51
|
Gamaletsou MN, Rammaert B, Brause B, Bueno MA, Dadwal SS, Henry MW, Katragkou A, Kontoyiannis DP, McCarthy MW, Miller AO, Moriyama B, Pana ZD, Petraitiene R, Petraitis V, Roilides E, Sarkis JP, Simitsopoulou M, Sipsas NV, Taj-Aldeen SJ, Zeller V, Lortholary O, Walsh TJ. Osteoarticular Mycoses. Clin Microbiol Rev 2022; 35:e0008619. [PMID: 36448782 PMCID: PMC9769674 DOI: 10.1128/cmr.00086-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Osteoarticular mycoses are chronic debilitating infections that require extended courses of antifungal therapy and may warrant expert surgical intervention. As there has been no comprehensive review of these diseases, the International Consortium for Osteoarticular Mycoses prepared a definitive treatise for this important class of infections. Among the etiologies of osteoarticular mycoses are Candida spp., Aspergillus spp., Mucorales, dematiaceous fungi, non-Aspergillus hyaline molds, and endemic mycoses, including those caused by Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides species. This review analyzes the history, epidemiology, pathogenesis, clinical manifestations, diagnostic approaches, inflammatory biomarkers, diagnostic imaging modalities, treatments, and outcomes of osteomyelitis and septic arthritis caused by these organisms. Candida osteomyelitis and Candida arthritis are associated with greater events of hematogenous dissemination than those of most other osteoarticular mycoses. Traumatic inoculation is more commonly associated with osteoarticular mycoses caused by Aspergillus and non-Aspergillus molds. Synovial fluid cultures are highly sensitive in the detection of Candida and Aspergillus arthritis. Relapsed infection, particularly in Candida arthritis, may develop in relation to an inadequate duration of therapy. Overall mortality reflects survival from disseminated infection and underlying host factors.
Collapse
Affiliation(s)
- Maria N. Gamaletsou
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Blandine Rammaert
- Université de Poitiers, Faculté de médecine, CHU de Poitiers, INSERM U1070, Poitiers, France
| | - Barry Brause
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Marimelle A. Bueno
- Far Eastern University-Dr. Nicanor Reyes Medical Foundation, Manilla, Philippines
| | | | - Michael W. Henry
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Aspasia Katragkou
- Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University School of Medicine, Columbus, Ohio, USA
| | | | - Matthew W. McCarthy
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
| | - Andy O. Miller
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | | | - Zoi Dorothea Pana
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Ruta Petraitiene
- Weill Cornell Medicine of Cornell University, New York, New York, USA
| | | | - Emmanuel Roilides
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | | | - Maria Simitsopoulou
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Nikolaos V. Sipsas
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Valérie Zeller
- Groupe Hospitalier Diaconesses-Croix Saint-Simon, Paris, France
| | - Olivier Lortholary
- Université de Paris, Faculté de Médecine, APHP, Hôpital Necker-Enfants Malades, Paris, France
- Institut Pasteur, Unité de Mycologie Moléculaire, CNRS UMR 2000, Paris, France
| | - Thomas J. Walsh
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
| |
Collapse
|
52
|
Lee SO. Diagnosis and Treatment of Invasive Mold Diseases. Infect Chemother 2022; 55:10-21. [PMID: 36603818 PMCID: PMC10079437 DOI: 10.3947/ic.2022.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
Although invasive fungal diseases are relatively less common than superficial diseases, there has been an overall increase in their incidence. Here, I review the epidemiology, diagnosis, and treatment of invasive mold diseases (IMDs) such as aspergillosis, mucormycosis, hyalohyphomycosis, and phaeohyphomycosis. Histopathologic demonstration of tissue invasion by hyphae or recovery of mold by the culture of a specimen obtained by a sterile procedure provides definitive evidence of IMD. If IMD cannot be confirmed through invasive procedures, IMD can be diagnosed through clinical criteria such as the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Instituteof Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) definitions. For initial primary therapy of invasive aspergillosis, voriconazole or isavuconazole is recommended and lipid formulations of amphotericin B are useful primary alternatives. Echinocandins are representative antifungal agents for salvage therapy. Treatment of invasive mucormycosis involves a combination of urgent surgical debridement of involved tissues and antifungal therapy. Lipid formulations of amphotericin B are the drug of choice for initial therapy. Isavuconazole or posaconazole can be used as salvage or step-down therapy. IMDs other than aspergillosis and mucormycosis include hyalohyphomycosis and phaeohyphomycosis, for which there is no standard therapy and the treatment depends on the clinical disease and status of the patient.
Collapse
Affiliation(s)
- Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
53
|
Takesue Y, Hanai Y, Oda K, Hamada Y, Ueda T, Mayumi T, Matsumoto K, Fujii S, Takahashi Y, Miyazaki Y, Kimura T. Clinical Practice Guideline for the Therapeutic Drug Monitoring of Voriconazole in Non-Asian and Asian Adult Patients: Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. Clin Ther 2022; 44:1604-1623. [DOI: 10.1016/j.clinthera.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
|
54
|
Ebihara F, Maruyama T, Kikuchi K, Kimura T, Hamada Y. Antifungal Stewardship Task Shifting Required of Pharmacists. Med Mycol J 2022; 63:109-117. [DOI: 10.3314/mmj.22.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Fumiya Ebihara
- Department of Pharmacy, Tokyo Women's Medical University Hospital
| | - Takumi Maruyama
- Department of Pharmacy, Tokyo Women's Medical University Hospital
| | - Ken Kikuchi
- Department of Pharmacy, Department of Infectious Disease, Tokyo Women's Medical University Hospital
| | | | - Yukihiro Hamada
- Department of Pharmacy, Tokyo Women's Medical University Hospital
| |
Collapse
|
55
|
Shen K, Gu Y, Wang Y, Lu Y, Ni Y, Zhong H, Shi Y, Su X. Therapeutic drug monitoring and safety evaluation of voriconazole in the treatment of pulmonary fungal diseases. Ther Adv Drug Saf 2022; 13:20420986221127503. [PMID: 36225945 PMCID: PMC9549188 DOI: 10.1177/20420986221127503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 09/04/2022] [Indexed: 11/07/2022] Open
Abstract
Aims: The gene polymorphism of voriconazole metabolism–related liver enzyme is
notable in East Asia population. It casts a significant influence on the
rational use of voriconazole. We conducted this study to investigate the
relationship between steady-state voriconazole trough concentration
(Ctrough) and adverse effects (AEs), especially
hepatotoxicity. Methods: We conducted a real-world study in the Jinling Hospital from January 2015 to
June 2020. A total of 140 patients receiving voriconazole were enrolled in
this study. The determination and scoring of voriconazole-associated
hepatotoxicity were performed according to the Roussel Uclaf Causality
Assessment Method scoring scale and the severity of hepatotoxicity was
graded according to the Common Terminology Criteria for Adverse Events
(CTCAE). Results: Elevated steady-state voriconazole Ctrough with concomitant AEs
are the most common reason for dose adjustments during treatment. Compared
with the group without any AEs, voriconazole Ctrough was
significantly higher in the hepatotoxicity and neurotoxicity groups, and the
incidence of both events showed an overall increasing trend with increasing
voriconazole Ctrough. Hepatotoxicity occurred in 66.7% of
patients within 7 days of the first dose of voriconazole and 94.4% within
15 days of the dose. Steady-state voriconazole Ctrough
>3.61 mg/l was associated with an increased incidence of hepatotoxicity
(area under the curve = 0.645, p = 0.047). Logistic
regression analysis showed that timely voriconazole dose adjustment was a
predictor of attenuated hepatotoxicity after adjustment for confounders, but
hepatotoxicity was not associated with voriconazole Ctrough
measured at a single time point. Conclusion: Hepatotoxicity and neurotoxicity correlate with voriconazole
Ctrough, and dose reduction in patients with elevated
steady-state voriconazole Ctrough may prevent hepatotoxicity. In
patients with early occurrence of hepatotoxicity, initial therapeutic drug
monitoring (TDM) might predict the risk of hepatotoxicity. Follow-up TDM may
be necessary to predict late onset hepatotoxicity. Plain Language Summary Safety of voriconazole for the treatment of pulmonary fungal
diseases Introduction: Several studies have suggested an association
between the concentration of voriconazole in the blood and liver damage, but
the evidence is weak. This study aimed to investigate relationships between
voriconazole drug concentration and side effects and to analyze the factors
affecting liver damage caused by voriconazole. Methods: We conducted a study at the Jinling Hospital from
January 2015 to June 2020, in which a total of 140 patients were finally
enrolled. Results: Voriconazole doses were adjusted in 44 patients due to
abnormal voriconazole drug concentration or side effects, 32 patients
reduced the dose and 8 patients increased the dose. An elevated liver enzyme
level was the most common cause for dose adjustment. After the first dose
adjustment, most patients achieved the target drug concentration. A total of
18 patients were determined as probable or highly probable to have
drug-induced liver injury from voriconazole. Voriconazole drug concentration
was significantly higher in the liver damage and nervous system damage
groups as compared with the group without any side effects, and most liver
damage events occurred within 14 days of the first dose. Voriconazole drug
concentration >3.61 mg/l was associated with an increased incidence of
liver damage. Conclusion: In this study, approximately one-third of patients
with pulmonary fungal disease needed to adjust their dose after the standard
dose of voriconazole treatment. The incidence of liver damage and nervous
system damage showed an overall increasing trend with increasing
voriconazole baseline concentrations. Initial therapeutic drug monitoring
may be predictive of liver damage. Follow-up monitoring of liver enzymes may
be needed.
