51
|
Faillot M, Chaillet A, Palfi S, Senova S. Rodent models used in preclinical studies of deep brain stimulation to rescue memory deficits. Neurosci Biobehav Rev 2021; 130:410-432. [PMID: 34437937 DOI: 10.1016/j.neubiorev.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation paradigms might be used to treat memory disorders in patients with stroke or traumatic brain injury. However, proof of concept studies in animal models are needed before clinical translation. We propose here a comprehensive review of rodent models for Traumatic Brain Injury and Stroke. We systematically review the histological, behavioral and electrophysiological features of each model and identify those that are the most relevant for translational research.
Collapse
Affiliation(s)
- Matthieu Faillot
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes (L2S-UMR8506) - CentraleSupélec, Université Paris Saclay, Institut Universitaire de France, France
| | - Stéphane Palfi
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Suhan Senova
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France.
| |
Collapse
|
52
|
Ihbe N, Le Prieult F, Wang Q, Distler U, Sielaff M, Tenzer S, Thal SC, Mittmann T. Adaptive Mechanisms of Somatostatin-Positive Interneurons after Traumatic Brain Injury through a Switch of α Subunits in L-Type Voltage-Gated Calcium Channels. Cereb Cortex 2021; 32:1093-1109. [PMID: 34411234 DOI: 10.1093/cercor/bhab268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/28/2022] Open
Abstract
Unilateral traumatic brain injury (TBI) causes cortical dysfunctions spreading to the primarily undamaged hemisphere. This phenomenon, called transhemispheric diaschisis, is mediated by an imbalance of glutamatergic versus GABAergic neurotransmission. This study investigated the role of GABAergic, somatostatin-positive (SST) interneurons in the contralateral hemisphere 72 h after unilateral TBI. The brain injury was induced to the primary motor/somatosensory cortex of glutamate decarboxylase 67-green fluorescent protein (GAD67-GFP) knock-in mice at postnatal days 19-21 under anesthesia in vivo. Single GFP+ interneurons of the undamaged, contralateral cortex were isolated by fluorescence-activated cell sorting and analyzed by mass spectrometry. TBI caused a switch of 2 α subunits of pore-forming L-type voltage-gated calcium channels (VGCC) in GABAergic interneurons, an increased expression of CaV1.3, and simultaneous ablation of CaV1.2. This switch was associated with 1) increased excitability of single SST interneurons in patch-clamp recordings and (2) a recovery from early network hyperactivity in the contralateral hemisphere in microelectrode array recordings of acute slices. The electrophysiological changes were sensitive to pharmacological blockade of CaV1.3 (isradipine, 100 nM). These data identify a switch of 2 α subunits of VGCCs in SST interneurons early after TBI as a mechanism to counterbalance post-traumatic hyperexcitability.
Collapse
Affiliation(s)
- Natascha Ihbe
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Florie Le Prieult
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Qi Wang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Malte Sielaff
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Serge C Thal
- Clinic for Anesthesiology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
53
|
Barlow KM, Iyer K, Yan T, Scurfield A, Carlson H, Wang Y. Cerebral Blood Flow Predicts Recovery in Children with Persistent Post-Concussion Symptoms after Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:2275-2283. [PMID: 33430707 PMCID: PMC9009764 DOI: 10.1089/neu.2020.7566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Persistent post-concussion symptoms (PPCS) following pediatric mild traumatic brain injury (mTBI) are associated with differential changes in cerebral blood flow (CBF). Given its potential as a therapeutic target, we examined CBF changes during recovery in children with PPCS. We hypothesized that CBF would decrease and that such decreases would mirror clinical recovery. In a prospective cohort study, 61 children and adolescents (mean age 14 [standard deviation = 2.6] years; 41% male) with PPCS were imaged with three-dimensional (3D) pseudo-continuous arterial spin-labelled (pCASL) magnetic resonance imaging (MRI) at 4-6 and 8-10 weeks post-injury. Exclusion criteria included any significant past medical history and/or previous concussion within the past 3 months. Twenty-three participants had clinically recovered at the time of the second scan. We found that relative and mean absolute CBF were higher in participants with poor recovery, 44.0 (95% confidence interval [CI]: 43.32, 44.67) than in those with good recovery, 42.19 (95% CI: 41.77, 42.60) mL/min/100 g gray tissue and decreased over time (β = -1.75; p < 0.001). The decrease was greater in those with good recovery (β = 2.29; p < 0.001) and predicted outcome in 77% of children with PPCS (odds ratio [OR] 0.54, 95% CI: 0.36, 0.80; p = 0.002). Future studies are warranted to validate the utility of CBF as a useful predictive biomarker of outcome in PPCS.
Collapse
Affiliation(s)
- Karen M. Barlow
- Children's Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
- Queensland Children's Hospital, Children's Health Queensland, Brisbane, Queensland, Australia
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kartik Iyer
- Children's Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Tingting Yan
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alex Scurfield
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Helen Carlson
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
54
|
Dulla CG, Pitkänen A. Novel Approaches to Prevent Epileptogenesis After Traumatic Brain Injury. Neurotherapeutics 2021; 18:1582-1601. [PMID: 34595732 PMCID: PMC8608993 DOI: 10.1007/s13311-021-01119-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) is defined as an alteration in brain function or other evidence of brain pathology caused by an external force. When epilepsy develops following TBI, it is known as post-traumatic epilepsy (PTE). PTE occurs in a subset of patients suffering from different types and severities of TBI, occurs more commonly following severe injury, and greatly impacts the quality of life for patients recovering from TBI. Similar to other types of epilepsy, PTE is often refractory to drug treatment with standard anti-seizure drugs. No therapeutic approaches have proven successful in the clinic to prevent the development of PTE. Therefore, novel treatment strategies are needed to stop the development of PTE and improve the quality of life for patients after TBI. Interestingly, TBI represents an excellent clinical opportunity for intervention to prevent epileptogenesis as typically the time of initiation of epileptogenesis (i.e., TBI) is known, the population of at-risk patients is large, and animal models for preclinical studies of mechanisms and treatment targets are available. If properly identified and treated, there is a true opportunity to prevent epileptogenesis after TBI and stop seizures from ever happening. With that goal in mind, here we review previous attempts to prevent PTE both in animal studies and in humans, we examine how biomarkers could enable better-targeted therapeutics, and we discuss how genetic variation may predispose individuals to PTE. Finally, we highlight exciting new advances in the field that suggest that there may be novel approaches to prevent PTE that should be considered for further clinical development.
Collapse
Affiliation(s)
- Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| | - Asla Pitkänen
- A. I. Virtanen Institute, University of Eastern Finland, 70 211, Kuopio, Finland.
| |
Collapse
|
55
|
Intranasal Administration of Oxytocin Attenuates Social Recognition Deficits and Increases Prefrontal Cortex Inhibitory Postsynaptic Currents following Traumatic Brain Injury. eNeuro 2021; 8:ENEURO.0061-21.2021. [PMID: 34035071 PMCID: PMC8205495 DOI: 10.1523/eneuro.0061-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric traumatic brain injury (TBI) results in heightened risk for social deficits that can emerge during adolescence and adulthood. A moderate TBI in male and female rats on postnatal day 11 (equivalent to children below the age of 4) resulted in impairments in social novelty recognition, defined as the preference for interacting with a novel rat compared with a familiar rat, but not sociability, defined as the preference for interacting with a rat compared with an object in the three-chamber test when tested at four weeks (adolescence) and eight weeks (adulthood) postinjury. The deficits in social recognition were not accompanied by deficits in novel object recognition memory and were associated with a decrease in the frequency of spontaneous inhibitory postsynaptic currents (IPSCs) recorded from pyramidal neurons within Layer II/III of the medial prefrontal cortex (mPFC). Whereas TBI did not affect the expression of oxytocin (OXT) or the OXT receptor (OXTR) mRNAs in the hypothalamus and mPFC, respectively, intranasal administration of OXT before behavioral testing was found to reduce impairments in social novelty recognition and increase IPSC frequency in the mPFC in brain-injured animals. These results suggest that TBI-induced deficits in social behavior may be linked to increased excitability of neurons in the mPFC and suggests that the regulation of GABAergic neurotransmission in this region as a potential mechanism underlying these deficits.
Collapse
|
56
|
Rosa JM, Farré-Alins V, Ortega MC, Navarrete M, Lopez-Rodriguez AB, Palomino-Antolín A, Fernández-López E, Vila-Del Sol V, Decouty C, Narros-Fernández P, Clemente D, Egea J. TLR4 pathway impairs synaptic number and cerebrovascular functions through astrocyte activation following traumatic brain injury. Br J Pharmacol 2021; 178:3395-3413. [PMID: 33830504 PMCID: PMC8453872 DOI: 10.1111/bph.15488] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose Activation of astrocytes contributes to synaptic remodelling, tissue repair and neuronal survival following traumatic brain injury (TBI). The mechanisms by which these cells interact to resident/infiltrated inflammatory cells to rewire neuronal networks and repair brain functions remain poorly understood. Here, we explored how TLR4‐induced astrocyte activation modified synapses and cerebrovascular integrity following TBI. Experimental Approach To determine how functional astrocyte alterations induced by activation of TLR4 pathway in inflammatory cells regulate synapses and neurovascular integrity after TBI, we used pharmacology, genetic approaches, live calcium imaging, immunofluorescence, flow cytometry, blood–brain barrier (BBB) integrity assessment and molecular and behavioural methods. Key Results Shortly after a TBI, there is a recruitment of excitable and reactive astrocytes mediated by TLR4 pathway activation with detrimental effects on post‐synaptic density‐95 (PSD‐95)/vesicular glutamate transporter 1 (VGLUT1) synaptic puncta, BBB integrity and neurological outcome. Pharmacological blockage of the TLR4 pathway with resatorvid (TAK‐242) partially reversed many of the observed effects. Synapses and BBB recovery after resatorvid administration were not observed in IP3R2−/− mice, indicating that effects of TLR4 inhibition depend on the subsequent astrocyte activation. In addition, TBI increased the astrocytic‐protein thrombospondin‐1 necessary to induce a synaptic recovery in a sub‐acute phase. Conclusions and Implications Our data demonstrate that TLR4‐mediated signalling, most probably through microglia and/or infiltrated monocyte–astrocyte communication, plays a crucial role in the TBI pathophysiology and that its inhibition prevents synaptic loss and BBB damage accelerating tissue recovery/repair, which might represent a therapeutic potential in CNS injuries and disorders.
