51
|
Tabrizi SJ, Flower MD, Ross CA, Wild EJ. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 2020; 16:529-546. [PMID: 32796930 DOI: 10.1038/s41582-020-0389-4] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Huntington disease (HD) is a neurodegenerative disease caused by CAG repeat expansion in the huntingtin gene (HTT) and involves a complex web of pathogenic mechanisms. Mutant HTT (mHTT) disrupts transcription, interferes with immune and mitochondrial function, and is aberrantly modified post-translationally. Evidence suggests that the mHTT RNA is toxic, and at the DNA level, somatic CAG repeat expansion in vulnerable cells influences the disease course. Genome-wide association studies have identified DNA repair pathways as modifiers of somatic instability and disease course in HD and other repeat expansion diseases. In animal models of HD, nucleocytoplasmic transport is disrupted and its restoration is neuroprotective. Novel cerebrospinal fluid (CSF) and plasma biomarkers are among the earliest detectable changes in individuals with premanifest HD and have the sensitivity to detect therapeutic benefit. Therapeutically, the first human trial of an HTT-lowering antisense oligonucleotide successfully, and safely, reduced the CSF concentration of mHTT in individuals with HD. A larger trial, powered to detect clinical efficacy, is underway, along with trials of other HTT-lowering approaches. In this Review, we discuss new insights into the molecular pathogenesis of HD and future therapeutic strategies, including the modulation of DNA repair and targeting the DNA mutation itself.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- Huntington's Disease Centre, University College London, London, UK. .,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK. .,UK Dementia Research Institute, University College London, London, UK.
| | - Michael D Flower
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - Christopher A Ross
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward J Wild
- Huntington's Disease Centre, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
52
|
Taran AS, Shuvalova LD, Lagarkova MA, Alieva IB. Huntington's Disease-An Outlook on the Interplay of the HTT Protein, Microtubules and Actin Cytoskeletal Components. Cells 2020; 9:E1514. [PMID: 32580314 PMCID: PMC7348758 DOI: 10.3390/cells9061514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease is a severe and currently incurable neurodegenerative disease. An autosomal dominant mutation in the Huntingtin gene (HTT) causes an increase in the polyglutamine fragment length at the protein N-terminus. The consequence of the mutation is the death of neurons, mostly striatal neurons, leading to the occurrence of a complex of motor, cognitive and emotional-volitional personality sphere disorders in carriers. Despite intensive studies, the functions of both mutant and wild-type huntingtin remain poorly understood. Surprisingly, there is the selective effect of the mutant form of HTT even on nervous tissue, whereas the protein is expressed ubiquitously. Huntingtin plays a role in cell physiology and affects cell transport, endocytosis, protein degradation and other cellular and molecular processes. Our experimental data mining let us conclude that a significant part of the Huntingtin-involved cellular processes is mediated by microtubules and other cytoskeletal cell structures. The review attempts to look at unresolved issues in the study of the huntingtin and its mutant form, including their functions affecting microtubules and other components of the cell cytoskeleton.
Collapse
Affiliation(s)
- Aleksandra S. Taran
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1–73, Leninsky Gory, 119992 Moscow, Russia; (A.S.T.); (L.D.S.)
| | - Lilia D. Shuvalova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1–73, Leninsky Gory, 119992 Moscow, Russia; (A.S.T.); (L.D.S.)
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Maria A. Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Irina B. Alieva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninsky Gory, 119992 Moscow, Russia
| |
Collapse
|
53
|
Lontay B, Kiss A, Virág L, Tar K. How Do Post-Translational Modifications Influence the Pathomechanistic Landscape of Huntington's Disease? A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21124282. [PMID: 32560122 PMCID: PMC7349273 DOI: 10.3390/ijms21124282] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disorder characterized by the loss of motor control and cognitive ability, which eventually leads to death. The mutant huntingtin protein (HTT) exhibits an expansion of a polyglutamine repeat. The mechanism of pathogenesis is still not fully characterized; however, evidence suggests that post-translational modifications (PTMs) of HTT and upstream and downstream proteins of neuronal signaling pathways are involved. The determination and characterization of PTMs are essential to understand the mechanisms at work in HD, to define possible therapeutic targets better, and to challenge the scientific community to develop new approaches and methods. The discovery and characterization of a panoply of PTMs in HTT aggregation and cellular events in HD will bring us closer to understanding how the expression of mutant polyglutamine-containing HTT affects cellular homeostasis that leads to the perturbation of cell functions, neurotoxicity, and finally, cell death. Hence, here we review the current knowledge on recently identified PTMs of HD-related proteins and their pathophysiological relevance in the formation of abnormal protein aggregates, proteolytic dysfunction, and alterations of mitochondrial and metabolic pathways, neuroinflammatory regulation, excitotoxicity, and abnormal regulation of gene expression.
Collapse
Affiliation(s)
- Beata Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- Correspondence: ; Tel.: +36-52-412345
| |
Collapse
|
54
|
Harris KL, Kuan WL, Mason SL, Barker RA. Antidopaminergic treatment is associated with reduced chorea and irritability but impaired cognition in Huntington's disease (Enroll-HD). J Neurol Neurosurg Psychiatry 2020; 91:622-630. [PMID: 32229581 PMCID: PMC7279191 DOI: 10.1136/jnnp-2019-322038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/26/2020] [Accepted: 03/13/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Alterations in dopamine neurotransmission underlie some of the clinical features of Huntington's disease (HD) and as such are a target for therapeutic intervention, especially for the treatment of chorea and some behavioural problems. However, justification for such an intervention is mainly based on case reports and small open label studies and the effects these drugs have on cognition in HD remain unclear. METHODS In this study, we used the Enroll-HD observational database to assess the effects of antidopaminergic medication on motor, psychiatric and cognitive decline, over a 3-year period. We first looked at the annual rate of decline of a group of HD patients taking antidopaminergic medication (n=466) compared with an untreated matched group (n=466). The groups were matched on specified clinical variables using propensity score matching. Next, we studied a separate group of HD patients who were prescribed such medications part way through the study (n=90) and compared their rate of change before and after the drugs were introduced and compared this to a matched control group. RESULTS We found that HD patients taking antidopaminergic medication had a slower progression in chorea and irritability compared with those not taking such medications. However, this same group of patients also displayed significantly greater rate of decline in a range of cognitive tasks. CONCLUSION In conclusion we found that antidopaminergic treatment is associated with improvements in the choreic movements and irritability of HD but worsens cognition. However, further research is required to prospectively investigate this and whether these are causally linked, ideally in a double-blind placebo-controlled trial.
Collapse
Affiliation(s)
- Kate L Harris
- Department of Clinical Neurosciences, The University of Cambridge, Cambridge, United Kingdom
| | - Wei-Li Kuan
- Department of Clinical Neurosciences, The University of Cambridge, Cambridge, United Kingdom
| | - Sarah L Mason
- Department of Clinical Neurosciences, Cambridge Centre for Brain Repair, Cambridge, Cambridgeshire, United Kingdom
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, and MRC-WT Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
55
|
Teravskis PJ, Ashe KH, Liao D. The Accumulation of Tau in Postsynaptic Structures: A Common Feature in Multiple Neurodegenerative Diseases? Neuroscientist 2020; 26:503-520. [PMID: 32389059 DOI: 10.1177/1073858420916696] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increasingly, research suggests that neurodegenerative diseases and dementias are caused not by unique, solitary cellular mechanisms, but by multiple contributory mechanisms manifesting as heterogeneous clinical presentations. However, diverse neurodegenerative diseases also share common pathological hallmarks and cellular mechanisms. One such mechanism involves the redistribution of the microtubule associated protein tau from the axon into the somatodendritic compartment of neurons, followed by the mislocalization of tau into dendritic spines, resulting in postsynaptic functional deficits. Here we review various signaling pathways that trigger the redistribution of tau to the cell body and dendritic tree, and its mislocalization to dendritic spines. The convergence of multiple pathways in different disease models onto this final common pathway suggests that it may be an attractive pathway to target for developing new treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter J Teravskis
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,University of Minnesota Medical School, Minneapolis, MN, USA
| | - Karen H Ashe
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.,N. Budd Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Medical Center, Minneapolis, MN, USA
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
56
|
Vuono R, Kouli A, Legault EM, Chagnon L, Allinson KS, La Spada A, Biunno I, Barker RA, Drouin‐Ouellet J. Association Between Toll-Like Receptor 4 (TLR4) and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Genetic Variants and Clinical Progression of Huntington's Disease. Mov Disord 2020; 35:401-408. [PMID: 31724242 PMCID: PMC7154663 DOI: 10.1002/mds.27911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/31/2019] [Accepted: 09/09/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Although Huntington's disease (HD) is caused by a single dominant gene, it is clear that there are genetic modifiers that may influence the age of onset and disease progression. OBJECTIVES We sought to investigate whether new inflammation-related genetic variants may contribute to the onset and progression of HD. METHODS We first used postmortem brain material from patients at different stages of HD to look at the protein expression of toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells 2 (TREM2). We then genotyped the TREM2 R47H gene variant and 3 TLR4 single nucleotide polymorphisms in a large cohort of HD patients from the European Huntington's Disease Network REGISTRY. RESULTS We found an increase in the number of cells expressing TREM2 and TLR4 in postmortem brain samples from patients dying with HD. We also found that the TREM2 R47H gene variant was associated with changes in cognitive decline in the large cohort of HD patients, whereas 2 of 3 TLR4 single nucleotide polymorphisms assessed were associated with changes in motor progression in this same group. CONCLUSIONS These findings identify TREM2 and TLR4 as potential genetic modifiers for HD and suggest that inflammation influences disease progression in this condition. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Romina Vuono
- John van Geest Centre for Brain Repair & Department of Neurology, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUnited Kingdom
- Medway School of PharmacyUniversity of Kent at MedwayKentUnited Kingdom
| | - Antonina Kouli
- John van Geest Centre for Brain Repair & Department of Neurology, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUnited Kingdom
| | | | | | - Kieren S. Allinson
- Department of PathologyCambridge University Hospitals NHS (National Health Service) Foundation TrustCambridgeUnited Kingdom
| | | | | | - Ida Biunno
- Institute for Genetic and Biomedical Research ‐ CNRMilanoItaly
| | - Roger A. Barker
- John van Geest Centre for Brain Repair & Department of Neurology, Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUnited Kingdom
| | | |
Collapse
|
57
|
Role for ATXN1, ATXN2, and HTT intermediate repeats in frontotemporal dementia and Alzheimer's disease. Neurobiol Aging 2020; 87:139.e1-139.e7. [DOI: 10.1016/j.neurobiolaging.2019.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 10/03/2019] [Accepted: 10/26/2019] [Indexed: 12/14/2022]
|
58
|
Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders. Neurobiol Dis 2020; 134:104619. [DOI: 10.1016/j.nbd.2019.104619] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/05/2019] [Accepted: 09/19/2019] [Indexed: 01/27/2023] Open
|
59
|
Fernández-Nogales M, Lucas JJ. Altered Levels and Isoforms of Tau and Nuclear Membrane Invaginations in Huntington's Disease. Front Cell Neurosci 2020; 13:574. [PMID: 32009905 PMCID: PMC6978886 DOI: 10.3389/fncel.2019.00574] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
Since the early reports of neurofibrillary Tau pathology in brains of some Huntington’s disease (HD) patients, mounting evidence of multiple alterations of Tau in HD brain tissue has emerged in recent years. Such Tau alterations range from increased total levels, imbalance of isoforms generated by alternative splicing (increased 4R-/3R-Tau ratio) or by post-translational modifications such as hyperphosphorylation or truncation. Besides, the detection in HD brains of a new Tau histopathological hallmark known as Tau nuclear rods (TNRs) or Tau-positive nuclear indentations (TNIs) led to propose HD as a secondary Tauopathy. After their discovery in HD brains, TNIs have also been reported in hippocampal neurons of early Braak stage AD cases and in frontal and temporal cortical neurons of FTD-MAPT cases due to the intronic IVS10+16 mutation in the Tau gene (MAPT) which results in an increased 4R-/3R-Tau ratio similar to that observed in HD. TNIs are likely pathogenic for contributing to the disturbed nucleocytoplasmic transport observed in HD. A key question is whether correction of any of the mentioned Tau alterations might have positive therapeutic implications for HD. The beneficial effect of decreasing Tau expression in HD mouse models clearly implicates Tau in HD pathogenesis. Such beneficial effect might be exerted by diminishing the excess total levels of Tau or specifically by diminishing the excess 4R-Tau, as well as any of their downstream effects. In any case, since gene silencing drugs are under development to attenuate both Huntingtin (HTT) expression for HD and MAPT expression for FTD-MAPT, it is conceivable that the combined therapy in HD patients might be more effective than HTT silencing alone.
