award (ZEN-21-848495), and the Alzheimer’s Association 2022-2025 Grant (SG-23-1038904 QC)
Collapse
Affiliation(s)
- Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Agathe Vrillon
- Université de Paris, Cognitive Neurology Center, GHUNord APHP Hospital Lariboisière Fernand Widal, Paris, France
- Université de Paris, Inserm UMRS11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Mathias Sauer
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ingmar Skoog
- Department of Neuropsychiatric Epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Silke Kern
- Department of Neuropsychiatric Epidemiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap) at the University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Claire Paquet
- Université de Paris, Cognitive Neurology Center, GHUNord APHP Hospital Lariboisière Fernand Widal, Paris, France
- Université de Paris, Inserm UMRS11-44 Therapeutic Optimization in Neuropsychopharmacology, Paris, France
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| |
Collapse
|
69
|
Shi Y, Ghetti B, Goedert M, Scheres SHW. Cryo-EM Structures of Chronic Traumatic Encephalopathy Tau Filaments with PET Ligand Flortaucipir. J Mol Biol 2023; 435:168025. [PMID: 37330290 PMCID: PMC7615338 DOI: 10.1016/j.jmb.2023.168025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Positron emission tomography (PET) imaging allows monitoring the progression of amyloid aggregation in the living brain. [18F]-Flortaucipir is the only approved PET tracer compound for the visualisation of tau aggregation. Here, we describe cryo-EM experiments on tau filaments in the presence and absence of flortaucipir. We used tau filaments isolated from the brain of an individual with Alzheimer's disease (AD), and from the brain of an individual with primary age-related tauopathy (PART) with a co-pathology of chronic traumatic encephalopathy (CTE). Unexpectedly, we were unable to visualise additional cryo-EM density for flortaucipir for AD paired helical or straight filaments (PHFs or SFs), but we did observe density for flortaucipir binding to CTE Type I filaments from the case with PART. In the latter, flortaucipir binds in a 1:1 molecular stoichiometry with tau, adjacent to lysine 353 and aspartate 358. By adopting a tilted geometry with respect to the helical axis, the 4.7 Å distance between neighbouring tau monomers is reconciled with the 3.5 Å distance consistent with π-π-stacking between neighbouring molecules of flortaucipir.
Collapse
Affiliation(s)
- Yang Shi
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. https://twitter.com/GhettiBernardi1
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
70
|
Bellaver B, Povala G, Ferreira PCL, Ferrari-Souza JP, Leffa DT, Lussier FZ, Benedet AL, Ashton NJ, Triana-Baltzer G, Kolb HC, Tissot C, Therriault J, Servaes S, Stevenson J, Rahmouni N, Lopez OL, Tudorascu DL, Villemagne VL, Ikonomovic MD, Gauthier S, Zimmer ER, Zetterberg H, Blennow K, Aizenstein HJ, Klunk WE, Snitz BE, Maki P, Thurston RC, Cohen AD, Ganguli M, Karikari TK, Rosa-Neto P, Pascoal TA. Astrocyte reactivity influences amyloid-β effects on tau pathology in preclinical Alzheimer's disease. Nat Med 2023:10.1038/s41591-023-02380-x. [PMID: 37248300 PMCID: PMC10353939 DOI: 10.1038/s41591-023-02380-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid-β (Aβ)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes unleash Aβ effects in pathological tau phosphorylation. Here, in a biomarker study across three cohorts (n = 1,016), we tested whether astrocyte reactivity modulates the association of Aβ with tau phosphorylation in CU individuals. We found that Aβ was associated with increased plasma phosphorylated tau only in individuals positive for astrocyte reactivity (Ast+). Cross-sectional and longitudinal tau-positron emission tomography analyses revealed an AD-like pattern of tau tangle accumulation as a function of Aβ only in CU Ast+ individuals. Our findings suggest astrocyte reactivity as an important upstream event linking Aβ with initial tau pathology, which may have implications for the biological definition of preclinical AD and for selecting CU individuals for clinical trials.
Collapse
Affiliation(s)
- Bruna Bellaver
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences-Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Povala
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - João Pedro Ferrari-Souza
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences-Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Douglas T Leffa
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Firoza Z Lussier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Hartmuth C Kolb
- Neuroscience Biomarkers, Janssen Research and Development, La Jolla, CA, USA
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Oscar L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Milos D Ikonomovic
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences-Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Brain Institute, PUCRS, Porto Alegre, Brazil
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pauline Maki
- Department of Psychiatry, University of Illinois, Chicago, IL, USA
| | - Rebecca C Thurston
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary Ganguli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Brain Imaging Centre, Montreal Neurological Institute-Hospital, Montreal, Quebec, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
71
|
O'Connor A, Cash DM, Poole T, Markiewicz PJ, Fraser MR, Malone IB, Jiao J, Weston PSJ, Flores S, Hornbeck R, McDade E, Schöll M, Gordon BA, Bateman RJ, Benzinger TLS, Fox NC. Tau accumulation in autosomal dominant Alzheimer's disease: a longitudinal [ 18F]flortaucipir study. Alzheimers Res Ther 2023; 15:99. [PMID: 37231491 PMCID: PMC10210376 DOI: 10.1186/s13195-023-01234-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Cortical tau accumulation is a key pathological event that partly defines Alzheimer's disease (AD) onset and is associated with cognitive decline and future disease progression. However, an improved understanding of the timing and pattern of early tau deposition in AD and how this may be tracked in vivo is needed. Data from 59 participants involved in two longitudinal cohort studies of autosomal dominant AD (ADAD) were used to investigate whether tau PET can detect and track presymptomatic change; seven participants were symptomatic, and 52 were asymptomatic but at a 50% risk of carrying a pathogenic mutation. All had baseline flortaucipir (FTP) PET, MRI and clinical assessments; 26 individuals had more than one FTP PET scan. Standardised uptake value ratios (SUVRs) in prespecified regions of interest (ROIs) were obtained using inferior cerebellar grey matter as the reference region. We compared the changes in FTP SUVRs between presymptomatic carriers, symptomatic carriers and non-carriers, adjusting for age, sex and study site. We also investigated the relationship between regional FTP SUVRs and estimated years to/from symptom onset (EYO). Compared to both non-carriers and presymptomatic carriers, FTP SUVRs were significantly higher in symptomatic carriers in all ROIs tested (p < 0.001). There were no significant regional differences between presymptomatic carriers and non-carriers in FTP SUVRs, or their rates of change (p > 0.05), although increased FTP signal uptake was seen posteriorly in some individuals around the time of expected symptom onset. When we examined the relationship of FTP SUVR with respect to EYO, the earliest significant regional difference between mutation carriers and non-carriers was detected within the precuneus prior to estimated symptom onset in some cases. This study supports preliminary studies suggesting that presymptomatic tau tracer uptake is rare in ADAD. In cases where early uptake was seen, there was often a predilection for posterior regions (the precuneus and post-cingulate) as opposed to the medial temporal lobe, highlighting the importance of examining in vivo tau uptake beyond the confines of traditional Braak staging.
Collapse
Affiliation(s)
- Antoinette O'Connor
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK. Antoinette.o'
- UK Dementia Research Institute at UCL, London, UK. Antoinette.o'
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Teresa Poole
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Pawel J Markiewicz
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Maggie R Fraser
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Jieqing Jiao
- Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, UCL, London, UK
| | - Philip S J Weston
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Shaney Flores
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Russ Hornbeck
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Schöll
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
72
|
Fernández Arias J, Therriault J, Thomas E, Lussier FZ, Bezgin G, Tissot C, Servaes S, Mathotaarachchi SS, Schoemaker D, Stevenson J, Rahmouni N, Kang MS, Pallen V, Poltronetti NM, Wang YT, Kunach P, Chamoun M, Quispialaya S KM, Vitali P, Massarweh G, Gauthier S, Rajah MN, Pascoal T, Rosa-Neto P. Verbal memory formation across PET-based Braak stages of tau accumulation in Alzheimer's disease. Brain Commun 2023; 5:fcad146. [PMID: 37252014 PMCID: PMC10213301 DOI: 10.1093/braincomms/fcad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/28/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
A classical early sign of typical Alzheimer's disease is memory decline, which has been linked to the aggregation of tau in the medial temporal lobe. Verbal delayed free recall and recognition tests have consistently probed useful to detect early memory decline, and there is substantial debate on how performance, particularly in recognition tests, is differentially affected through health and disease in older adults. Using in vivo PET-Braak staging, we investigated delayed recall and recognition memory dysfunction across the Alzheimer's disease spectrum. Our cross-sectional study included 144 cognitively unimpaired elderly, 39 amyloid-β+ individuals with mild cognitive impairment and 29 amyloid-β+ Alzheimer's disease patients from the Translational Biomarkers in Aging and Dementia cohort, who underwent [18F]MK6240 tau and [18F]AZD4694 amyloid PET imaging, structural MRI and memory assessments. We applied non-parametric comparisons, correlation analyses, regression models and voxel-wise analyses. In comparison with PET-Braak Stage 0, we found that reduced, but not clinically significant, delayed recall starts at PET-Braak Stage II (adjusted P < 0.0015), and that recognition (adjusted P = 0.011) displayed a significant decline starting at PET-Braak Stage IV. While performance in both delayed recall and recognition related to tau in nearly the same cortical areas, further analyses showed that delayed recall rendered stronger associations in areas of early tau accumulation, whereas recognition displayed stronger correlations in mostly posterior neocortical regions. Our results support the notion that delayed recall and recognition deficits are predominantly associated with tau load in allocortical and neocortical areas, respectively. Overall, delayed recall seems to be more dependent on the integrity of anterior medial temporal lobe structures, while recognition appears to be more affected by tau accumulation in cortices beyond medial temporal regions.