Collapse
Affiliation(s)
- Juliana M Rosa
- Experimental Neurophysiology and Neuronal Circuits Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, SESCAM, Toledo, Spain.,Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Víctor Farré-Alins
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - María Cristina Ortega
- Neuroinmune-Repair Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, SESCAM, Toledo, Spain
| | - Marta Navarrete
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ana Belen Lopez-Rodriguez
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Alejandra Palomino-Antolín
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Elena Fernández-López
- Experimental Neurophysiology and Neuronal Circuits Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, SESCAM, Toledo, Spain
| | - Virginia Vila-Del Sol
- Flow Cytometry Service, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, SESCAM, Toledo, Spain
| | - Céline Decouty
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Paloma Narros-Fernández
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| | - Diego Clemente
- Neuroinmune-Repair Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, SESCAM, Toledo, Spain
| | - Javier Egea
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Hospital Universitario de la Princesa, Madrid, Spain
| |
Collapse
|
57
|
Traumatic Brain Injury Broadly Affects GABAergic Signaling in Dentate Gyrus Granule Cells. eNeuro 2021; 8:ENEURO.0055-20.2021. [PMID: 33514602 PMCID: PMC8116114 DOI: 10.1523/eneuro.0055-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 02/02/2023] Open
Abstract
Traumatic brain injury (TBI) causes cellular and molecular alterations that contribute to neuropsychiatric disease and epilepsy. GABAergic dysfunction figures prominently in the pathophysiology of TBI, yet the effects of TBI on tonic inhibition in hippocampus remain uncertain. We used a mouse model of severe TBI [controlled cortical impact (CCI)] to investigate GABAergic signaling in dentate gyrus granule cells (DGGCs). Basal tonic GABA currents were not affected by CCI. However, tonic currents induced by the δ subunit-selective GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP; 10 μm) were reduced by 44% in DGGCs ipsilateral to CCI (CCI-ipsi), but not in contralateral DGGCs. Reduced THIP currents were apparent one week after injury and persisted up to 15 weeks. The frequency of spontaneous IPSCs (sIPSCs) was reduced in CCI-ipsi cells, but the amplitude and kinetics of sIPSCs were unaffected. Immunohistochemical analysis showed reduced expression of GABAA receptor δ subunits and GABAB receptor B2 subunits after CCI, by 43% and 40%, respectively. Activation of postsynaptic GABAB receptors caused a twofold increase in tonic currents, and this effect was markedly attenuated in CCI-ipsi cells (92% reduction). GABAB receptor-activated K+ currents in DGGCs were also significantly reduced in CCI-ipsi cells, confirming a functional deficit of GABAB receptors after CCI. Results indicate broad disruption of GABAergic signaling in DGGCs after CCI, with deficits in both phasic and tonic inhibition and GABAB receptor function. These changes are predicted to disrupt operation of hippocampal networks and contribute to sequelae of severe TBI, including epilepsy.
Collapse
|
58
|
Safar K, Zhang J, Emami Z, Gharehgazlou A, Ibrahim G, Dunkley BT. Mild traumatic brain injury is associated with dysregulated neural network functioning in children and adolescents. Brain Commun 2021; 3:fcab044. [PMID: 34095832 PMCID: PMC8176148 DOI: 10.1093/braincomms/fcab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Mild traumatic brain injury is highly prevalent in paediatric populations, and can result in chronic physical, cognitive and emotional impairment, known as persistent post-concussive symptoms. Magnetoencephalography has been used to investigate neurophysiological dysregulation in mild traumatic brain injury in adults; however, whether neural dysrhythmia persists in chronic mild traumatic brain injury in children and adolescents is largely unknown. We predicted that children and adolescents would show similar dysfunction as adults, including pathological slow-wave oscillations and maladaptive, frequency-specific, alterations to neural connectivity. Using magnetoencephalography, we investigated regional oscillatory power and distributed brain-wide networks in a cross-sectional sample of children and adolescents in the chronic stages of mild traumatic brain injury. Additionally, we used a machine learning pipeline to identify the most relevant magnetoencephalography features for classifying mild traumatic brain injury and to test the relative classification performance of regional power versus functional coupling. Results revealed that the majority of participants with chronic mild traumatic brain injury reported persistent post-concussive symptoms. For neurophysiological imaging, we found increased regional power in the delta band in chronic mild traumatic brain injury, predominantly in bilateral occipital cortices and in the right inferior temporal gyrus. Those with chronic mild traumatic brain injury also showed dysregulated neuronal coupling, including decreased connectivity in the delta range, as well as hyper-connectivity in the theta, low gamma and high gamma bands, primarily involving frontal, temporal and occipital brain areas. Furthermore, our multivariate classification approach combined with functional connectivity data outperformed regional power in terms of between-group classification accuracy. For the first time, we establish that local and large-scale neural activity are altered in youth in the chronic phase of mild traumatic brain injury, with the majority presenting persistent post-concussive symptoms, and that dysregulated interregional neural communication is a reliable marker of lingering paediatric ‘mild’ traumatic brain injury.
Collapse
Affiliation(s)
- Kristina Safar
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4
| | - Jing Zhang
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4
| | - Zahra Emami
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4
| | - Avideh Gharehgazlou
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - George Ibrahim
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4.,Department of Surgery, University of Toronto, Toronto, ON, Canada M5T 1P5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9 Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada M5T 1W7
| |
Collapse
|
59
|
Sharma S, Tiarks G, Haight J, Bassuk AG. Neuropathophysiological Mechanisms and Treatment Strategies for Post-traumatic Epilepsy. Front Mol Neurosci 2021; 14:612073. [PMID: 33708071 PMCID: PMC7940684 DOI: 10.3389/fnmol.2021.612073] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death in young adults and a risk factor for acquired epilepsy. Severe TBI, after a period of time, causes numerous neuropsychiatric and neurodegenerative problems with varying comorbidities; and brain homeostasis may never be restored. As a consequence of disrupted equilibrium, neuropathological changes such as circuit remodeling, reorganization of neural networks, changes in structural and functional plasticity, predisposition to synchronized activity, and post-translational modification of synaptic proteins may begin to dominate the brain. These pathological changes, over the course of time, contribute to conditions like Alzheimer disease, dementia, anxiety disorders, and post-traumatic epilepsy (PTE). PTE is one of the most common, devastating complications of TBI; and of those affected by a severe TBI, more than 50% develop PTE. The etiopathology and mechanisms of PTE are either unknown or poorly understood, which makes treatment challenging. Although anti-epileptic drugs (AEDs) are used as preventive strategies to manage TBI, control acute seizures and prevent development of PTE, their efficacy in PTE remains controversial. In this review, we discuss novel mechanisms and risk factors underlying PTE. We also discuss dysfunctions of neurovascular unit, cell-specific neuroinflammatory mediators and immune response factors that are vital for epileptogenesis after TBI. Finally, we describe current and novel treatments and management strategies for preventing PTE.
Collapse
Affiliation(s)
- Shaunik Sharma
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Grant Tiarks
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Joseph Haight
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Alexander G Bassuk
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
60
|
Fakhoury M, Shakkour Z, Kobeissy F, Lawand N. Depression following traumatic brain injury: a comprehensive overview. Rev Neurosci 2020; 32:289-303. [PMID: 33661587 DOI: 10.1515/revneuro-2020-0037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) represents a major health concern affecting the neuropsychological health; TBI is accompanied by drastic long-term adverse complications that can influence many aspects of the life of affected individuals. A substantial number of studies have shown that mood disorders, particularly depression, are the most frequent complications encountered in individuals with TBI. Post-traumatic depression (P-TD) is present in approximately 30% of individuals with TBI, with the majority of individuals experiencing symptoms of depression during the first year following head injury. To date, the mechanisms of P-TD are far from being fully understood, and effective treatments that completely halt this condition are still lacking. The aim of this review is to outline the current state of knowledge on the prevalence and risk factors of P-TD, to discuss the accompanying brain changes at the anatomical, molecular and functional levels, and to discuss current approaches used for the treatment of P-TD.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
61
|
Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci 2020; 265:118826. [PMID: 33259863 DOI: 10.1016/j.lfs.2020.118826] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Epilepsy is a neurologicaldisorder characterized by persistent predisposition to recurrent seizurescaused by abnormal neuronal activity in the brain. Epileptic seizures maydevelop due to a relative imbalance of excitatory and inhibitory neurotransmitters. Expressional alterations of receptors and ion channelsactivated by neurotransmitters can lead to epilepsy pathogenesis. AIMS In this updated comprehensive review, we discuss the emerging implication of mutations in neurotransmitter-mediated receptors and ion channels. We aim to provide critical findings of the current literature about the role of neurotransmitters in epilepsy. MATERIALS AND METHODS A comprehensive literature review was conducted to identify and critically evaluate studies analyzing the possible relationship between epilepsy and neurotransmitters. The PubMed database was searched for related research articles. KEY FINDINGS Glutamate and gamma-aminobutyric acid (GABA) are the main neurotransmitters playing a critical role in the pathophysiology of this balance, and irreversible neuronal damage may occur as a result of abnormal changes in these molecules. Acetylcholine (ACh), the main stimulant of the autonomic nervous system, mediates signal transmission through cholinergic and nicotinic receptors. Accumulating evidence indicates that dysfunction of nicotinic ACh receptors, which are widely expressed in hippocampal and cortical neurons, may be significantly implicated in the pathogenesis of epilepsy. The dopamine-norepinephrine-epinephrine cycle activates hormonal and neuronal pathways; serotonin, norepinephrine, histamine, and melatonin can act as both hormones and neurotransmitters. Recent reports have demonstrated that nitric oxide mediates cognitive and memory-related functions via stimulating neuronal transmission. SIGNIFICANCE The elucidation of the role of the main mediators and receptors in epilepsy is crucial for developing new diagnostic and therapeutic approaches.
Collapse
|
62
|
An update on the association between traumatic brain injury and Alzheimer's disease: Focus on Tau pathology and synaptic dysfunction. Neurosci Biobehav Rev 2020; 120:372-386. [PMID: 33171143 DOI: 10.1016/j.neubiorev.2020.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
L.P. Li, J.W. Liang and H.J. Fu. An update on the association between traumatic brain injury and Alzheimer's disease: Focus on Tau pathology and synaptic dysfunction. NEUROSCI BIOBEHAV REVXXX-XXX,2020.-Traumatic brain injury (TBI) and Alzheimer's disease (AD) are devastating conditions that have long-term consequences on individual's cognitive functions. Although TBI has been considered a risk factor for the development of AD, the link between TBI and AD is still in debate. Aggregation of hyperphosphorylated tau and intercorrelated synaptic dysfunction, two key pathological elements in both TBI and AD, play a pivotal role in mediating neurodegeneration and cognitive deficits, providing a mechanistic link between these two diseases. In the first part of this review, we analyze the experimental literatures on tau pathology in various TBI models and review the distribution, biological features and mechanisms of tau pathology following TBI with implications in AD pathogenesis. In the second part, we review evidences of TBI-mediated structural and functional impairments in synapses, with a focus on the overlapped mechanisms underlying synaptic abnormalities in both TBI and AD. Finally, future perspectives are proposed for uncovering the complex relationship between TBI and neurodegeneration, and developing potential therapeutic avenues for alleviating cognitive deficits after TBI.