Collapse
Affiliation(s)
| | - José J Lucas
- Centro de Biología Molecular Severo Ochoa (CBMSO)(CSIC-UAM), Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
60
|
Quntanilla RA, Tapia-Monsalves C. The Role of Mitochondrial Impairment in Alzheimer´s Disease Neurodegeneration: The Tau Connection. Curr Neuropharmacol 2020; 18:1076-1091. [PMID: 32448104 PMCID: PMC7709157 DOI: 10.2174/1570159x18666200525020259] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/23/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulative evidence has shown that mitochondrial dysfunction plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial impairment actively contributes to the synaptic and cognitive failure that characterizes AD. The presence of soluble pathological forms of tau like hyperphosphorylated at Ser396 and Ser404 and cleaved at Asp421 by caspase 3, negatively impacts mitochondrial bioenergetics, transport, and morphology in neurons. These adverse effects against mitochondria health will contribute to the synaptic impairment and cognitive decline in AD. Current studies suggest that mitochondrial failure induced by pathological tau forms is likely the result of the opening of the mitochondrial permeability transition pore (mPTP). mPTP is a mitochondrial mega-channel that is activated by increases in calcium and is associated with mitochondrial stress and apoptosis. This structure is composed of different proteins, where Ciclophilin D (CypD) is considered to be the primary mediator of mPTP activation. Also, new studies suggest that mPTP contributes to Aβ pathology and oxidative stress in AD. Further, inhibition of mPTP through the reduction of CypD expression prevents cognitive and synaptic impairment in AD mouse models. More importantly, tau protein contributes to the physiological regulation of mitochondria through the opening/interaction with mPTP in hippocampal neurons. Therefore, in this paper, we will discuss evidence that suggests an important role of pathological forms of tau against mitochondrial health. Also, we will discuss the possible role of mPTP in the mitochondrial impairment produced by the presence of tau pathology and its impact on synaptic function present in AD.
Collapse
Affiliation(s)
- Rodrigo A. Quntanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Carola Tapia-Monsalves
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
61
|
Antibody-based therapies for Huntington’s disease: current status and future directions. Neurobiol Dis 2019; 132:104569. [DOI: 10.1016/j.nbd.2019.104569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
|
62
|
Liu P, Smith BR, Huang ES, Mahesh A, Vonsattel JPG, Petersen AJ, Gomez-Pastor R, Ashe KH. A soluble truncated tau species related to cognitive dysfunction and caspase-2 is elevated in the brain of Huntington's disease patients. Acta Neuropathol Commun 2019; 7:111. [PMID: 31358058 PMCID: PMC6664763 DOI: 10.1186/s40478-019-0764-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/01/2019] [Indexed: 11/18/2022] Open
Abstract
Huntington’s disease (HD) is a progressive neurodegenerative disease. Involuntary movements, cognitive impairment and psychiatric disturbance are the major clinical manifestations, and gradual atrophy and selective neuronal loss in the striatum and cerebral cortex are the pathologic hallmarks. HD is caused by expanded CAG trinucleotide repeats at the N-terminus of IT15 that encodes the huntingtin (HTT) protein, though the molecular mechanisms through which the mutant HTT (mHTT) exerts toxic effects remain obscure. Members of the caspase family, including caspase-2 (Casp2), play an important role in HD pathogenesis. Genetic ablation of Casp2 ameliorates cognitive and motor deficits of HD mice, though the molecular targets of Casp2 are still unclear. It is well established that the microtubule-associated protein tau potentiates cognitive dysfunction in a variety of neurodegenerative disorders, including HD. Our recent study indicates that Casp2-catalyzed tau cleavage at aspartate 314 (tau 2N4R isoform numbering system) mediates synaptotoxicity, cognitive deficits and neurodegeneration in cellular and mouse models of frontotemporal dementia; further, levels of Δtau314, the soluble, N-terminal cleavage product, are elevated in individuals with mild cognitive impairment and Alzheimer’s disease, compared with cognitively normal individuals. Here, we identified the presence of Δtau314 proteins in the striatum (caudate nucleus) and prefrontal cortex (Brodmann’s area 8/9) of human subjects, and showed that in both structures, levels of Casp2 and Δtau314 proteins correlate well, and both proteins are higher in HD patients than non-HD individuals. Our findings advance our understanding of the contribution of Casp2-mediated Δtau314 production to HD pathogenesis.
Collapse
|
63
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
64
|
Tiepolt S, Patt M, Aghakhanyan G, Meyer PM, Hesse S, Barthel H, Sabri O. Current radiotracers to image neurodegenerative diseases. EJNMMI Radiopharm Chem 2019; 4:17. [PMID: 31659510 PMCID: PMC6660543 DOI: 10.1186/s41181-019-0070-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
The term of neurodegenerative diseases covers a heterogeneous group of disorders that are distinguished by progressive degeneration of the structure and function of the nervous system such as dementias, movement disorders, motor neuron disorders, as well as some prion disorders. In recent years, a paradigm shift started for the diagnosis of neurodegenerative diseases, for which successively clinical testing is supplemented by biomarker information. In research scenarios, it was even proposed recently to substitute the current syndromic by a biological definition of Alzheimer's diseases. PET examinations with various radiotracers play an important role in providing non-invasive biomarkers and co-morbidity information in neurodegeneration. Information on co-morbidity, e.g. Aβ plaques and Lewy-bodies or Aβ plaques in patients with aphasia or the absence of Aβ plaques in clinical AD patients are of interest to expand our knowledge about the pathogenesis of different phenotypically defined neurodegenerative diseases. Moreover, this information is also important in therapeutic trials targeting histopathological abnormalities.The aim of this review is to present an overview of the currently available radiotracers for imaging neurodegenerative diseases in research and in routine clinical settings. In this context, we also provide a short summary of the most frequent neurodegenerative diseases from a nuclear medicine point of view, their clinical and pathophysiological as well as nuclear imaging characteristics, and the resulting need for new radiotracers.
Collapse
Affiliation(s)
- Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Gayane Aghakhanyan
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Philipp M. Meyer
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| |
Collapse
|
65
|
Tau and TDP-43 proteinopathies: kindred pathologic cascades and genetic pleiotropy. J Transl Med 2019; 99:993-1007. [PMID: 30742063 PMCID: PMC6609463 DOI: 10.1038/s41374-019-0196-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
We review the literature on Tau and TDP-43 proteinopathies in aged human brains and the relevant underlying pathogenetic cascades. Complex interacting pathways are implicated in Alzheimer's disease and related dementias (ADRD), wherein multiple proteins tend to misfold in a manner that is "reactive," but, subsequently, each proteinopathy may contribute strongly to the clinical symptoms. Tau proteinopathy exists in brains of individuals across a broad spectrum of primary underlying conditions-e.g., developmental, traumatic, and inflammatory/infectious diseases. TDP-43 proteinopathy is also expressed in a wide range of clinical disorders. Although TDP-43 proteinopathy was first described in the central nervous system of patients with amyotrophic lateral sclerosis (ALS) and in subtypes of frontotemporal dementia (FTD/FTLD), TDP-43 proteinopathy is also present in chronic traumatic encephalopathy, cognitively impaired persons in advanced age with hippocampal sclerosis, Huntington's disease, and other diseases. We list known Tau and TDP-43 proteinopathies. There is also evidence of cellular co-localization between Tau and TDP-43 misfolded proteins, suggesting common pathways or protein interactions facilitating misfolding in one protein by the other. Multiple pleiotropic gene variants can alter risk for Tau or TDP-43 pathologies, and certain gene variants (e.g., APOE ε4, Huntingtin triplet repeats) are associated with increases of both Tau and TDP-43 proteinopathies. Studies of genetic risk factors have provided insights into multiple nodes of the pathologic cascades involved in Tau and TDP-43 proteinopathies. Variants from a specific gene can be either a low-penetrant risk factor for a group of diseases, or alternatively, a different variant of the same gene may be a disease-driving allele that is associated with a relatively aggressive and early-onset version of a clinically and pathologically specific disease type. Overall, a complex but enlightening paradigm has emerged, wherein both Tau and TDP-43 proteinopathies are linked to numerous overlapping upstream influences, and both are associated with multiple downstream pathologically- and clinically-defined deleterious effects.
Collapse
|
66
|
Baskota SU, Lopez OL, Greenamyre JT, Kofler J. Spectrum of tau pathologies in Huntington's disease. J Transl Med 2019; 99:1068-1077. [PMID: 30573872 PMCID: PMC9342691 DOI: 10.1038/s41374-018-0166-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 09/26/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant disorder caused by a trinucleotide expansion in the huntingtin gene. Recently, a new role for tau has been implicated in the pathogenesis of HD, whereas others have argued that postmortem tau pathology findings are attributable to concurrent Alzheimer's disease pathology. The frequency of other well-defined common age-related tau pathologies in HD has not been examined in detail. In this single center, retrospective analysis, we screened seven cases of Huntington's disease (5 females, 2 males, age at death: 47-73 years) for neuronal and glial tau pathology using phospho-tau immunohistochemistry. All seven cases showed presence of neuronal tau pathology. Five cases met diagnostic criteria for primary age-related tauopathy (PART), with three cases classified as definite PART and two cases as possible PART, all with a Braak stage of I. One case was diagnosed with low level of Alzheimer's disease neuropathologic change. In the youngest case, rare perivascular aggregates of tau-positive neurons, astrocytes and processes were identified at sulcal depths, meeting current neuropathological criteria for stage 1 chronic traumatic encephalopathy (CTE). Although the patient had no history of playing contact sports, he experienced several falls, but no definitive concussions during his disease course. Three of the PART cases and the CTE-like case showed additional evidence of aging-related tau astrogliopathy. None of the cases showed significant tau pathology in the striatum. In conclusion, while we found evidence for tau hyperphosphorylation and aggregation in all seven of our HD cases, the tau pathology was readily classifiable into known diagnostic entities and most likely represents non-specific age- or perhaps trauma-related changes. As the tau pathology was very mild in all cases and not unexpected for a population of this age range, it does not appear that the underlying HD may have promoted or accelerated tau accumulation.