Collapse
Affiliation(s)
- Kunlu Shen
- Department of Respiratory and Critical Care
Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern
Medical University, Nanjing, China
| | - Yu Gu
- Department of Respiratory and Critical Care
Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yu Wang
- Department of Respiratory and Critical Care
Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing,
China
| | - Yajie Lu
- Department of Respiratory and Critical Care
Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing,
China
| | - Yueyan Ni
- Department of Respiratory and Critical Care
Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Huanhiuan Zhong
- Department of Respiratory and Critical Care
Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing,
China
| | - Yi Shi
- Department of Respiratory and Critical Care
Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing,
China
| | | |
Collapse
|
56
|
High-Performance Liquid Chromatography for Ultra-Simple Determination of Plasma Voriconazole Concentration. J Fungi (Basel) 2022; 8:jof8101035. [PMID: 36294600 PMCID: PMC9604553 DOI: 10.3390/jof8101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Voriconazole is an antifungal drug used to treat invasive aspergillosis. Voriconazole exhibits nonlinear behavior and considerable individual variability in its pharmacokinetic profile. Invasive aspergillosis has a poor prognosis, and failure of treatment owing to low voriconazole blood levels is undesirable. Thus, therapeutic drug monitoring (TDM) of voriconazole is recommended. However, plasma voriconazole concentration is rarely measured in hospitals, and the TDM of voriconazole is not widely practiced in Japan. We aimed to develop an ultra-simple method to measure plasma voriconazole concentration. Ten microliters of plasma sample was extracted, and proteins were precipitated using methanol extraction. Voriconazole and ketoconazole (internal standard) were separated using high-performance liquid chromatography. A calibration curve was prepared, which was linear over plasma voriconazole concentrations of 0.125−12.5 µg/mL, with a coefficient of determination of 0.9999. The intra-day and inter-day validation coefficients were 0.9−2.2% and 1.3−6.1%, respectively. The assay accuracy was −4.2% to 1.6%, and recovery was >97.8%. Our ultra-simple, sensitive, and inexpensive high-performance liquid chromatography ultraviolet method to determine plasma voriconazole concentration will help improve the voriconazole TDM implementation rate and contribute to effective and safe voriconazole use.
Collapse
|
57
|
Jiang Z, Wei Y, Huang W, Li B, Zhou S, Liao L, Li T, Liang T, Yu X, Li X, Zhou C, Cao C, Liu T. Population pharmacokinetics of voriconazole and initial dosage optimization in patients with talaromycosis. Front Pharmacol 2022; 13:982981. [PMID: 36225581 PMCID: PMC9549404 DOI: 10.3389/fphar.2022.982981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 01/08/2023] Open
Abstract
The high variability and unpredictability of the plasma concentration of voriconazole (VRC) pose a major challenge for clinical administration. The aim of this study was to develop a population pharmacokinetics (PPK) model of VRC and identify the factors influencing VRC PPK in patients with talaromycosis. Medical records and VRC medication history of patients with talaromycosis who were treated with VRC as initial therapy were collected. A total of 233 blood samples from 69 patients were included in the study. A PPK model was developed using the nonlinear mixed-effects models (NONMEM). Monte Carlo simulation was applied to optimize the initial dosage regimens with a therapeutic range of 1.0–5.5 mg/L as the target plasma trough concentration. A one-compartment model with first-order absorption and elimination adequately described the data. The typical voriconazole clearance was 4.34 L/h, the volume of distribution was 97.4 L, the absorption rate constant was set at 1.1 h-1, and the bioavailability was 95.1%. Clearance was found to be significantly associated with C-reactive protein (CRP). CYP2C19 polymorphisms had no effect on voriconazole pharmacokinetic parameters. Monte Carlo simulation based on CRP levels showed that a loading dose of 250 mg/12 h and a maintenance dose of 100 mg/12 h are recommended for patients with CRP ≤ 96 mg/L, whereas a loading dose of 200 mg/12 h and a maintenance dose of 75 mg/12 h are recommended for patients with CRP > 96 mg/L. The average probability of target attainment of the optimal dosage regimen in CRP ≤ 96 mg/L and CRP > 96 mg/L groups were 61.3% and 13.6% higher than with empirical medication, and the proportion of Cmin > 5.5 mg/L decreased by 28.9%. In conclusion, the VRC PPK model for talaromycosis patients shows good robustness and predictive performance, which can provide a reference for the clinical individualization of VRC. Adjusting initial dosage regimens based on CRP may promote the rational use of VRC.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Yinyi Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weie Huang
- Department of Infectious Diseases, Baise People’s Hospital, Baise, China
| | - Bingkun Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Siru Zhou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuwei Liao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Tiantian Li
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Tianwei Liang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Xiaoshu Yu
- Department of Infectious Diseases, Baise People’s Hospital, Baise, China
| | - Xiuying Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Changjing Zhou
- Department of Infectious Diseases, Baise People’s Hospital, Baise, China
- *Correspondence: Changjing Zhou, ; Cunwei Cao, ; TaoTao Liu,
| | - Cunwei Cao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
- *Correspondence: Changjing Zhou, ; Cunwei Cao, ; TaoTao Liu,
| | - TaoTao Liu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Changjing Zhou, ; Cunwei Cao, ; TaoTao Liu,
| |
Collapse
|
58
|
Kallee S, Scharf C, Schatz LM, Paal M, Vogeser M, Irlbeck M, Zander J, Zoller M, Liebchen U. Systematic Evaluation of Voriconazole Pharmacokinetic Models without Pharmacogenetic Information for Bayesian Forecasting in Critically Ill Patients. Pharmaceutics 2022; 14:pharmaceutics14091920. [PMID: 36145667 PMCID: PMC9505877 DOI: 10.3390/pharmaceutics14091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Voriconazole (VRC) is used as first line antifungal agent against invasive aspergillosis. Model-based approaches might optimize VRC therapy. This study aimed to investigate the predictive performance of pharmacokinetic models of VRC without pharmacogenetic information for their suitability for model-informed precision dosing. Seven PopPK models were selected from a systematic literature review. A total of 66 measured VRC plasma concentrations from 33 critically ill patients was employed for analysis. The second measurement per patient was used to calculate relative Bias (rBias), mean error (ME), relative root mean squared error (rRMSE) and mean absolute error (MAE) (i) only based on patient characteristics and dosing history (a priori) and (ii) integrating the first measured concentration to predict the second concentration (Bayesian forecasting). The a priori rBias/ME and rRMSE/MAE varied substantially between the models, ranging from −15.4 to 124.6%/−0.70 to 8.01 mg/L and from 89.3 to 139.1%/1.45 to 8.11 mg/L, respectively. The integration of the first TDM sample improved the predictive performance of all models, with the model by Chen (85.0%) showing the best predictive performance (rRMSE: 85.0%; rBias: 4.0%). Our study revealed a certain degree of imprecision for all investigated models, so their sole use is not recommendable. Models with a higher performance would be necessary for clinical use.
Collapse
Affiliation(s)
- Simon Kallee
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Christina Scharf
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Lea Marie Schatz
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, 48149 Muenster, Germany
| | - Michael Paal
- Institute of Laboratory Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Michael Irlbeck
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Johannes Zander
- Laboratory Dr. Brunner, Luisenstr. 7e, 78464 Konstanz, Germany
| | - Michael Zoller
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Uwe Liebchen
- Department of Anesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
- Correspondence: ; Tel.: +49-89-4400-1681160
| |
Collapse
|
59
|
Jinlin G, Shaohui S, Wenjun Z, Xinfeng C. A Rare Case of Co-Infection with Nocardia farcinica, Pneumocystis jirovecii, and Aspergillus fumigatus Due to Tooth Extraction in a Mildly Immunosuppressed Patient. Infect Drug Resist 2022; 15:4853-4857. [PMID: 36045870 PMCID: PMC9422990 DOI: 10.2147/idr.s379005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
We report a case of co-infection with Nocardia farcinica, Pneumocystis jirovecii, and Aspergillus fumigatus due to tooth extraction in a mildly immunosuppressed patient. This patient did not respond well to a meropenem-based regimen, and the number of lesions was significantly reduced after switching to imipenem. The patient's trough concentration was insufficient when using conventional doses of voriconazole for the treatment of pulmonary aspergillosis. After adding omeprazole, the concentration reached standard levels and symptoms improved. The patient eventually made a full recovery.