Collapse
|
63
|
Sawant-Pokam PA, Vail TJ, Metcalf CS, Maguire JL, McKean TO, McKean NO, Brennan K. Preventing neuronal edema increases network excitability after traumatic brain injury. J Clin Invest 2020; 130:6005-6020. [PMID: 33044227 PMCID: PMC7598047 DOI: 10.1172/jci134793] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
Edema is an important target for clinical intervention after traumatic brain injury (TBI). We used in vivo cellular resolution imaging and electrophysiological recording to examine the ionic mechanisms underlying neuronal edema and their effects on neuronal and network excitability after controlled cortical impact (CCI) in mice. Unexpectedly, we found that neuronal edema 48 hours after CCI was associated with reduced cellular and network excitability, concurrent with an increase in the expression ratio of the cation-chloride cotransporters (CCCs) NKCC1 and KCC2. Treatment with the CCC blocker bumetanide prevented neuronal swelling via a reversal in the NKCC1/KCC2 expression ratio, identifying altered chloride flux as the mechanism of neuronal edema. Importantly, bumetanide treatment was associated with increased neuronal and network excitability after injury, including increased susceptibility to spreading depolarizations (SDs) and seizures, known agents of clinical worsening after TBI. Treatment with mannitol, a first-line edema treatment in clinical practice, was also associated with increased susceptibility to SDs and seizures after CCI, showing that neuronal volume reduction, regardless of mechanism, was associated with an excitability increase. Finally, we observed an increase in excitability when neuronal edema normalized by 1 week after CCI. We conclude that neuronal swelling may exert protective effects against damaging excitability in the aftermath of TBI and that treatment of edema has the potential to reverse these effects.
Collapse
Affiliation(s)
| | | | - Cameron S. Metcalf
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Jamie L. Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | - K.C. Brennan
- Department of Neurology, School of Medicine, and
| |
Collapse
|
64
|
Karimi SA, Hosseinmardi N, Sayyah M, Hajisoltani R, Janahmadi M. Enhancement of intrinsic neuronal excitability-mediated by a reduction in hyperpolarization-activated cation current (I h ) in hippocampal CA1 neurons in a rat model of traumatic brain injury. Hippocampus 2020; 31:156-169. [PMID: 33107111 DOI: 10.1002/hipo.23270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 01/13/2023]
Abstract
Traumatic brain injury (TBI) is associated with epileptiform activity in the hippocampus; however, the underlying mechanisms have not been fully determined. The goal was to understand what changes take place in intrinsic neuronal physiology in the hippocampus after blunt force trauma to the cortex. In this context, hyperpolarization-activated cation current (Ih ) currents may have a critical role in modulating the neuronal intrinsic membrane excitability; therefore, its contribution to the TBI-induced hyperexcitability was assessed. In a model of TBI caused by controlled cortical impact (CCI), the intrinsic electrophysiological properties of pyramidal neurons were examined 1 week after TBI induction in rats. Whole-cell patch-clamp recordings were performed under current- and voltage-clamp conditions following ionotropic receptors blockade. Induction of TBI caused changes in the intrinsic excitability of pyramidal neurons, as shown by a significant increase and decrease in firing frequency and in the rheobase current, respectively (p < .05). The evoked firing rate and the action potential time to peak were also significantly increased and decreased, respectively (p < .05). In the TBI group, the amplitude of instantaneous and steady-state Ih currents was both significantly smaller than those in the control group (p < .05). The Ih current density was also significantly decreased (p < .001). Findings indicated that TBI led to an increase in the intrinsic excitability in CA1 pyramidal neurons and changes in Ih current could be, in part, one of the underlying mechanisms involved in this hyperexcitability.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Razieh Hajisoltani
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
65
|
Sharma HS, Sahib S, Tian ZR, Muresanu DF, Nozari A, Castellani RJ, Lafuente JV, Wiklund L, Sharma A. Protein kinase inhibitors in traumatic brain injury and repair: New roles of nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:233-283. [PMID: 33223036 DOI: 10.1016/bs.pbr.2020.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) causes physical injury to the cell membranes of neurons, glial and axons causing the release of several neurochemicals including glutamate and cytokines altering cell-signaling pathways. Upregulation of mitogen associated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) occurs that is largely responsible for cell death. The pharmacological blockade of these pathways results in cell survival. In this review role of several protein kinase inhibitors on TBI induced oxidative stress, blood-brain barrier breakdown, brain edema formation, and resulting brain pathology is discussed in the light of current literature.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bilbao, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
66
|
Cantu D, Croker D, Shacham S, Tamir S, Dulla C. In vivo KPT-350 treatment decreases cortical hyperexcitability following traumatic brain injury. Brain Inj 2020; 34:1489-1496. [PMID: 32853051 DOI: 10.1080/02699052.2020.1807056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PRIMARY OBJECTIVE We tested whether KPT-350, a novel selective inhibitor of nuclear export, could attenuate cortical network hyperexcitability, a major risk factor for developing post-traumatic epilepsy (PTE) following traumatic brain injury (TBI). RESEARCH DESIGN All mice in this study underwent TBI and were subsequently treated with either KPT-350 or vehicle during the post-injury latent period. Half of the animal cohort was used for electrophysiology while the other half was used for immunohistochemical analysis. METHODS AND PROCEDURES TBI was induced using the controlled cortical impact (CCI) model. Cortical network activity was recorded by evoking field potentials from deep layers of the cortex and analyzed using Matlab software. Immunohistochemistry coupled with fluorescence microscopy and Image J analysis detected changes in neuronal and glial markers. MAIN OUTCOMES AND RESULTS KPT-350 attenuated TBI-associated epileptiform activity and restored disrupted input-output responses in cortical brain slices. In vivo KPT-350 treatment reduced the loss of parvalbumin-(+) GABAergic interneurons after CCI but did not significantly change CCI-induced loss of somatostatin-(+) GABAergic interneurons, nor did it reduce reactivity of GFAP and Iba1 glial markers. CONCLUSION KPT-350 can prevent cortical hyperexcitability and reduce the loss of parvalbumin-(+) GABAergic inhibitory neurons, making it a potential therapeutic option for preventing PTE.
Collapse
Affiliation(s)
- David Cantu
- Department of Neuroscience, Tufts University School of Medicine , Boston, MA, USA
| | - Danielle Croker
- Department of Neuroscience, Tufts University School of Medicine , Boston, MA, USA
| | | | | | - Chris Dulla
- Department of Neuroscience, Tufts University School of Medicine , Boston, MA, USA
| |
Collapse
|
67
|
Low brain endocannabinoids associated with persistent non-goal directed nighttime hyperactivity after traumatic brain injury in mice. Sci Rep 2020; 10:14929. [PMID: 32913220 PMCID: PMC7483739 DOI: 10.1038/s41598-020-71879-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a frequent cause of chronic headache, fatigue, insomnia, hyperactivity, memory deficits, irritability and posttraumatic stress disorder. Recent evidence suggests beneficial effects of pro-cannabinoid treatments. We assessed in mice levels of endocannabinoids in association with the occurrence and persistence of comparable sequelae after controlled cortical impact in mice using a set of long-term behavioral observations in IntelliCages, motor and nociception tests in two sequential cohorts of TBI/sham mice. TBI mice maintained lower body weights, and they had persistent low levels of brain ethanolamide endocannabinoids (eCBs: AEA, OEA, PEA) in perilesional and subcortical ipsilateral brain tissue (6 months), but rapidly recovered motor functions (within days), and average nociceptive responses were within normal limits, albeit with high variability, ranging from loss of thermal sensation to hypersensitivity. TBI mice showed persistent non-goal directed nighttime hyperactivity, i.e. they visited rewarding and non-rewarding operant corners with high frequency and random success. On successful visits, they made more licks than sham mice resulting in net over-licking. The lower the eCBs the stronger was the hyperactivity. In reward-based learning and reversal learning tasks, TBI mice were not inferior to sham mice, but avoidance memory was less stable. Hence, the major late behavioral TBI phenotype was non-goal directed nighttime hyperactivity and "over-licking" in association with low ipsilateral brain eCBs. The behavioral phenotype would agree with a "post-TBI hyperactivity disorder". The association with persistently low eCBs in perilesional and subcortical regions suggests that eCB deficiency contribute to the post-TBI psychopathology.
Collapse
|
68
|
Chen X, Zhang J, Song Y, Yang P, Yang Y, Huang Z, Wang K. Deficiency of anti-inflammatory cytokine IL-4 leads to neural hyperexcitability and aggravates cerebral ischemia-reperfusion injury. Acta Pharm Sin B 2020; 10:1634-1645. [PMID: 33088684 PMCID: PMC7564329 DOI: 10.1016/j.apsb.2020.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 01/03/2023] Open
Abstract
Systematic administration of anti-inflammatory cytokine interleukin 4 (IL-4) has been shown to improve recovery after cerebral ischemic stroke. However, whether IL-4 affects neuronal excitability and how IL-4 improves ischemic injury remain largely unknown. Here we report the neuroprotective role of endogenous IL-4 in focal cerebral ischemia–reperfusion (I/R) injury. In multi-electrode array (MEA) recordings, IL-4 reduces spontaneous firings and network activities of mouse primary cortical neurons. IL-4 mRNA and protein expressions are upregulated after I/R injury. Genetic deletion of Il-4 gene aggravates I/R injury in vivo and exacerbates oxygen-glucose deprivation (OGD) injury in cortical neurons. Conversely, supplemental IL-4 protects Il-4−/− cortical neurons against OGD injury. Mechanistically, cortical pyramidal and stellate neurons common for ischemic penumbra after I/R injury exhibit intrinsic hyperexcitability and enhanced excitatory synaptic transmissions in Il-4−/− mice. Furthermore, upregulation of Nav1.1 channel, and downregulations of KCa3.1 channel and α6 subunit of GABAA receptors are detected in the cortical tissues and primary cortical neurons from Il-4−/− mice. Taken together, our findings demonstrate that IL-4 deficiency results in neural hyperexcitability and aggravates I/R injury, thus activation of IL-4 signaling may protect the brain against the development of permanent damage and help recover from ischemic injury after stroke.
Collapse
|
69
|
Berry JAD, Elia C, Sweiss R, Lawandy S, Bowen I, Zampella B, Saini H, Brazdzionis J, Miulli D. Pathophysiologic Mechanisms of Concussion, Development of Chronic Traumatic Encephalopathy, and Emerging Diagnostics: A Narrative Review. J Osteopath Med 2020; 120:2765225. [PMID: 32789487 DOI: 10.7556/jaoa.2020.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Pathophysiological mechanisms and cascades take place after a mild traumatic brain injury (mTBI) that can cause long-term sequelae, including chronic traumatic encephalopathy in patients with multiple concurrent TBIs. As diagnostic imaging has become more advanced, microanatomical changes present after mTBI may now be more readily visible. In this narrative review, the authors discuss emerging diagnostics and findings in mTBI through advanced imaging, electroencephalograms, neurophysiologic processes, Q2 biochemical markers, and clinical tissue tests in an effort to help osteopathic physicians to understand, diagnose, and manage the pathophysiology behind mTBI, which is increasingly prevalent in the United States.