Collapse
Affiliation(s)
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Timothy Greenamyre
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
67
|
Demonstration of prion-like properties of mutant huntingtin fibrils in both in vitro and in vivo paradigms. Acta Neuropathol 2019; 137:981-1001. [PMID: 30788585 PMCID: PMC6531424 DOI: 10.1007/s00401-019-01973-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/02/2022]
Abstract
In recent years, evidence has accumulated to suggest that mutant huntingtin protein (mHTT) can spread into healthy tissue in a prion-like fashion. This theory, however, remains controversial. To fully address this concept and to understand the possible consequences of mHTT spreading to Huntington’s disease pathology, we investigated the effects of exogenous human fibrillar mHTT (Q48) and huntingtin (HTT) (Q25) N-terminal fragments in three cellular models and three distinct animal paradigms. For in vitro experiments, human neuronal cells [induced pluripotent stem cell-derived GABA neurons (iGABA) and (SH-SY5Y)] as well as human THP1-derived macrophages, were incubated with recombinant mHTT fibrils. Recombinant mHTT and HTT fibrils were taken up by all cell types, inducing cell morphology changes and death. Variations in HTT aggregation were further observed following incubation with fibrils in both THP1 and SH-SY5Y cells. For in vivo experiments, adult wild-type (WT) mice received a unilateral intracerebral cortical injection and R6/2 and WT pups were administered fibrils via bilateral intraventricular injections. In both protocols, the injection of Q48 fibrils resulted in cognitive deficits and increased anxiety-like behavior. Post-mortem analysis of adult WT mice indicated that most fibrils had been degraded/cleared from the brain by 14 months post-surgery. Despite the absence of fibrils at these later time points, a change in the staining pattern of endogenous HTT was detected. A similar change was revealed in post-mortem analysis of the R6/2 mice. These effects were specific to central administration of fibrils, as mice receiving intravenous injections were not characterized by behavioral changes. In fact, peripheral administration resulted in an immune response mounting against the fibrils. Together, the in vitro and in vivo data indicate that exogenously administered mHTT is capable of both causing and exacerbating disease pathology.
Collapse
|
68
|
Zeun P, Scahill RI, Tabrizi SJ, Wild EJ. Fluid and imaging biomarkers for Huntington's disease. Mol Cell Neurosci 2019; 97:67-80. [PMID: 30807825 DOI: 10.1016/j.mcn.2019.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease is a chronic progressive neurodegenerative condition for which there is no disease-modifying treatment. The known genetic cause of Huntington's disease makes it possible to identify individuals destined to develop the disease and instigate treatments before the onset of symptoms. Multiple trials are already underway that target the cause of HD, yet clinical measures are often insensitive to change over typical clinical trial duration. Robust biomarkers of drug target engagement, disease severity and progression are required to evaluate the efficacy of treatments and concerted efforts are underway to achieve this. Biofluid biomarkers have potential advantages of direct quantification of biological processes at the molecular level, whilst imaging biomarkers can quantify related changes at a structural level in the brain. The most robust biofluid and imaging biomarkers can offer complementary information, providing a more comprehensive evaluation of disease stage and progression to inform clinical trial design and endpoints.
Collapse
Affiliation(s)
- Paul Zeun
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Rachael I Scahill
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Sarah J Tabrizi
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Edward J Wild
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| |
Collapse
|
69
|
Denis HL, Lauruol F, Cicchetti F. Are immunotherapies for Huntington's disease a realistic option? Mol Psychiatry 2019; 24:364-377. [PMID: 29487401 DOI: 10.1038/s41380-018-0021-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 01/28/2023]
Abstract
There is compelling evidence that the pathophysiology of many neurodegenerative diseases includes dysregulation of the immune system, with some elements that precede disease onset. However, if these alterations are prominent, why have clinical trials targeting this system failed to translate into long-lasting meaningful benefits for patients? This review focuses on Huntington's disease, a genetic disorder marked by notable cerebral and peripheral inflammation. We summarize ongoing and completed clinical trials that have involved pharmacological approaches to inhibit various components of the immune system and their pre-clinical correlates. We then discuss new putative treatment strategies using more targeted immunotherapies such as vaccination and intrabodies and how these may offer new hope in the treatment of Huntington's disease as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hélèna L Denis
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Florian Lauruol
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada.,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2, Canada. .,Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
70
|
Xu Y, Zhang S, Zheng H. The cargo receptor SQSTM1 ameliorates neurofibrillary tangle pathology and spreading through selective targeting of pathological MAPT (microtubule associated protein tau). Autophagy 2018; 15:583-598. [PMID: 30290707 PMCID: PMC6526869 DOI: 10.1080/15548627.2018.1532258] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that misfolded MAPT (microtubule associated protein tau), the main component of neurofibrillary tangles in tauopathies, is subject to degradation by the autophagy-lysosomal pathway. Selective autophagy is a subtype of macroautophagy that requires cargo receptors, such as OPTN (optineurin) or SQSTM1, to recognize specific targets for their sequestration within the autophagosome and their eventual degradation by the lysosome, although their roles in targeting distinct MAPT species have not been fully investigated. Using cargo receptor knockout cell lines and a seeding-based cellular assay in which neurofibrillary tangle pathology can be modeled in vitro, we reveal that while OPTN primarily targets soluble MAPT expressed in physiological conditions, SQSTM1 predominantly degrades insoluble but not soluble mutant MAPT. Endogenous SQSTM1 colocalizes with misfolded and aggregated MAPT species in vitro and in vivo, and both this colocalization and its function in MAPT clearance require both the LC3-interacting region (LIR) motif and also the PB1 self-polymerization domain of SQSTM1. Further, pathogenic MAPT accumulation reduces basal macroautophagy/autophagy in vitro and is associated with a compensatory upregulation of the lysosomal pathway in vivo. Finally, increased expression of SQSTM1 in MAPT transgenic mouse brains ameliorates MAPT pathology and prion-like spreading. Our results uncover distinct properties of selective autophagy receptors in targeting different MAPT species, implicate compromised autophagy as a potential underlying factor in mutant MAPT deposition, and demonstrate a potent and specific role of SQSTM1 in targeted clearance of pathogenic MAPT, through which it blocks neurofibrillary tangle accumulation and pathological spreading. Abbreviations: AAV: adeno-associated virus; AD: Alzheimer disease; ALP: autophagy-lysosomal pathway; ALS: amyotrophic lateral sclerosis; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; FTD: frontotemporal dementias; HD: Huntington disease; HTT: huntingtin; LIR: LC3-interacting region; NBR1: autophagy cargo receptor; NFE2L2/Nrf2: nuclear factor, erythroid derived 2, like 2; NFTs: neurofibrillary tangles; MAPT: microtubule associated protein tau; OPTN: optineurin; p-MAPT: hyperphosphorylated MAPT; PFA: paraformaldehyde; TARDBP/TDP-43: TAR DNA binding protein; TAX1BP1 Tax1: binding protein 1; ThioS: thioflavin-S; UBA: ubiquitin-associated.
Collapse
Affiliation(s)
- Yin Xu
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hui Zheng
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA,CONTACT Hui Zheng Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
71
|
Neueder A, Bates GP. RNA Related Pathology in Huntington's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:85-101. [PMID: 29427099 DOI: 10.1007/978-3-319-71779-1_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This chapter summarises research investigating the expression of huntingtin sense and anti-sense transcripts, the effect of the mutation on huntingtin processing as well as the more global effect of the mutation on the coding and non-coding transcriptomes. The huntingtin gene is ubiquitously expressed, although expression levels vary between tissues and cell types. A SNP that affects NF-ĸB binding in the huntingtin promoter modulates the expression level of huntingtin transcripts and is associated with the age of disease onset. Incomplete splicing between exon 1 and exon 2 has been shown to result in the expression of a small polyadenylated mRNA that encodes the highly pathogenic exon 1 huntingtin protein. This occurs in a CAG-repeat length dependent manner in all full-length mouse models of HD as well as HD patient post-mortem brains and fibroblasts. An antisense transcript to huntingtin is generated that contains a CUG repeat that is expanded in HD patients. In myotonic dystrophy, expanded CUG repeats form RNA foci in cell nuclei that bind specific proteins (e.g. MBL1). Short, pure CAG RNAs of approximately 21 nucleotides that have been processed by DICER can inhibit the translation of other CAG repeat containing mRNAs. The HD mutation affects the transcriptome at the level of mRNA expression, splicing and the expression of non-coding RNAs. Finally, expanded repetitive stretched of nucleotides can lead to RAN translation, in which the ribosome translates from the expanded repeat in all possible reading frames, producing proteins with various poly-amino acid tracts. The extent to which these events contribute to HD pathogenesis is largely unknown.
Collapse
Affiliation(s)
- Andreas Neueder
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Gillian P Bates
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
72
|
Maxan A, Cicchetti F. Tau: A Common Denominator and Therapeutic Target for Neurodegenerative Disorders. J Exp Neurosci 2018; 12:1179069518772380. [PMID: 29760562 PMCID: PMC5946355 DOI: 10.1177/1179069518772380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
There is compelling evidence that a number of neurodegenerative diseases share common pathogenic mechanisms. Better understanding these mechanisms will allow us to develop new therapeutic strategies. This commentary follows up on our recent findings that tau pathology can be found in healthy fetal tissue transplanted into the brain of patients with either Huntington or Parkinson disease. We will examine how tau appears to be shared in a number of different conditions and how its expression relates to cognitive decline and disease progression. We will further review pathogenic mechanisms and especially the relevance of the possible prion-like behavior of tau. We will conclude by discussing how all this work opens up novel therapeutic approaches to treating the cognitive impairments related to neurodegenerative diseases using a common strategy.
Collapse
Affiliation(s)
- Alexander Maxan
- Axe Neurosciences, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada
| | - Francesca Cicchetti
- Axe Neurosciences, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, Canada.,Département de Psychiatrie et de Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
73
|
Tai XY, Bernhardt B, Thom M, Thompson P, Baxendale S, Koepp M, Bernasconi N. Review: Neurodegenerative processes in temporal lobe epilepsy with hippocampal sclerosis: Clinical, pathological and neuroimaging evidence. Neuropathol Appl Neurobiol 2018; 44:70-90. [DOI: 10.1111/nan.12458] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022]
Affiliation(s)
- X. Y. Tai
- Division of Neuropathology and Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - B. Bernhardt
- Neuroimaging of Epilepsy Laboratory; McConnell Brain Imaging Centre; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
- Multimodal Imaging and Connectome Analysis Lab; Montreal Neurological Institute; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - M. Thom
- Division of Neuropathology and Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - P. Thompson
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - S. Baxendale
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - M. Koepp
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - N. Bernasconi
- Neuroimaging of Epilepsy Laboratory; McConnell Brain Imaging Centre; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| |
Collapse
|
74
|
St-Amour I, Turgeon A, Goupil C, Planel E, Hébert SS. Co-occurrence of mixed proteinopathies in late-stage Huntington's disease. Acta Neuropathol 2018; 135:249-265. [PMID: 29134321 DOI: 10.1007/s00401-017-1786-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022]
Abstract
Accumulating evidence highlights the potential role of mixed proteinopathies (i.e., abnormal protein aggregation) in the development of clinical manifestations of neurodegenerative diseases (NDD). Huntington's disease (HD) is an inherited NDD caused by autosomal-dominant expanded CAG trinucleotide repeat mutation in the gene coding for Huntingtin (Htt). Previous studies have suggested the coexistence of phosphorylated-Tau, α-synuclein (α-Syn) and TAR DNA-binding protein 43 (TDP-43) inclusions in HD. However, definite evidence that HD pathology in humans can be accompanied by other proteinopathies is still lacking. Using human post-mortem putamen samples from 31 controls and 56 HD individuals, we performed biochemical analyses of the expression, oligomerization and aggregation of Tau, α-Syn, TDP-43, and Amyloid precursor protein (APP)/Aβ. In HD brain, we observed reduced soluble protein (but not mRNA) levels of Htt, α-Syn, and Tau. Our results also support abnormal phosphorylation of Tau in more advanced stages of disease. Aberrant splicing of Tau exons 2, 3 (exclusion) and 10 (inclusion) was also detected in HD patients, leading to higher 0N4R and lower 1N3R isoforms. Finally, following formic acid extraction, we observed increased aggregation of TDP-43, α-Syn, and phosphorylated-Tau during HD progression. Notably, we observed that 88% of HD patients with Vonsattel grade 4 neuropathology displayed at least one non-Htt proteinopathy compared to 29% in controls. Interestingly, α-Syn aggregation correlated with Htt, TDP-43 and phosphorylated-Tau in HD but not in controls. The impact of this work is twofold: (1) it provides compelling evidences that Tau, α-Syn and TDP-43 proteinopathies are increased in HD, and (2) it suggests the involvement of common mechanisms leading to abnormal accumulation of aggregation-prone proteins in NDD. Further studies will be needed to decipher the impact of these proteinopathies on clinical manifestation of HD.