Collapse
Affiliation(s)
- Jaime Fernández Arias
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Joseph Therriault
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Emilie Thomas
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Firoza Z Lussier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Gleb Bezgin
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Cécile Tissot
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stijn Servaes
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Sulantha S Mathotaarachchi
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Dorothée Schoemaker
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jenna Stevenson
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Nesrine Rahmouni
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Min Su Kang
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Vanessa Pallen
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Nina Margherita Poltronetti
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Yi-Ting Wang
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Peter Kunach
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Mira Chamoun
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Kely M Quispialaya S
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Paolo Vitali
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
| | - Gassan Massarweh
- Department of Radiochemistry, Montreal Neurological Institute, Montreal, QC H3A 2B4, Canada
| | - Serge Gauthier
- Department of Neurology and Neurosurger, McGill University Research Centre for Studies in Aging, Verdun, QC H4H 1R3, Canada
- Department of Psychiatry, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada
| | - Maria N Rajah
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Psychiatry, Douglas Mental Health University Institute, Verdun, QC H4H 1R3, Canada
| | - Tharick Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Pedro Rosa-Neto
- Correspondence to: Pedro Rosa-Neto, MD, PhD The McGill University Research Centre for Studies in Aging 6825 LaSalle Blvd, Montréal, QC H4H 1R3, Canada E-mail:
| |
Collapse
|
73
|
Jack CR, Wiste HJ, Algeciras-Schimnich A, Figdore DJ, Schwarz CG, Lowe VJ, Ramanan VK, Vemuri P, Mielke MM, Knopman DS, Graff-Radford J, Boeve BF, Kantarci K, Cogswell PM, Senjem ML, Gunter JL, Therneau TM, Petersen RC. Predicting amyloid PET and tau PET stages with plasma biomarkers. Brain 2023; 146:2029-2044. [PMID: 36789483 PMCID: PMC10151195 DOI: 10.1093/brain/awad042] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/20/2022] [Accepted: 01/21/2023] [Indexed: 02/16/2023] Open
Abstract
Staging the severity of Alzheimer's disease pathology using biomarkers is useful for therapeutic trials and clinical prognosis. Disease staging with amyloid and tau PET has face validity; however, this would be more practical with plasma biomarkers. Our objectives were, first, to examine approaches for staging amyloid and tau PET and, second, to examine prediction of amyloid and tau PET stages using plasma biomarkers. Participants (n = 1136) were enrolled in either the Mayo Clinic Study of Aging or the Alzheimer's Disease Research Center; had a concurrent amyloid PET, tau PET and blood draw; and met clinical criteria for cognitively unimpaired (n = 864), mild cognitive impairment (n = 148) or Alzheimer's clinical syndrome with dementia (n = 124). The latter two groups were combined into a cognitively impaired group (n = 272). We used multinomial regression models to estimate discrimination [concordance (C) statistics] among three amyloid PET stages (low, intermediate, high), four tau PET stages (Braak 0, 1-2, 3-4, 5-6) and a combined amyloid and tau PET stage (none/low versus intermediate/high severity) using plasma biomarkers as predictors separately within unimpaired and impaired individuals. Plasma analytes, p-tau181, Aβ1-42 and Aβ1-40 (analysed as the Aβ42/Aβ40 ratio), glial fibrillary acidic protein and neurofilament light chain were measured on the HD-X Simoa Quanterix platform. Plasma p-tau217 was also measured in a subset (n = 355) of cognitively unimpaired participants using the Lilly Meso Scale Discovery assay. Models with all Quanterix plasma analytes along with risk factors (age, sex and APOE) most often provided the best discrimination among amyloid PET stages (C = 0.78-0.82). Models with p-tau181 provided similar discrimination of tau PET stages to models with all four plasma analytes (C = 0.72-0.85 versus C = 0.73-0.86). Discriminating a PET proxy of intermediate/high from none/low Alzheimer's disease neuropathological change with all four Quanterix plasma analytes was excellent but not better than p-tau181 only (C = 0.88 versus 0.87 for unimpaired and C = 0.91 versus 0.90 for impaired). Lilly p-tau217 outperformed the Quanterix p-tau181 assay for discriminating high versus intermediate amyloid (C = 0.85 versus 0.74) but did not improve over a model with all Quanterix plasma analytes and risk factors (C = 0.85 versus 0.83). Plasma analytes along with risk factors can discriminate between amyloid and tau PET stages and between a PET surrogate for intermediate/high versus none/low neuropathological change with accuracy in the acceptable to excellent range. Combinations of plasma analytes are better than single analytes for many staging predictions with the exception that Quanterix p-tau181 alone usually performed equivalently to combinations of Quanterix analytes for tau PET discrimination.
Collapse
Affiliation(s)
- Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Heather J Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Dan J Figdore
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Val J Lowe
- Department of Nuclear Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Vijay K Ramanan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | - Terry M Therneau
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
74
|
Soleimani-Meigooni DN, Rabinovici GD. Tau PET Visual Reads: Research and Clinical Applications and Future Directions. J Nucl Med 2023; 64:822-824. [PMID: 37116910 PMCID: PMC10152121 DOI: 10.2967/jnumed.122.265017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/28/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- David N Soleimani-Meigooni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California; and
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California; and
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| |
Collapse
|
75
|
Sibahi A, Gandhi R, Al-Haddad R, Therriault J, Pascoal T, Chamoun M, Boutin-Miller K, Tardif C, Rosa-Neto P, Cassidy CM. Characterization of an automated method to segment the human locus coeruleus. Hum Brain Mapp 2023; 44:3913-3925. [PMID: 37126580 DOI: 10.1002/hbm.26324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/17/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
Following the development of magnetic resonance imaging (MRI) methods to assay the integrity of catecholamine nuclei, including the locus coeruleus (LC), there has been an effort to develop automated methods that can accurately segment this small structure in an automated manner to promote its widespread use and overcome limitations of manual segmentation. Here we characterize an automated LC segmentation approach (referred to as the funnel-tip [FT] method) in healthy individuals and individuals with LC degeneration in the context of Alzheimer's disease (AD, confirmed with tau-PET imaging using [18F]MK6240). The first sample included n = 190 individuals across the AD spectrum from cognitively normal to moderate AD. LC signal assayed with FT segmentation showed excellent agreement with manual segmentation (intraclass correlation coefficient [ICC] = 0.91). Compared to other methods, the FT method showed numerically higher correlation to AD status (defined by presence of tau: Cohen's d = 0.64) and AD severity (Braak stage: Pearson R = -.35, cognitive function: R = .25). In a separate sample of n = 12 control participants, the FT method showed excellent scan-rescan reliability (ICC = 0.82). In another sample of n = 30 control participants, we found that the structure of the LC defined by FT segmentation approximated its expected shape as a contiguous line: <5% of LC voxels strayed >1 voxel (0.69 mm) from this line. The FT LC segmentation shows high agreement with manual segmentation and captures LC degeneration in AD. This practical method may facilitate larger research studies of the human LC-norepinephrine system and has potential to support future use of neuromelanin-sensitive MRI as a clinical biomarker.
Collapse
Affiliation(s)
- Ahmad Sibahi
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Rushali Gandhi
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Rami Al-Haddad
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Tharick Pascoal
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Krysta Boutin-Miller
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
| | - Christine Tardif
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Clifford M Cassidy
- Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, Ontario, Canada
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
76
|
Ferrari-Souza JP, Lussier FZ, Leffa DT, Therriault J, Tissot C, Bellaver B, Ferreira PC, Malpetti M, Wang YT, Povala G, Benedet AL, Ashton NJ, Chamoun M, Servaes S, Bezgin G, Kang MS, Stevenson J, Rahmouni N, Pallen V, Poltronetti NM, O’Brien JT, Rowe JB, Cohen AD, Lopez OL, Tudorascu DL, Karikari TK, Klunk WE, Villemagne VL, Soucy JP, Gauthier S, Souza DO, Zetterberg H, Blennow K, Zimmer ER, Rosa-Neto P, Pascoal TA. APOEε4 associates with microglial activation independently of Aβ plaques and tau tangles. SCIENCE ADVANCES 2023; 9:eade1474. [PMID: 37018391 PMCID: PMC10075966 DOI: 10.1126/sciadv.ade1474] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/02/2023] [Indexed: 06/01/2023]
Abstract
Animal studies suggest that the apolipoprotein E ε4 (APOEε4) allele is a culprit of early microglial activation in Alzheimer's disease (AD). Here, we tested the association between APOEε4 status and microglial activation in living individuals across the aging and AD spectrum. We studied 118 individuals with positron emission tomography for amyloid-β (Aβ; [18F]AZD4694), tau ([18F]MK6240), and microglial activation ([11C]PBR28). We found that APOEε4 carriers presented increased microglial activation relative to noncarriers in early Braak stage regions within the medial temporal cortex accounting for Aβ and tau deposition. Furthermore, microglial activation mediated the Aβ-independent effects of APOEε4 on tau accumulation, which was further associated with neurodegeneration and clinical impairment. The physiological distribution of APOE mRNA expression predicted the patterns of APOEε4-related microglial activation in our population, suggesting that APOE gene expression may regulate the local vulnerability to neuroinflammation. Our results support that the APOEε4 genotype exerts Aβ-independent effects on AD pathogenesis by activating microglia in brain regions associated with early tau deposition.
Collapse
Affiliation(s)
- João Pedro Ferrari-Souza
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Firoza Z. Lussier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Douglas T. Leffa
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- ADHD Outpatient Program and Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Cécile Tissot
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Bruna Bellaver
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Maura Malpetti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Yi-Ting Wang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Guilherme Povala
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andréa L. Benedet
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Min Su Kang
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Artificial Intelligence and Computational Neurosciences lab, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Vanessa Pallen
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Nina Margherita Poltronetti
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - John T. O’Brien
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - James B. Rowe
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Ann D. Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana L. Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas K. Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - William E. Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Diogo O. Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eduardo R. Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeuctis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Tharick A. Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
77
|
Fu JF, Lois C, Sanchez J, Becker JA, Rubinstein ZB, Thibault E, Salvatore AN, Sari H, Farrell ME, Guehl NJ, Normandin MD, Fakhri GE, Johnson KA, Price JC. Kinetic evaluation and assessment of longitudinal changes in reference region and extracerebral [ 18F]MK-6240 PET uptake. J Cereb Blood Flow Metab 2023; 43:581-594. [PMID: 36420769 PMCID: PMC10063833 DOI: 10.1177/0271678x221142139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 11/25/2022]
Abstract
[18F]MK-6240 meningeal/extracerebral off-target binding may impact tau quantification. We examined the kinetics and longitudinal changes of extracerebral and reference regions. [18F]MK-6240 PET was performed in 24 cognitively-normal and eight cognitively-impaired subjects, with arterial samples in 13 subjects. Follow-up scans at 6.1 ± 0.5 (n = 25) and 13.3 ± 0.9 (n = 16) months were acquired. Extracerebral and reference region (cerebellar gray matter (CerGM)-based, cerebral white matter (WM), pons) uptake were evaluated using standardized uptake values (SUV90-110), spectral analysis, and distribution volume. Longitudinal changes in SUV90-110 were examined. The impact of reference region on target region outcomes, partial volume correction (PVC) and regional erosion were evaluated. Eroded WM and pons showed lower variability, lower extracerebral contamination, and lower longitudinal changes than CerGM-based regions. CerGM-based regions resulted larger cross-sectional effect sizes for group differentiation. Extracerebral signal was high in 50% of subjects and exhibited irreversible kinetics and nonsignificant longitudinal changes over one-year but was highly variable at subject-level. PVC resulted in higher variability in reference region uptake and longitudinal changes. Our results suggest that eroded CerGM may be preferred for cross-sectional, whilst eroded WM or pons may be preferred for longitudinal [18F]MK-6240 studies. For CerGM, erosion was necessary (preferred over PVC) to address the heterogenous nature of extracerebral signal.