Collapse
|
70
|
O'Reilly ML, Tom VJ. Neuroimmune System as a Driving Force for Plasticity Following CNS Injury. Front Cell Neurosci 2020; 14:187. [PMID: 32792908 PMCID: PMC7390932 DOI: 10.3389/fncel.2020.00187] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Following an injury to the central nervous system (CNS), spontaneous plasticity is observed throughout the neuraxis and affects multiple key circuits. Much of this spontaneous plasticity can elicit beneficial and deleterious functional outcomes, depending on the context of plasticity and circuit affected. Injury-induced activation of the neuroimmune system has been proposed to be a major factor in driving this plasticity, as neuroimmune and inflammatory factors have been shown to influence cellular, synaptic, structural, and anatomical plasticity. Here, we will review the mechanisms through which the neuroimmune system mediates plasticity after CNS injury. Understanding the role of specific neuroimmune factors in driving adaptive and maladaptive plasticity may offer valuable therapeutic insight into how to promote adaptive plasticity and/or diminish maladaptive plasticity, respectively.
Collapse
Affiliation(s)
- Micaela L O'Reilly
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Veronica J Tom
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
71
|
MacMullin P, Hodgson N, Damar U, Lee HHC, Hameed MQ, Dhamne SC, Hyde D, Conley GM, Morriss N, Qiu J, Mannix R, Hensch TK, Rotenberg A. Increase in Seizure Susceptibility After Repetitive Concussion Results from Oxidative Stress, Parvalbumin-Positive Interneuron Dysfunction and Biphasic Increases in Glutamate/GABA Ratio. Cereb Cortex 2020; 30:6108-6120. [PMID: 32676666 DOI: 10.1093/cercor/bhaa157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic symptoms indicating excess cortical excitability follow mild traumatic brain injury, particularly repetitive mild traumatic brain injury (rmTBI). Yet mechanisms underlying post-traumatic excitation/inhibition (E/I) ratio abnormalities may differ between the early and late post-traumatic phases. We therefore measured seizure threshold and cortical gamma-aminobutyric acid (GABA) and glutamate (Glu) concentrations, 1 and 6 weeks after rmTBI in mice. We also analyzed the structure of parvalbumin-positive interneurons (PVIs), their perineuronal nets (PNNs), and their electroencephalography (EEG) signature (gamma frequency band power). For mechanistic insight, we measured cortical oxidative stress, reflected in the reduced/oxidized glutathione (GSH/GSSG) ratio. We found that seizure susceptibility increased both early and late after rmTBI. However, whereas increased Glu dominated the E/I 1 week after rmTBI, Glu concentration normalized and the E/I was instead characterized by depressed GABA, reduced per-PVI parvalbumin expression, and reduced gamma EEG power at the 6-week post-rmTBI time point. Oxidative stress was increased early after rmTBI, where transient PNN degradation was noted, and progressed throughout the monitoring period. We conclude that GSH depletion, perhaps triggered by early Glu-mediated excitotoxicity, leads to late post-rmTBI loss of PVI-dependent cortical inhibitory tone. We thus propose dampening of Glu signaling, maintenance of redox state, and preservation of PVI inhibitory capacity as therapeutic targets for post-rmTBI treatment.
Collapse
Affiliation(s)
| | | | - Ugur Damar
- F.M. Kirby Neurobiology Center, Department of Neurology
| | | | - Mustafa Q Hameed
- F.M. Kirby Neurobiology Center, Department of Neurology.,Department of Neurosurgery
| | | | - Damon Hyde
- F.M. Kirby Neurobiology Center, Department of Neurology
| | - Grace M Conley
- Department of Emergency Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Morriss
- Department of Emergency Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jianhua Qiu
- Department of Emergency Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rebekah Mannix
- Department of Emergency Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
72
|
Arulsamy A, Shaikh MF. Tumor Necrosis Factor-α, the Pathological Key to Post-Traumatic Epilepsy: A Comprehensive Systematic Review. ACS Chem Neurosci 2020; 11:1900-1908. [PMID: 32479057 DOI: 10.1021/acschemneuro.0c00301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the detrimental outcomes of traumatic brain injury (TBI), resulting in recurrent seizures that impact daily life. However, the pathological relationship between PTE and TBI remains unclear, and commonly prescribed antiepileptic drugs (AED) are ineffective against PTE. Fortunately, emerging research implicates neuroinflammation, particularly, tumor necrosis factor-α (TNF-α), as the key mediator for PTE development. Thus, this review aims to examine the available literature regarding the role of TNF-α in PTE pathology and, subsequently, evaluate TNF-α as a possible target for its treatment. A comprehensive literature search was conducted on four databases including PubMed, CINAHL, Embase, and Scopus. Articles with relevance in investigating TNF-α expression in PTE were considered in this review. Critical evaluation of four articles that met the inclusion criteria suggests a proportional relationship between TNF-α expression and seizure susceptibilit and that neutralization or suppression of TNF-α release results in reduced susceptibility to seizures. In conclusion, this review elucidates the importance of TNF-α expression in epileptogenesis postinjury and urges future research to focus more on clinical studies involving TNF-α, which may provide clearer insight into PTE prevention, therefore improving the lives of PTE patients.
Collapse
Affiliation(s)
- Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, 47500 Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, 47500 Selangor, Malaysia
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC 3004, Australia
| |
Collapse
|
73
|
Dal Pozzo V, Crowell B, Briski N, Crockett DP, D’Arcangelo G. Reduced Reelin Expression in the Hippocampus after Traumatic Brain Injury. Biomolecules 2020; 10:biom10070975. [PMID: 32610618 PMCID: PMC7407987 DOI: 10.3390/biom10070975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a relatively common occurrence following accidents or violence, and often results in long-term cognitive or motor disability. Despite the high health cost associated with this type of injury, presently there are no effective treatments for many neurological symptoms resulting from TBI. This is due in part to our limited understanding of the mechanisms underlying brain dysfunction after injury. In this study, we used the mouse controlled cortical impact (CCI) model to investigate the effects of TBI, and focused on Reelin, an extracellular protein that critically regulates brain development and modulates synaptic activity in the adult brain. We found that Reelin expression decreases in forebrain regions after TBI, and that the number of Reelin-expressing cells decrease specifically in the hippocampus, an area of the brain that plays an important role in learning and memory. We also conducted in vitro experiments using mouse neuronal cultures and discovered that Reelin protects hippocampal neuronal cells from glutamate-induced neurotoxicity, a well-known secondary effect of TBI. Together our findings suggest that the loss of Reelin expression may contribute to neuronal death in the hippocampus after TBI, and raise the possibility that increasing Reelin levels or signaling activity may promote functional recovery.
Collapse
Affiliation(s)
- Valentina Dal Pozzo
- Graduate Program in Neuroscience, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; (B.C.); (N.B.)
| | - Beth Crowell
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; (B.C.); (N.B.)
| | - Nicholas Briski
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; (B.C.); (N.B.)
| | - David P. Crockett
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| | - Gabriella D’Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; (B.C.); (N.B.)
- Correspondence:
| |
Collapse
|
74
|
Huang M, Lewine JD, Lee RR. Magnetoencephalography for Mild Traumatic Brain Injury and Posttraumatic Stress Disorder. Neuroimaging Clin N Am 2020; 30:175-192. [DOI: 10.1016/j.nic.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
75
|
Lengel D, Huh JW, Barson JR, Raghupathi R. Progesterone treatment following traumatic brain injury in the 11-day-old rat attenuates cognitive deficits and neuronal hyperexcitability in adolescence. Exp Neurol 2020; 330:113329. [PMID: 32335121 DOI: 10.1016/j.expneurol.2020.113329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/13/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) in children younger than 4 years old results in cognitive and psychosocial deficits in adolescence and adulthood. At 4 weeks following closed head injury on postnatal day 11, male and female rats exhibited impairment in novel object recognition memory (NOR) along with an increase in open arm time in the elevated plus maze (EPM), suggestive of risk-taking behaviors. This was accompanied by an increase in intrinsic excitability and frequency of spontaneous excitatory post-synaptic currents (EPSCs), and a decrease in the frequency of spontaneous inhibitory post-synaptic currents in layer 2/3 neurons within the medial prefrontal cortex (PFC), a region that is implicated in both object recognition and risk-taking behaviors. Treatment with progesterone for the first week after brain injury improved NOR memory at the 4-week time point in both sham and brain-injured rats and additionally attenuated the injury-induced increase in the excitability of neurons and the frequency of spontaneous EPSCs. The effect of progesterone on cellular excitability changes after injury may be related to its ability to decrease the mRNA expression of the β3 subunit of the voltage-gated sodium channel and increase the expression of the neuronal excitatory amino acid transporter 3 in the medial PFC in sham- and brain-injured animals and also increase glutamic acid decarboxylase mRNA expression in sham- but not brain-injured animals. Progesterone treatment did not affect injury-induced changes in the EPM test. These results demonstrate that administration of progesterone immediately after TBI in 11-day-old rats reduces cognitive deficits in adolescence, which may be mediated by progesterone-mediated regulation of excitatory signaling mechanisms within the medial PFC.
Collapse
Affiliation(s)
- Dana Lengel
- Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA United States of America
| | - Jimmy W Huh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Jessica R Barson
- Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA United States of America; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Ramesh Raghupathi
- Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA United States of America; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States of America.
| |
Collapse
|
76
|
Modolo J, Hassan M, Wendling F, Benquet P. Decoding the circuitry of consciousness: From local microcircuits to brain-scale networks. Netw Neurosci 2020; 4:315-337. [PMID: 32537530 PMCID: PMC7286300 DOI: 10.1162/netn_a_00119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/09/2019] [Indexed: 01/25/2023] Open
Abstract
Identifying the physiological processes underlying the emergence and maintenance of consciousness is one of the most fundamental problems of neuroscience, with implications ranging from fundamental neuroscience to the treatment of patients with disorders of consciousness (DOCs). One major challenge is to understand how cortical circuits at drastically different spatial scales, from local networks to brain-scale networks, operate in concert to enable consciousness, and how those processes are impaired in DOC patients. In this review, we attempt to relate available neurophysiological and clinical data with existing theoretical models of consciousness, while linking the micro- and macrocircuit levels. First, we address the relationships between awareness and wakefulness on the one hand, and cortico-cortical and thalamo-cortical connectivity on the other hand. Second, we discuss the role of three main types of GABAergic interneurons in specific circuits responsible for the dynamical reorganization of functional networks. Third, we explore advances in the functional role of nested oscillations for neural synchronization and communication, emphasizing the importance of the balance between local (high-frequency) and distant (low-frequency) activity for efficient information processing. The clinical implications of these theoretical considerations are presented. We propose that such cellular-scale mechanisms could extend current theories of consciousness.