Collapse
Affiliation(s)
- Guo Jinlin
- Department of Pharmacy, Shanxi Provincial People's Hospital, Taiyuan, People's Republic of China
| | - Song Shaohui
- Department of Pharmacy, The Maternal and Child Health Hospital of Dadukou District of Chongqing City, Chongqing, People's Republic of China
| | - Zhang Wenjun
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Cai Xinfeng
- Department of Pharmacy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
60
|
Chen X, Xiao Y, Li H, Huang Z, Gao J, Zhang X, Li Y, Van Timothee BM, Feng X. Therapeutic drug monitoring and CYP2C19 genotyping guide the application of voriconazole in children. Transl Pediatr 2022; 11:1311-1322. [PMID: 36072540 PMCID: PMC9442201 DOI: 10.21037/tp-22-156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND This study used therapeutic drug monitoring (TDM) and CYP2C19 gene polymorphism analysis to explore the efficacy and safety of different doses of voriconazole (VCZ) for the clinical treatment of pediatric patients, with the aim of providing guidelines for individualized antifungal therapy in children. METHODS Our study enrolled 94 children with 253 VCZ concentrations. The genotyping of CYP2C19 was performed by polymerase chain reaction (PCR)-pyrosequencing. VCZ trough concentration (Ctrough) was detected by high-performance liquid chromatography-tandem mass spectrometry. SPSS 23.0 was used to analyze the correlations between VCZ concentration, CYP2C19 phenotype, adverse effects (AEs), and drug-drug interactions. RESULTS A total of 94 children aged between 1 and 18 years (median age 6 years) were enrolled in the study. In total, 42.6% of patients reached the therapeutic range at initial dosing, while the remaining patients reached the therapeutic range after the adjustment of the dose or dosing interval. CYP2C19 gene polymorphism was performed in 59 patients. Among these patients, 24 (40.7%) had the normal metabolizer (NM) phenotype, 26 (44.1%) had the intermediate metabolizer (IM) phenotype, and 9 (15.3%) had the poor metabolizer (PM) phenotype. No cases of the rapid metabolizer (RM) or ultrarapid metabolizer (UM) phenotypes were found. The initial VCZ Ctrough was significantly higher in patients with the PM and IM phenotypes than in those with the NM phenotype. The combination of immunosuppressive drugs (ISDs) did not affect VCZ Ctrough. The incidence of AEs was 25.5%, and liver function damage (46.2%) and gastrointestinal reactions (19.2%) were the most common. CONCLUSIONS Our study showed significant individual differences of VCZ metabolism in children. Combining TDM with CYP2C19 gene polymorphism has important guiding significance for individualized antifungal therapy in pediatric patients.
Collapse
Affiliation(s)
- Xiaomin Chen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Xiao
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huiping Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhi Huang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Gao
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyao Zhang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yirong Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
61
|
Tilen R, Paioni P, Goetschi AN, Goers R, Seibert I, Müller D, Bielicki JA, Berger C, Krämer SD, Meyer zu Schwabedissen HE. Pharmacogenetic Analysis of Voriconazole Treatment in Children. Pharmaceutics 2022; 14:pharmaceutics14061289. [PMID: 35745860 PMCID: PMC9227859 DOI: 10.3390/pharmaceutics14061289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Voriconazole is among the first-line antifungal drugs to treat invasive fungal infections in children and known for its pronounced inter- and intraindividual pharmacokinetic variability. Polymorphisms in genes involved in the metabolism and transport of voriconazole are thought to influence serum concentrations and eventually the therapeutic outcome. To investigate the impact of these genetic variants and other covariates on voriconazole trough concentrations, we performed a retrospective data analysis, where we used medication data from 36 children suffering from invasive fungal infections treated with voriconazole. Data were extracted from clinical information systems with the new infrastructure SwissPKcdw, and linear mixed effects modelling was performed using R. Samples from 23 children were available for DNA extraction, from which 12 selected polymorphism were genotyped by real-time PCR. 192 (49.1%) of 391 trough serum concentrations measured were outside the recommended range. Voriconazole trough concentrations were influenced by polymorphisms within the metabolizing enzymes CYP2C19 and CYP3A4, and within the drug transporters ABCC2 and ABCG2, as well as by the co-medications ciprofloxacin, levetiracetam, and propranolol. In order to prescribe an optimal drug dosage, pre-emptive pharmacogenetic testing and careful consideration of co-medications in addition to therapeutic drug monitoring might improve voriconazole treatment outcome of children with invasive fungal infections.
Collapse
Affiliation(s)
- Romy Tilen
- Division of Infectious Diseases and Hospital Epidemiology, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland; (P.P.); (C.B.)
- Biopharmacy, Department of Pharmaceutical Sciences, University Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (R.G.); (I.S.)
- Correspondence: (R.T.); (H.E.M.z.S.)
| | - Paolo Paioni
- Division of Infectious Diseases and Hospital Epidemiology, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland; (P.P.); (C.B.)
| | - Aljoscha N. Goetschi
- Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (A.N.G.); (S.D.K.)
| | - Roland Goers
- Biopharmacy, Department of Pharmaceutical Sciences, University Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (R.G.); (I.S.)
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (R.G.); (I.S.)
| | - Daniel Müller
- Institute of Clinical Chemistry, University Hospital Zurich, Rämistr. 100, 8091 Zurich, Switzerland;
| | - Julia A. Bielicki
- Paediatric Research Centre, University Children’s Hospital Basel, Basel, Spitalstrasse 33, 4056 Basel, Switzerland;
| | - Christoph Berger
- Division of Infectious Diseases and Hospital Epidemiology, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland; (P.P.); (C.B.)
| | - Stefanie D. Krämer
- Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (A.N.G.); (S.D.K.)
| | - Henriette E. Meyer zu Schwabedissen
- Biopharmacy, Department of Pharmaceutical Sciences, University Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (R.G.); (I.S.)
- Correspondence: (R.T.); (H.E.M.z.S.)
| |
Collapse
|
62
|
Therapeutic Drug Monitoring of Antifungal Agents in Critically Ill Patients: Is There a Need for Dose Optimisation? Antibiotics (Basel) 2022; 11:antibiotics11050645. [PMID: 35625289 PMCID: PMC9137962 DOI: 10.3390/antibiotics11050645] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Invasive fungal infections are an important cause of morbidity and mortality, especially in critically ill patients. Increasing resistance rates and inadequate antifungal exposure have been documented in these patients, due to clinically relevant pharmacokinetic (PK) and pharmacodynamic (PD) alterations, leading to treatment failure. Physiological changes such as third spacing (movement of fluid from the intravascular compartment to the interstitial space), hypoalbuminemia, renal failure and hepatic failure, as well as common interventions in the intensive care unit, such as renal replacement therapy and extracorporeal membrane oxygenation, can lead to these PK and PD alterations. Consequently, a therapeutic target concentration that may be useful for one patient may not be appropriate for another. Regular doses do not take into account the important PK variations in the critically ill, and the need to select an effective dose while minimising toxicity advocates for the use of therapeutic drug monitoring (TDM). This review aims to describe the current evidence regarding optimal PK/PD indices associated with the clinical efficacy of the most commonly used antifungal agents in critically ill patients (azoles, echinocandins, lipid complexes of amphotericin B, and flucytosine), provide a comprehensive understanding of the factors affecting the PK of each agent, document the PK parameters of critically ill patients compared to healthy volunteers, and, finally, make recommendations for therapeutic drug monitoring (TDM) of antifungals in critically ill patients.
Collapse
|
63
|
Fungal Infections in Lung Transplantation. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Purpose of Review
We aim to understand the most common fungal infections associated with the post-lung transplant period, how to diagnose, treat, and prevent them based on the current guidelines published and our center’s experience.
Recent Findings
Different fungi inhabit specific locations. Diagnosis of invasive fungal infections (IFIs) depends on symptoms, radiologic changes, and a positive microbiological or pathology data. There are several molecular tests that have been used for diagnosis. Exposure to fungal prophylaxis can predispose lung transplant recipients to these emerging molds. Understanding and managing medication interactions and drug monitoring are essential in successfully treating IFIs.
Summary
With the increasing rate of lung transplantations being performed, and the challenges posed by the immunosuppressive regimen, understanding the risk and managing the treatment of fungal infections are imperative to the success of a lung transplant recipient. There are many ongoing clinical trials being conducted in hopes of developing novel antifungals.
Collapse
|
64
|
Aiuchi N, Nakagawa J, Sakuraba H, Takahata T, Kamata K, Saito N, Ueno K, Ishiyama M, Yamagata K, Kayaba H, Niioka T. Impact of polymorphisms of pharmacokinetics-related genes and the inflammatory response on the metabolism of voriconazole. Pharmacol Res Perspect 2022; 10:e00935. [PMID: 35199485 PMCID: PMC8866912 DOI: 10.1002/prp2.935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
The effects of inflammatory responses and polymorphisms of the genes encoding cytochrome P450 (CYP) (CYP2C19 and CYP3A5), flavin-containing monooxygenase 3 (FMO3), pregnane X receptor (NR1I2), constitutive androstane receptor (NR1I3), and CYP oxidoreductase (POR) on the ratio of voriconazole (VRCZ) N-oxide to VRCZ (VNO/VRCZ) and steady-state trough concentrations (C0h ) of VRCZ were investigated. A total of 56 blood samples were collected from 36 Japanese patients. Results of multiple linear regression analyses demonstrated that the presence of the extensive metabolizer CYP2C19 genotype, the dose per administration, and the presence of the NR1I2 rs3814057 C/C genotype were independent factors influencing the VNO/VRCZ ratio in patients with CRP levels of less than 40 mg/L (standardized regression coefficients (SRC) = 0.448, -0.301, and 0.390, respectively; all p < .05). With regard to the concentration of VRCZ itself, in addition to the above factors, the presence of the NR1I2 rs7643645 G/G and rs3814055 T/T genotypes were found to be independent factors influencing the VRCZ C0h in these patients (SRC = -0.430, 0.424, -0.326, 0.406 and -0.455, respectively; all p < .05). On the contrary, in patients with CRP levels of at least 40 mg/L, no independent factors were found to affect VNO/VRCZ and VRCZ C0h . Inflammatory responses, and CYP2C19 and NR1I2 polymorphisms may be useful information for the individualization of VRCZ dosages.