Collapse
Affiliation(s)
- Jessie Fanglu Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Department of Radiology, Boston, MA, USA
| | - Cristina Lois
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Justin Sanchez
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - J Alex Becker
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Zoe B Rubinstein
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Emma Thibault
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew N Salvatore
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Hasan Sari
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Department of Radiology, Boston, MA, USA
| | | | - Nicolas J Guehl
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Marc D Normandin
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Georges El Fakhri
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Keith A Johnson
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Julie C Price
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Department of Radiology, Boston, MA, USA
| |
Collapse
|
78
|
Malarte ML, Gillberg PG, Kumar A, Bogdanovic N, Lemoine L, Nordberg A. Discriminative binding of tau PET tracers PI2620, MK6240 and RO948 in Alzheimer's disease, corticobasal degeneration and progressive supranuclear palsy brains. Mol Psychiatry 2023; 28:1272-1283. [PMID: 36447011 PMCID: PMC10005967 DOI: 10.1038/s41380-022-01875-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Recent mechanistic and structural studies have challenged the classical tauopathy classification approach and revealed the complexity and heterogeneity of tau pathology in Alzheimer's disease (AD) and primary tauopathies such as corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), progressing beyond distinct tau isoforms. In this multi-tau tracer study, we focused on the new second-generation tau PET tracers PI2620, MK6240 and RO948 to investigate this tau complexity in AD, CBD, and PSP brains using post-mortem radioligand binding studies and autoradiography of large and small frozen brain sections. Saturation binding studies indicated multiple binding sites for 3H-PI2620 in AD, CBD and PSP brains with different binding affinities (Kd ranging from 0.2 to 0.7 nM) and binding site densities (following the order: BmaxAD > BmaxCBD > BmaxPSP). Competitive binding studies complemented these findings, demonstrating the presence of two binding sites [super-high affinity (SHA): IC50(1) = 8.1 pM; and high affinity (HA): IC50(2) = 4.9 nM] in AD brains. Regional binding distribution studies showed that 3H-PI2620 could discriminate between AD (n = 6) and control cases (n = 9), especially in frontal cortex and temporal cortex tissue (p < 0.001) as well as in the hippocampal region (p = 0.02). 3H-PI2620, 3H-MK6240 and 3H-RO948 displayed similar binding behaviour in AD brains (in both homogenate competitive studies and one large frozen hemispherical brain section autoradiography studies) in terms of binding affinities, number of sites and regional patterns. Our small section autoradiography studies in the frontal cortex of CBD (n = 3) and PSP brains (n = 2) showed high specificity for 3H-PI2620 but not for 3H-MK6240 or 3H-RO948. Our findings clearly demonstrate different binding properties among the second-generation tau PET tracers, which may assist in further understanding of tau heterogeneity in AD versus non-AD tauopathies and suggests potential for development of pure selective 4R tau PET tracers.
Collapse
Grants
- Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
- Stiftelsen Olle Engkvist Byggmästare
- Svenska Forskningsrådet Formas (Swedish Research Council Formas)
- Stockholms Läns Landsting (Stockholm County Council)
- Hjärnfonden (Swedish Brain Foundation)
- Stockholm County Council -Karolinska Institute regional agreement on medical training and clinical research (ALF grant),the Swedish Alzheimer Foundation, the Foundation for Old Servants, Gun and Bertil Stohne’s Foundation, the KI Foundation for Geriatric Diseases, the Swedish Dementia Foundation, the Center for Innovative Medicine (CIMED) Region Stockholm, the Michael J Fox Foundation (MJFF-019728), the Alzheimer Association USA (AARF -21-848395), and the Recherche sur Alzheimer Foundation (Paris, France).
Collapse
Affiliation(s)
- Mona-Lisa Malarte
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Per-Göran Gillberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Amit Kumar
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanovic
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Laëtitia Lemoine
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
79
|
Tissot C, Servaes S, Lussier FZ, Ferrari-Souza JP, Therriault J, Ferreira PCL, Bezgin G, Bellaver B, Leffa DT, Mathotaarachchi SS, Chamoun M, Stevenson J, Rahmouni N, Kang MS, Pallen V, Margherita-Poltronetti N, Wang YT, Fernandez-Arias J, Benedet AL, Zimmer ER, Soucy JP, Tudorascu DL, Cohen AD, Sharp M, Gauthier S, Massarweh G, Lopresti B, Klunk WE, Baker SL, Villemagne VL, Rosa-Neto P, Pascoal TA. The Association of Age-Related and Off-Target Retention with Longitudinal Quantification of [ 18F]MK6240 Tau PET in Target Regions. J Nucl Med 2023; 64:452-459. [PMID: 36396455 PMCID: PMC10071794 DOI: 10.2967/jnumed.122.264434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]MK6240) tau PET tracer quantifies the brain tau neurofibrillary tangle load in Alzheimer disease. The aims of our study were to test the stability of common reference region estimates in the cerebellum over time and across diagnoses and evaluate the effects of age-related and off-target retention on the longitudinal quantification of [18F]MK6240 in target regions. Methods: We assessed reference, target, age-related, and off-target regions in 125 individuals across the aging and Alzheimer disease spectrum with longitudinal [18F]MK6240 SUVs and SUV ratios (SUVRs) (mean ± SD, 2.25 ± 0.40 y of follow-up). We obtained SUVR from meninges, exhibiting frequent off-target retention with [18F]MK6240. Additionally, we compared tracer uptake between 37 cognitively unimpaired young (CUY) (mean age, 23.41 ± 3.33 y) and 27 cognitively unimpaired older (CU) adults (amyloid-β-negative and tau-negative, 58.50 ± 9.01 y) to identify possible nonvisually apparent, age-related signal. Two-tailed t testing and Pearson correlation testing were used to determine the difference between groups and associations between changes in region uptake, respectively. Results: Inferior cerebellar gray matter SUV did not differ on the basis of diagnosis and amyloid-β status, cross-sectionally and over time. [18F]MK6240 uptake significantly differed between CUY and CU adults in the putamen or pallidum (affecting ∼75% of the region) and in the Braak II region (affecting ∼35%). Changes in meningeal and putamen or pallidum SUVRs did not significantly differ from zero, nor did they vary across diagnostic groups. We did not observe significant correlations between longitudinal changes in age-related or meningeal off-target retention and changes in target regions, whereas changes in all target regions were strongly correlated. Conclusion: Inferior cerebellar gray matter was similar across diagnostic groups cross-sectionally and stable over time and thus was deemed a suitable reference region for quantification. Despite not being visually perceptible, [18F]MK6240 has age-related retention in subcortical regions, at a much lower magnitude but topographically colocalized with significant off-target signal of the first-generation tau tracers. The lack of correlation between changes in age-related or meningeal and target retention suggests little influence of possible off-target signals on longitudinal tracer quantification. Nevertheless, the age-related retention in the Braak II region needs to be further investigated. Future postmortem studies should elucidate the source of the newly reported age-related [18F]MK6240 signal, and in vivo studies should further explore its impact on tracer quantification.
Collapse
Affiliation(s)
- Cécile Tissot
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stijn Servaes
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Firoza Z Lussier
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - João Pedro Ferrari-Souza
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Graduate Program in Biological Sciences: Biochemistry, Porto Alegre, Brazil
| | - Joseph Therriault
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Pâmela C L Ferreira
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gleb Bezgin
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Bruna Bellaver
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Graduate Program in Biological Sciences: Biochemistry, Porto Alegre, Brazil
| | - Douglas Teixeira Leffa
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sulantha S Mathotaarachchi
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Mira Chamoun
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Jenna Stevenson
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Min Su Kang
- Artificial Intelligence and Computational Neurosciences Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- L.C. Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Pallen
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Nina Margherita-Poltronetti
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Yi-Ting Wang
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Jaime Fernandez-Arias
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | | | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Porto Alegre, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Dana L Tudorascu
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Annie D Cohen
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Serge Gauthier
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
- Douglas Mental Health Institute, Montreal, Quebec, Canada
| | - Gassan Massarweh
- Department of Radiochemistry, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Brian Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - William E Klunk
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Victor L Villemagne
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pedro Rosa-Neto
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
- Douglas Mental Health Institute, Montreal, Quebec, Canada
| | - Tharick A Pascoal
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;
| |
Collapse
|
80
|
Singh P, Singh D, Srivastava P, Mishra G, Tiwari AK. Evaluation of advanced, pathophysiologic new targets for imaging of CNS. Drug Dev Res 2023; 84:484-513. [PMID: 36779375 DOI: 10.1002/ddr.22040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/12/2022] [Accepted: 12/31/2022] [Indexed: 02/14/2023]
Abstract
The inadequate information about the in vivo pathological, physiological, and neurological impairments, as well as the absence of in vivo tools for assessing brain penetrance and the efficiency of newly designed drugs, has hampered the development of new techniques for the treatment for variety of new central nervous system (CNS) diseases. The searching sites such as Science Direct and PubMed were used to find out the numerous distinct tracers across 16 CNS targets including tau, synaptic vesicle glycoprotein, the adenosine 2A receptor, the phosphodiesterase enzyme PDE10A, and the purinoceptor, among others. Among the most encouraging are [18 F]FIMX for mGluR imaging, [11 C]Martinostat for Histone deacetylase, [18 F]MNI-444 for adenosine 2A imaging, [11 C]ER176 for translocator protein, and [18 F]MK-6240 for tau imaging. We also reviewed the findings for each tracer's features and potential for application in CNS pathophysiology and therapeutic evaluation investigations, including target specificity, binding efficacy, and pharmacokinetic factors. This review aims to present a current evaluation of modern positron emission tomography tracers for CNS targets, with a focus on recent advances for targets that have newly emerged for imaging in humans.
Collapse
Affiliation(s)
- Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pooja Srivastava
- Division of Cyclotron and Radiopharmaceuticals Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Gauri Mishra
- Department of Zoology, Swami Shraddhananad College, University of Delhi, Alipur, Delhi, India
| | - Anjani K Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
81
|
Mohammadi Z, Alizadeh H, Marton J, Cumming P. The Sensitivity of Tau Tracers for the Discrimination of Alzheimer's Disease Patients and Healthy Controls by PET. Biomolecules 2023; 13:290. [PMID: 36830659 PMCID: PMC9953528 DOI: 10.3390/biom13020290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Hyperphosphorylated tau aggregates, also known as neurofibrillary tangles, are a hallmark neuropathological feature of Alzheimer's disease (AD). Molecular imaging of tau by positron emission tomography (PET) began with the development of [18F]FDDNP, an amyloid β tracer with off-target binding to tau, which obtained regional specificity through the differing distributions of amyloid β and tau in AD brains. A concerted search for more selective and affine tau PET tracers yielded compounds belonging to at least eight structural categories; 18F-flortaucipir, known variously as [18F]-T807, AV-1451, and Tauvid®, emerged as the first tau tracer approved by the American Food and Drug Administration. The various tau tracers differ concerning their selectivity over amyloid β, off-target binding at sites such as monoamine oxidase and neuromelanin, and degree of uptake in white matter. While there have been many reviews of molecular imaging of tau in AD and other conditions, there has been no systematic comparison of the fitness of the various tracers for discriminating between AD patient and healthy control (HC) groups. In this narrative review, we endeavored to compare the binding properties of the various tau tracers in vitro and the effect size (Cohen's d) for the contrast by PET between AD patients and age-matched HC groups. The available tracers all gave good discrimination, with Cohen's d generally in the range of two-three in culprit brain regions. Overall, Cohen's d was higher for AD patient groups with more severe illness. Second-generation tracers, while superior concerning off-target binding, do not have conspicuously higher sensitivity for the discrimination of AD and HC groups. We suppose that available pharmacophores may have converged on a maximal affinity for tau fibrils, which may limit the specific signal imparted in PET studies.