Collapse
Affiliation(s)
- Julien Modolo
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| | - Mahmoud Hassan
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| | | | - Pascal Benquet
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| |
Collapse
|
77
|
Chang BS, Krishnan V, Dulla CG, Jette N, Marsh ED, Dacks PA, Whittemore V, Poduri A. Epilepsy Benchmarks Area I: Understanding the Causes of the Epilepsies and Epilepsy-Related Neurologic, Psychiatric, and Somatic Conditions. Epilepsy Curr 2020; 20:5S-13S. [PMID: 31965828 PMCID: PMC7031801 DOI: 10.1177/1535759719895280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The 2014 NINDS Benchmarks for Epilepsy Research included area I: Understand the causes of the epilepsies and epilepsy-related neurologic, psychiatric, and somatic conditions. In preparation for the 2020 Curing Epilepsies Conference, where the Benchmarks will be revised, this review will cover scientific progress toward that Benchmark, with emphasize on studies since 2016.
Collapse
Affiliation(s)
- Bernard S Chang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vaishnav Krishnan
- Departments of Neurology, Neuroscience and Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Chris G Dulla
- Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Nathalie Jette
- Department of Neurology, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.,Department of Population Health Science and Policy, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Eric D Marsh
- Department of Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Vicky Whittemore
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MA, USA
| | - Annapurna Poduri
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
78
|
Hameed MQ, Hsieh TH, Morales-Quezada L, Lee HHC, Damar U, MacMullin PC, Hensch TK, Rotenberg A. Ceftriaxone Treatment Preserves Cortical Inhibitory Interneuron Function via Transient Salvage of GLT-1 in a Rat Traumatic Brain Injury Model. Cereb Cortex 2019; 29:4506-4518. [PMID: 30590449 PMCID: PMC7150617 DOI: 10.1093/cercor/bhy328] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) results in a decrease in glutamate transporter-1 (GLT-1) expression, the major mechanism for glutamate removal from synapses. Coupled with an increase in glutamate release from dead and dying neurons, this causes an increase in extracellular glutamate. The ensuing glutamate excitotoxicity disproportionately damages vulnerable GABAergic parvalbumin-positive inhibitory interneurons, resulting in a progressively worsening cortical excitatory:inhibitory imbalance due to a loss of GABAergic inhibitory tone, as evidenced by chronic post-traumatic symptoms such as epilepsy, and supported by neuropathologic findings. This loss of intracortical inhibition can be measured and followed noninvasively using long-interval paired-pulse transcranial magnetic stimulation with mechanomyography (LI-ppTMS-MMG). Ceftriaxone, a β-lactam antibiotic, is a potent stimulator of the expression of rodent GLT-1 and would presumably decrease excitotoxic damage to GABAergic interneurons. It may thus be a viable antiepileptogenic intervention. Using a rat fluid percussion injury TBI model, we utilized LI-ppTMS-MMG, quantitative PCR, and immunohistochemistry to test whether ceftriaxone treatment preserves intracortical inhibition and cortical parvalbumin-positive inhibitory interneuron function after TBI in rat motor cortex. We show that neocortical GLT-1 gene and protein expression are significantly reduced 1 week after TBI, and this transient loss is mitigated by ceftriaxone. Importantly, whereas intracortical inhibition declines progressively after TBI, 1 week of post-TBI ceftriaxone treatment attenuates the loss of inhibition compared to saline-treated controls. This finding is accompanied by significantly higher parvalbumin gene and protein expression in ceftriaxone-treated injured rats. Our results highlight prospects for ceftriaxone as an intervention after TBI to prevent cortical inhibitory interneuron dysfunction, partly by preserving GLT-1 expression.
Collapse
Affiliation(s)
- Mustafa Q Hameed
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tsung-Hsun Hsieh
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Therapy & Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Leon Morales-Quezada
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Henry H C Lee
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ugur Damar
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul C MacMullin
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Takao K Hensch
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
79
|
Neuroinflammation in Post-Traumatic Epilepsy: Pathophysiology and Tractable Therapeutic Targets. Brain Sci 2019; 9:brainsci9110318. [PMID: 31717556 PMCID: PMC6895909 DOI: 10.3390/brainsci9110318] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a common chronic consequence of traumatic brain injury (TBI), contributing to increased morbidity and mortality for survivors. As post-traumatic epilepsy (PTE) is drug-resistant in at least one-third of patients, there is a clear need for novel therapeutic strategies to prevent epilepsy from developing after TBI, or to mitigate its severity. It has long been recognized that seizure activity is associated with a local immune response, characterized by the activation of microglia and astrocytes and the release of a plethora of pro-inflammatory cytokines and chemokines. More recently, increasing evidence also supports a causal role for neuroinflammation in seizure induction and propagation, acting both directly and indirectly on neurons to promote regional hyperexcitability. In this narrative review, we focus on key aspects of the neuroinflammatory response that have been implicated in epilepsy, with a particular focus on PTE. The contributions of glial cells, blood-derived leukocytes, and the blood–brain barrier will be explored, as well as pro- and anti-inflammatory mediators. While the neuroinflammatory response to TBI appears to be largely pro-epileptogenic, further research is needed to clearly demonstrate causal relationships. This research has the potential to unveil new drug targets for PTE, and identify immune-based biomarkers for improved epilepsy prediction.
Collapse
|
80
|
Chai Z, Ma C, Jin X. Homeostatic activity regulation as a mechanism underlying the effect of brain stimulation. Bioelectron Med 2019; 5:16. [PMID: 32232105 PMCID: PMC7098242 DOI: 10.1186/s42234-019-0032-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/23/2019] [Indexed: 01/10/2023] Open
Abstract
Hyperexcitability of the neural network often occurs after brain injuries or degeneration and is a key pathophysiological feature in certain neurological diseases such as epilepsy, neuropathic pain, and tinnitus. Although the standard approach of pharmacological treatments is to directly suppress the hyperexcitability through reducing excitation or enhancing inhibition, different techniques for stimulating brain activity are often used to treat refractory neurological conditions. However, it is unclear why stimulating brain activity would be effective for controlling hyperexcitability. Recent studies suggest that the pathogenesis in these disorders exhibits a transition from an initial activity loss after acute injury or progressive neurodegeneration to subsequent development of hyperexcitability. This process mimics homeostatic activity regulation and may contribute to developing network hyperexcitability that underlies neurological symptoms. This hypothesis also predicts that stimulating brain activity should be effective in reducing hyperexcitability due to homeostatic activity regulation and in relieving symptoms. Here we review current evidence of homeostatic plasticity in the development of hyperexcitability in some neurological diseases and the effects of brain stimulation. The homeostatic plasticity hypothesis may provide new insights into the pathophysiology of neurological diseases and may guide the use of brain stimulation techniques for treating them.
Collapse
Affiliation(s)
- Zhi Chai
- Neurobiology Research Center, College of Basic Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030619 China
| | - Cungen Ma
- Neurobiology Research Center, College of Basic Medicine, Shanxi University of Chinese Medicine, Taiyuan, 030619 China
| | - Xiaoming Jin
- Department of Anatomy, Cell Biology and Physiology, Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, NB 500C, Indianapolis, IN 46202 USA
| |
Collapse
|
81
|
Kokhan VS, Anokhin PK, Belov OV, Gulyaev MV. Cortical Glutamate/GABA Imbalance after Combined Radiation Exposure: Relevance to Human Deep-Space Missions. Neuroscience 2019; 416:295-308. [DOI: 10.1016/j.neuroscience.2019.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/01/2019] [Accepted: 08/03/2019] [Indexed: 12/22/2022]
|
82
|
Yasmin A, Pitkänen A, Jokivarsi K, Poutiainen P, Gröhn O, Immonen R. MRS Reveals Chronic Inflammation in T2w MRI-Negative Perilesional Cortex - A 6-Months Multimodal Imaging Follow-Up Study. Front Neurosci 2019; 13:863. [PMID: 31474824 PMCID: PMC6707062 DOI: 10.3389/fnins.2019.00863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Sustained inflammation in the injured cortex is a promising therapeutic target for disease-modification after traumatic brain injury (TBI). However, its extent and dynamics of expansion are incompletely understood which challenges the timing and placement of therapeutics to lesioned area. Our aim was to characterize the evolution of chronic inflammation during lesion expansion in lateral fluid-percussion injury (FPI) rat model with focus on the MRI-negative perilesional cortex. T2-weighted MR imaging (T2w MRI) and localized magnetic resonance spectroscopy (MRS) were performed at 1, 3, and 6 months post-injury. End-point histology, including Nissl for neuronal death, GFAP for astrogliosis, and Prussian Blue for iron were used to assess perilesional histopathology. An additional animal cohort was imaged with a positron emission tomography (PET) using translocator protein 18 kDa (TSPO) radiotracer [18F]-FEPPA. T2w MRI assessed lesion growth and detected chronic inflammation along the lesion border while rest of the ipsilateral cortex was MRI-negative (MRI-). Instead, myo-inositol that is an inflammatory MRS marker for gliosis, glutathione for oxidative stress, and choline for membrane turnover were elevated throughout the 6-months follow-up in the MRI- perilesional cortex (all p < 0.05). MRS markers revealed chronically sustained inflammation across the ipsilateral cortex but did not indicate the upcoming lesion expansion. Instead, the rostral expansion of the cortical lesion was systematically preceded by a hyperintense band in T2w images months earlier. Histologic analysis of the hyperintensity indicated scattered astrocytes, incomplete glial scar, and intracellularly packed and free iron. Yet, the band was negative in [18F]-FEPPA-PET. [18F]-FEPPA also showed no cortical TSPO expression within the MRS voxel in MRI- perilesional cortex or anywhere along glial scar when assessed at 2 months post-injury. However, [18F]-FEPPA showed a robust signal increase, indicating reactive microgliosis in the ipsilateral thalamus at 2 months post-TBI. We present evidence that MRS reveals chronic posttraumatic inflammation in MRI-negative perilesional cortex. The mismatch in MRS, MRI, and PET measures may allow non-invasive endophenotyping of beneficial and detrimental inflammatory processes to aid targeting and timing of anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Amna Yasmin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kimmo Jokivarsi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pekka Poutiainen
- Center of Diagnostic Imaging, Department of Cyclotron and Radiopharmacy, Kuopio University Hospital, Kuopio, Finland
| | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Riikka Immonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
83
|
Carron SF, Sun M, Shultz SR, Rajan R. Inhibitory neuronal changes following a mixed diffuse‐focal model of traumatic brain injury. J Comp Neurol 2019; 528:175-198. [DOI: 10.1002/cne.24746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Simone F. Carron
- Neuroscience Discovery Program, Biomedicine Discovery Institute, Department of Physiology Monash University Melbourne Victoria Australia
| | - Mujun Sun
- Department of Medicine The University of Melbourne Melbourne Victoria Australia
| | - Sandy R. Shultz
- Department of Medicine and Neuroscience Monash University Melbourne Victoria Australia
- Department of Medicine The University of Melbourne Melbourne Victoria Australia
| | - Ramesh Rajan
- Neuroscience Discovery Program, Biomedicine Discovery Institute, Department of Physiology Monash University Melbourne Victoria Australia
| |
Collapse
|
84
|
Terpstra AR, Vasquez BP, Colella B, Tartaglia MC, Tator CH, Mikulis D, Davis KD, Wennberg R, Green REA. Comprehensive Neuropsychiatric and Cognitive Characterization of Former Professional Football Players: Implications for Neurorehabilitation. Front Neurol 2019; 10:712. [PMID: 31447753 PMCID: PMC6696977 DOI: 10.3389/fneur.2019.00712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives: To identify novel targets for neurorehabilitation of people with a remote history of multiple concussions by: (1) comprehensively characterizing neuropsychiatric and cognitive functioning in former professional football players, with a focus on executive functions; (2) distinguishing concussion-related findings from pre-morbid/cohort characteristics of professional football players; and, (3) exploring the relationship between executive functions and neuropsychiatric symptoms. Participants: Sixty-one high-functioning former professional football players and 31 age- and sex-matched control participants without history of concussion or participation in contact sports. Design: Between-groups analyses. Main measures: Neuropsychiatric. Personality Assessment Inventory (PAI) clinical scales plus the Aggression treatment consideration scale; the Mini International Neuropsychiatric Interview (MINI). Cognitive. Comprehensive clinical neuropsychological battery assessing domains of verbal and visuospatial attention; speed of processing and memory; current and estimated pre-morbid IQ; and, executive functioning, including two experimental measures that were novel for this population (i.e., response inhibition and inconsistency of responding on a go/no-go task). Results: (1) Compared to control participants, former professional football players scored significantly higher on the PAI Depression, Mania, and Aggression scales, and significantly lower on response inhibition. (2) Relative to controls, former players with >3 concussions (x ¯ = 6 . 1 ), but not former players with ≤ 3 concussions (x ¯ = 2 . 0 ), showed (i) significantly higher scores on the PAI Depression scale, (ii) significantly more MINI clinical diagnoses overall, and manic/hypomanic episodes specifically, and (iii) significantly poorer executive function. (3) Mediation analysis revealed that concussion exposure had a significant indirect effect on PAI Depression, Mania, and Aggression via inconsistency of responding on the go/no-go task. Conclusions: Notable impairments to neuropsychiatric functioning and worse performance on a sensitive experimental measure of executive function were observed; these were related to both concussion history and pre-morbid (cohort) factors. Therefore, neuropsychiatric and executive functioning should be carefully assessed in those with a remote history of multiple concussions. Moreover, former players' neuropsychiatric symptoms were associated with inconsistency of responding; this suggests that treatments targeted at response inconsistency could help to mitigate neuropsychiatric dysfunction.