Collapse
Affiliation(s)
- Isabelle St-Amour
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, CHUL, 2705 Boul. Laurier, P0-9800, Québec, QC, G1V 4G2, Canada
- Département de psychiatrie et de neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Andréanne Turgeon
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, CHUL, 2705 Boul. Laurier, P0-9800, Québec, QC, G1V 4G2, Canada
- Département de psychiatrie et de neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Claudia Goupil
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, CHUL, 2705 Boul. Laurier, P0-9800, Québec, QC, G1V 4G2, Canada
- Département de psychiatrie et de neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, CHUL, 2705 Boul. Laurier, P0-9800, Québec, QC, G1V 4G2, Canada
- Département de psychiatrie et de neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Sébastien S Hébert
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, CHUL, 2705 Boul. Laurier, P0-9800, Québec, QC, G1V 4G2, Canada.
- Département de psychiatrie et de neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
75
|
Abstract
Huntington's disease (HD) is a chronic progressive neurodegenerative condition where new markers of disease progression are needed. So far no disease-modifying interventions have been found, and few interventions have been proven to alleviate symptoms. This may be partially explained by the lack of reliable indicators of disease severity, progression, and phenotype.Biofluid biomarkers may bring advantages in addition to clinical measures, such as reliability, reproducibility, price, accuracy, and direct quantification of pathobiological processes at the molecular level; and in addition to empowering clinical trials, they have the potential to generate useful hypotheses for new drug development.In this chapter we review biofluid biomarker reports in HD, emphasizing those we feel are likely to be closest to clinical applicability.
Collapse
Affiliation(s)
- Filipe B Rodrigues
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Lauren M Byrne
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
76
|
Gulisano W, Maugeri D, Baltrons MA, Fà M, Amato A, Palmeri A, D’Adamio L, Grassi C, Devanand D, Honig LS, Puzzo D, Arancio O. Role of Amyloid-β and Tau Proteins in Alzheimer's Disease: Confuting the Amyloid Cascade. J Alzheimers Dis 2018; 64:S611-S631. [PMID: 29865055 PMCID: PMC8371153 DOI: 10.3233/jad-179935] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The "Amyloid Cascade Hypothesis" has dominated the Alzheimer's disease (AD) field in the last 25 years. It posits that the increase of amyloid-β (Aβ) is the key event in AD that triggers tau pathology followed by neuronal death and eventually, the disease. However, therapeutic approaches aimed at decreasing Aβ levels have so far failed, and tau-based clinical trials have not yet produced positive findings. This begs the question of whether the hypothesis is correct. Here we have examined literature on the role of Aβ and tau in synaptic dysfunction, memory loss, and seeding and spreading of AD, highlighting important parallelisms between the two proteins in all of these phenomena. We discuss novel findings showing binding of both Aβ and tau oligomers to amyloid-β protein precursor (AβPP), and the requirement for the presence of this protein for both Aβ and tau to enter neurons and induce abnormal synaptic function and memory. Most importantly, we propose a novel view of AD pathogenesis in which extracellular oligomers of Aβ and tau act in parallel and upstream of AβPP. Such a view will call for a reconsideration of therapeutic approaches directed against Aβ and tau, paving the way to an increased interest toward AβPP, both for understanding the pathogenesis of the disease and elaborating new therapeutic strategies.
Collapse
Affiliation(s)
- Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Daniele Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Marian A. Baltrons
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biology and Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mauro Fà
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Arianna Amato
- Department of Anaesthesiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Luciano D’Adamio
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Newark, NJ, USA
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - D.P. Devanand
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Lawrence S. Honig
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
77
|
Abstract
Tau misfolding is a major cause of neurodegeneration, tauopathies being a growing group of diseases in which tau forms insoluble aggregates, best known in Alzheimer disease as neurofibrillary tangles (NFTs). Many transgenic mouse models of tauopathies have been generated, but it has been difficult to demonstrate disease in primary brain neurons from these mice because neurons need to be harvested within a few days of birth and tau fails to produce NFTs. Transgenic mice have been generated that express the 0N4R isoform of human tau mutated at amino acid 301 (P301S mice) under the Thy1.2 promoter. These mice, which model an inherited form of frontotemporal dementia, develop NFTs around 5 months of age. Taking advantage of the fact that Thy1.2 is expressed in the peripheral nervous system, we found that dorsal root ganglion (DRG) neurons express P301S tau and develop tau pathology along a similar time course to that found in central nervous system neurons in mice. Thus, NFTs are well-developed around 5 months of age. Because DRG neurons can be cultured from adult mice for months, they have proven to be an excellent model for studying how tau pathology develops and for screening compounds that may ameliorate tau pathology. Here we present a detailed protocol for the preparation of long-term DRG neuron cultures and describe how to study whether activation of autophagy ameliorates tau pathology.
Collapse
|
78
|
Cisbani G, Maxan A, Kordower JH, Planel E, Freeman TB, Cicchetti F. Presence of tau pathology within foetal neural allografts in patients with Huntington's and Parkinson's disease. Brain 2017; 140:2982-2992. [PMID: 29069396 DOI: 10.1093/brain/awx255] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/05/2017] [Indexed: 11/12/2022] Open
Abstract
Cell replacement has been explored as a therapeutic strategy to repair the brain in patients with Huntington's and Parkinson's disease. Post-mortem evaluations of healthy grafted tissue in such cases have revealed the development of Huntington- or Parkinson-like pathology including mutant huntingtin aggregates and Lewy bodies. An outstanding question remains if tau pathology can also be seen in patients with Huntington's and Parkinson's disease who had received foetal neural allografts. This was addressed by immunohistochemical/immunofluorescent stainings performed on grafted tissue of two Huntington's disease patients, who came to autopsy 9 and 12 years post-transplantation, and two patients with Parkinson's disease who came to autopsy 18 months and 16 years post-transplantation. We show that grafts also contain tau pathology in both types of transplanted patients. In two patients with Huntington's disease, the grafted tissue showed the presence of hyperphosphorylated tau [both AT8 (phospho-tau Ser202 and Thr205) and CP13 (pSer202) immunohistochemical stainings] pathological inclusions, neurofibrillary tangles and neuropil threads. In patients with Parkinson's disease, the grafted tissue was characterized by hyperphosphorylated tau (AT8; immunofluorescent staining) pathological inclusions, neurofibrillary tangles and neuropil threads but only in the patient who came to autopsy 16 years post-transplantation. Abundant tau-related pathology was observed in the cortex and striatum of all cases studied. While the striatum of the grafted Huntington's disease patient revealed an equal amount of 3-repeat and 4-repeat isoforms of tau, the grafted tissue showed elevated 4-repeat isoforms by western blot. This suggests that transplants may have acquired tau pathology from the host brain, although another possibility is that this was due to acceleration of ageing. This finding not only adds to the recent reports that tau pathology is a feature of these neurodegenerative diseases, but also that tau pathology can manifest in healthy neural tissue transplanted into the brains of patients with two distinct neurodegenerative disorders.
Collapse
Affiliation(s)
- Giulia Cisbani
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada
| | - Alexander Maxan
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada
| | - Jeffrey H Kordower
- Department of Neurological Sciences and Center for Brain Repair, Rush University Medical Center, Chicago, IL 60612, USA
| | - Emmanuel Planel
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada.,Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| | - Thomas B Freeman
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33606-3571, USA.,Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL 33606-3571, USA
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada.,Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
79
|
Nizynski B, Dzwolak W, Nieznanski K. Amyloidogenesis of Tau protein. Protein Sci 2017; 26:2126-2150. [PMID: 28833749 DOI: 10.1002/pro.3275] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022]
Abstract
The role of microtubule-associated protein Tau in neurodegeneration has been extensively investigated since the discovery of Tau amyloid aggregates in the brains of patients with Alzheimer's disease (AD). The process of formation of amyloid fibrils is known as amyloidogenesis and attracts much attention as a potential target in the prevention and treatment of neurodegenerative conditions linked to protein aggregation. Cerebral deposition of amyloid aggregates of Tau is observed not only in AD but also in numerous other tauopathies and prion diseases. Amyloidogenesis of intrinsically unstructured monomers of Tau can be triggered by mutations in the Tau gene, post-translational modifications, or interactions with polyanionic molecules and aggregation-prone proteins/peptides. The self-assembly of amyloid fibrils of Tau shares a number of characteristic features with amyloidogenesis of other proteins involved in neurodegenerative diseases. For example, in vitro experiments have demonstrated that the nucleation phase, which is the rate-limiting stage of Tau amyloidogenesis, is shortened in the presence of fragmented preformed Tau fibrils acting as aggregation templates ("seeds"). Accordingly, Tau aggregates released by tauopathy-affected neurons can spread the neurodegenerative process in the brain through a prion-like mechanism, originally described for the pathogenic form of prion protein. Moreover, Tau has been shown to form amyloid strains-structurally diverse self-propagating aggregates of potentially various pathological effects, resembling in this respect prion strains. Here, we review the current literature on Tau aggregation and discuss mechanisms of propagation of Tau amyloid in the light of the prion-like paradigm.