Collapse
Affiliation(s)
- Zohreh Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Hadi Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - János Marton
- ABX Advanced Biochemical Compounds Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Straße 10-14, D-01454 Radeberg, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstraße 18, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
82
|
Gibson LL, Pollak TA, Hart M, Heslegrave A, Hye A, Church AJ, Lakdawala N, Nicholson TR, Batzu L, Rota S, Trivedi D, Zetterberg H, Chaudhuri KR, Aarsland D. NMDA Receptor Antibodies and Neuropsychiatric Symptoms in Parkinson's Disease. J Neuropsychiatry Clin Neurosci 2023:appineuropsych20220107. [PMID: 36710627 DOI: 10.1176/appi.neuropsych.20220107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE N-methyl-d-aspartate receptor (NMDAR) encephalitis is an autoantibody-mediated neurological syndrome with prominent cognitive and neuropsychiatric symptoms. The clinical relevance of NMDAR antibodies outside the context of encephalitis was assessed in this study. METHODS Plasma from patients with Parkinson's disease (PD) (N=108) and healthy control subjects (N=89) was screened at baseline for immunoglobulin A (IgA), IgM, and IgG NMDAR antibodies, phosphorylated tau 181 (p-tau181), and the neuroaxonal injury marker neurofilament light (NfL). Clinical assessment of the patients included measures of cognition (Mini-Mental State Examination [MMSE]) and neuropsychiatric symptoms (Hospital Anxiety and Depression Scale; Non-Motor Symptoms Scale for Parkinson's Disease). A subgroup of patients (N=61) was followed annually for up to 6 years. RESULTS Ten (9%) patients with PD tested positive for NMDAR antibodies (IgA, N=5; IgM, N=6; IgG, N=0), and three (3%) healthy control subjects had IgM NMDAR antibodies; IgA NMDAR antibodies were detected significantly more commonly among patients with PD than healthy control subjects (χ2=4.23, df=1, p=0.04). Age, gender, and disease duration were not associated with NMDAR antibody positivity. Longitudinally, antibody-positive patients had significantly greater decline in annual MMSE scores when the analyses were adjusted for education, age, disease duration, p-tau181, NfL, and follow-up duration (adjusted R2=0.26, p=0.01). Neuropsychiatric symptoms were not associated with antibody status, and no associations were seen between NMDAR antibodies and p-tau181 or NfL levels. CONCLUSIONS NMDAR antibodies were associated with greater cognitive impairment over time in patients with PD, independent of other pathological biomarkers, suggesting a potential contribution of these antibodies to cognitive decline in PD.
Collapse
Affiliation(s)
- Lucy L Gibson
- Department of Old Age Psychiatry (Gibson, Hye, Aarsland) and Department of Psychosis Studies, Neuropsychiatry Research and Education Group (Pollak, Nicholson), Institute of Psychiatry, Psychology and Neuroscience, King's College London; Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London (Hart, Church, Lakdawala); Departments of Neuroinflammation (Hart) and Neurodegenerative Disease (Heslegrave, Zetterberg), Institute of Neurology, University College London; UK Dementia Research Institute, University College London (Heslegrave, Zetterberg); Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College London (Batzu, Rota, Trivedi, Chaudhuri); Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (Zetterberg); Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway (Aarsland)
| | - Thomas A Pollak
- Department of Old Age Psychiatry (Gibson, Hye, Aarsland) and Department of Psychosis Studies, Neuropsychiatry Research and Education Group (Pollak, Nicholson), Institute of Psychiatry, Psychology and Neuroscience, King's College London; Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London (Hart, Church, Lakdawala); Departments of Neuroinflammation (Hart) and Neurodegenerative Disease (Heslegrave, Zetterberg), Institute of Neurology, University College London; UK Dementia Research Institute, University College London (Heslegrave, Zetterberg); Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College London (Batzu, Rota, Trivedi, Chaudhuri); Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (Zetterberg); Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway (Aarsland)
| | - Melanie Hart
- Department of Old Age Psychiatry (Gibson, Hye, Aarsland) and Department of Psychosis Studies, Neuropsychiatry Research and Education Group (Pollak, Nicholson), Institute of Psychiatry, Psychology and Neuroscience, King's College London; Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London (Hart, Church, Lakdawala); Departments of Neuroinflammation (Hart) and Neurodegenerative Disease (Heslegrave, Zetterberg), Institute of Neurology, University College London; UK Dementia Research Institute, University College London (Heslegrave, Zetterberg); Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College London (Batzu, Rota, Trivedi, Chaudhuri); Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (Zetterberg); Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway (Aarsland)
| | - Amanda Heslegrave
- Department of Old Age Psychiatry (Gibson, Hye, Aarsland) and Department of Psychosis Studies, Neuropsychiatry Research and Education Group (Pollak, Nicholson), Institute of Psychiatry, Psychology and Neuroscience, King's College London; Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London (Hart, Church, Lakdawala); Departments of Neuroinflammation (Hart) and Neurodegenerative Disease (Heslegrave, Zetterberg), Institute of Neurology, University College London; UK Dementia Research Institute, University College London (Heslegrave, Zetterberg); Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College London (Batzu, Rota, Trivedi, Chaudhuri); Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (Zetterberg); Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway (Aarsland)
| | - Abdul Hye
- Department of Old Age Psychiatry (Gibson, Hye, Aarsland) and Department of Psychosis Studies, Neuropsychiatry Research and Education Group (Pollak, Nicholson), Institute of Psychiatry, Psychology and Neuroscience, King's College London; Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London (Hart, Church, Lakdawala); Departments of Neuroinflammation (Hart) and Neurodegenerative Disease (Heslegrave, Zetterberg), Institute of Neurology, University College London; UK Dementia Research Institute, University College London (Heslegrave, Zetterberg); Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College London (Batzu, Rota, Trivedi, Chaudhuri); Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (Zetterberg); Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway (Aarsland)
| | - Andrew J Church
- Department of Old Age Psychiatry (Gibson, Hye, Aarsland) and Department of Psychosis Studies, Neuropsychiatry Research and Education Group (Pollak, Nicholson), Institute of Psychiatry, Psychology and Neuroscience, King's College London; Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London (Hart, Church, Lakdawala); Departments of Neuroinflammation (Hart) and Neurodegenerative Disease (Heslegrave, Zetterberg), Institute of Neurology, University College London; UK Dementia Research Institute, University College London (Heslegrave, Zetterberg); Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College London (Batzu, Rota, Trivedi, Chaudhuri); Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (Zetterberg); Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway (Aarsland)
| | - Neghat Lakdawala
- Department of Old Age Psychiatry (Gibson, Hye, Aarsland) and Department of Psychosis Studies, Neuropsychiatry Research and Education Group (Pollak, Nicholson), Institute of Psychiatry, Psychology and Neuroscience, King's College London; Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London (Hart, Church, Lakdawala); Departments of Neuroinflammation (Hart) and Neurodegenerative Disease (Heslegrave, Zetterberg), Institute of Neurology, University College London; UK Dementia Research Institute, University College London (Heslegrave, Zetterberg); Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College London (Batzu, Rota, Trivedi, Chaudhuri); Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (Zetterberg); Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway (Aarsland)
| | - Timothy R Nicholson
- Department of Old Age Psychiatry (Gibson, Hye, Aarsland) and Department of Psychosis Studies, Neuropsychiatry Research and Education Group (Pollak, Nicholson), Institute of Psychiatry, Psychology and Neuroscience, King's College London; Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London (Hart, Church, Lakdawala); Departments of Neuroinflammation (Hart) and Neurodegenerative Disease (Heslegrave, Zetterberg), Institute of Neurology, University College London; UK Dementia Research Institute, University College London (Heslegrave, Zetterberg); Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College London (Batzu, Rota, Trivedi, Chaudhuri); Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (Zetterberg); Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway (Aarsland)
| | - Lucia Batzu
- Department of Old Age Psychiatry (Gibson, Hye, Aarsland) and Department of Psychosis Studies, Neuropsychiatry Research and Education Group (Pollak, Nicholson), Institute of Psychiatry, Psychology and Neuroscience, King's College London; Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London (Hart, Church, Lakdawala); Departments of Neuroinflammation (Hart) and Neurodegenerative Disease (Heslegrave, Zetterberg), Institute of Neurology, University College London; UK Dementia Research Institute, University College London (Heslegrave, Zetterberg); Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College London (Batzu, Rota, Trivedi, Chaudhuri); Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (Zetterberg); Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway (Aarsland)
| | - Silvia Rota
- Department of Old Age Psychiatry (Gibson, Hye, Aarsland) and Department of Psychosis Studies, Neuropsychiatry Research and Education Group (Pollak, Nicholson), Institute of Psychiatry, Psychology and Neuroscience, King's College London; Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London (Hart, Church, Lakdawala); Departments of Neuroinflammation (Hart) and Neurodegenerative Disease (Heslegrave, Zetterberg), Institute of Neurology, University College London; UK Dementia Research Institute, University College London (Heslegrave, Zetterberg); Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College London (Batzu, Rota, Trivedi, Chaudhuri); Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (Zetterberg); Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway (Aarsland)
| | - Dhaval Trivedi
- Department of Old Age Psychiatry (Gibson, Hye, Aarsland) and Department of Psychosis Studies, Neuropsychiatry Research and Education Group (Pollak, Nicholson), Institute of Psychiatry, Psychology and Neuroscience, King's College London; Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London (Hart, Church, Lakdawala); Departments of Neuroinflammation (Hart) and Neurodegenerative Disease (Heslegrave, Zetterberg), Institute of Neurology, University College London; UK Dementia Research Institute, University College London (Heslegrave, Zetterberg); Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College London (Batzu, Rota, Trivedi, Chaudhuri); Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (Zetterberg); Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway (Aarsland)
| | - Henrik Zetterberg
- Department of Old Age Psychiatry (Gibson, Hye, Aarsland) and Department of Psychosis Studies, Neuropsychiatry Research and Education Group (Pollak, Nicholson), Institute of Psychiatry, Psychology and Neuroscience, King's College London; Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London (Hart, Church, Lakdawala); Departments of Neuroinflammation (Hart) and Neurodegenerative Disease (Heslegrave, Zetterberg), Institute of Neurology, University College London; UK Dementia Research Institute, University College London (Heslegrave, Zetterberg); Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College London (Batzu, Rota, Trivedi, Chaudhuri); Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (Zetterberg); Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway (Aarsland)
| | - Kallol Ray Chaudhuri
- Department of Old Age Psychiatry (Gibson, Hye, Aarsland) and Department of Psychosis Studies, Neuropsychiatry Research and Education Group (Pollak, Nicholson), Institute of Psychiatry, Psychology and Neuroscience, King's College London; Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London (Hart, Church, Lakdawala); Departments of Neuroinflammation (Hart) and Neurodegenerative Disease (Heslegrave, Zetterberg), Institute of Neurology, University College London; UK Dementia Research Institute, University College London (Heslegrave, Zetterberg); Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College London (Batzu, Rota, Trivedi, Chaudhuri); Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (Zetterberg); Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway (Aarsland)
| | - Dag Aarsland