Collapse
Affiliation(s)
- Naoya Aiuchi
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| | - Junichi Nakagawa
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| | - Hirotake Sakuraba
- Department of Gastroenterology and HematologyHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Takenori Takahata
- Department of Gastroenterology and HematologyHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Kosuke Kamata
- Department of Gastroenterology and HematologyHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Norihiro Saito
- Department of Clinical Laboratory MedicineHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Kayo Ueno
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
| | - Masahiro Ishiyama
- Department of Clinical LaboratoryHirosaki University HospitalHirosakiAomoriJapan
| | - Kazufumi Yamagata
- Department of Bioscience and Laboratory MedicineHirosaki University Graduate School of Health SciencesHirosakiJapan
| | - Hiroyuki Kayaba
- Department of Clinical Laboratory MedicineHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| | - Takenori Niioka
- Department of PharmacyHirosaki University HospitalHirosakiAomoriJapan
- Department of Pharmaceutical ScienceHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| |
Collapse
|
65
|
Ashok A, Mangalore RP, Morrissey CO. Azole Therapeutic Drug Monitoring and its Use in the Management of Invasive Fungal Disease. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-022-00430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
66
|
Abdul-Aziz MH, Brady K, Cotta MO, Roberts JA. Therapeutic Drug Monitoring of Antibiotics: Defining the Therapeutic Range. Ther Drug Monit 2022; 44:19-31. [PMID: 34750338 DOI: 10.1097/ftd.0000000000000940] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE In the present narrative review, the authors aimed to discuss the relationship between the pharmacokinetic/pharmacodynamic (PK/PD) of antibiotics and clinical response (including efficacy and toxicity). In addition, this review describes how this relationship can be applied to define the therapeutic range of a particular antibiotic (or antibiotic class) for therapeutic drug monitoring (TDM). METHODS Relevant clinical studies that examined the relationship between PK/PD of antibiotics and clinical response (efficacy and response) were reviewed. The review (performed for studies published in English up to September 2021) assessed only commonly used antibiotics (or antibiotic classes), including aminoglycosides, beta-lactam antibiotics, daptomycin, fluoroquinolones, glycopeptides (teicoplanin and vancomycin), and linezolid. The best currently available evidence was used to define the therapeutic range for these antibiotics. RESULTS The therapeutic range associated with maximal clinical efficacy and minimal toxicity is available for commonly used antibiotics, and these values can be implemented when TDM for antibiotics is performed. Additional data are needed to clarify the relationship between PK/PD indices and the development of antibiotic resistance. CONCLUSIONS TDM should only be regarded as a means to achieve the main goal of providing safe and effective antibiotic therapy for all patients. The next critical step is to define exposures that can prevent the development of antibiotic resistance and include these exposures as therapeutic drug monitoring targets.
Collapse
Affiliation(s)
- Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Kara Brady
- Adult Intensive Care Unit and Pharmacy, The Prince Charles Hospital, Brisbane, Australia
| | - Menino Osbert Cotta
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia; and
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
67
|
Chau MM, Daveson K, Alffenaar JWC, Gwee A, Ho SA, Marriott DJE, Trubiano JA, Zhao J, Roberts JA. Consensus guidelines for optimising antifungal drug delivery and monitoring to avoid toxicity and improve outcomes in patients with haematological malignancy and haemopoietic stem cell transplant recipients, 2021. Intern Med J 2021; 51 Suppl 7:37-66. [PMID: 34937141 DOI: 10.1111/imj.15587] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Antifungal agents can have complex dosing and the potential for drug interaction, both of which can lead to subtherapeutic antifungal drug concentrations and poorer clinical outcomes for patients with haematological malignancy and haemopoietic stem cell transplant recipients. Antifungal agents can also be associated with significant toxicities when drug concentrations are too high. Suboptimal dosing can be minimised by clinical assessment, laboratory monitoring, avoidance of interacting drugs, and dose modification. Therapeutic drug monitoring (TDM) plays an increasingly important role in antifungal therapy, particularly for antifungal agents that have an established exposure-response relationship with either a narrow therapeutic window, large dose-exposure variability, cytochrome P450 gene polymorphism affecting drug metabolism, the presence of antifungal drug interactions or unexpected toxicity, and/or concerns for non-compliance or inadequate absorption of oral antifungals. These guidelines provide recommendations on antifungal drug monitoring and TDM-guided dosing adjustment for selected antifungal agents, and include suggested resources for identifying and analysing antifungal drug interactions. Recommended competencies for optimal interpretation of antifungal TDM and dose recommendations are also provided.
Collapse
Affiliation(s)
- Maggie M Chau
- Pharmacy Department, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Kathryn Daveson
- Department of Infectious Diseases and Microbiology, The Canberra Hospital, Garran, Australian Capital Territory, Australia
| | - Jan-Willem C Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Camperdown, New South Wales, Australia.,Pharmacy Department, Westmead Hospital, Westmead, New South Wales, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Camperdown, New South Wales, Australia
| | - Amanda Gwee
- Infectious Diseases Unit, The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.,Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Su Ann Ho
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Deborah J E Marriott
- Department of Clinical Microbiology and Infectious Diseases, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,Faculty of Science, University of Technology, Ultimo, New South Wales, Australia.,Faculty of Medicine, The University of New South Wales, Kensington, New South Wales, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessie Zhao
- Department of Haematology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Jason A Roberts
- The University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Department of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | | |
Collapse
|
68
|
Roth RS, Masouridi-Levrat S, Giannotti F, Mamez AC, Glambedakis E, Lamoth F, Bochud PY, Erard V, Emonet S, Van Delden C, Kaiser L, Chalandon Y, Neofytos D. Frequency and causes of antifungal treatment changes in allogeneic haematopoïetic cell transplant recipients with invasive mould infections. Mycoses 2021; 65:199-210. [PMID: 34936143 PMCID: PMC9303791 DOI: 10.1111/myc.13416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022]
Abstract
Background Antifungal treatment duration and changes for invasive mould infections (IMI) have been poorly described. Methods We performed a 10‐year cohort study of adult (≥18‐year‐old) allogeneic haematopoietic cell transplant recipients with proven/probable IMI to describe the duration and changes of antifungal treatment. All‐cause‐12‐week mortality was described. Results Sixty‐one patients with 66 IMI were identified. Overall treatment duration was 157 days (IQR: 14–675) and 213 (IQR: 90–675) days for patients still alive by Day 84 post‐IMI diagnosis. There was at least one treatment change in 57/66 (86.4%) cases: median 2, (IQR: 0–6, range:0–8). There were 179 antifungal treatment changes due to 193 reasons: clinical efficacy (104/193, 53.9%), toxicity (55/193, 28.5%), toxicity or drug interactions resolution (15/193, 7.8%) and logistical reasons (11/193, 5.7%) and 15/193 (7.8%) changes due to unknown reasons. Clinical efficacy reasons included lack of improvement (34/104, 32.7%), targeted treatment (30/104, 28.8%), subtherapeutic drug levels (14/104, 13.5%) and other (26/104, 25%). Toxicity reasons included hepatotoxicity, nephrotoxicity, drug interactions, neurotoxicity and other in 24 (43.6%), 12 (21.8%), 12 (21.8%), 4 (7.4%) and 3 (5.5%) cases respectively. All‐cause 12‐week mortality was 31% (19/61), higher in patients whose antifungal treatment (logrank 0.04) or appropriate antifungal treatment (logrank 0.01) was started >7 days post‐IMI diagnosis. All‐cause 1‐year mortality was higher in patients with ≥2 changes of treatment during the first 6 weeks post‐IMI diagnosis (logrank 0.008) with an OR: 4.00 (p = .04). Conclusions Patients with IMI require long treatment courses with multiple changes for variable reasons and potential effects on clinical outcomes, demonstrating the need more effective and safer treatment options. Early initiation of appropriate antifungal treatment is associated with improved outcomes.