Collapse
Affiliation(s)
- Alex R. Terpstra
- Cognitive Neurorehabilitation Sciences Laboratory, Toronto Rehabilitation Institute, Toronto, ON, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Brandon P. Vasquez
- Cognitive Neurorehabilitation Sciences Laboratory, Toronto Rehabilitation Institute, Toronto, ON, Canada
- Neuropsychology & Cognitive Health, Baycrest, Toronto, ON, Canada
| | - Brenda Colella
- Cognitive Neurorehabilitation Sciences Laboratory, Toronto Rehabilitation Institute, Toronto, ON, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Toronto, ON, Canada
| | - Maria Carmela Tartaglia
- Canadian Concussion Centre, Toronto Western Hospital, Toronto, ON, Canada
- Division of Neurology, Krembil Neuroscience Centre, University Health Network, University of Toronto, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
| | - Charles H. Tator
- Canadian Concussion Centre, Toronto Western Hospital, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - David Mikulis
- Canadian Concussion Centre, Toronto Western Hospital, Toronto, ON, Canada
- Division of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Karen D. Davis
- Canadian Concussion Centre, Toronto Western Hospital, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Richard Wennberg
- Canadian Concussion Centre, Toronto Western Hospital, Toronto, ON, Canada
- Division of Neurology, Krembil Neuroscience Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Robin E. A. Green
- Cognitive Neurorehabilitation Sciences Laboratory, Toronto Rehabilitation Institute, Toronto, ON, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
85
|
Gálvez-Rosas A, Avila-Luna A, Valdés-Flores M, Montes S, Bueno-Nava A. GABAergic imbalance is normalized by dopamine D 1 receptor activation in the striatum contralateral to the cortical injury in motor deficit-recovered rats. Psychopharmacology (Berl) 2019; 236:2211-2222. [PMID: 30859334 DOI: 10.1007/s00213-019-05215-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/01/2019] [Indexed: 02/07/2023]
Abstract
RATIONALE The sensorimotor cortex and the striatum are interconnected by the corticostriatal pathway, suggesting that cortical injury alters the striatal function, which may be modulated by dopamine. OBJECTIVES We studied whether the activation of dopamine D1 receptors (D1Rs) modulates the γ-aminobutyric acid (GABA) and glutamate levels in the striatum of recovered rats at 192 h after cortical injury. METHODS The D1R agonist SKF-38393 (0, 2, 3, or 4 mg/kg) was administered at 24, 48, 96, and 192 h post-injury, and then rats were decapitated to determine GABA and glutamate levels and the levels of D1R mRNA on both sides of the striatum. RESULTS GABAergic imbalance in the striatum contralateral to the injury site was normalized by the administration of the D1R agonist, but this treatment did not produce a significant effect on glutamate levels, suggesting that glutamate was metabolized into GABA. The administration of SKF-38393 (2 mg/kg) decreased the levels of D1R mRNA in the striatum contralateral to the injury, and this effect was blocked by the coadministration of the D1R antagonist SCH-23390 (2 mg/kg). In the striatum ipsilateral to the injury, the D1R agonist increased the D1R mRNA levels, an effect that was blocked by SCH-23390. CONCLUSION The reversal of the GABAergic imbalance in the striatum contralateral to the cortical injury can be modulated by extrastriatal D1R activation, and the D1R agonist-induced increases in the D1R mRNA levels in the striatum ipsilateral to the injury suggest that the striatum may be necessary to achieve functional recovery.
Collapse
Affiliation(s)
- Arturo Gálvez-Rosas
- Lab. Neurofisiología Química de la Discapacidad, División de Neurociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calz. México-Xochimilco 289, Col. Arenal de Guadalupe, 14389, Mexico City, Mexico
| | - Alberto Avila-Luna
- Lab. Neurofisiología Química de la Discapacidad, División de Neurociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calz. México-Xochimilco 289, Col. Arenal de Guadalupe, 14389, Mexico City, Mexico
| | - Margarita Valdés-Flores
- Departamento de Genética y Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calz. México-Xochimilco 289, Col. Arenal de Guadalupe, 14389, Mexico City, Mexico
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSa, Insurgentes Sur 3877, 14269, Mexico City, Mexico
| | - Antonio Bueno-Nava
- Lab. Neurofisiología Química de la Discapacidad, División de Neurociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calz. México-Xochimilco 289, Col. Arenal de Guadalupe, 14389, Mexico City, Mexico.
| |
Collapse
|
86
|
McGuire JL, Ngwenya LB, McCullumsmith RE. Neurotransmitter changes after traumatic brain injury: an update for new treatment strategies. Mol Psychiatry 2019; 24:995-1012. [PMID: 30214042 DOI: 10.1038/s41380-018-0239-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a pervasive problem in the United States and worldwide, as the number of diagnosed individuals is increasing yearly and there are no efficacious therapeutic interventions. A large number of patients suffer with cognitive disabilities and psychiatric conditions after TBI, especially anxiety and depression. The constellation of post-injury cognitive and behavioral symptoms suggest permanent effects of injury on neurotransmission. Guided in part by preclinical studies, clinical trials have focused on high-yield pathophysiologic mechanisms, including protein aggregation, inflammation, metabolic disruption, cell generation, physiology, and alterations in neurotransmitter signaling. Despite successful treatment of experimental TBI in animal models, clinical studies based on these findings have failed to translate to humans. The current international effort to reshape TBI research is focusing on redefining the taxonomy and characterization of TBI. In addition, as the next round of clinical trials is pending, there is a pressing need to consider what the field has learned over the past two decades of research, and how we can best capitalize on this knowledge to inform the hypotheses for future innovations. Thus, it is critically important to extend our understanding of the pathophysiology of TBI, particularly to mechanisms that are associated with recovery versus development of chronic symptoms. In this review, we focus on the pathology of neurotransmission after TBI, reflecting on what has been learned from both the preclinical and clinical studies, and we discuss new directions and opportunities for future work.
Collapse
Affiliation(s)
- Jennifer L McGuire
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA.
| | - Laura B Ngwenya
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA.,Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA.,Neurotrauma Center, University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, 45219, USA
| | - Robert E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.,Department of Psychiatry, Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
| |
Collapse
|
87
|
Feldmann LK, Le Prieult F, Felzen V, Thal SC, Engelhard K, Behl C, Mittmann T. Proteasome and Autophagy-Mediated Impairment of Late Long-Term Potentiation (l-LTP) after Traumatic Brain Injury in the Somatosensory Cortex of Mice. Int J Mol Sci 2019; 20:ijms20123048. [PMID: 31234472 PMCID: PMC6627835 DOI: 10.3390/ijms20123048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) can lead to impaired cognition and memory consolidation. The acute phase (24–48 h) after TBI is often characterized by neural dysfunction in the vicinity of the lesion, but also in remote areas like the contralateral hemisphere. Protein homeostasis is crucial for synaptic long-term plasticity including the protein degradation systems, proteasome and autophagy. Still, little is known about the acute effects of TBI on synaptic long-term plasticity and protein degradation. Thus, we investigated TBI in a controlled cortical impact (CCI) model in the motor and somatosensory cortex of mice ex vivo-in vitro. Late long-term potentiation (l-LTP) was induced by theta-burst stimulation in acute brain slices after survival times of 1–2 days. Protein levels for the plasticity related protein calcium/calmodulin-dependent protein kinase II (CaMKII) was quantified by Western blots, and the protein degradation activity by enzymatical assays. We observed missing maintenance of l-LTP in the ipsilateral hemisphere, however not in the contralateral hemisphere after TBI. Protein levels of CaMKII were not changed but, interestingly, the protein degradation revealed bidirectional changes with a reduced proteasome activity and an increased autophagic flux in the ipsilateral hemisphere. Finally, LTP recordings in the presence of pharmacologically modified protein degradation systems also led to an impaired synaptic plasticity: bath-applied MG132, a proteasome inhibitor, or rapamycin, an activator of autophagy, both administered during theta burst stimulation, blocked the induction of LTP. These data indicate that alterations in protein degradation pathways likely contribute to cognitive deficits in the acute phase after TBI, which could be interesting for future approaches towards neuroprotective treatments early after traumatic brain injury.