- Department of Old Age Psychiatry (Gibson, Hye, Aarsland) and Department of Psychosis Studies, Neuropsychiatry Research and Education Group (Pollak, Nicholson), Institute of Psychiatry, Psychology and Neuroscience, King's College London; Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, National Hospital for Neurology and Neurosurgery, London (Hart, Church, Lakdawala); Departments of Neuroinflammation (Hart) and Neurodegenerative Disease (Heslegrave, Zetterberg), Institute of Neurology, University College London; UK Dementia Research Institute, University College London (Heslegrave, Zetterberg); Department of Basic and Clinical Neuroscience, Parkinson Foundation International Centre of Excellence, King's College Hospital and King's College London (Batzu, Rota, Trivedi, Chaudhuri); Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden (Zetterberg); Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway (Aarsland)
| |
Collapse
|
83
|
Hsiao WWW, Angela S, Le TN, Ku CC, Hu PS, Chiang WH. Evolution of Detecting Early Onset of Alzheimer's Disease: From Neuroimaging to Optical Immunoassays. J Alzheimers Dis 2023; 93:821-845. [PMID: 37125550 DOI: 10.3233/jad-221202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Alzheimer's disease (AD) is a pathological disorder defined by the symptoms of memory loss and deterioration of cognitive abilities over time. Although the etiology is complex, it is mainly associated with the accumulation of toxic amyloid-β peptide (Aβ) aggregates and tau protein-induced neurofibrillary tangles (NFTs). Even now, creating non-invasive, sensitive, specific, and cost-effective diagnostic methods for AD remains challenging. Over the past few decades, polymers, and nanomaterials (e.g., nanodiamonds, nanogold, quantum dots) have become attractive and practical tools in nanomedicine for diagnosis and treatment. This review focuses on current developments in sensing methods such as enzyme-linked immunosorbent assay (ELISA) and surface-enhanced Raman scattering (SERS) to boost the sensitivity in detecting related biomarkers for AD. In addition, optical analysis platforms such as ELISA and SERS have found increasing popularity among researchers due to their excellent sensitivity and specificity, which may go as low as the femtomolar range. While ELISA offers easy technological usage and high throughput, SERS has the advantages of improved mobility, simple electrical equipment integration, and lower cost. Both portable optical sensing techniques are highly superior in terms of sensitivity, specificity, human application, and practicality, enabling the early identification of AD biomarkers.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C
| | - Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C
| | - Trong-Nghia Le
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Chia-Chi Ku
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan, R.O.C
| | - Po-Sheng Hu
- College of Photonics, National Yang Ming Chiao Tung University, Tainan City, Taiwan, R.O.C
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C
| |
Collapse
|
84
|
Shuping JL, Matthews DC, Adamczuk K, Scott D, Rowe CC, Kreisl WC, Johnson SC, Lukic AS, Johnson KA, Rosa‐Neto P, Andrews RD, Van Laere K, Cordes L, Ward L, Wilde CL, Barakos J, Purcell DD, Devanand DP, Stern Y, Luchsinger JA, Sur C, Price JC, Brickman AM, Klunk WE, Boxer AL, Mathotaarachchi SS, Lao PJ, Evelhoch JL. Development, initial validation, and application of a visual read method for [ 18F]MK-6240 tau PET. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12372. [PMID: 36873926 PMCID: PMC9983143 DOI: 10.1002/trc2.12372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 02/15/2023]
Abstract
Background The positron emission tomography (PET) radiotracer [18F]MK-6240 exhibits high specificity for neurofibrillary tangles (NFTs) of tau protein in Alzheimer's disease (AD), high sensitivity to medial temporal and neocortical NFTs, and low within-brain background. Objectives were to develop and validate a reproducible, clinically relevant visual read method supporting [18F]MK-6240 use to identify and stage AD subjects versus non-AD and controls. Methods Five expert readers used their own methods to assess 30 scans of mixed diagnosis (47% cognitively normal, 23% mild cognitive impairment, 20% AD, 10% traumatic brain injury) and provided input regarding regional and global positivity, features influencing assessment, confidence, practicality, and clinical relevance. Inter-reader agreement and concordance with quantitative values were evaluated to confirm that regions could be read reliably. Guided by input regarding clinical applicability and practicality, read classifications were defined. The readers read the scans using the new classifications, establishing by majority agreement a gold standard read for those scans. Two naïve readers were trained and read the 30-scan set, providing initial validation. Inter-rater agreement was further tested by two trained independent readers in 131 scans. One of these readers used the same method to read a full, diverse database of 1842 scans; relationships between read classification, clinical diagnosis, and amyloid status as available were assessed. Results Four visual read classifications were determined: no uptake, medial temporal lobe (MTL) only, MTL and neocortical uptake, and uptake outside MTL. Inter-rater kappas were 1.0 for the naïve readers gold standard scans read and 0.98 for the independent readers 131-scan read. All scans in the full database could be classified; classification frequencies were concordant with NFT histopathology literature. Discussion This four-class [18F]MK-6240 visual read method captures the presence of medial temporal signal, neocortical expansion associated with disease progression, and atypical distributions that may reflect different phenotypes. The method demonstrates excellent trainability, reproducibility, and clinical relevance supporting clinical use. Highlights A visual read method has been developed for [18F]MK-6240 tau positron emission tomography.The method is readily trainable and reproducible, with inter-rater kappas of 0.98.The read method has been applied to a diverse set of 1842 [18F]MK-6240 scans.All scans from a spectrum of disease states and acquisitions could be classified.Read classifications are consistent with histopathological neurofibrillary tangle staging literature.
Collapse
Affiliation(s)
| | | | | | | | - Christopher C. Rowe
- Department of Molecular Imaging and TherapyAustin HealthMelbourneVictoriaAustralia
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - William C. Kreisl
- Department of NeurologyThe Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Columbia University Irving Medical CenterVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Sterling C. Johnson
- Department of MedicineDivision of GeriatricsAlzheimer's Disease Research Center, University of WisconsinMadisonWisconsinUSA
| | | | - Keith A. Johnson
- The Gordon Center for Medical ImagingDepartment of NeurologyCenter for Alzheimer Research and TreatmentBrigham and Women's HospitalBostonMassachusettsUSA
- Department of RadiologyAthinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Pedro Rosa‐Neto
- Montreal Neurological InstituteMcGill UniversityMontréalQuebecCanada
| | | | - Koen Van Laere
- Nuclear Medicine and Molecular ImagingDepartment of Imaging and Pathology KU LeuvenLeuvenBelgium
| | | | - Larry Ward
- Florey Department of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | | | | | | | - Davangere P. Devanand
- Department of NeurologyThe Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Columbia University Irving Medical CenterVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Yaakov Stern
- Department of NeurologyThe Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Columbia University Irving Medical CenterVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of NeurologyGertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | - Jose A. Luchsinger
- Columbia University Irving Medical CenterVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of Medicine and EpidemiologyColumbia University Irving Medical CenterNew York, NY, 10032 USA For Dr. LuchsingerUSA
| | | | - Julie C. Price
- Department of RadiologyAthinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Adam M. Brickman
- Department of NeurologyThe Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Columbia University Irving Medical CenterVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of NeurologyGertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | - William E. Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Adam L. Boxer
- Department of NeurologyMemory and Aging CenterUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Patrick J. Lao
- Department of NeurologyThe Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Columbia University Irving Medical CenterVagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of NeurologyGertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | | |
Collapse
|
85
|
Meduri G, Guillemeau K, Daguinot C, Dounane O, Genet M, Ferrara L, Chambraud B, Baulieu EE, Giustiniani J. Concomitant Neuronal Tau Deposition and FKBP52 Decrease Is an Early Feature of Different Human and Experimental Tauopathies. J Alzheimers Dis 2023; 94:313-331. [PMID: 37248902 PMCID: PMC10357213 DOI: 10.3233/jad-230127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Pathological tau proteins constitute neurofibrillary tangles that accumulate in tauopathies including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and familial frontotemporal lobar degeneration (FTLD-Tau). We previously showed that the FKBP52 immunophilin interacts functionally with tau and strongly decreases in AD brain neurons in correlation with tau deposition. We also reported that FKBP52 co-localizes with autophagy-lysosomal markers and an early pathological tau isoform in AD neurons, suggesting its involvement in autophagic tau clearance. OBJECTIVE Our objective was to evaluate if differences in neuronal FKBP52 expression levels and subcellular localization might be detected in AD, PSP, familial FTLD-Tau, and in the hTau-P301 S mouse model compared to controls. METHODS Cell by cell immunohistofluorescence analyses and quantification of FKBP52 were performed on postmortem brain samples of some human tauopathies and on hTau-P301 S mice spinal cords. RESULTS We describe a similar FKBP52 decrease and its localization with early pathological tau forms in the neuronal autophagy-lysosomal pathway in various tauopathies and hTau-P301 S mice. We find that FKBP52 decreases early during the pathologic process as it occurs in rare neurons with tau deposits in the marginally affected frontal cortex region of AD Braak IV brains and in the spinal cord of symptomless 1-month-old hTau-P301 S mice. CONCLUSION As FKBP52 plays a significant role in cellular signaling and conceivably in tau clearance, our data support the idea that the prevention of FKBP52 decrease or the restoration of its normal expression at early pathologic stages might represent a new potential therapeutic approach in tauopathies including AD, familial FTLD-Tau, and PSP.
Collapse
Affiliation(s)
- Geri Meduri
- Institut Professeur Baulieu, Kremlin-Bicêtre, France
| | | | | | - Omar Dounane
- Institut Professeur Baulieu, Kremlin-Bicêtre, France
| | - Melanie Genet
- Institut Professeur Baulieu, Kremlin-Bicêtre, France
| | - Luigi Ferrara
- Department of Biosciences, Biotechnology and Biopharmacology, UNIBA University, Bari, Italy
| | | | - Etienne Emile Baulieu
- Université Paris-Saclay, INSERM U1195, Kremlin-Bicêtre, France
- Institut Professeur Baulieu, Kremlin-Bicêtre, France
| | - Julien Giustiniani
- Université Paris-Saclay, INSERM U1195, Kremlin-Bicêtre, France
- Institut Professeur Baulieu, Kremlin-Bicêtre, France
| |
Collapse
|
86
|
Pascoal TA, Leuzy A, Therriault J, Chamoun M, Lussier F, Tissot C, Strandberg O, Palmqvist S, Stomrud E, Ferreira PCL, Ferrari‐Souza JP, Smith R, Benedet AL, Gauthier S, Hansson O, Rosa‐Neto P. Discriminative accuracy of the A/T/N scheme to identify cognitive impairment due to Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12390. [PMID: 36733847 PMCID: PMC9886860 DOI: 10.1002/dad2.12390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 02/03/2023]
Abstract
Introduction The optimal combination of amyloid-β/tau/neurodegeneration (A/T/N) biomarker profiles for the diagnosis of Alzheimer's disease (AD) dementia is unclear. Methods We examined the discriminative accuracy of A/T/N combinations assessed with neuroimaging biomarkers for the differentiation of AD from cognitively unimpaired (CU) elderly and non-AD neurodegenerative diseases in the TRIAD, BioFINDER-1 and BioFINDER-2 cohorts (total n = 832) using area under the receiver operating characteristic curves (AUC). Results For the diagnosis of AD dementia (vs. CU elderly), T biomarkers performed as well as the complete A/T/N system (AUC range: 0.90-0.99). A and T biomarkers in isolation performed as well as the complete A/T/N system in differentiating AD dementia from non-AD neurodegenerative diseases (AUC range; A biomarker: 0.84-1; T biomarker: 0.83-1). Discussion In diagnostic settings, the use of A or T neuroimaging biomarkers alone can reduce patient burden and medical costs compared with using their combination, without significantly compromising accuracy.