Collapse
Affiliation(s)
- Romain Samuel Roth
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Stavroula Masouridi-Levrat
- Division of Hematology, Bone Marrow Transplant Unit, University Hospital of Geneva and faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Federica Giannotti
- Division of Hematology, Bone Marrow Transplant Unit, University Hospital of Geneva and faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anne-Claire Mamez
- Division of Hematology, Bone Marrow Transplant Unit, University Hospital of Geneva and faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Emmanouil Glambedakis
- Division of Infectious Diseases, University Hospital of Lausanne, Lausanne, Switzerland
| | - Frederic Lamoth
- Division of Infectious Diseases, University Hospital of Lausanne, Lausanne, Switzerland
| | - Pierre-Yves Bochud
- Division of Infectious Diseases, University Hospital of Lausanne, Lausanne, Switzerland
| | - Veronique Erard
- Division of Infectious Diseases, Cantonal Hospital of Fribourg, Fribourg, Switzerland
| | - Stephane Emonet
- Division of Infectious Diseases, Cantonal Hospital of Sion and Institut Central des Hôpitaux (ICH), Sion, Switzerland
| | - Christian Van Delden
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| | - Yves Chalandon
- Division of Hematology, Bone Marrow Transplant Unit, University Hospital of Geneva and faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dionysios Neofytos
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
69
|
Kluge S, Strauß R, Kochanek M, Weigand MA, Rohde H, Lahmer T. Aspergillosis: Emerging risk groups in critically ill patients. Med Mycol 2021; 60:6408468. [PMID: 34677613 DOI: 10.1093/mmy/myab064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Information on invasive aspergillosis (IA) and other invasive filamentous fungal infections is limited in non-neutropenic patients admitted to the intensive care unit (ICU) and presenting with no classic IA risk factors. This review is based on the critical appraisal of relevant literature, on the authors' own experience and on discussions that took place at a consensus conference. It aims to review risk factors favoring aspergillosis in ICU patients, with a special emphasis on often overlooked or neglected conditions. In the ICU patients, corticosteroid use to treat underlying conditions such as chronic obstructive pulmonary disease (COPD), sepsis, or severe COVID-19, represents a cardinal risk factor for IA. Important additional host risk factors are COPD, decompensated cirrhosis, liver failure, and severe viral pneumonia (influenza, COVID-19). Clinical observations indicate that patients admitted to the ICU because of sepsis or acute respiratory distress syndrome are more likely to develop probable or proven IA, suggesting that sepsis could also be a possible direct risk factor for IA, as could small molecule inhibitors used in oncology. There are no recommendations for prophylaxis in ICU patients; posaconazole mold-active primary prophylaxis is used in some centers according to guidelines for other patient populations and IA treatment in critically ill patients is basically the same as in other patient populations. A combined evaluation of clinical signs and imaging, classical biomarkers such as the GM assay, and fungal cultures examination, remain the best option to assess response to treatment. LAY SUMMARY The use of corticosteroids and the presence of co-morbidities such as chronic obstructive pulmonary disease, acute or chronic advanced liver disease, or severe viral pneumonia caused by influenza or Covid-19, may increase the risk of invasive aspergillosis in intensive care unit patients.
Collapse
Affiliation(s)
- Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg - Eppendorf, Hamburg, D-20246, Germany
| | - Richard Strauß
- Department of Medicine 1, Medizinische Klinik 1, University Hospital Erlangen, Erlangen, D-91054, Germany
| | - Matthias Kochanek
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, D-50937, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, D-69120, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany
| | - Tobias Lahmer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar der Technischen Universität Munich, Munich, D-81675, Germany
| |
Collapse
|
70
|
Association between voriconazole exposure and Sequential Organ Failure Assessment (SOFA) score in critically ill patients. PLoS One 2021; 16:e0260656. [PMID: 34818379 PMCID: PMC8612507 DOI: 10.1371/journal.pone.0260656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/07/2021] [Indexed: 12/01/2022] Open
Abstract
Therapeutic drug monitoring (TDM) is essential for voriconazole to ensure optimal drug exposure, mainly in critically ill patients for whom voriconazole demonstrated a large variability. The study aimed at describing factors associated with trough voriconazole concentrations in critically ill patients and evaluating the impact of voriconazole concentrations on adverse effects. A 2-year retrospective multicenter cohort study (NCT04502771) was conducted in six intensive care units. Adult patients who had at least one voriconazole TDM were included. Univariable and multivariable linear regression analyses were performed to identify predictors of voriconazole concentrations, and univariable logistic regression analysis, to study the relationship between voriconazole concentrations and adverse effects. During the 2-year study period, 70 patients were included. Optimal trough voriconazole concentrations were reported in 37 patients (52.8%), subtherapeutic in 20 (28.6%), and supratherapeutic in 13 (18.6%). Adverse effects were reported in six (8.6%) patients. SOFA score was identified as a factor associated with an increase in voriconazole concentration (p = 0.025), mainly in the group of patients who had SOFA score ≥ 10. Moreover, an increase in voriconazole concentration was shown to be a risk factor for occurrence of adverse effects (p = 0.011). In that respect, critically ill patients who received voriconazole treatment must benefit from a TDM, particularly if they have a SOFA score ≥ 10. Indeed, identifying patients who are overdosed will help to prevent voriconazole related adverse effects. This result is of utmost importance given the recognized COVID-19-associated pulmonary aspergillosis in ICU patients for whom voriconazole is among the recommended first-line treatment.
Collapse
|
71
|
García-García I, Dapía I, Montserrat J, Martinez de Soto L, Bueno D, Díaz L, Queiruga J, Rodriguez Mariblanca A, Guerra-García P, Ramirez E, Frías J, Pérez Martínez A, Carcas-Sansuan AJ, Borobia AM. Experience of a Strategy Including CYP2C19 Preemptive Genotyping Followed by Therapeutic Drug Monitoring of Voriconazole in Patients Undergoing Allogenic Hematopoietic Stem Cell Transplantation. Front Pharmacol 2021; 12:717932. [PMID: 34744712 PMCID: PMC8563584 DOI: 10.3389/fphar.2021.717932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/08/2021] [Indexed: 12/04/2022] Open
Abstract
Many factors have been described to contribute to voriconazole (VCZ) interpatient variability in plasma concentrations, especially CYP2C19 genetic variability. In 2014, Hicks et al. presented data describing the correlation between VCZ plasma concentrations and CYP2C19 diplotypes in immunocompromised pediatric patients and utilized pharmacokinetic modeling to extrapolate a more suitable VCZ dose for each CYP2C19 diplotype. In 2017, in our hospital, a clinical protocol was developed for individualization of VCZ in immunocompromised patients based on preemptive genotyping of CYP2C19 and dosing proposed by Hicks et al., Clinical Pharmacogenetics Implementation Consortium (CPIC) clinical guidelines, and routine therapeutic drug monitoring (TDM). We made a retrospective review of a cohort of 28 immunocompromised pediatric patients receiving VCZ according to our protocol. CYP2C19 gene molecular analysis was preemptively performed using PharmArray®. Plasma trough concentrations were measured by immunoassay analysis until target concentrations (1–5.5 μg/ml) were reached. Sixteen patients (57.14%) achieved VCZ trough target concentrations in the first measure after the initial dose based on PGx. This figure is similar to estimations made by Hicks et al. in their simulation (60%). Subdividing by phenotype, our genotyping and TDM-combined strategy allow us to achieve target concentrations during treatment/prophylaxis in 90% of the CYP2C19 Normal Metabolizers (NM)/Intermediate Metabolizers (IM) and 100% of the Rapid Metabolizers (RM) and Ultrarapid Metabolizers (UM) of our cohort. We recommended modifications of the initial dose in 29% (n = 8) of the patients. In RM ≥12 years old, an increase of the initial dose resulted in 50% of these patients achieving target concentrations in the first measure after initial dose adjustment based only on PGx information. Our experience highlights the need to improve VCZ dose predictions in children and the potential of preemptive genotyping and TDM to this aim. We are conducting a multicenter, randomized clinical trial in patients with risk of aspergillosis in order to evaluate the effectiveness and efficiency of VCZ individualization: VORIGENIPHARM (EudraCT: 2019-000376-41).