Collapse
Affiliation(s)
- Lucia K Feldmann
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Florie Le Prieult
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Vanessa Felzen
- Institute for Pathobiochemistry, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Serge C Thal
- Clinics for Anaesthesiology, UMC of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Kristin Engelhard
- Clinics for Anaesthesiology, UMC of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Christian Behl
- Institute for Pathobiochemistry, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Thomas Mittmann
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
88
|
Abstract
PURPOSE OF REVIEW The concussion public health burden has increased alongside our knowledge of the pathophysiology of mild traumatic brain injury (mTBI). The purpose of this review is to summarize our current understanding of mTBI pathophysiology and biomechanics and how these underlying principles correlate with clinical manifestations of mTBI. RECENT FINDINGS Changes in post-mTBI glutamate and GABA concentrations seem to be region-specific and time-dependent. Genetic variability may predict recovery and symptom severity while gender differences appear to be associated with the neuroinflammatory response and neuroplasticity. Ongoing biomechanical research has shown a growing body of evidence in support of an "individual-specific threshold" for mTBI that varies based on individual intrinsic factors. The literature demonstrates a well-characterized timeframe for mTBI pathophysiologic changes in animal models while work in this area continues to grow in humans. Current human research shows that these underlying post-mTBI effects are multifactorial and may correlate with symptomatology and recovery. While wearable sensor technology has advanced biomechanical impact research, a definitive concussion threshold remains elusive.
Collapse
Affiliation(s)
- Rafael Romeu-Mejia
- Department of Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - Christopher C Giza
- Department of Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
- UCLA Brain Injury Research Center, Los Angeles, CA, USA
- Department of Pediatrics/Pediatric Neurology, Mattel Children's Hospital UCLA, Los Angeles, CA, USA
| | - Joshua T Goldman
- Department of Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA.
- Department of Family Medicine, Division of Sports Medicine, UCLA, Los Angeles, CA, USA.
- Department of Orthopedic Surgery, UCLA, Los Angeles, CA, USA.
- Department of Intercollegiate Athletics, UCLA, Los Angeles, CA, USA.
- Center for Sports Medicine, Orthopedic Institute for Children, Los Angeles, CA, USA.
| |
Collapse
|
89
|
Sudhakar SK, Choi TJ, Ahmed OJ. Biophysical Modeling Suggests Optimal Drug Combinations for Improving the Efficacy of GABA Agonists after Traumatic Brain Injuries. J Neurotrauma 2019; 36:1632-1645. [PMID: 30484362 PMCID: PMC6531909 DOI: 10.1089/neu.2018.6065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injuries (TBI) lead to dramatic changes in the surviving brain tissue. Altered ion concentrations, coupled with changes in the expression of membrane-spanning proteins, create a post-TBI brain state that can lead to further neuronal loss caused by secondary excitotoxicity. Several GABA receptor agonists have been tested in the search for neuroprotection immediately after an injury, with paradoxical results. These drugs not only fail to offer neuroprotection, but can also slow down functional recovery after TBI. Here, using computational modeling, we provide a biophysical hypothesis to explain these observations. We show that the accumulation of intracellular chloride ions caused by a transient upregulation of Na+-K+-2Cl- (NKCC1) co-transporters as observed following TBI, causes GABA receptor agonists to lead to excitation and depolarization block, rather than the expected hyperpolarization. The likelihood of prolonged, excitotoxic depolarization block is further exacerbated by the extremely high levels of extracellular potassium seen after TBI. Our modeling results predict that the neuroprotective efficacy of GABA receptor agonists can be substantially enhanced when they are combined with NKCC1 co-transporter inhibitors. This suggests a rational, biophysically principled method for identifying drug combinations for neuroprotection after TBI.
Collapse
Affiliation(s)
| | - Thomas J. Choi
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Omar J. Ahmed
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
- Department of Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan
- Department of Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
90
|
Koenig JB, Cantu D, Low C, Sommer M, Noubary F, Croker D, Whalen M, Kong D, Dulla CG. Glycolytic inhibitor 2-deoxyglucose prevents cortical hyperexcitability after traumatic brain injury. JCI Insight 2019; 5:126506. [PMID: 31038473 DOI: 10.1172/jci.insight.126506] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) causes cortical dysfunction and can lead to post-traumatic epilepsy. Multiple studies demonstrate that GABAergic inhibitory network function is compromised following TBI, which may contribute to hyperexcitability and motor, behavioral, and cognitive deficits. Preserving the function of GABAergic interneurons, therefore, is a rational therapeutic strategy to preserve cortical function after TBI and prevent long-term clinical complications. Here, we explored an approach based on the ketogenic diet, a neuroprotective and anticonvulsant dietary therapy which results in reduced glycolysis and increased ketosis. Utilizing a pharmacologic inhibitor of glycolysis (2-deoxyglucose, or 2-DG), we found that acute in vitro application of 2-DG decreased the excitability of excitatory neurons, but not inhibitory interneurons, in cortical slices from naïve mice. Employing the controlled cortical impact (CCI) model of TBI in mice, we found that in vitro 2-DG treatment rapidly attenuated epileptiform activity seen in acute cortical slices 3 to 5 weeks after TBI. One week of in vivo 2-DG treatment immediately after TBI prevented the development of epileptiform activity, restored excitatory and inhibitory synaptic activity, and attenuated the loss of parvalbumin-expressing inhibitory interneurons. In summary, 2-DG may have therapeutic potential to restore network function following TBI.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA.,Neuroscience Program, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - David Cantu
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Cho Low
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA.,Cellular, Molecular, and Developmental Biology Program, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Danielle Croker
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Michael Whalen
- Neuroscience Center, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dong Kong
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
91
|
Witkowski ED, Gao Y, Gavsyuk AF, Maor I, DeWalt GJ, Eldred WD, Mizrahi A, Davison IG. Rapid Changes in Synaptic Strength After Mild Traumatic Brain Injury. Front Cell Neurosci 2019; 13:166. [PMID: 31105533 PMCID: PMC6498971 DOI: 10.3389/fncel.2019.00166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) affects millions of Americans annually, but effective treatments remain inadequate due to our poor understanding of how injury impacts neural function. Data are particularly limited for mild, closed-skull TBI, which forms the majority of human cases, and for acute injury phases, when trauma effects and compensatory responses appear highly dynamic. Here we use a mouse model of mild TBI to characterize injury-induced synaptic dysfunction, and examine its progression over the hours to days after trauma. Mild injury consistently caused both locomotor deficits and localized neuroinflammation in piriform and entorhinal cortices, along with reduced olfactory discrimination ability. Using whole-cell recordings to characterize synaptic input onto piriform pyramidal neurons, we found moderate effects on excitatory or inhibitory synaptic function at 48 h after TBI and robust increase in excitatory inputs in slices prepared 1 h after injury. Excitatory increases predominated over inhibitory effects, suggesting that loss of excitatory-inhibitory balance is a common feature of both mild and severe TBI. Our data indicate that mild injury drives rapidly evolving alterations in neural function in the hours following injury, highlighting the need to better characterize the interplay between the primary trauma responses and compensatory effects during this early time period.
Collapse
Affiliation(s)
| | - Yuan Gao
- Department of Biology, Boston University, Boston, MA, United States
| | | | - Ido Maor
- Department of Neurobiology, Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gloria J. DeWalt
- Department of Biology, Boston University, Boston, MA, United States
| | | | - Adi Mizrahi
- Department of Neurobiology, Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ian G. Davison
- Department of Biology, Boston University, Boston, MA, United States
| |
Collapse
|
92
|
Killen MJ, Giorgi-Coll S, Helmy A, Hutchinson PJ, Carpenter KL. Metabolism and inflammation: implications for traumatic brain injury therapeutics. Expert Rev Neurother 2019; 19:227-242. [PMID: 30848963 DOI: 10.1080/14737175.2019.1582332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Traumatic Brain Injury (TBI) is a leading cause of death and disability in young people, affecting 69 million people annually, worldwide. The initial trauma disrupts brain homeostasis resulting in metabolic dysfunction and an inflammatory cascade, which can then promote further neurodegenerative effects for months or years, as a 'secondary' injury. Effective targeting of the cerebral inflammatory system is challenging due to its complex, pleiotropic nature. Cell metabolism plays a key role in many diseases, and increased disturbance in the TBI metabolic state is associated with poorer patient outcomes. Investigating critical metabolic pathways, and their links to inflammation, can potentially identify supplements which alter the brain's long-term response to TBI and improve recovery. Areas covered: The authors provide an overview of literature on metabolism and inflammation following TBI, and from relevant pre-clinical and clinical studies, propose therapeutic strategies. Expert opinion: There is still no specific active drug treatment for TBI. Changes in metabolic and inflammatory states have been reported after TBI and appear linked. Understanding more about abnormal cerebral metabolism following TBI, and its relationship with cerebral inflammation, will provide essential information for designing therapies, with implications for neurocritical care and for alleviating long-term disability and neurodegeneration in post-TBI patients.
Collapse
Affiliation(s)
- Monica J Killen
- a Division of Neurosurgery, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK
| | - Susan Giorgi-Coll
- a Division of Neurosurgery, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK
| | - Adel Helmy
- a Division of Neurosurgery, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK
| | - Peter Ja Hutchinson
- a Division of Neurosurgery, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK.,b Wolfson Brain Imaging Centre, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK
| | - Keri Lh Carpenter
- a Division of Neurosurgery, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK.,b Wolfson Brain Imaging Centre, Department of Clinical Neurosciences , University of Cambridge , Cambridge , UK
| |
Collapse
|
93
|
Verley DR, Torolira D, Hessell BA, Sutton RL, Harris NG. Cortical Neuromodulation of Remote Regions after Experimental Traumatic Brain Injury Normalizes Forelimb Function but is Temporally Dependent. J Neurotrauma 2019; 36:789-801. [PMID: 30014759 PMCID: PMC6387565 DOI: 10.1089/neu.2018.5769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Traumatic brain injury (TBI) results in well-known, significant alterations in structural and functional connectivity. Although this is especially likely to occur in areas of pathology, deficits in function to and from remotely connected brain areas, or diaschisis, also occur as a consequence to local deficits. As a result, consideration of the network wiring of the brain may be required to design the most efficacious rehabilitation therapy to target specific functional networks to improve outcome. In this work, we model remote connections after controlled cortical impact injury (CCI) in the rat through the effect of callosal deafferentation to the opposite, contralesional cortex. We show rescue of significantly reaching deficits in injury-affected forelimb function if temporary, neuromodulatory silencing of contralesional cortex function is conducted at 1 week post-injury using the γ-aminobutyric acid (GABA) agonist muscimol, compared with vehicle. This indicates that subacute, injury-induced remote circuit modifications are likely to prevent normal ipsilesional control over limb function. However, by conducting temporary contralesional cortex silencing in the same injured rats at 4 weeks post-injury, injury-affected limb function either remains unaffected and deficient or is worsened, indicating that circuit modifications are more permanently controlled or at least influenced by the contralesional cortex at extended post-injury times. We provide functional magnetic resonance imaging (MRI) evidence of the neuromodulatory effect of muscimol on forelimb-evoked function in the cortex. We discuss these findings in light of known changes in cortical connectivity and excitability that occur in this injury model, and postulate a mechanism to explain these findings.