Collapse
Affiliation(s)
- Bartosz Nizynski
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 2C Banacha Str, Warsaw, 02-097, Poland.,Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Krzysztof Nieznanski
- Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| |
Collapse
|
80
|
Zhao J, Xu L, Liang Q, Sun Q, Chen C, Zhang Y, Ding Y, Zhou P. Metal chelator EGCG attenuates Fe(III)-induced conformational transition of α-synuclein and protects AS-PC12 cells against Fe(III)-induced death. J Neurochem 2017; 143:136-146. [PMID: 28792609 DOI: 10.1111/jnc.14142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 11/29/2022]
Abstract
The fibrillation and aggregation of α-synuclein (AS), along with the conformational transition from random coil to β-sheet, are the critical steps in the development of Parkinson's disease (PD). It is acknowledged that iron accumulation in the brain may lead to the fibrillation of AS. However, (-)-epigallocatechin gallate (EGCG) can penetrate the blood-brain barrier, chelate metal ions, and inhibit the fibrillation of amyloid proteins. Therefore, EGCG is warranted to be investigated for its potential to cure amyloid-related diseases. In the present work, we sought to study the effects of EGCG on Fe(III)-induced fibrillation of AS on both molecular and cellular levels. We demonstrate that Fe(III) interacts with the amino residue of Tyr and Ala of AS, then accelerates the fibrillation of AS, and increases intracellular reactive oxygen species (ROS) in the AS transduced-PC12 cells (AS-PC12 cells). However, EGCG significantly inhibits this process by chelating Fe(III) and protects AS-PC12 cells against the toxicity induced by ROS and β-sheet-enriched AS fibrils. These findings yield useful information that EGCG might be a promising drug to prevent and treat the neurodegenerative diseases.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Lihui Xu
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Qingnan Liang
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Qing Sun
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Congheng Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Yuan Zhang
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, Vic., Australia
| | - Yu Ding
- Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Ping Zhou
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
81
|
Minkova L, Habich A, Peter J, Kaller CP, Eickhoff SB, Klöppel S. Gray matter asymmetries in aging and neurodegeneration: A review and meta-analysis. Hum Brain Mapp 2017; 38:5890-5904. [PMID: 28856766 DOI: 10.1002/hbm.23772] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 08/03/2017] [Accepted: 08/20/2017] [Indexed: 01/15/2023] Open
Abstract
Inter-hemispheric asymmetries are a common phenomenon of the human brain. Some evidence suggests that neurodegeneration related to aging and disease may preferentially affect the left-usually language- and motor-dominant-hemisphere. Here, we used activation likelihood estimation meta-analysis to assess gray matter (GM) loss and its lateralization in healthy aging and in neurodegeneration, namely, mild cognitive impairment (MCI), Alzheimer's dementia (AD), Parkinson's disease (PD), and Huntington's disease (HD). This meta-analysis, comprising 159 voxel-based morphometry publications (enrolling 4,469 patients and 4,307 controls), revealed that GM decline appeared to be asymmetric at trend levels but provided no evidence for increased left-hemisphere vulnerability. Regions with asymmetric GM decline were located in areas primarily affected by neurodegeneration. In HD, the left putamen showed converging evidence for more pronounced atrophy, while no consistent pattern was found in PD. In MCI, the right hippocampus was more atrophic than its left counterpart, a pattern that reversed in AD. The stability of these findings was confirmed using permutation tests. However, due to the lenient threshold used in the asymmetry analysis, further work is needed to confirm our results and to provide a better understanding of the functional role of GM asymmetries, for instance in the context of cognitive reserve and compensation. Hum Brain Mapp 38:5890-5904, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lora Minkova
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Laboratory for Biological and Personality Psychology, Department of Psychology, University of Freiburg, Freiburg, Germany
| | - Annegret Habich
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Jessica Peter
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Christoph P Kaller
- Freiburg Brain Imaging Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Neurology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-7) Research Centre Jülich, Jülich, Germany
| | - Stefan Klöppel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Freiburg Brain Imaging Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Center for Geriatric Medicine and Gerontology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
82
|
Kim E, Sakata K, Liao FF. Bidirectional interplay of HSF1 degradation and UPR activation promotes tau hyperphosphorylation. PLoS Genet 2017; 13:e1006849. [PMID: 28678786 PMCID: PMC5517072 DOI: 10.1371/journal.pgen.1006849] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/19/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
The unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasmic heat stress response are two major stress response systems necessary for maintaining proteostasis for cellular health. Failure of either of these systems, such as in sustained UPR activation or in insufficient heat shock response activation, can lead to the development of neurodegeneration. Alleviation of ER stress and enhancement of heat shock response through heat shock factor 1 (HSF1) activation have previously been considered as attractive potential therapeutic targets for Alzheimer’s disease (AD)—a prevalent and devastating tauopathy. Understanding the interplay of the two aforementioned systems and their cooperative role in AD remain elusive. Here we report studies in human brain and tau pathogenic mouse models (rTg4510, PS19, and rTg21221), identifying HSF1 degradation and UPR activation as precursors of aberrant tau pathogenesis. We demonstrate that chemical ER stress inducers caused autophagy-lysosomal HSF1 degradation, resulting in tau hyperphosphorylation in rat primary neurons. In addition, permanent HSF1 loss reversely causes chronic UPR activation, leading to aberrant tau phosphorylation and aggregation in the hippocampus of aged HSF1 heterozygous knock-out mice. The deleterious interplay of UPR activation and HSF1 loss is exacerbated in N2a cells stably overexpressing a pro-aggregation mutant TauRD ΔK280 (N2a-TauRD ΔK280). We provide evidence of how these two stress response systems are intrinsically interweaved by showing that the gene encoding C/EBP-homologous protein (CHOP) activation in the UPR apoptotic pathway facilitates HSF1 degradation, which likely further contributes to prolonged UPR via ER chaperone HSP70 a5 (BiP/GRP78) suppression. Upregulating HSF1 relieves the tau toxicity in N2a-TauRD ΔK280 by reducing CHOP and increasing HSP70 a5 (BiP/GRP78). Our work reveals how the bidirectional crosstalk between the two stress response systems promotes early tau pathology and identifies HSF1 being one likely key player in both systems. Tauopathy including Alzheimer’s disease (AD) is characterized by a build-up of tau aggregates in the brain, highly associated with failure of cellular protein homeostasis. Proteostasis can be achieved by protein quality control system to cope with numerous stresses such as proteotoxic stress from misfolded proteins. This cellular protective system includes heat shock response regulated by heat shock factor 1 (HSF1) activation and unfolded protein response in ER. Despite the importance of stress response in maintaining proteostasis, their role in neurodegenerative diseases like tauopathy is not clearly understood. The current study reports how the interplay between the two stress response systems, unfolded protein response and HSF1 promotes early tau pathology and identifies HSF1 protein degradation being one likely key player in both human AD and tau transgenic mouse AD models. We identify aging-associated AD-like neuropathological changes in the hippocampus of HSF1 heterozygous knock-out mice. We speculate that that HSF1 loss may constitute a mechanistic connection between ER stress and tau hyperphosphorylation in tau pathology. This study demonstrates the potential therapeutic significance of stabilizing HSF1 protein in treating AD.
Collapse
Affiliation(s)
- Eunhee Kim
- Departments of Pharmacology and Department of Anatomy and Neurobiology, TSRB 218A, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Kazuko Sakata
- Departments of Pharmacology and Department of Anatomy and Neurobiology, TSRB 218A, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Francesca-Fang Liao
- Departments of Pharmacology and Department of Anatomy and Neurobiology, TSRB 218A, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
83
|
Castillo-Carranza DL, Nilson AN, Van Skike CE, Jahrling JB, Patel K, Garach P, Gerson JE, Sengupta U, Abisambra J, Nelson P, Troncoso J, Ungvari Z, Galvan V, Kayed R. Cerebral Microvascular Accumulation of Tau Oligomers in Alzheimer's Disease and Related Tauopathies. Aging Dis 2017; 8:257-266. [PMID: 28580182 PMCID: PMC5440106 DOI: 10.14336/ad.2017.0112] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/12/2017] [Indexed: 12/28/2022] Open
Abstract
The importance of vascular contributions to cognitive impairment and dementia (VCID) associated with Alzheimer's disease (AD) and related neurodegenerative diseases is increasingly recognized, however, the underlying mechanisms remain obscure. There is growing evidence that in addition to Aβ deposition, accumulation of hyperphosphorylated oligomeric tau contributes significantly to AD etiology. Tau oligomers are toxic and it has been suggested that they propagate in a "prion-like" fashion, inducing endogenous tau misfolding in cells. Their role in VCID, however, is not yet understood. The present study was designed to determine the severity of vascular deposition of oligomeric tau in the brain in patients with AD and related tauopathies, including dementia with Lewy bodies (DLB) and progressive supranuclear palsy (PSP). Further, we examined a potential link between vascular deposition of fibrillar Aβ and that of tau oligomers in the Tg2576 mouse model. We found that tau oligomers accumulate in cerebral microvasculature of human patients with AD and PSP, in association with vascular endothelial and smooth muscle cells. Cerebrovascular deposition of tau oligomers was also found in DLB patients. We also show that tau oligomers accumulate in cerebral microvasculature of Tg2576 mice, partially in association with cerebrovascular Aβ deposits. Thus, our findings add to the growing evidence for multifaceted microvascular involvement in the pathogenesis of AD and other neurodegenerative diseases. Accumulation of tau oligomers may represent a potential novel mechanism by which functional and structural integrity of the cerebral microvessels is compromised.
Collapse
Affiliation(s)
- Diana L Castillo-Carranza
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashley N Nilson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Candice E Van Skike
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Jordan B Jahrling
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Kishan Patel
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Prajesh Garach
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Julia E Gerson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jose Abisambra
- Sanders-Brown Center on Aging and Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Peter Nelson
- Division of Neuropathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Juan Troncoso
- Clinical and Neuropathology Core, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Zoltan Ungvari
- Department of Geriatric Medicine and Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
84
|
Fernández‐Nogales M, Santos‐Galindo M, Merchán‐Rubira J, Hoozemans JJM, Rábano A, Ferrer I, Avila J, Hernández F, Lucas JJ. Tau-positive nuclear indentations in P301S tauopathy mice. Brain Pathol 2017; 27:314-322. [PMID: 27338164 PMCID: PMC8029483 DOI: 10.1111/bpa.12407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022] Open
Abstract
Increased incidence of neuronal nuclear indentations is a well-known feature of the striatum of Huntington's disease (HD) brains and, in Alzheimer's disease (AD), neuronal nuclear indentations have recently been reported to correlate with neurotoxicity caused by improper cytoskeletal/nucleoskeletal coupling. Initial detection of rod-shaped tau immunostaining in nuclei of cortical and striatal neurons of HD brains and in hippocampal neurons of early Braak stage AD led us to coin the term "tau nuclear rods (TNRs)." Although TNRs traverse nuclear space, they in fact occupy narrow cytoplasmic extensions that fill indentations of the nuclear envelope and we will here refer to this histological hallmark as Tau-immunopositive nuclear indentations (TNIs). We reasoned that TNI formation is likely secondary to tau alterations as TNI detection in HD correlates with an increase in total tau, particularly of the isoforms with four tubulin binding repeats (4R-tau). Here we analyze transgenic mice that overexpress human 4R-tau with a frontotemporal lobar degeneration-tau point mutation (P301S mice) to explore whether tau alteration is sufficient for TNI formation. Immunohistochemistry with various tau antibodies, immunoelectron microscopy and double tau-immunofluorescence/DAPI-nuclear counterstaining confirmed that excess 4R-tau in P301S mice is sufficient for the detection of abundant TNIs that fill nuclear indentations. Interestingly, this does not correlate with an increase in the number of nuclear indentations, thus suggesting that excess total tau or an isoform imbalance in favor of 4R-tau facilitates tau detection inside preexisting nuclear indentations but does not induce formation of the latter. In summary, here we demonstrate that tau alteration is sufficient for TNI detection and our results suggest that the neuropathological finding of TNIs becomes a possible indicator of increased total tau and/or increased 4R/3R-tau ratio in the affected neurons apart from being an efficient way to monitor pathology-associated nuclear indentations.
Collapse
Affiliation(s)
- Marta Fernández‐Nogales
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| | - María Santos‐Galindo
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| | - Jesús Merchán‐Rubira
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| | - Jeroen J. M. Hoozemans
- Department of PathologyVU University Medical Center, Neuroscience Campus Amsterdam1007 MB Amsterdamthe Netherlands
| | - Alberto Rábano
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
- Departamento de Neuropatología y Banco de TejidosFundación CIENMadridSpain
| | - Isidro Ferrer
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
- Institute of Neuropathology; IDIBELL‐University Hospital BellvitgeUniversity of Barcelona; Hospitalet de LlobregatBarcelona08908Spain
| | - Jesús Avila
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| | - Félix Hernández
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| | - José J. Lucas
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAM28049MadridSpain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos IIISpain
| |
Collapse
|
85
|
Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol 2017; 133:665-704. [PMID: 28386764 PMCID: PMC5390006 DOI: 10.1007/s00401-017-1707-9] [Citation(s) in RCA: 593] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 01/18/2023]
Abstract
Tau is well established as a microtubule-associated protein in neurons. However, under pathological conditions, aberrant assembly of tau into insoluble aggregates is accompanied by synaptic dysfunction and neural cell death in a range of neurodegenerative disorders, collectively referred to as tauopathies. Recent advances in our understanding of the multiple functions and different locations of tau inside and outside neurons have revealed novel insights into its importance in a diverse range of molecular pathways including cell signalling, synaptic plasticity, and regulation of genomic stability. The present review describes the physiological and pathophysiological properties of tau and how these relate to its distribution and functions in neurons. We highlight the post-translational modifications of tau, which are pivotal in defining and modulating tau localisation and its roles in health and disease. We include discussion of other pathologically relevant changes in tau, including mutation and aggregation, and how these aspects impinge on the propensity of tau to propagate, and potentially drive neuronal loss, in diseased brain. Finally, we describe the cascade of pathological events that may be driven by tau dysfunction, including impaired axonal transport, alterations in synapse and mitochondrial function, activation of the unfolded protein response and defective protein degradation. It is important to fully understand the range of neuronal functions attributed to tau, since this will provide vital information on its involvement in the development and pathogenesis of disease. Such knowledge will enable determination of which critical molecular pathways should be targeted by potential therapeutic agents developed for the treatment of tauopathies.