Collapse
Affiliation(s)
- Irene García-García
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Irene Dapía
- Medical and Molecular Genetics Institute (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Jaime Montserrat
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Lucía Martinez de Soto
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - David Bueno
- Paediatric Haemato-oncology Department, University Hospital La Paz, Madrid, Spain
| | - Lucía Díaz
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Javier Queiruga
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Amelia Rodriguez Mariblanca
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Pilar Guerra-García
- Paediatric Haemato-oncology Department, University Hospital La Paz, Madrid, Spain
| | - Elena Ramirez
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain.,Medical and Molecular Genetics Institute (INGEMM), La Paz University Hospital, Madrid, Spain.,Paediatric Haemato-oncology Department, University Hospital La Paz, Madrid, Spain
| | - Jesus Frías
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | | | - Antonio J Carcas-Sansuan
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, IdiPAZ, La Paz University Hospital School of Medicine, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
72
|
Suetsugu K, Muraki S, Fukumoto J, Matsukane R, Mori Y, Hirota T, Miyamoto T, Egashira N, Akashi K, Ieiri I. Effects of Letermovir and/or Methylprednisolone Coadministration on Voriconazole Pharmacokinetics in Hematopoietic Stem Cell Transplantation: A Population Pharmacokinetic Study. Drugs R D 2021; 21:419-429. [PMID: 34655050 PMCID: PMC8602551 DOI: 10.1007/s40268-021-00365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/26/2022] Open
Abstract
Objective The aim of this study was to identify factors affecting blood concentrations of voriconazole following letermovir coadministration using population pharmacokinetic (PPK) analysis in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients. Methods The following data were retrospectively collected: voriconazole trough levels, patient characteristics, concomitant drugs, and laboratory information. PPK analysis was performed with NONMEM® version 7.4.3, using the first-order conditional estimation method with interaction. We collected data on plasma voriconazole steady-state trough concentrations at 216 timepoints for 47 patients. A nonlinear pharmacokinetic model with the Michaelis–Menten equation was applied to describe the relationship between steady-state trough concentration and daily maintenance dose of voriconazole. After stepwise covariate modeling, the final model was evaluated using a goodness-of-fit plot, case deletion diagnostics, and bootstrap methods. Results The maximum elimination rate (Vmax) of voriconazole in patients coadministered letermovir and methylprednisolone was 1.72 and 1.30 times larger than that in patients not coadministered these drugs, respectively, resulting in decreased voriconazole trough concentrations. The developed PPK model adequately described the voriconazole trough concentration profiles in allo-HSCT recipients. Simulations clearly showed that increased daily doses of voriconazole were required to achieve an optimal trough voriconazole concentration (1–5 mg/L) when patients received voriconazole with letermovir and/or methylprednisolone. Conclusions The development of individualized dose adjustment is critical to achieve optimal voriconazole concentration, especially among allo-HSCT recipients receiving concomitant letermovir and/or methylprednisolone. Supplementary Information The online version contains supplementary material available at 10.1007/s40268-021-00365-0.
Collapse
Affiliation(s)
- Kimitaka Suetsugu
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shota Muraki
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Junshiro Fukumoto
- Department of Clinical Pharmacology and Biopharmaceutics, The Pharmaceutical College, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryosuke Matsukane
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasuo Mori
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Hirota
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Clinical Pharmacology and Biopharmaceutics, The Pharmaceutical College, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ichiro Ieiri
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Clinical Pharmacology and Biopharmaceutics, The Pharmaceutical College, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
73
|
Nagase K, Ishizawa Y, Inoue M, Kokubun M, Yamada S, Kanazawa H. Temperature-responsive spin column for sample preparation using an all-aqueous eluent. Anal Chim Acta 2021; 1179:338806. [PMID: 34535268 DOI: 10.1016/j.aca.2021.338806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022]
Abstract
We present a temperature-responsive spin column using an all-aqueous eluent. The method is intended as a simple sample preparation method for protein removal from serum, which is required for serum drug analysis. As packing materials for the spin column, we prepared two types of silica beads via surface-initiated radical polymerization. The large beads (diameter, 40-63 μm) were grafted with a temperature-responsive cationic copolymer, poly(N-isopropylacrylamide-co-N,N-dimethylaminopropyl acrylamide-co-n-butyl methacrylate) (P(NIPAAm-co-DMAPAAm-co-BMA)), and the small beads (diameter, 5 μm) were grafted with a temperature-responsive hydrophobic copolymer, P(NIPAAm-co-BMA). The beads were packed into the spin column as a double layer: P(NIPAAm-co-BMA) silica beads on the bottom and P(NIPAAm-co-DMAPAAm-co-BMA) silica beads on the top. The sample purification efficacy of the prepared spin column was evaluated on a model sample analyte (the antifungal drug voriconazole mixed with blood serum proteins). At 40 °C, the serum proteins and voriconazole were adsorbed on the prepared spin column via hydrophobic and electrostatic interactions. When the temperature was decreased to 4 °C, the adsorbed voriconazole was eluted from the column with the pure water eluent, while the serum proteins remained in the column. This temperature-responsive spin column realizes sample preparation simply by changing the temperature.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan.
| | - Yuta Ishizawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Masakazu Inoue
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Matsurika Kokubun
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Sota Yamada
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| |
Collapse
|
74
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
75
|
Navaratnam AMD, Al-Freah M, Cavazza A, Auzinger G. A case series of non-valvular cardiac aspergillosis in critically ill solid organ transplant and non-transplant patients and systematic review. J Intensive Care Soc 2021; 22:241-247. [PMID: 34422107 PMCID: PMC8373280 DOI: 10.1177/1751143720936821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Non-valvular cardiac aspergillosis is a rare infection of the pericardium, myocardium or endocardium and is associated with a high mortality. There is a paucity of reports of non-valvular cardiac aspergillosis in critically ill and solid organ transplant (SOT) patients. The majority of cases have been reported in haemato-oncology patients, some of whom have undergone a bone marrow transplant. OBJECTIVES We describe four cases affected by non-valvular cardiac aspergillosis in the intensive care setting including a systematic review of this extremely rare infection which is associated with high mortality. RESULTS All four-patients died but presented with varying clinical, radiological and microbiological evidence of the disease. Three patients presented following complications after solid organ transplantation, two in the context of acute liver failure and emergency liver transplant and one several years after a double lung transplant. The last patient presented with necrotising gall stone pancreatitis, multi-organ failure and subsequently a prolonged intensive care unit (ICU) stay. On review of the literature, January 1955 to July 2019, 45 cases were identified, with different risk factors, clinical and radiological manifestations, treatment regimen and outcome. CONCLUSION Antemortem diagnosis of cardiac aspergillosis is difficult and rare, with no cases reporting positive blood culture results. Galactomannan serology has poor sensitivity in solid organ transplant patients, further reduced by prophylactic antimicrobial treatment, which is common in the ICU setting especially post-transplant patients. Due to the scarcity of cases, treatment is extrapolated from invasive aspergillosis management, with emphasis on early treatment with combination therapy.
Collapse
Affiliation(s)
| | | | - Anna Cavazza
- Liver Intensive Care Unit, King's College Hospital, London, UK
| | - Georg Auzinger
- Liver Intensive Care Unit, King's College Hospital, London, UK
- Department of Critical Care, Cleveland Clinic London, London, UK
| |
Collapse
|
76
|
Lewis RE, Andes DR. Managing uncertainty in antifungal dosing: antibiograms, therapeutic drug monitoring and drug-drug interactions. Curr Opin Infect Dis 2021; 34:288-296. [PMID: 34010233 PMCID: PMC9914162 DOI: 10.1097/qco.0000000000000740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW A number of pharmacokinetic and pharmacodynamic factors in critically ill or severely immunosuppressed patients influence the effectiveness of antifungal therapy making dosing less certain. Recent position papers from infectious diseases societies and working groups have proposed methods for dosage individualization of antibiotics in critically ill patients using a combination of population pharmacokinetic models, Monte-Carlo simulation and therapeutic drug monitoring (TDM) to guide dosing. In this review, we examine the current limitations and practical issues of adapting a pharmacometrics-guided dosing approaches to dosing of antifungals in critically ill or severely immunosuppressed populations. RECENT FINDINGS We review the current status of antifungal susceptibility testing and challenges in incorporating TDM into Bayesian dose prediction models. We also discuss issues facing pharmacometrics dosage adjustment of newer targeted chemotherapies that exhibit severe pharmacokinetic drug-drug interactions with triazole antifungals. SUMMARY Although knowledge of antifungal pharmacokinetic/pharmacodynamic is maturing, the practical application of these concepts towards point-of-care dosage individualization is still limited. User-friendly pharmacometric models are needed to improve the utility of TDM and management of a growing number of severe pharmacokinetic antifungal drug-drug interactions with targeted chemotherapies.
Collapse
Affiliation(s)
- Russell E. Lewis
- Department of Medical and Surgical Sciences, University of Bologna. Infectious Diseases, IRCCS S.Orsola-Malpighi University Hospital, Bologna, Italy
| | - David R. Andes
- Departments of Medicine and Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
77
|
Gómez-López A, Martín-Gómez MT, Salavert Lletí M. A survey to describe common practices on antifungal monitoring among Spanish clinicians. Enferm Infecc Microbiol Clin 2021; 41:S0213-005X(21)00193-2. [PMID: 34238595 DOI: 10.1016/j.eimc.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 11/18/2022]
Abstract
INTRODUCTION We developed a survey to obtain information on the monitoring practices of major systemic antifungals for treatment and prevention of serious fungal infection. METHODS The survey included questions relating to methodology and practice and was distributed among 137 colleagues of the Study Group of Medical Mycology (GEMICOMED) from July to December 2019. RESULTS Monitoring was routinely carried out by most respondents, mainly for voriconazole, and was more likely used to determine the efficacy of the dose administered and less for minimizing drug toxicity. Most responders did not follow the strategies of voriconazole dosage based on CYP2C19 genotyping. Monitoring of posaconazole, itraconazole, or other azole metabolites was not carried out or scarcely demanded. Most responders rarely used flucytosine in their clinical practice nor did they monitor it. According to the answers given by some responders, monitoring isavuconazole, amphotericin B, caspofungin and fluconazole exposure would be also interesting in daily clinical practice in selected patient populations. CONCLUSIONS The survey reveals common practices and attitudes towards antifungal monitoring, sometimes not performed as per best recommendations, offering an opportunity for education and research. Appropriate use of therapeutic drug monitoring may be an objective of antifungal stewardship programmes.