Collapse
Affiliation(s)
- Derek R. Verley
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Daniel Torolira
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Brittany A. Hessell
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Richard L. Sutton
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
94
|
Goubert E, Altvater M, Rovira MN, Khalilov I, Mazzarino M, Sebastiani A, Schaefer MKE, Rivera C, Pellegrino C. Bumetanide Prevents Brain Trauma-Induced Depressive-Like Behavior. Front Mol Neurosci 2019; 12:12. [PMID: 30804751 PMCID: PMC6370740 DOI: 10.3389/fnmol.2019.00012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/14/2019] [Indexed: 01/24/2023] Open
Abstract
Brain trauma triggers a cascade of deleterious events leading to enhanced incidence of drug resistant epilepsies, depression, and cognitive dysfunctions. The underlying mechanisms leading to these alterations are poorly understood and treatment that attenuates those sequels are not available. Using controlled-cortical impact as an experimental model of brain trauma in adult mice, we found a strong suppressive effect of the sodium-potassium-chloride importer (NKCC1) specific antagonist bumetanide on the appearance of depressive-like behavior. We demonstrate that this alteration in behavior is associated with an impairment of post-traumatic secondary neurogenesis within the dentate gyrus of the hippocampus. The mechanism mediating the effect of bumetanide involves early transient changes in the expression of chloride regulatory proteins and qualitative changes in GABA(A) mediated transmission from hyperpolarizing to depolarizing after brain trauma. This work opens new perspectives in the early treatment of human post-traumatic induced depression. Our results strongly suggest that bumetanide might constitute an efficient prophylactic treatment to reduce neurological and psychiatric consequences of brain trauma.
Collapse
Affiliation(s)
- Emmanuelle Goubert
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Marc Altvater
- Department of Anesthesiology and Research Center Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marie-Noelle Rovira
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Ilgam Khalilov
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Morgane Mazzarino
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Anne Sebastiani
- Department of Anesthesiology and Research Center Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael K E Schaefer
- Department of Anesthesiology and Research Center Translational Neurosciences, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudio Rivera
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Christophe Pellegrino
- INSERM, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| |
Collapse
|
95
|
Neumann E, Rudolph U, Knutson DE, Li G, Cook JM, Hentschke H, Antkowiak B, Drexler B. Zolpidem Activation of Alpha 1-Containing GABA A Receptors Selectively Inhibits High Frequency Action Potential Firing of Cortical Neurons. Front Pharmacol 2019; 9:1523. [PMID: 30687091 PMCID: PMC6333667 DOI: 10.3389/fphar.2018.01523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/12/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: High frequency neuronal activity in the cerebral cortex can be induced by noxious stimulation during surgery, brain injury or poisoning. In this scenario, it is essential to block cortical hyperactivity to protect the brain against damage, e.g., by using drugs that act as positive allosteric modulators at GABAA receptors. Yet, cortical neurons express multiple, functionally distinct GABAA receptor subtypes. Currently there is a lack of knowledge which GABAA receptor subtypes would be a good pharmacological target to reduce extensive cortical activity. Methods: Spontaneous action potential activity was monitored by performing extracellular recordings from organotypic neocortical slice cultures of wild type and GABAAR-α1(H101R) mutant mice. Phases of high neuronal activity were characterized using peri-event time histograms. Drug effects on within-up state firing rates were quantified via Hedges' g. Results: We quantified the effects of zolpidem, a positive modulator of GABAA receptors harboring α1-subunits, and the experimental benzodiazepine SH-053-2'F-S-CH3, which preferably acts at α2/3/5- but spares α1-subunits. Both agents decreased spontaneous action potential activity but altered the firing patterns in different ways. Zolpidem reduced action potential firing during highly active network states. This action was abolished by flumazenil, suggesting that it was mediated by benzodiazepine-sensitive GABAA receptors. SH-053-2'F-S-CH3 also attenuated neuronal activity, but unlike zolpidem, failed to reduce high frequency firing. To confirm that zolpidem actions were indeed mediated via α1-dependent actions, it was evaluated in slices from wild type and α(H101R) knock-in mice. Inhibition of high frequency action potential firing was observed in slices from wild type but not mutant mice. Conclusion: Our results suggest that during episodes of scarce and high neuronal activity action potential firing of cortical neurons is controlled by different GABAA receptor subtypes. Exaggerated firing of cortical neurons is reduced by positive modulation of α1-, but not α2/3/5-subunit containing GABAA receptors.
Collapse
Affiliation(s)
- Elena Neumann
- Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Uwe Rudolph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Daniel E Knutson
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Guanguan Li
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Harald Hentschke
- Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Bernd Antkowiak
- Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care, Eberhard Karls Universität Tübingen, Tübingen, Germany.,Werner Reichardt Center for Integrative Neuroscience, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Berthold Drexler
- Experimental Anesthesiology Section, Department of Anesthesiology and Intensive Care, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
96
|
Abstract
Neuroinflammation is initiated as a result of traumatic brain injury and can exacerbate evolving tissue pathology. Immune cells respond to acute signals from damaged cells, initiate neuroinflammation, and drive the pathological consequences over time. Importantly, the mechanism(s) of injury, the location of the immune cells within the brain, and the animal species all contribute to immune cell behavior following traumatic brain injury. Understanding the signals that initiate neuroinflammation and the context in which they appear may be critical for understanding immune cell contributions to pathology and regeneration. Within this paper, we review a number of factors that could affect immune cell behavior acutely following traumatic brain injury.
Collapse
Affiliation(s)
- Kathryn L Wofford
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma, and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA; School of Biochemistry and Immunology and Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
97
|
Dulla CG, Janigro D, Jiruska P, Raimondo JV, Ikeda A, Lin CCK, Goodkin HP, Galanopoulou AS, Bernard C, de Curtis M. How do we use in vitro models to understand epileptiform and ictal activity? A report of the TASK1-WG4 group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2018; 3:460-473. [PMID: 30525115 PMCID: PMC6276782 DOI: 10.1002/epi4.12277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
In vitro brain tissue preparations allow the convenient and affordable study of brain networks and have allowed us to garner molecular, cellular, and electrophysiologic insights into brain function with a detail not achievable in vivo. Preparations from both rodent and human postsurgical tissue have been utilized to generate in vitro electrical activity similar to electrographic activity seen in patients with epilepsy. A great deal of knowledge about how brain networks generate various forms of epileptiform activity has been gained, but due to the multiple in vitro models and manipulations used, there is a need for a standardization across studies. Here, we describe epileptiform patterns generated using in vitro brain preparations, focusing on issues and best practices pertaining to recording, reporting, and interpretation of the electrophysiologic patterns observed. We also discuss criteria for defining in vitro seizure‐like patterns (i.e., ictal) and interictal discharges. Unifying terminologies and definitions are proposed. We suggest a set of best practices for reporting in vitro studies to favor both efficient across‐lab comparisons and translation to in vivo models and human studies.
Collapse
Affiliation(s)
- Chris G Dulla
- Department of Neuroscience Tufts University School of Medicine Boston Massachusetts U.S.A
| | - Damir Janigro
- Flocel Inc. and Case Western Reserve University Cleveland Ohio U.S.A
| | - Premysl Jiruska
- Department of Developmental Epileptology Institute of Physiology of the Czech Academy of Sciences Prague Czechia
| | - Joseph V Raimondo
- Division of Cell Biology and Neuroscience Institute Department of Human Biology Faculty of Health Sciences University of Cape Town Cape Town South Africa
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Chou-Ching K Lin
- Department of Neurology National Cheng Kung University Hospital College of Medicine National Cheng Kung University Tainan Taiwan
| | - Howard P Goodkin
- The Departments of Neurology and Pediatrics University of Virginia Charlottesville Virginia U.S.A
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy Saul R. Korey Department of Neurology Isabelle Rapin Division of Child Neurology Dominick P. Purpura Department of Neuroscience Albert Einstein College of Medicine, and Einstein/Montefiore Epilepsy Center Montefiore Medical Center Bronx New York U.S.A
| | | | - Marco de Curtis
- Epilepsy Unit Fondazione IRCCS Istituto Neurologico Carlo Besta Milano Italy
| |
Collapse
|
98
|
Koenig JB, Dulla CG. Dysregulated Glucose Metabolism as a Therapeutic Target to Reduce Post-traumatic Epilepsy. Front Cell Neurosci 2018; 12:350. [PMID: 30459556 PMCID: PMC6232824 DOI: 10.3389/fncel.2018.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of disability worldwide and can lead to post-traumatic epilepsy. Multiple molecular, cellular, and network pathologies occur following injury which may contribute to epileptogenesis. Efforts to identify mechanisms of disease progression and biomarkers which predict clinical outcomes have focused heavily on metabolic changes. Advances in imaging approaches, combined with well-established biochemical methodologies, have revealed a complex landscape of metabolic changes that occur acutely after TBI and then evolve in the days to weeks after. Based on this rich clinical and preclinical data, combined with the success of metabolic therapies like the ketogenic diet in treating epilepsy, interest has grown in determining whether manipulating metabolic activity following TBI may have therapeutic value to prevent post-traumatic epileptogenesis. Here, we focus on changes in glucose utilization and glycolytic activity in the brain following TBI and during seizures. We review relevant literature and outline potential paths forward to utilize glycolytic inhibitors as a disease-modifying therapy for post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
99
|
Blood-Based Glutamate Scavengers Reverse Traumatic Brain Injury-Induced Synaptic Plasticity Disruption by Decreasing Glutamate Level in Hippocampus Interstitial Fluid, but Not Cerebral Spinal Fluid, In Vivo. Neurotox Res 2018; 35:360-372. [DOI: 10.1007/s12640-018-9961-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
|
100
|
Eles JR, Vazquez AL, Kozai TDY, Cui XT. In vivo imaging of neuronal calcium during electrode implantation: Spatial and temporal mapping of damage and recovery. Biomaterials 2018; 174:79-94. [PMID: 29783119 PMCID: PMC5987772 DOI: 10.1016/j.biomaterials.2018.04.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/16/2018] [Accepted: 04/21/2018] [Indexed: 12/13/2022]
Abstract
Implantable electrode devices enable long-term electrophysiological recordings for brain-machine interfaces and basic neuroscience research. Implantation of these devices, however, leads to neuronal damage and progressive neural degeneration that can lead to device failure. The present study uses in vivo two-photon microscopy to study the calcium activity and morphology of neurons before, during, and one month after electrode implantation to determine how implantation trauma injures neurons. We show that implantation leads to prolonged, elevated calcium levels in neurons within 150 μm of the electrode interface. These neurons show signs of mechanical distortion and mechanoporation after implantation, suggesting that calcium influx is related to mechanical trauma. Further, calcium-laden neurites develop signs of axonal injury at 1-3 h post-insert. Over the first month after implantation, physiological neuronal calcium activity increases, suggesting that neurons may be recovering. By defining the mechanisms of neuron damage after electrode implantation, our results suggest new directions for therapies to improve electrode longevity.
Collapse
Affiliation(s)
- James R Eles
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
| | - Alberto L Vazquez
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; Radiology, University of Pittsburgh, United States
| | - Takashi D Y Kozai
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States; NeuroTech Center of the University of Pittsburgh Brain Institute, United States; Center for Neuroscience, University of Pittsburgh, United States
| | - X Tracy Cui
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States.
| |
Collapse
|