Collapse
Affiliation(s)
- Tharick A. Pascoal
- Department of PsychiatrySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurologySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
| | - Antoine Leuzy
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
| | - Joseph Therriault
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
- Montreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Mira Chamoun
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
- Montreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Firoza Lussier
- Department of PsychiatrySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
| | - Cecile Tissot
- Department of NeurologySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
| | - Olof Strandberg
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Sebastian Palmqvist
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Erik Stomrud
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Pamela C. L. Ferreira
- Department of PsychiatrySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - João Pedro Ferrari‐Souza
- Department of PsychiatrySchool of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Graduate Program in Biological Sciences: BiochemistryUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazil
| | - Ruben Smith
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Andrea Lessa Benedet
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
- Montreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Serge Gauthier
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Pedro Rosa‐Neto
- Translational Neuroimaging LaboratoryThe McGill University Research Centre for Studies in AgingDepartment of Neurology and NeurosurgeryFaculty of MedicineMcGill UniversityMontrealQuébecCanada
- Montreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| |
Collapse
|
87
|
Harrison TM, Ward TJ, Murphy A, Baker SL, Dominguez PA, Koeppe R, Vemuri P, Lockhart SN, Jung Y, Harvey DJ, Lovato L, Toga AW, Masdeu J, Oh H, Gitelman DR, Aggarwal N, Snyder HM, Baker LD, DeCarli C, Jagust WJ, Landau SM. Optimizing quantification of MK6240 tau PET in unimpaired older adults. Neuroimage 2023; 265:119761. [PMID: 36455762 PMCID: PMC9957642 DOI: 10.1016/j.neuroimage.2022.119761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Accurate measurement of Alzheimer's disease (AD) pathology in older adults without significant clinical impairment is critical to assessing intervention strategies aimed at slowing AD-related cognitive decline. The U.S. Study to Protect Brain Health Through Lifestyle Intervention to Reduce Risk (POINTER) is a 2-year randomized controlled trial to evaluate the effect of multicomponent risk reduction strategies in older adults (60-79 years) who are cognitively unimpaired but at increased risk for cognitive decline/dementia due to factors such as cardiovascular disease and family history. The POINTER Imaging ancillary study is collecting tau-PET ([18F]MK6240), beta-amyloid (Aβ)-PET ([18F]florbetaben [FBB]) and MRI data to evaluate neuroimaging biomarkers of AD and cerebrovascular pathophysiology in this at-risk sample. Here 481 participants (70.0±5.0; 66% F) with baseline MK6240, FBB and structural MRI scans were included. PET scans were coregistered to the structural MRI which was used to create FreeSurfer-defined reference regions and target regions of interest (ROIs). We also created off-target signal (OTS) ROIs to examine the magnitude and distribution of MK6240 OTS across the brain as well as relationships between OTS and age, sex, and race. OTS was unimodally distributed, highly correlated across OTS ROIs and related to younger age and sex but not race. Aiming to identify an optimal processing approach for MK6240 that would reduce the influence of OTS, we compared our previously validated MRI-guided standard PET processing and 6 alternative approaches. The alternate approaches included combinations of reference region erosion and meningeal OTS masking before spatial smoothing as well as partial volume correction. To compare processing approaches we examined relationships between target ROIs (entorhinal cortex (ERC), hippocampus or a temporal meta-ROI (MetaROI)) SUVR and age, sex, race, Aβ and a general cognitive status measure, the Modified Telephone Interview for Cognitive Status (TICSm). Overall, the processing approaches performed similarly, and none showed a meaningful improvement over standard processing. Across processing approaches we observed previously reported relationships with MK6240 target ROIs including positive associations with age, an Aβ+> Aβ- effect and negative associations with cognition. In sum, we demonstrated that different methods for minimizing effects of OTS, which is highly correlated across the brain within subject, produced no substantive change in our performance metrics. This is likely because OTS contaminates both reference and target regions and this contamination largely cancels out in SUVR data. Caution should be used when efforts to reduce OTS focus on target or reference regions in isolation as this may exacerbate OTS contamination in SUVR data.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - William J Jagust
- University of California Berkeley, USA; Lawrence Berkeley National Laboratory, USA
| | | |
Collapse
|
88
|
Simrén J, Brum WS, Ashton NJ, Benedet AL, Karikari TK, Kvartsberg H, Sjons E, Lussier FZ, Chamoun M, Stevenson J, Hopewell R, Pallen V, Ye K, Pascoal TA, Zetterberg H, Rosa-Neto P, Blennow K. CSF tau368/total-tau ratio reflects cognitive performance and neocortical tau better compared to p-tau181 and p-tau217 in cognitively impaired individuals. Alzheimers Res Ther 2022; 14:192. [PMID: 36544221 PMCID: PMC9773470 DOI: 10.1186/s13195-022-01142-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) tau biomarkers are reliable diagnostic markers for Alzheimer's disease (AD). However, their strong association with amyloid pathology may limit their reliability as specific markers of tau neurofibrillary tangles. A recent study showed evidence that a ratio of CSF C-terminally truncated tau (tau368, a tangle-enriched tau species), especially in ratio with total tau (t-tau), correlates strongly with tau PET tracer uptake. In this study, we set to evaluate the performance of the tau368/t-tau ratio in capturing tangle pathology, as indexed by a high-affinity tau PET tracer, as well as its association with severity of clinical symptoms. METHODS In total, 125 participants were evaluated cross-sectionally from the Translational Biomarkers of Aging and Dementia (TRIAD) cohort (21 young, 60 cognitively unimpaired [CU] elderly [15 Aβ+], 10 Aβ+ with mild cognitive impairment [MCI], 14 AD dementia patients, and 20 Aβ- individuals with non-AD cognitive disorders). All participants underwent amyloid and tau PET scanning, with [18F]-AZD4694 and [18F]-MK6240, respectively, and had CSF measurements of p-tau181, p-tau217, and t-tau. CSF concentrations of tau368 were quantified in all individuals with an in-house single molecule array assay. RESULTS CSF tau368 concentration was not significantly different across the diagnostic groups, although a modest increase was observed in all groups as compared with healthy young individuals (all P < 0.01). In contrast, the CSF tau368/t-tau ratio was the lowest in AD dementia, being significantly lower than in CU individuals (Aβ-, P < 0.001; Aβ+, P < 0.01), as well as compared to those with non-AD cognitive disorders (P < 0.001). Notably, in individuals with symptomatic AD, tau368/t-tau correlated more strongly with [18F]-MK6240 PET SUVR as compared to the other CSF tau biomarkers, with increasing associations being seen in brain regions associated with more advanced disease (isocortical regions > limbic regions > transentorhinal regions). Importantly, linear regression models indicated that these associations were not confounded by Aβ PET SUVr. CSF tau368/t-tau also tended to continue to become more abnormal with higher tau burden, whereas the other biomarkers plateaued after the limbic stage. Finally, the tau368/t-tau ratio correlated more strongly with cognitive performance in individuals with symptomatic AD as compared to t-tau, p-tau217 and p-tau181. CONCLUSION The tau368/t-tau ratio captures novel aspects of AD pathophysiology and disease severity in comparison to established CSF tau biomarkers, as it is more closely related to tau PET SUVR and cognitive performance in the symptomatic phase of the disease.
Collapse
Affiliation(s)
- Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Wagner S Brum
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, London, UK
| | - Andrea L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma Sjons
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Robert Hopewell
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Vanessa Pallen
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Tharick A Pascoal
- Department of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
89
|
Gobom J, Benedet AL, Mattsson-Carlgren N, Montoliu-Gaya L, Schultz N, Ashton NJ, Janelidze S, Servaes S, Sauer M, Pascoal TA, Karikari TK, Lantero-Rodriguez J, Brinkmalm G, Zetterberg H, Hansson O, Rosa-Neto P, Blennow K. Antibody-free measurement of cerebrospinal fluid tau phosphorylation across the Alzheimer's disease continuum. Mol Neurodegener 2022; 17:81. [PMID: 36510321 PMCID: PMC9743664 DOI: 10.1186/s13024-022-00586-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alzheimer's disease is characterized by an abnormal increase of phosphorylated tau (pTau) species in the CSF. It has been suggested that emergence of different pTau forms may parallel disease progression. Therefore, targeting multiple specific pTau forms may allow for a deeper understanding of disease evolution and underlying pathophysiology. Current immunoassays measure pTau epitopes separately and may capture phosphorylated tau fragments of different length depending on the non-pTau antibody used in the assay sandwich pair, which bias the measurement. METHODS We developed the first antibody-free mass spectrometric method to simultaneously measure multiple phosphorylated epitopes in CSF tau: pT181, pS199, pS202, pT205, pT217, pT231, and pS396. The method was first evaluated in biochemically defined Alzheimer's disease and control CSF samples (n = 38). All seven pTau epitopes clearly separated Alzheimer's disease from non-AD (p < 0.001, AUC = 0.84-0.98). We proceeded with clinical validation of the method in the TRIAD (n = 165) and BioFINDER-2 cohorts (n = 563), consisting of patients across the full Alzheimer's disease continuum, including also young controls (< 40 years), as well as patients with frontotemporal dementia and other neurodegenerative disorders. RESULTS Increased levels of all phosphorylated epitopes were found in Alzheimer's disease dementia and Aβ positron emission tomography-positive patients with mild cognitive impairment compared with Aβ-negative controls. For Alzheimer's disease dementia compared with Aβ-negative controls, the best biomarker performance was observed for pT231 (TRIAD: AUC = 98.73%, fold change = 7.64; BioFINDER-2: AUC = 91.89%, fold change = 10.65), pT217 (TRIAD: AUC = 99.71%, fold change = 6.33; BioFINDER-2: AUC = 98.12%, fold change = 8.83) and pT205 (TRIAD: AUC = 99.07%, fold change = 5.34; BioFINDER-2: AUC = 93.51%, fold change = 3.92). These phospho-epitopes also discriminated between Aβ-positive and Aβ-negative cognitively unimpaired individuals: pT217 (TRIAD: AUC = 83.26, fold change = 2.39; BioFINDER-2: AUC = 91.05%, fold change = 3.29), pT231 (TRIAD: AUC = 86.25, fold change = 3.80; BioFINDER-2: AUC = 78.69%, fold change = 3.65) and pT205 (TRIAD: AUC = 71.58, fold change = 1.51; BioFINDER-2: AUC = 71.11%, fold change = 1.70). CONCLUSIONS While an increase was found for all pTau species examined, the highest fold change in Alzheimer's disease was found for pT231, pT217 and pT205. Simultaneous antibody-free measurement of pTau epitopes by mass spectrometry avoids possible bias caused by differences in antibody affinity for modified or processed forms of tau, provides insights into tau pathophysiology and may facilitate clinical trials on tau-based drug candidates.