Collapse
Affiliation(s)
- Alicia Gómez-López
- Laboratorio de Referencia e Investigación en Micología, CNM, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | | | - Miguel Salavert Lletí
- Unidad de Enfermedades Infecciosas, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
78
|
Bakir Ekinci P, Kara E, Er AG, Inkaya AC, Demirkan K, Uzun O. Challenge in treating COVID-19 associate pulmonary aspergillosis: Supratherapeutic voriconazole levels. Br J Clin Pharmacol 2021; 88:1387-1391. [PMID: 34174111 PMCID: PMC8444892 DOI: 10.1111/bcp.14953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/04/2023] Open
Affiliation(s)
- Pinar Bakir Ekinci
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Emre Kara
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ahmet Gorkem Er
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ahmet Cagkan Inkaya
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Kutay Demirkan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Omrum Uzun
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
79
|
Chaudhri K, Stocker SL, Williams KM, McLeay RC, Marriott DJE, Di Tanna GL, Day RO, Carland JE. Voriconazole: an audit of hospital-based dosing and monitoring and evaluation of the predictive performance of a dose-prediction software package. J Antimicrob Chemother 2021; 75:1981-1984. [PMID: 32277819 DOI: 10.1093/jac/dkaa098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) is recommended to guide voriconazole therapy. OBJECTIVES To determine compliance of hospital-based voriconazole dosing and TDM with the Australian national guidelines and evaluate the predictive performance of a one-compartment population pharmacokinetic voriconazole model available in a commercial dose-prediction software package. METHODS A retrospective audit of voriconazole therapy at an Australian public hospital (1 January to 31 December 2016) was undertaken. Data collected included patient demographics, dosing history and plasma concentrations. Concordance of dosing and TDM with Australian guidelines was assessed. Observed concentrations were compared with those predicted by dose-prediction software. Measures of bias (mean prediction error) and precision (mean squared prediction error) were calculated. RESULTS Adherence to dosing guidelines for 110 courses of therapy (41% for prophylaxis and 59% for invasive fungal infections) was poor, unless oral formulation guidelines recommended a 200 mg dose, the most commonly prescribed dose (56% of prescriptions). Plasma voriconazole concentrations were obtained for 82% (90/110) of courses [median of 3 (range: 1-27) obtained per course]. A minority (27%) of plasma concentrations were trough concentrations [median concentration: 1.5 mg/L (range: <0.1 to >5.0 mg/L)]. Of trough concentrations, 57% (58/101) were therapeutic, 37% (37/101) were subtherapeutic and 6% (6/101) were supratherapeutic. The dose-prediction software performed well, with acceptable bias and precision of 0.09 mg/L (95% CI -0.08 to 0.27) and 1.32 (mg/L)2 (95% CI 0.96-1.67), respectively. CONCLUSIONS Voriconazole dosing was suboptimal based on published guidelines and TDM results. Dose-prediction software could enhance TDM-guided therapy.
Collapse
Affiliation(s)
- Kanika Chaudhri
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Darlinghurst, NSW, Australia.,School of Medical Sciences, University of NSW, Kensington, NSW, Australia
| | - Sophie L Stocker
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of NSW, Kensington, NSW, Australia
| | - Kenneth M Williams
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Darlinghurst, NSW, Australia.,School of Medical Sciences, University of NSW, Kensington, NSW, Australia
| | | | - Deborah J E Marriott
- St Vincent's Clinical School, University of NSW, Kensington, NSW, Australia.,Department of Clinical Microbiology and Infectious Diseases, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Gian Luca Di Tanna
- The George Institute for Global Health, Newtown, NSW, Australia.,Faculty of Medicine, University of NSW, Kensington, NSW, Australia
| | - Richard O Day
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Darlinghurst, NSW, Australia.,School of Medical Sciences, University of NSW, Kensington, NSW, Australia.,St Vincent's Clinical School, University of NSW, Kensington, NSW, Australia
| | - Jane E Carland
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of NSW, Kensington, NSW, Australia
| |
Collapse
|
80
|
Evaluation of Total Body Weight versus Adjusted Body Weight Voriconazole Dosing in Obese Patients. Antimicrob Agents Chemother 2021; 65:e0246020. [PMID: 33875427 DOI: 10.1128/aac.02460-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This retrospective single-center study of a cohort of adult patients who received voriconazole with a steady-state trough concentration measured during therapy evaluated the rate of therapeutic trough attainment using adjusted body weight (AdjBW)-based and total body weight (TBW)-based dosing in overweight and obese patients. Of the 130 patients included, 45 patients received TBW-based dosing and 85 patients received AdjBW-based dosing. Therapeutic trough attainment was significantly improved with AdjBW-based dosing compared to TBW-based dosing (64.7% versus 46.7%; P = 0.047).
Collapse
|
81
|
Wilmes D, Coche E, Rodriguez-Villalobos H, Kanaan N. Fungal pneumonia in kidney transplant recipients. Respir Med 2021; 185:106492. [PMID: 34139578 DOI: 10.1016/j.rmed.2021.106492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Fungal pneumonia is a dreaded complication encountered after kidney transplantation, complicated by increased mortality and often associated with graft failure. Diagnosis can be challenging because the clinical presentation is non-specific and diagnostic tools have limited sensitivity and specificity in kidney transplant recipients and must be interpreted in the context of the clinical setting. Management is difficult due to the increased risk of dissemination and severity, multiple comorbidities, drug interactions and reduced immunosuppression which should be applied as an important adjunct to therapy. This review will focus on the main causes of fungal pneumonia in kidney transplant recipients including Pneumocystis, Aspergillus, Cryptococcus, mucormycetes and Histoplasma. Epidemiology, clinical presentation, laboratory and radiographic features, specific characteristics will be discussed with an update on diagnostic procedures and treatment.
Collapse
Affiliation(s)
- D Wilmes
- Division of Internal Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - E Coche
- Division of Radiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - H Rodriguez-Villalobos
- Division of Microbiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - N Kanaan
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
82
|
Yasu T, Matsumoto Y, Sugita T. Pharmacokinetics of voriconazole and its alteration by Candida albicans infection in silkworms. J Antibiot (Tokyo) 2021; 74:443-449. [PMID: 34045695 DOI: 10.1038/s41429-021-00428-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/09/2022]
Abstract
Voriconazole (VRCZ) is a triazole antifungal agent used for the treatment and prophylaxis of invasive fungal infections. Therapeutic drug monitoring of VRCZ is widely applied clinically because of the large inter-individual variability that is generally observed in VRCZ exposure. The blood levels of VRCZ are increased during an underlying inflammatory reaction, which is associated with infections. Silkworms are useful experimental animals for evaluating the pharmacokinetics and toxicity of compounds. In this study, we investigated the pharmacokinetic parameters, such as elimination half-life, clearance, and distribution volume of VRCZ using silkworms. The pharmacokinetic parameters of VRCZ were determined based on the concentrations in silkworm hemolymph after injection of VRCZ. The elimination half-life of VRCZ in silkworms was found to be similar to that observed in humans. In addition, we assessed the impact of Candida albicans infection on VRCZ concentrations in a silkworm infection model. The VRCZ concentration at 12 h after injection in the Candida albicans-infected group was significantly higher than that in the non-infected group. In the silkworm infection model, we were able to reproduce the relationship between inflammation and VRCZ blood concentrations, as observed in humans. We demonstrate that silkworms can be an effective alternative model animal for studying the pharmacokinetics of VRCZ. We also show that silkworms can be used to indicate essential infection and inflammation-based pharmacokinetic variations in VRCZ, which is usually observed in the clinic.
Collapse
Affiliation(s)
- Takeo Yasu
- Department of Medicinal Therapy Research, Pharmaceutical Education and Research Center, Meiji Pharmaceutical University, Kiyose, Japan.
| | - Yasuhiko Matsumoto
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Japan.
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Japan
| |
Collapse
|
83
|
Cadena J, Thompson GR, Patterson TF. Aspergillosis: Epidemiology, Diagnosis, and Treatment. Infect Dis Clin North Am 2021; 35:415-434. [PMID: 34016284 DOI: 10.1016/j.idc.2021.03.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The spectrum of disease produced by Aspergillus species ranges from allergic syndromes to chronic pulmonary conditions and invasive infections. Invasive aspergillosis is a major cause of morbidity and mortality in immunocompromised patients. Risk factors continue to evolve and include newer biological agents that target the immune system and postinfluenza infection; and it has been observed following COVID-19 infection. Diagnosis remains a challenge but non-culture-based methods are available. Antifungal resistance has emerged. Voriconazole remains the treatment of choice but isavuconazole and posaconazole have similar efficacy with less toxicity. Combination therapy is used with extensive infection and in severe immunosuppression.