Collapse
Affiliation(s)
- Tong Guo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK
| | - Diane P Hanger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK.
| |
Collapse
|
86
|
Dupont AC, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Tronel C, Arlicot N. Translocator Protein-18 kDa (TSPO) Positron Emission Tomography (PET) Imaging and Its Clinical Impact in Neurodegenerative Diseases. Int J Mol Sci 2017; 18:ijms18040785. [PMID: 28387722 PMCID: PMC5412369 DOI: 10.3390/ijms18040785] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
In vivo exploration of activated microglia in neurodegenerative diseases is achievable by Positron Emission Tomography (PET) imaging, using dedicated radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO). In this review, we emphasized the major advances made over the last 20 years, thanks to TSPO PET imaging, to define the pathophysiological implication of microglia activation and neuroinflammation in neurodegenerative diseases, including Parkinson’s disease, Huntington’s disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. The extent and upregulation of TSPO as a molecular biomarker of activated microglia in the human brain is now widely documented in these pathologies, but its significance, and especially its protective or deleterious action regarding the disease’s stage, remains under debate. Thus, we exposed new and plausible suggestions to enhance the contribution of TSPO PET imaging for biomedical research by exploring microglia’s role and interactions with other cells in brain parenchyma. Multiplex approaches, associating TSPO PET radiopharmaceuticals with other biomarkers (PET imaging of cellular metabolism, neurotransmission or abnormal protein aggregates, but also other imaging modalities, and peripheral cytokine levels measurement and/or metabolomics analysis) was considered. Finally, the actual clinical impact of TSPO PET imaging as a routine biomarker of neuroinflammation was put into perspective regarding the current development of diagnostic and therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne-Claire Dupont
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | | | - Maria Joao Santiago Ribeiro
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Denis Guilloteau
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Claire Tronel
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Nicolas Arlicot
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| |
Collapse
|
87
|
Sengupta U, Portelius E, Hansson O, Farmer K, Castillo‐Carranza D, Woltjer R, Zetterberg H, Galasko D, Blennow K, Kayed R. Tau oligomers in cerebrospinal fluid in Alzheimer's disease. Ann Clin Transl Neurol 2017; 4:226-235. [PMID: 28382304 PMCID: PMC5376754 DOI: 10.1002/acn3.382] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/26/2016] [Accepted: 11/18/2016] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE With an increasing incidence of Alzheimer's disease (AD) and neurodegenerative tauopathies, there is an urgent need to develop reliable biomarkers for the diagnosis and monitoring of the disease, such as the recently discovered toxic tau oligomers. Here, we aimed to demonstrate the presence of tau oligomers in the cerebrospinal fluid (CSF) of patients with cognitive deficits, and to determine whether tau oligomers could serve as a potential biomarker for AD. METHODS A multicentric collaborative study involving a double-blinded analysis with a total of 98 subjects with moderate to severe AD (N = 41), mild AD (N = 31), and nondemented control subjects (N = 26), and two pilot studies of 33 total patients with AD (N = 19) and control (N = 14) subjects were performed. We carried out biochemical assays to measure oligomeric tau from CSF of these patients with various degrees of cognitive impairment as well as cognitively normal controls. RESULTS Using a highly reproducible indirect ELISA method, we found elevated levels of tau oligomers in AD patients compared to age-matched controls. Western blot analysis confirmed the presence of oligomeric forms of tau in CSF. In addition, the ratio of oligomeric to total tau increased in the order: moderate to severe AD, mild AD, and controls. CONCLUSION These assays are suitable for the analysis of human CSF samples. These results here suggest that CSF tau oligomer measurements could be optimized and added to the panel of CSF biomarkers for the accurate and early detection of AD.
Collapse
Affiliation(s)
- Urmi Sengupta
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| | - Erik Portelius
- Clinical Neurochemistry LaboratoryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at University of GothenburgMölndalSweden
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical SciencesLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLund Sweden
| | - Kathleen Farmer
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| | - Diana Castillo‐Carranza
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| | - Randall Woltjer
- Department of Department of PathologyOregon Health & Science UniversityPortlandOregon
| | - Henrik Zetterberg
- Clinical Neurochemistry LaboratoryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at University of GothenburgMölndalSweden
- Department of Molecular NeuroscienceUCL Institute of NeurologyQueen SquareLondonWC1N 3BGUnited Kingdom
| | - Douglas Galasko
- Department of NeuroscienceUniversity of California San DiegoSan DiagoCalifornia
| | - Kaj Blennow
- Clinical Neurochemistry LaboratoryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at University of GothenburgMölndalSweden
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexas
- Department of Neurology, and Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexas
| |
Collapse
|
88
|
Wang JKT, Langfelder P, Horvath S, Palazzolo MJ. Exosomes and Homeostatic Synaptic Plasticity Are Linked to Each other and to Huntington's, Parkinson's, and Other Neurodegenerative Diseases by Database-Enabled Analyses of Comprehensively Curated Datasets. Front Neurosci 2017; 11:149. [PMID: 28611571 PMCID: PMC5374209 DOI: 10.3389/fnins.2017.00149] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene (HTT), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Peter Langfelder
- Department of Human Genetics, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA
| | - Michael J Palazzolo
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA
| |
Collapse
|
89
|
Gerson JE, Sengupta U, Kayed R. Tau Oligomers as Pathogenic Seeds: Preparation and Propagation In Vitro and In Vivo. Methods Mol Biol 2017; 1523:141-157. [PMID: 27975249 DOI: 10.1007/978-1-4939-6598-4_9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tau oligomers have been shown to be the main toxic tau species in a number of neurodegenerative disorders. In order to study tau oligomers both in vitro and in vivo, we have established methods for the reliable preparation, isolation, and detection of tau oligomers. Methods for the seeding of tau oligomers, isolation of tau oligomers from tissue, and detection of tau oligomers using tau oligomer-specific antibodies by biochemical and immunohistochemical methods are detailed below.
Collapse
Affiliation(s)
- Julia E Gerson
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555-1045, USA
| | - Urmi Sengupta
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555-1045, USA
| | - Rakez Kayed
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- University of Texas Medical Branch, 301 University Boulevard, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.
| |
Collapse
|
90
|
Fernández‐Nogales M, Santos‐Galindo M, Hernández IH, Cabrera JR, Lucas JJ. Faulty splicing and cytoskeleton abnormalities in Huntington's disease. Brain Pathol 2016; 26:772-778. [PMID: 27529534 PMCID: PMC8028924 DOI: 10.1111/bpa.12430] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 02/03/2023] Open
Abstract
Huntington's disease (HD) is caused by a CAG-repeat encoding a polyglutamine (polyQ) tract in the huntingtin protein. There is plenty of evidence of polyQ-driven toxicity. However, CAG repeat RNA-driven alteration of splicing has recently been proposed in analogy to CUG-repeat diseases. Here we review the reported alteration of the CAG-repeat associated splicing factor SRSF6 in brains of HD patients and mouse models and how this correlates with altered splicing of, at least, two microtubule-associated proteins in HD, namely MAPT (tau) and MAP2. Regarding tau, altered splicing of exon 10 has been reported, along with increased levels and 4R/3R-tau ratio and detection of tau in a new nuclear rod-shaped histopathological hallmark termed tau nuclear rod (TNR) or tau nuclear indentation (TNI). These findings, together with an attenuation of HD phenotype in R6/1 mice with tau deficiency and subsequent studies showing increased phosphorylation in mouse models and increased levels in CSF of patients, has led to proposing HD as a tauopathy. Regarding MAP2, an increase in its juvenile form and a decrease in total MAP2 together with redistribution from dendrites to soma is observed in HD patients, which may contribute to the dendritic atrophy in HD. Furthermore, MAP2 positive structures filling nuclear indentations have occasionally been found and co-localized with tau. Therefore, altered MAP function with imbalance in tau/MAP2 content could contribute to HD striatal atrophy and dysfunction. Besides, TNIs might be indicative of such MAP abnormalities. TNIs are also found in early pathology Alzheimer's disease and in tauopathy mice over-expressing mutant 4R-tau. This indicates that tau alteration is sufficient for TNI detection, which becomes a marker of increased total tau and/or altered 4R/3R-tau ratio and reporter of pathology-associated nuclear indentations. Altogether, these recent studies suggest that correcting the SRSF6-driven missplicing and/or microtubule-associated imbalance might be of therapeutic value in HD.