Collapse
Affiliation(s)
- Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Andréa L. Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC Canada
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Laia Montoliu-Gaya
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nina Schultz
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Shorena Janelidze
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC Canada
| | - Mathias Sauer
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tharick A. Pascoal
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC Canada
| | - Thomas K. Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - Juan Lantero-Rodriguez
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Lund University, Lund, Sweden
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC Canada
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
90
|
Kwan ATH, Arfaie S, Therriault J, Azizi Z, Lussier FZ, Tissot C, Chamoun M, Bezgin G, Servaes S, Stevenon J, Rahmouni N, Pallen V, Gauthier S, Rosa-Neto P. Medial temporal tau predicts memory decline in cognitively unimpaired elderly. Brain Commun 2022; 5:fcac325. [PMID: 36627889 PMCID: PMC9814120 DOI: 10.1093/braincomms/fcac325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease can be detected in living people using in vivo biomarkers of amyloid-β and tau, even in the absence of cognitive impairment during the preclinical phase. [18F]-MK-6420 is a high-affinity PET tracer that quantifies tau neurofibrillary tangles, but its ability to predict cognitive changes associated with early Alzheimer's disease symptoms, such as memory decline, is unclear. Here, we assess the prognostic accuracy of baseline [18F]-MK-6420 tau-PET for predicting longitudinal memory decline in asymptomatic elderly individuals. In a longitudinal observational study, we evaluated a cohort of cognitively normal elderly participants (n = 111) from the translational biomarkers in ageing and dementia study (data collected between October 2017 and July 2020, with a follow-up period of 12 months). All participants underwent tau-PET with [18F]-MK-6420 and amyloid-β PET with [18F]-AZD-4694. The exclusion criteria included the presence of head trauma, stroke or other neurological disorders. There were 111 eligible participants selected based on the availability of amyloid-β PET, tau-PET, MRI and APOEɛ4 genotyping. Among these participants, the mean standard deviation age was 70.1 (8.6) years; 20 (18%) were tau-PET-positive and 71 of 111 (63.9%) were women. A significant association between the baseline Braak Stages I-II [18F]-MK-6240 standardized uptake value ratio positivity and change in composite memory score were observed at the 12-month follow-up, after correcting for age, sex and years of education [logical memory and Rey Auditory Verbal Learning Test, standardized beta = -0.52 (-0.82-0.21), P < 0.001, for dichotomized tau-PET and -1.22 (-1.84-(-0.61)], P < 0.0001, for continuous tau-PET]. Moderate cognitive decline was observed for A + T + over the follow-up period, whereas no significant change was observed for A-T+, A + T- and A-T-, although it should be noted that the A-T + group was small. Our results indicate that baseline tau neurofibrillary tangle pathology is associated with longitudinal changes in memory function, supporting the use of [18F]-MK-6420 PET to predict the likelihood of asymptomatic elderly individuals experiencing future memory decline. Overall, [18F]-MK-6420 PET is a promising tool for predicting memory decline in older adults without cognitive impairment at baseline. This is of critical relevance as the field is shifting towards a biological model of Alzheimer's disease defined by the aggregation of pathologic tau. Therefore, early detection of tau pathology using [18F]-MK-6420 PET provides us with hope that living patients with Alzheimer's disease may be diagnosed during the preclinical phase before it is too late.
Collapse
Affiliation(s)
- Angela T H Kwan
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
| | - Saman Arfaie
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
- Department of Medicine, McGill University Health Centre, Montreal, QC H3G 2M1, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Zahra Azizi
- Department of Medicine, McGill University Health Centre, Montreal, QC H3G 2M1, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Cecile Tissot
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Jenna Stevenon
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Vanessa Pallen
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
- Department of Medicine, McGill University Health Centre, Montreal, QC H3G 2M1, Canada
| |
Collapse
|
91
|
Kazemi-Harikandei SZ, Shobeiri P, Salmani Jelodar MR, Tavangar SM. Effective connectivity in individuals with Alzheimer's disease and mild cognitive impairment: A systematic review. NEUROSCIENCE INFORMATICS 2022; 2:100104. [DOI: 10.1016/j.neuri.2022.100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
|
92
|
Kandiah N, Choi SH, Hu CJ, Ishii K, Kasuga K, Mok VC. Current and Future Trends in Biomarkers for the Early Detection of Alzheimer's Disease in Asia: Expert Opinion. J Alzheimers Dis Rep 2022; 6:699-710. [PMID: 36606209 PMCID: PMC9741748 DOI: 10.3233/adr-220059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) poses a substantial healthcare burden in the rapidly aging Asian population. Early diagnosis of AD, by means of biomarkers, can lead to interventions that might alter the course of the disease. The amyloid, tau, and neurodegeneration (AT[N]) framework, which classifies biomarkers by their core pathophysiological features, is a biomarker measure of amyloid plaques and neurofibrillary tangles. Our current AD biomarker armamentarium, comprising neuroimaging biomarkers and cerebrospinal fluid biomarkers, while clinically useful, may be invasive and expensive and hence not readily available to patients. Several studies have also investigated the use of blood-based measures of established core markers for detection of AD, such as amyloid-β and phosphorylated tau. Furthermore, novel non-invasive peripheral biomarkers and digital biomarkers could potentially expand access to early AD diagnosis to patients in Asia. Despite the multiplicity of established and potential biomarkers in AD, a regional framework for their optimal use to guide early AD diagnosis remains lacking. A group of experts from five regions in Asia gathered at a meeting in March 2021 to review the current evidence on biomarkers in AD diagnosis and discuss best practice around their use, with the goal of developing practical guidance that can be implemented easily by clinicians in Asia to support the early diagnosis of AD. This article summarizes recent key evidence on AD biomarkers and consolidates the experts' insights into the current and future use of these biomarkers for the screening and early diagnosis of AD in Asia.
Collapse
Affiliation(s)
- Nagaendran Kandiah
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore,Correspondence to: Nagaendran Kandiah, Dementia Research Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232. Tel.: +65 6592 2653; Fax: +65 6339 2889; E-mail: ; ORCID: 0000-0001-9244-4298
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Chaur-Jong Hu
- Department of Neurology, Dementia Center, Shuang Ho Hospital, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kenji Ishii
- Team for Neuroimaging Research, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | - Vincent C.T. Mok
- Division of Neurology, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China,Li Ka Shing Institute of Health Sciences, Gerald Choa Neuroscience Institute, Lui Che Woo Institute of Innovative Medicine, Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
93
|
Ferreira D, Mohanty R, Murray ME, Nordberg A, Kantarci K, Westman E. The hippocampal sparing subtype of Alzheimer's disease assessed in neuropathology and in vivo tau positron emission tomography: a systematic review. Acta Neuropathol Commun 2022; 10:166. [PMID: 36376963 PMCID: PMC9664780 DOI: 10.1186/s40478-022-01471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathology and neuroimaging studies have identified several subtypes of Alzheimer's disease (AD): hippocampal sparing AD, typical AD, and limbic predominant AD. An unresolved question is whether hippocampal sparing AD cases can present with neurofibrillary tangles (NFT) in association cortices while completely sparing the hippocampus. To address that question, we conducted a systematic review and performed original analyses on tau positron emission tomography (PET) data. We searched EMBASE, PubMed, and Web of Science databases until October 2022. We also implemented several methods for AD subtyping on tau PET to identify hippocampal sparing AD cases. Our findings show that seven out of the eight reviewed neuropathologic studies included cases at Braak stages IV or higher and therefore, could not identify hippocampal sparing cases with NFT completely sparing the hippocampus. In contrast, tau PET did identify AD participants with tracer retention in the association cortex while completely sparing the hippocampus. We conclude that tau PET can identify hippocampal sparing AD cases with NFT completely sparing the hippocampus. Based on the accumulating data, we suggest two possible pathways of tau spread: (1) a canonical pathway with early involvement of transentorhinal cortex and subsequent involvement of limbic regions and association cortices, and (2) a less common pathway that affects association cortices with limbic involvement observed at end stages of the disease or not at all.
Collapse
Affiliation(s)
- Daniel Ferreira
- Division of Clinical Geriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 (NEO building, floor 7th), 14152, Huddinge, Stockholm, Sweden.
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | - Rosaleena Mohanty
- Division of Clinical Geriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 (NEO building, floor 7th), 14152, Huddinge, Stockholm, Sweden
| | | | - Agneta Nordberg
- Division of Clinical Geriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 (NEO building, floor 7th), 14152, Huddinge, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Eric Westman
- Division of Clinical Geriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Blickagången 16 (NEO building, floor 7th), 14152, Huddinge, Stockholm, Sweden.
- Department of Neuroimaging, Center for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
94
|
Vanderlinden G, Ceccarini J, Vande Casteele T, Michiels L, Lemmens R, Triau E, Serdons K, Tournoy J, Koole M, Vandenbulcke M, Van Laere K. Spatial decrease of synaptic density in amnestic mild cognitive impairment follows the tau build-up pattern. Mol Psychiatry 2022; 27:4244-4251. [PMID: 35794185 DOI: 10.1038/s41380-022-01672-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
Next to amyloid and tau, synaptic loss is a key pathological hallmark in Alzheimer's disease, closely related to cognitive dysfunction and neurodegeneration. Tau is thought to cause synaptic loss, but this has not been experimentally verified in vivo. In a 2-year follow-up study, dual tracer PET-MR was performed in 12 amnestic MCI patients using 18F-MK-6240 for tau and 11C-UCB-J for SV2A as a proxy for synaptic density. Tau already accumulated in the neocortex at baseline with progression in Braak V/VI at follow-up. While synaptic loss was limited to limbic regions at baseline, it followed the specific tau pattern to stage IV/V regions two years later, indicating that tau spread might drive synaptic vulnerability. Moreover, synaptic density changes correlated to changes in cognitive function. This study shows for the first time in vivo that synaptic loss regionally follows tau accumulation after two years, providing a disease-modifying window of opportunity for (combined) tau-targeting therapies.
Collapse
Affiliation(s)
- Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium.