Collapse
Affiliation(s)
- Marta Fernández‐Nogales
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAMMadrid28049Spain
- Instituto de Salud Carlos IIINetworking Research Center on Neurodegenerative Diseases (CIBERNED)Spain
- Present address:
Present address: Marta Fernández‐Nogales, CSIC/University of Miguel HernándezInstituto De Neurociencias De Alicante (INA)AlicanteSpain
| | - María Santos‐Galindo
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAMMadrid28049Spain
- Instituto de Salud Carlos IIINetworking Research Center on Neurodegenerative Diseases (CIBERNED)Spain
| | - Ivó H. Hernández
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAMMadrid28049Spain
- Instituto de Salud Carlos IIINetworking Research Center on Neurodegenerative Diseases (CIBERNED)Spain
| | - Jorge R. Cabrera
- Department of Microbiology and ImmunologyDartmouth CollegeLebanonNH
| | - José J. Lucas
- Center for Molecular Biology “Severo Ochoa” (CBMSO) CSIC/UAMMadrid28049Spain
- Instituto de Salud Carlos IIINetworking Research Center on Neurodegenerative Diseases (CIBERNED)Spain
| |
Collapse
|
91
|
Rousseaux MW, de Haro M, Lasagna-Reeves CA, De Maio A, Park J, Jafar-Nejad P, Al-Ramahi I, Sharma A, See L, Lu N, Vilanova-Velez L, Klisch TJ, Westbrook TF, Troncoso JC, Botas J, Zoghbi HY. TRIM28 regulates the nuclear accumulation and toxicity of both alpha-synuclein and tau. eLife 2016; 5. [PMID: 27779468 PMCID: PMC5104516 DOI: 10.7554/elife.19809] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/12/2016] [Indexed: 12/17/2022] Open
Abstract
Several neurodegenerative diseases are driven by the toxic gain-of-function of specific proteins within the brain. Elevated levels of alpha-synuclein (α-Syn) appear to drive neurotoxicity in Parkinson's disease (PD); neuronal accumulation of tau is a hallmark of Alzheimer's disease (AD); and their increased levels cause neurodegeneration in humans and model organisms. Despite the clinical differences between AD and PD, several lines of evidence suggest that α-Syn and tau overlap pathologically. The connections between α-Syn and tau led us to ask whether these proteins might be regulated through a shared pathway. We therefore screened for genes that affect post-translational levels of α-Syn and tau. We found that TRIM28 regulates α-Syn and tau levels and that its reduction rescues toxicity in animal models of tau- and α-Syn-mediated degeneration. TRIM28 stabilizes and promotes the nuclear accumulation and toxicity of both proteins. Intersecting screens across comorbid proteinopathies thus reveal shared mechanisms and therapeutic entry points. DOI:http://dx.doi.org/10.7554/eLife.19809.001 Behind many neurodegenerative diseases are specific proteins that abnormally accumulate inside neurons and damage the cells. In Parkinson’s disease, the protein alpha-synuclein accumulates; in Alzheimer’s disease, the protein tau is one of the toxic culprits; and in other neurodegenerative diseases, alpha-synuclein and tau both accumulate. Genetic studies suggest that accumulation of the two proteins may be linked, but little is known about the factors that regulate the levels of these proteins inside neurons. Rousseaux et al. set out to identify how these proteins are regulated in the hope of finding new ways of targeting them and reducing their toxicity. Screening a subset of human genes led to one that encodes a protein called TRIM28, which regulates the levels of both alpha-synuclein and tau. When the TRIM28 protein was depleted in human and mouse cells, the levels of alpha-synuclein and tau also went down. This effect was specific because the levels of other proteins with the potential to cause neurodegeneration remained unaffected. Models of neurodegenerative disease in fruit flies and mice were then used to explore how TRIM28 affects the levels of tau and alpha-synuclein in animals. In each case, the proteins’ levels dropped when TRIM28 was suppressed and this in turn protected the neurons from damage. Rousseaux et al. went on to show that TRIM28 affected how alpha-synuclein and tau were cleared in cells. Overexpressing TRIM28 revealed that it could encourage both alpha-synuclein and tau to accumulate in the nucleus of cells over time. Finally, Rousseaux et al. compared post-mortem brain tissue from people who had neurodegenerative conditions that are driven by or associated with tau and alpha-synuclein with tissue from those who did not. The cell nuclei in the diseased tissue had much more TRIM28 associated with alpha-synuclein and tau than those in the healthy tissues. Overall, the findings show that TRIM28 promotes the accumulation and damaging effects of both alpha-synuclein and tau. The next steps will be to understand how TRIM28 does this. It will also be important to determine if this effect can be targeted, whilst leaving others roles of TRIM28 intact, in order to explore it as a potential target to treat or prevent neurodegenerative diseases. DOI:http://dx.doi.org/10.7554/eLife.19809.002
Collapse
Affiliation(s)
- Maxime Wc Rousseaux
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Maria de Haro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Cristian A Lasagna-Reeves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Antonia De Maio
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, Canada
| | - Jeehye Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Paymaan Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Ajay Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Lauren See
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Nan Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Luis Vilanova-Velez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Tiemo J Klisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Thomas F Westbrook
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
| | - Juan C Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, Canada.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| |
Collapse
|
92
|
Rodrigues FB, Byrne L, McColgan P, Robertson N, Tabrizi SJ, Leavitt BR, Zetterberg H, Wild EJ. Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington's disease. J Neurochem 2016; 139:22-5. [PMID: 27344050 PMCID: PMC5053298 DOI: 10.1111/jnc.13719] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/02/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative condition with no therapeutic intervention known to alter disease progression, but several trials are ongoing and biomarkers of disease progression are needed. Tau is an axonal protein, often altered in neurodegeneration, and recent studies pointed out its role on HD neuropathology. Our goal was to study whether cerebrospinal fluid (CSF) tau is a biomarker of disease progression in HD. After informed consent, healthy controls, pre-symptomatic and symptomatic gene expansion carriers were recruited from two HD clinics. All participants underwent assessment with the Unified HD Rating Scale '99 (UHDRS). CSF was obtained according to a standardized lumbar puncture protocol. CSF tau was quantified using enzyme-linked immunosorbent assay. Comparisons between two groups were tested using ancova. Pearson's correlation coefficients were calculated for disease progression. Significance level was defined as p < 0.05. Seventy-six participants were included in this cross-sectional multicenter international pilot study. Age-adjusted CSF tau was significantly elevated in gene expansion carriers compared with healthy controls (p = 0.002). UHDRS total functional capacity was significantly correlated with CSF tau (r = -0.29, p = 0.004) after adjustment for age, and UHDRS total motor score was significantly correlated with CSF tau after adjustment for age (r = 0.32, p = 0.002). Several UHDRS cognitive tasks were also significantly correlated with CST total tau after age-adjustment. This study confirms that CSF tau concentrations in HD gene mutation carriers are increased compared with healthy controls and reports for the first time that CSF tau concentration is associated with phenotypic variability in HD. These conclusions strengthen the case for CSF tau as a biomarker in HD. In the era of novel targeted approaches to Huntington's disease, reliable biomarkers are needed. We quantified Tau protein, a marker of neuronal death, in cerebrospinal fluid and found it was increased in patients with Huntington's disease and predicted motor, cognitive, and functional disability in patients. It is therefore likely to be a biomarker of disease progression, and possibly of therapeutic response. Read the Editorial Highlight for this article on page 9.
Collapse
Affiliation(s)
| | - Lauren Byrne
- Huntington's Disease Centre, Institute of Neurology, University College London, London, UK
| | - Peter McColgan
- Huntington's Disease Centre, Institute of Neurology, University College London, London, UK
| | - Nicola Robertson
- Huntington's Disease Centre, Institute of Neurology, University College London, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, Institute of Neurology, University College London, London, UK
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
93
|
de Diego-Balaguer R, Schramm C, Rebeix I, Dupoux E, Durr A, Brice A, Charles P, Cleret de Langavant L, Youssov K, Verny C, Damotte V, Azulay JP, Goizet C, Simonin C, Tranchant C, Maison P, Rialland A, Schmitz D, Jacquemot C, Fontaine B, Bachoud-Lévi AC. COMT Val158Met Polymorphism Modulates Huntington's Disease Progression. PLoS One 2016; 11:e0161106. [PMID: 27657697 PMCID: PMC5033325 DOI: 10.1371/journal.pone.0161106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/29/2016] [Indexed: 11/19/2022] Open
Abstract
Little is known about the genetic factors modulating the progression of Huntington's disease (HD). Dopamine levels are affected in HD and modulate executive functions, the main cognitive disorder of HD. We investigated whether the Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene, which influences dopamine (DA) degradation, affects clinical progression in HD. We carried out a prospective longitudinal multicenter study from 1994 to 2011, on 438 HD gene carriers at different stages of the disease (34 pre-manifest; 172 stage 1; 130 stage 2; 80 stage 3; 17 stage 4; and 5 stage 5), according to Total Functional Capacity (TFC) score. We used the Unified Huntington's Disease Rating Scale to evaluate motor, cognitive, behavioral and functional decline. We genotyped participants for COMT polymorphism (107 Met-homozygous, 114 Val-homozygous and 217 heterozygous). 367 controls of similar ancestry were also genotyped. We compared clinical progression, on each domain, between groups of COMT polymorphisms, using latent-class mixed models accounting for disease duration and number of CAG (cytosine adenine guanine) repeats. We show that HD gene carriers with fewer CAG repeats and with the Val allele in COMT polymorphism displayed slower cognitive decline. The rate of cognitive decline was greater for Met/Met homozygotes, which displayed a better maintenance of cognitive capacity in earlier stages of the disease, but had a worse performance than Val allele carriers later on. COMT polymorphism did not significantly impact functional and behavioral performance. Since COMT polymorphism influences progression in HD, it could be used for stratification in future clinical trials. Moreover, DA treatments based on the specific COMT polymorphism and adapted according to disease duration could potentially slow HD progression.
Collapse
Affiliation(s)
- Ruth de Diego-Balaguer
- INSERM U955, Equipe 01 Neuropsychologie Interventionnelle, 94000, Créteil, France
- Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, 75005, Paris, France
- Université Paris Est, Faculté de Médecine, 94000, Créteil, France
- ICREA, 08010, Barcelona, Spain
- Universitat de Barcelona, Departament de Cognició, Desenvolupament i Psicologia de L’Educació, 08035, Barcelona, Spain
- IDIBELL, Unitat de Cognició i Plasticitat Cerebral, 08907, L’Hospitalet de Llobregat, Spain
- Institut de Neurociència, Universitat de Barcelona, Barcelona, Spain
| | - Catherine Schramm
- INSERM U955, Equipe 01 Neuropsychologie Interventionnelle, 94000, Créteil, France
- Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, 75005, Paris, France
- Université Paris Est, Faculté de Médecine, 94000, Créteil, France
| | - Isabelle Rebeix
- INSERM-UPMC-CNRS, UMR 7225–1127, Institut Cerveau Moelle-ICM, Hôpital Pitié-Salpêtrière, 74013, Paris, France
- Assistance Publique-Hôpitaux de Paris, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, 74013, Paris, France
| | - Emmanuel Dupoux
- Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, 75005, Paris, France
- Laboratoire de Sciences Cognitives et Psycholinguistique, ENS-EHESS-CNRS, Paris, 75005, France
| | - Alexandra Durr
- INSERM-UPMC-CNRS, UMR 7225–1127, Institut Cerveau Moelle-ICM, Hôpital Pitié-Salpêtrière, 74013, Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Hôpital Pitié-Salpêtrière, 74013, Paris, France
| | - Alexis Brice
- INSERM-UPMC-CNRS, UMR 7225–1127, Institut Cerveau Moelle-ICM, Hôpital Pitié-Salpêtrière, 74013, Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Hôpital Pitié-Salpêtrière, 74013, Paris, France
| | - Perrine Charles
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Hôpital Pitié-Salpêtrière, 74013, Paris, France
| | - Laurent Cleret de Langavant
- INSERM U955, Equipe 01 Neuropsychologie Interventionnelle, 94000, Créteil, France
- Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, 75005, Paris, France
- Université Paris Est, Faculté de Médecine, 94000, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, 94000, Créteil, France
| | - Katia Youssov
- INSERM U955, Equipe 01 Neuropsychologie Interventionnelle, 94000, Créteil, France
- Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, 75005, Paris, France
- Université Paris Est, Faculté de Médecine, 94000, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, 94000, Créteil, France
| | - Christophe Verny
- CHU d'Angers, Centre de Référence des Maladies Neurogénétiques, Service de Neurologie, 49933, Angers, France
| | - Vincent Damotte
- INSERM-UPMC-CNRS, UMR 7225–1127, Institut Cerveau Moelle-ICM, Hôpital Pitié-Salpêtrière, 74013, Paris, France
- Assistance Publique-Hôpitaux de Paris, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, 74013, Paris, France
| | - Jean-Philippe Azulay
- CHU de Marseille—Hôpital de la Timone, Service de Neurologie et Pathologie du Mouvement, 13385, Marseille, France
| | - Cyril Goizet
- CHU de Bordeaux-GH Sud—Hôpital Haut-Lévêque, Service de Neurologie, 33604, Pessac, France
| | - Clémence Simonin
- CHRU de Lille, Service de Neurologie et Pathologie du Mouvement, 59000, Lille, France
- INSERM UMR-S 1172, JPArc, centre de recherche Jean-Pierre-Aubert neurosciences et cancer, Université de Lille, 59000, Lille, France
| | - Christine Tranchant
- CHU de Strasbourg—Hôpital de Hautepierre, Service de Neurologie, 67098, Strasbourg, France
| | - Patrick Maison
- INSERM U955, Equipe 01 Neuropsychologie Interventionnelle, 94000, Créteil, France
- Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, 75005, Paris, France
- Université Paris Est, Faculté de Médecine, 94000, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Unité de Recherche Clinique, 94000, Créteil, France
| | - Amandine Rialland
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Unité de Recherche Clinique, 94000, Créteil, France
| | - David Schmitz
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Unité de Recherche Clinique, 94000, Créteil, France
| | - Charlotte Jacquemot
- INSERM U955, Equipe 01 Neuropsychologie Interventionnelle, 94000, Créteil, France
- Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, 75005, Paris, France
- Université Paris Est, Faculté de Médecine, 94000, Créteil, France
| | - Bertrand Fontaine
- Assistance Publique-Hôpitaux de Paris, Département des Maladies du Système Nerveux, Hôpital Pitié-Salpêtrière, 74013, Paris, France
- Assistance Publique-Hôpitaux de Paris, Département de Génétique, Hôpital Pitié-Salpêtrière, 74013, Paris, France
| | - Anne-Catherine Bachoud-Lévi
- INSERM U955, Equipe 01 Neuropsychologie Interventionnelle, 94000, Créteil, France
- Département d’Etudes Cognitives, Ecole Normale Supérieure, PSL Research University, 75005, Paris, France
- Université Paris Est, Faculté de Médecine, 94000, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Centre de Référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, 94000, Créteil, France
- * E-mail:
| | | |
Collapse
|
94
|
Zerr I, Bähr M. Is there a role of Tau in Huntington′s disease? J Neurochem 2016; 139:9-10. [DOI: 10.1111/jnc.13762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Inga Zerr
- Department of Neurology; University Medicine Göttingen; Göttingen Germany
| | - Mathias Bähr
- Department of Neurology; University Medicine Göttingen; Göttingen Germany
| |
Collapse
|
95
|
Duchnowska R, Jarząb M, Żebracka-Gala J, Matkowski R, Kowalczyk A, Radecka B, Kowalska M, Pfeifer A, Foszczyńska-Kłoda M, Musolino A, Czartoryska-Arłukowicz B, Litwiniuk M, Surus-Hyla A, Szabłowska-Siwik S, Karczmarek-Borowska B, Dębska-Szmich S, Głodek-Sutek B, Sosińska-Mielcarek K, Chmielowska E, Kalinka-Warzocha E, Olszewski WP, Patera J, Żawrocki A, Pliszka A, Tyszkiewicz T, Rusinek D, Oczko-Wojciechowska M, Jassem J, Biernat W. Brain Metastasis Prediction by Transcriptomic Profiling in Triple-Negative Breast Cancer. Clin Breast Cancer 2016; 17:e65-e75. [PMID: 27692773 DOI: 10.1016/j.clbc.2016.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/14/2016] [Accepted: 08/25/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) lacks expression of steroid hormone receptors (estrogen receptor α and progesterone) and epidermal growth factor receptor type 2. This phenotype shows high metastatic potential, with particular predilection to lungs and brain. Determination of TNBC transcriptomic profiles associated with high risk of brain metastasis (BM) might identify patients requiring alternative, more aggressive, or specific preventive and therapeutic approaches. PATIENTS AND METHODS Using a cDNA-mediated annealing, selection, extension, and ligation assay, we investigated expression of 29,369 gene transcripts in primary TNBC tumor samples from 119 patients-71 in discovery cohort A and 48 in independent cohort B-that included best discriminating genes. Expression of mRNA was correlated with the occurrence of symptomatic BM. RESULTS In cohort A, the difference at the noncorrected P < .005 was found for 64 transcripts (P = .23 for global test), but none showed significant difference at a preset level of false-discovery rate of < 10%. Of the 30 transcripts with the largest differences between patients with and without BM in cohort A, none was significantly associated with BM in cohort B. CONCLUSION Analysis based on the primary tumor gene transcripts alone is unlikely to predict BM development in advanced TNBC. Despite its negative findings, the study adds to the knowledge on the biology of TNBC and paves the way for future projects using more advanced molecular assays.