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium
| | - Thomas Vande Casteele
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Laura Michiels
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Eric Triau
- Private Practice Neurology, Leuven, Belgium
| | - Kim Serdons
- Department of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| | - Jos Tournoy
- Department of Geriatric Medicine, University Hospitals UZ Leuven, Leuven, Belgium.,Department of Public Health and Primary Care, Gerontology and Geriatrics, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Old-Age Psychiatry, University Hospitals UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium.,Department of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| |
Collapse
|
95
|
Kim SE, Kim HJ, Jang H, Weiner MW, DeCarli C, Na DL, Seo SW. Interaction between Alzheimer's Disease and Cerebral Small Vessel Disease: A Review Focused on Neuroimaging Markers. Int J Mol Sci 2022; 23:10490. [PMID: 36142419 PMCID: PMC9499680 DOI: 10.3390/ijms231810490] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of β-amyloid (Aβ) and tau, and subcortical vascular cognitive impairment (SVCI) is characterized by cerebral small vessel disease (CSVD). They are the most common causes of cognitive impairment in the elderly population. Concurrent CSVD burden is more commonly observed in AD-type dementia than in other neurodegenerative diseases. Recent developments in Aβ and tau positron emission tomography (PET) have enabled the investigation of the relationship between AD biomarkers and CSVD in vivo. In this review, we focus on the interaction between AD and CSVD markers and the clinical effects of these two markers based on molecular imaging studies. First, we cover the frequency of AD imaging markers, including Aβ and tau, in patients with SVCI. Second, we discuss the relationship between AD and CSVD markers and the potential distinct pathobiology of AD markers in SVCI compared to AD-type dementia. Next, we discuss the clinical effects of AD and CSVD markers in SVCI, and hemorrhagic markers in cerebral amyloid angiopathy. Finally, this review provides both the current challenges and future perspectives for SVCI.
Collapse
Affiliation(s)
- Si Eun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, Korea
- Department of Neurology, Inje University College of Medicine, Haeundae Paik Hospital, Busan 48108, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, Korea
| | - Michael W. Weiner
- Center for Imaging of Neurodegenerative Diseases, University of California, San Francisco, CA 94121, USA
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California, Davis, CA 95616, USA
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, Seoul 06351, Korea
- Samsung Alzheimer Research Center, Samsung Medical Center, Seoul 06351, Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
- Center for Clinical Epidemiology, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
96
|
Blessing EM, Parekh A, Betensky RA, Babb J, Saba N, Debure L, Varga AW, Ayappa I, Rapoport DM, Butler TA, de Leon MJ, Wisniewski T, Lopresti BJ, Osorio RS. Association between lower body temperature and increased tau pathology in cognitively normal older adults. Neurobiol Dis 2022; 171:105748. [PMID: 35550158 PMCID: PMC9751849 DOI: 10.1016/j.nbd.2022.105748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Preclinical studies suggest body temperature (Tb) and consequently brain temperature has the potential to bidirectionally interact with tau pathology in Alzheimer's Disease (AD). Tau phosphorylation is substantially increased by a small (<1 °C) decrease in temperature within the human physiological range, and thermoregulatory nuclei are affected by tau pathology early in the AD continuum. In this study we evaluated whether Tb (as a proxy for brain temperature) is cross-sectionally associated with clinically utilized markers of tau pathology in cognitively normal older adults. METHODS Tb was continuously measured with ingestible telemetry sensors for 48 h. This period included two nights of nocturnal polysomnography to delineate whether Tb during waking vs sleep is differentially associated with tau pathology. Tau phosphorylation was assessed with plasma and cerebrospinal fluid (CSF) tau phosphorylated at threonine 181 (P-tau), sampled the day following Tb measurement. In addition, neurofibrillary tangle (NFT) burden in early Braak stage regions was imaged with PET-MR using the [18F]MK-6240 radiotracer on average one month later. RESULTS Lower Tb was associated with increased NFT burden, as well as increased plasma and CSF P-tau levels (p < 0.05). NFT burden was associated with lower Tb during waking (p < 0.05) but not during sleep intervals. Plasma and CSF P-tau levels were highly correlated with each other (p < 0.05), and both variables were correlated with tau tangle radiotracer uptake (p < 0.05). CONCLUSIONS These results, the first available for human, suggest that lower Tb in older adults may be associated with increased tau pathology. Our findings add to the substantial preclinical literature associating lower body and brain temperature with tau hyperphosphorylation. CLINICAL TRIAL NUMBER NCT03053908.
Collapse
Affiliation(s)
- Esther M Blessing
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Ankit Parekh
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - Rebecca A Betensky
- Department of NYU School of Global Public Health, New York, NY 10016, United States of America.
| | - James Babb
- Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Natalie Saba
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Ludovic Debure
- Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Andrew W Varga
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - Indu Ayappa
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - David M Rapoport
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States of America.
| | - Tracy A Butler
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Mony J de Leon
- Department of Neurology, Weill Cornell Medicine, New York, NY 10065, United States of America.
| | - Thomas Wisniewski
- Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| | - Ricardo S Osorio
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, United States of America; Alzheimer's Disease Research Center, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, United States of America.
| |
Collapse
|
97
|
Wang R, Gao H, Xie H, Jia Z, Chen Q. Molecular imaging biomarkers in familial frontotemporal lobar degeneration: Progress and prospects. Front Neurol 2022; 13:933217. [PMID: 36051222 PMCID: PMC9424494 DOI: 10.3389/fneur.2022.933217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Familial frontotemporal lobar degeneration (FTLD) is a pathologically heterogeneous group of neurodegenerative diseases with diverse genotypes and clinical phenotypes. Three major mutations were reported in patients with familial FTLD, namely, progranulin (GRN), microtubule-associated protein tau (MAPT), and the chromosome 9 open reading frame 72 (C9orf72) repeat expansion, which could cause neurodegenerative pathological changes years before symptom onset. Noninvasive quantitative molecular imaging with PET or single-photon emission CT (SPECT) allows for selective visualization of the molecular targets in vivo to investigate brain metabolism, perfusion, neuroinflammation, and pathophysiological changes. There was increasing evidence that several molecular imaging biomarkers tend to serve as biomarkers to reveal the early brain abnormalities in familial FTLD. Tau-PET with 18F-flortaucipir and 11C-PBB3 demonstrated the elevated tau position in patients with FTLD and also showed the ability to differentiate patterns among the different subtypes of the mutations in familial FTLD. Furthermore, dopamine transporter imaging with the 11C-DOPA and 11C-CFT in PET and the 123I-FP-CIT in SPECT revealed the loss of dopaminergic neurons in the asymptomatic and symptomatic patients of familial FTLD. In addition, PET imaging with the 11C-MP4A has demonstrated reduced acetylcholinesterase (AChE) activity in patients with FTLD, while PET with the 11C-DAA1106 and 11C-PK11195 revealed an increased level of microglial activation associated with neuroinflammation even before the onset of symptoms in familial FTLD. 18F-fluorodeoxyglucose (FDG)-PET indicated hypometabolism in FTLD with different mutations preceded the atrophy on MRI. Identifying molecular imaging biomarkers for familial FTLD is important for the in-vivo assessment of underlying pathophysiological changes with disease progression and future disease-modifying therapy. We review the recent progress of molecular imaging in familial FTLD with focused on the possible implication of these techniques and their prospects in specific mutation types.
Collapse
Affiliation(s)
- Ruihan Wang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Gao
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Qin Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Qin Chen
| |
Collapse
|
98
|
Long-term test-retest of cerebral [18F]MK-6240 binding and longitudinal evaluation of extracerebral tracer uptake in healthy controls and amnestic MCI patients. Eur J Nucl Med Mol Imaging 2022; 49:4580-4588. [DOI: 10.1007/s00259-022-05907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
|
99
|
Staging of Alzheimer's disease: past, present, and future perspectives. Trends Mol Med 2022; 28:726-741. [PMID: 35717526 DOI: 10.1016/j.molmed.2022.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023]
Abstract
For many years Alzheimer's disease (AD) was associated with the dementia stage of the disease, the tail end of a pathophysiological process that lasts approximately two decades. Whereas early disease staging assessments focused on progressive deterioration of clinical functioning, brain imaging with positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarker studies highlighted the long preclinical phase of AD in which a cascade of detectable biological abnormalities precede cognitive decline. The recent proliferation of imaging and fluid biomarkers of AD pathophysiology provide an opportunity for the identification of several biological stages in the preclinical phase of AD. We discuss the use of clinical and biomarker information in past, present, and future staging of AD. We highlight potential applications of PET, CSF, and plasma biomarkers for staging AD severity in vivo.
Collapse
|
100
|
Groot C, Villeneuve S, Smith R, Hansson O, Ossenkoppele R. Tau PET Imaging in Neurodegenerative Disorders. J Nucl Med 2022; 63:20S-26S. [PMID: 35649647 DOI: 10.2967/jnumed.121.263196] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
The advent of PET ligands that bind tau pathology has enabled the quantification and visualization of tau pathology in aging and in Alzheimer disease (AD). There is strong evidence from neuropathologic studies that the most widely used tau PET tracers (i.e., 18F-flortaucipir, 18F-MK6240, 18F-RO948, and 18F-PI2620) bind tau aggregates formed in AD in the more advanced (i.e., ≥IV) Braak stages. However, tracer binding in most non-AD tauopathies is weaker and overlaps to a large extent with known off-target binding regions, limiting the quantification and visualization of non-AD tau pathology in vivo. Off-target binding is generally present in the substantia nigra, basal ganglia, pituitary, choroid plexus, longitudinal sinuses, meninges, or skull in a tracer-specific manner. Most cross-sectional studies use the inferior aspect of the cerebellar gray matter as a reference region, whereas for longitudinal analyses, an eroded white matter reference region is sometimes selected. No consensus has yet been reached on whether to use partial-volume correction of tau PET data. Although an increased neocortical tau PET signal is rare in cognitively unimpaired individuals, even in amyloid-β-positive cases, such a signal holds important prognostic information because preliminary data suggest that an elevated tau PET signal predicts cognitive decline over time. Also, in symptomatic stages of AD (i.e., mild cognitive impairment or AD dementia), tau PET shows great potential as a prognostic marker because an elevated baseline tau PET retention forecasts future cognitive decline and brain atrophy. For differential diagnostic use, the primary utility of tau PET is to differentiate AD dementia from other neurodegenerative diseases, as is in line with the conditions for the approval of 18F-flortaucipir by the U.S. Food and Drug Administration for clinical use. The differential diagnostic performance drops substantially at the mild-cognitive-impairment stage of AD, and there is no sufficient evidence for detection of sporadic non-AD primary tauopathies at the individual level for any of the currently available tau PET tracers. In conclusion, while the field is currently addressing outstanding methodologic issues, tau PET is gradually moving toward clinical application as a diagnostic and possibly prognostic marker in dementia expert centers and as a tool for selecting participants, assessing target engagement, and monitoring treatment effects in clinical trials.
Collapse
Affiliation(s)
- Colin Groot
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| | - Sylvia Villeneuve
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Canada.,Douglas Mental Health University Institute, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada; and
| | - Ruben Smith
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Lund University, Lund, Sweden; .,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| |
Collapse
|