Collapse
Affiliation(s)
- Renata Duchnowska
- Department of Oncology, Military Institute of Medicine, Warsaw, Poland.
| | - Michał Jarząb
- 3rd Department of Radiotherapy and Chemotherapy, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Jadwiga Żebracka-Gala
- Laboratory of Molecular Diagnostics and Functional Genomics, Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Rafał Matkowski
- Department of Oncology, Wroclaw Medical University, Wrocław, Poland
| | - Anna Kowalczyk
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Małgorzata Kowalska
- Laboratory of Molecular Diagnostics and Functional Genomics, Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Aleksandra Pfeifer
- Laboratory of Molecular Diagnostics and Functional Genomics, Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | | | | | | | - Maria Litwiniuk
- Department of Oncology, Greater Poland Cancer Center, Poznań, Poland
| | - Anna Surus-Hyla
- Department of Oncology, Warmia and Masuria Oncology Center, Olsztyn, Poland
| | | | | | | | | | | | | | | | - Wojciech P Olszewski
- Department of Pathology and Laboratory Diagnostic, Oncology Center-Institute, Warsaw, Poland
| | - Janusz Patera
- Department of Pathology, Military Institute of Medicine, Warsaw, Poland
| | - Anton Żawrocki
- Department of Pathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Pliszka
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Tyszkiewicz
- Laboratory of Molecular Diagnostics and Functional Genomics, Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Dagmara Rusinek
- Laboratory of Molecular Diagnostics and Functional Genomics, Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Małgorzata Oczko-Wojciechowska
- Laboratory of Molecular Diagnostics and Functional Genomics, Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, Poland
| | - Wojciech Biernat
- Department of Pathology, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
96
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
97
|
Tai XY, Koepp M, Duncan JS, Fox N, Thompson P, Baxendale S, Liu JYW, Reeves C, Michalak Z, Thom M. Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections. Brain 2016; 139:2441-55. [PMID: 27497924 DOI: 10.1093/brain/aww187] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/24/2016] [Indexed: 12/14/2022] Open
Abstract
SEE BERNASCONI DOI101093/AWW202 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Temporal lobe epilepsy, the most prevalent form of chronic focal epilepsy, is associated with a high prevalence of cognitive impairment but the responsible underlying pathological mechanisms are unknown. Tau, the microtubule-associated protein, is a hallmark of several neurodegenerative diseases including Alzheimer's disease and chronic traumatic encephalopathy. We hypothesized that hyperphosphorylated tau pathology is associated with cognitive decline in temporal lobe epilepsy and explored this through clinico-pathological study. We first performed pathological examination on tissue from 33 patients who had undergone temporal lobe resection between ages 50 and 65 years to treat drug-refractory temporal lobe epilepsy. We identified hyperphosphorylated tau protein using AT8 immunohistochemistry and compared this distribution to Braak patterns of Alzheimer's disease and patterns of chronic traumatic encephalopathy. We quantified tau pathology using a modified tau score created specifically for analysis of temporal lobectomy tissue and the Braak staging, which was limited without extra-temporal brain areas available. Next, we correlated tau pathology with pre- and postoperative cognitive test scores and clinical risk factors including age at time of surgery, duration of epilepsy, history of secondary generalized seizures, history of head injury, handedness and side of surgery. Thirty-one of 33 cases (94%) showed hyperphosphorylated tau pathology in the form of neuropil threads and neurofibrillary tangles and pre-tangles. Braak stage analysis showed 12% of our epilepsy cohort had a Braak staging III-IV compared to an age-matched non-epilepsy control group from the literature (8%). We identified a mixture of tau pathology patterns characteristic of Alzheimer's disease and chronic traumatic encephalopathy. We also found unusual patterns of subpial tau deposition, sparing of the hippocampus and co-localization with mossy fibre sprouting, a feature of temporal lobe epilepsy. We demonstrated that the more extensive the tau pathology, the greater the decline in verbal learning (Spearman correlation, r = -0.63), recall (r = -0.44) and graded naming test scores (r = -0.50) over 1-year post-temporal lobe resection (P < 0.05). This relationship with tau burden was also present when examining decline in verbal learning from 3 months to 1 year post-resection (r = -0.54). We found an association between modified tau score and history of secondary generalized seizures (likelihood-ratio χ(2), P < 0.05) however there was no clear relationship between tau pathology and other clinical risk factors assessed. Our findings suggest an epilepsy-related tauopathy in temporal lobe epilepsy, which contributes to accelerated cognitive decline and has diagnostic and treatment implications.
Collapse
Affiliation(s)
- Xin You Tai
- 1 Division of Neuropathology and Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Matthias Koepp
- 2 Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - John S Duncan
- 2 Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Nick Fox
- 3 Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3NG, UK
| | - Pamela Thompson
- 2 Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sallie Baxendale
- 2 Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Joan Y W Liu
- 1 Division of Neuropathology and Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Cheryl Reeves
- 1 Division of Neuropathology and Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Zuzanna Michalak
- 1 Division of Neuropathology and Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Maria Thom
- 1 Division of Neuropathology and Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
98
|
Cabrera JR, Lucas JJ. MAP2 Splicing is Altered in Huntington's Disease. Brain Pathol 2016; 27:181-189. [PMID: 27098187 DOI: 10.1111/bpa.12387] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic alteration of striatal medium spiny neurons is one of the earliest morphological abnormalities in Huntington's disease (HD). The main microtubule-associated protein in dendrites is MAP2. The low-molecular weight isoforms of MAP2 (LMW-MAP2) are the juvenile forms resulting from exclusion of the sequence encoded by exons E7-E9 and are downregulated after the early stages of neuronal development when E7-E9 exon-including high-molecular weight isoforms (HMW-MAP2) are favored. Splicing alteration has recently been proposed to contribute to HD in view of two pathogenic missplicing events resulting in a highly toxic N-terminal version of mutant huntingtin and in a detrimental imbalance in MAP Tau isoforms with three or four tubulin-binding repeats. Both splicing events are postulated targets of the SR splicing factor SRSF6 which has recently been reported to be dramatically altered in HD. SR proteins often regulate functionally related sets of genes and SRSF6 targets are enriched in genes involved in brain organogenesis including several actin-and tubulin-binding proteins. Here we hypothesized that MAP2 might be target of SRSF6 and altered in HD. By SRSF6 knockdown in neuroblastoma cells, we demonstrate that splicing of MAP2 E7-E9 exons is affected by SRSF6. We then show a disbalance in LMW and HMW MAP2 mRNA isoforms in HD striatum in favor of the juvenile LMW forms together with a decrease in total MAP2 mRNA. This is accompanied by a global decrease in total MAP2 protein due to almost total disappearance of HMW-MAP2 isoforms with preservation of LMW-MAP2 isoforms. Accordingly, the predominant dendritic MAP2 staining in striatal neuropil of control subjects is absent in HD cases. In these, MAP2-immunoreactivity is faint and restricted to neuronal cell bodies often showing a sharp boundary at the base of dendrites. Together, our results highlight the importance of splicing alteration in HD and suggest that MAP2 alteration contributes to dendritic atrophy.
Collapse
Affiliation(s)
- Jorge Rubén Cabrera
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, 28049, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José J Lucas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Autónoma de Madrid (UAM), Madrid, 28049, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
99
|
GSK-3β-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte-neuron interactions. Cell Death Dis 2016; 7:e2206. [PMID: 27124580 PMCID: PMC4855649 DOI: 10.1038/cddis.2016.104] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase-3β (GSK-3β) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3β expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2-4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3β were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3β mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3β-Tyr(216) being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3β-Tyr(216) was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3β in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3β in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3β as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD.
Collapse
|
100
|
Xu Y, Martini-Stoica H, Zheng H. A seeding based cellular assay of tauopathy. Mol Neurodegener 2016; 11:32. [PMID: 27112488 PMCID: PMC4845507 DOI: 10.1186/s13024-016-0100-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/19/2016] [Indexed: 01/07/2023] Open
Abstract
Background Tauopathy is characterized by neurofibrillary tangles composed of insoluble hyperphosphorylated tau protein. Currently, cellular models that mimic neurofibrillary tangles in vitro are lacking. Previous studies indicate that neurofibrillary tangles form via a prion replication mechanism. In the present work, we establish a seeding based cellular model according to the prion hypothesis. Results We show that cellular soluble tau can be converted to insoluble tau by seeds from the brain lysate of rTg4510 mice or synthetically generated preformed tau fibrils (PFFs). The cellular insoluble tau exhibits classic features of neurofibrillary tangles. Using genetic and pharmacological methods, we demonstrate that inhibition of autophagy increases whereas enhancement of autophagy reduces insoluble tau in our seeding based cellular model. The insoluble tau can be detected and quantified by thioflavin-S staining, thus allowing us to adapt our cellular model to a high-content image-based screening platform. Conclusions Our seeding based cellular model reproduces neurofibrillary tangle pathology in vitro and serves as a useful tool for studying tauopathy and identifying tau modulators.
Collapse
Affiliation(s)
- Yin Xu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Heidi Martini-Stoica
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Interdepartmental Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA. .,Interdepartmental Program of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|