Collapse
Affiliation(s)
- Jose Cadena
- Department of Medicine, Division of Infectious Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive - MSC 7881, San Antonio, TX 78229-3900, USA
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases, University of California - Davis Health; Department of Medical Microbiology and Immunology, University of California - Davis Health.
| | - Thomas F Patterson
- Department of Medicine, Division of Infectious Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive - MSC 7881, San Antonio, TX 78229-3900, USA
| |
Collapse
|
84
|
Skaggs CL, Ren GJ, Elgierari ETM, Sturmer LR, Shi RZ, Manicke NE, Kirkpatrick LM. Simultaneous quantitation of five triazole anti-fungal agents by paper spray-mass spectrometry. Clin Chem Lab Med 2021; 58:836-846. [PMID: 31926066 DOI: 10.1515/cclm-2019-0895] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022]
Abstract
Background Invasive fungal disease is a life-threatening condition that can be challenging to treat due to pathogen resistance, drug toxicity, and therapeutic failure secondary to suboptimal drug concentrations. Frequent therapeutic drug monitoring (TDM) is required for some anti-fungal agents to overcome these issues. Unfortunately, TDM at the institutional level is difficult, and samples are often sent to a commercial reference laboratory for analysis. To address this gap, the first paper spray-mass spectrometry assay for the simultaneous quantitation of five triazoles was developed. Methods Calibration curves for fluconazole, posaconazole, itraconazole, hydroxyitraconazole, and voriconazole were created utilizing plasma-based calibrants and four stable isotopic internal standards. No sample preparation was needed. Plasma samples were spotted on a paper substrate in pre-manufactured plastic cartridges, and the dried plasma spots were analyzed directly utilizing paper spray-mass spectrometry (paper spray MS/MS). All experiments were performed on a Thermo Scientific TSQ Vantage triple quadrupole mass spectrometer. Results The calibration curves for the five anti-fungal agents showed good linearity (R2 = 0.98-1.00). The measured assay ranges (lower limit of quantification [LLOQ]-upper limit of quantitation [ULOQ]) for fluconazole, posaconazole, itraconazole, hydroxyitraconazole, and voriconazole were 0.5-50 μg/mL, 0.1-10 μg/mL, 0.1-10 μg/mL, 0.1-10 μg/mL, and 0.1-10 μg/mL, respectively. The inter- and intra-day accuracy and precision were less than 25% over the respective ranges. Conclusions We developed the first rapid paper spray-MS/MS assay for simultaneous quantitation of five triazole anti-fungal agents in plasma. The method may be a powerful tool for near-point-of-care TDM aimed at improving patient care by reducing the turnaround time and for use in clinical research.
Collapse
Affiliation(s)
- Christine L Skaggs
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Greta J Ren
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | | | - Lillian R Sturmer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Run Z Shi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas E Manicke
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.,Forensic and Investigative Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Lindsey M Kirkpatrick
- Department of Pediatrics, Division of Pediatric Infectious Diseases, J.W. Riley Hospital for Children, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN, 46202, USA
| |
Collapse
|
85
|
Combined Impact of Inflammation and Pharmacogenomic Variants on Voriconazole Trough Concentrations: A Meta-Analysis of Individual Data. J Clin Med 2021; 10:jcm10102089. [PMID: 34068031 PMCID: PMC8152514 DOI: 10.3390/jcm10102089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 01/23/2023] Open
Abstract
Few studies have simultaneously investigated the impact of inflammation and genetic polymorphisms of cytochromes P450 2C19 and 3A4 on voriconazole trough concentrations. We aimed to define the respective impact of inflammation and genetic polymorphisms on voriconazole exposure by performing individual data meta-analyses. A systematic literature review was conducted using PubMed to identify studies focusing on voriconazole therapeutic drug monitoring with data of both inflammation (assessed by C-reactive protein level) and the pharmacogenomics of cytochromes P450. Individual patient data were collected and analyzed in a mixed-effect model. In total, 203 patients and 754 voriconazole trough concentrations from six studies were included. Voriconazole trough concentrations were independently influenced by age, dose, C-reactive protein level, and both cytochrome P450 2C19 and 3A4 genotype, considered individually or through a combined genetic score. An increase in the C-reactive protein of 10, 50, or 100 mg/L was associated with an increased voriconazole trough concentration of 6, 35, or 82%, respectively. The inhibitory effect of inflammation appeared to be less important for patients with loss-of-function polymorphisms for cytochrome P450 2C19. Voriconazole exposure is influenced by age, inflammatory status, and the genotypes of both cytochromes P450 2C19 and 3A4, suggesting that all these determinants need to be considered in approaches of personalization of voriconazole treatment.
Collapse
|
86
|
Blanco-Dorado S, Belles Medall MD, Pascual-Marmaneu O, Campos-Toimil M, Otero-Espinar FJ, Rodríguez-Riego R, Rodríguez-Jato T, Zarra-Ferro I, Lamas MJ, Fernández-Ferreiro A. Therapeutic drug monitoring of voriconazole: validation of a high performance liquid chromatography method and comparison with an ARK immunoassay. Eur J Hosp Pharm 2021. [DOI: 10.1136/ejhpharm-2019-002155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
87
|
Alegria W, Patel PK. The Current State of Antifungal Stewardship in Immunocompromised Populations. J Fungi (Basel) 2021; 7:352. [PMID: 33946217 PMCID: PMC8145600 DOI: 10.3390/jof7050352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/05/2023] Open
Abstract
Inappropriate antifungal use is prevalent and can lead to drug-resistant fungi, expose patients to adverse drug events, and increase healthcare costs. While antimicrobial stewardship programs have traditionally focused on antibiotic use, the need for targeted antifungal stewardship (AFS) intervention has garnered interest in recent years. Despite this, data on AFS in immunocompromised patient populations is limited. This paper will review the current state of AFS in this complex population and explore opportunities for multidisciplinary collaboration.
Collapse
Affiliation(s)
- William Alegria
- Department of Quality, Patient Safety and Effectiveness, Stanford Health Care, 300 Pasteur Drive, Lane 134 L1C36, Stanford, CA 94305, USA
- Stanford Antimicrobial Safety and Sustainability Program, Stanford, CA 94305, USA
| | - Payal K. Patel
- Division of Infectious Diseases, Department of Internal Medicine, Ann Arbor VA Medical Center, Ann Arbor, MI 48105, USA;
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, 2215 Fuller Rd, Ann Arbor, MI 48105, USA
| |
Collapse
|
88
|
Favorable Effects of Voriconazole Trough Concentrations Exceeding 1 μg/mL on Treatment Success and All-Cause Mortality: A Systematic Review and Meta-Analysis. J Fungi (Basel) 2021; 7:jof7040306. [PMID: 33923727 PMCID: PMC8072959 DOI: 10.3390/jof7040306] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
This systematic review and meta-analysis examined the optimal trough concentration of voriconazole for adult patients with invasive fungal infections. We used stepwise cutoffs of 0.5-2.0 μg/mL for efficacy and 3.0-6.0 μg/mL for safety. Studies were included if they reported the rates of all-cause mortality and/or treatment success, hepatotoxicity, and nephrotoxicity according to the trough concentration. Twenty-five studies involving 2554 patients were included. The probability of mortality was significantly decreased using a cutoff of ≥1.0 μg/mL (odds ratio (OR) = 0.34, 95% confidence interval (CI) = 0.15-0.80). Cutoffs of 0.5 (OR = 3.48, 95% CI = 1.45-8.34) and 1.0 μg/mL (OR = 3.35, 95% CI = 1.52-7.38) also increased the treatment success rate. Concerning safety, significantly higher risks of hepatotoxicity and neurotoxicity were demonstrated at higher concentrations for all cutoffs, and the highest ORs were recorded at 4.0 μg/mL (OR = 7.39, 95% CI = 3.81-14.36; OR = 5.76, 95% CI 3.14-10.57, respectively). Although further high-quality trials are needed, our findings suggest that the proper trough concentration for increasing clinical success while minimizing toxicity is 1.0-4.0 μg/mL for adult patients receiving voriconazole therapy.
Collapse
|
89
|
8th European Conference on Infections in Leukaemia: 2020 guidelines for the diagnosis, prevention, and treatment of invasive fungal diseases in paediatric patients with cancer or post-haematopoietic cell transplantation. Lancet Oncol 2021; 22:e254-e269. [PMID: 33811813 DOI: 10.1016/s1470-2045(20)30723-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022]
Abstract
Paediatric patients with cancer and those undergoing allogeneic haematopoietic cell transplantation have an increased susceptibility to invasive fungal diseases. In addition to differences in underlying conditions and comorbidities relative to adults, invasive fungal diseases in infants, children, and adolescents are unique in terms of their epidemiology, the validity of current diagnostic methods, the pharmacology and dosing of antifungal agents, and the absence of phase 3 clinical trials to provide data to guide evidence-based interventions. To re-examine the state of knowledge and to further improve invasive fungal disease diagnosis, prevention, and management, the 8th European Conference on Infections in Leukaemia (ECIL-8) reconvened a Paediatric Group to review the literature and to formulate updated recommendations according to the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and European Confederation of Medical Mycology (ECMM) grading system, which are summarised in this Review.
Collapse
|
90
|
Fiore M, Peluso L, Taccone FS, Hites M. The impact of continuous renal replacement therapy on antibiotic pharmacokinetics in critically ill patients. Expert Opin Drug Metab Toxicol 2021; 17:543-554. [PMID: 33733979 DOI: 10.1080/17425255.2021.1902985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Mortality due to severe infections in critically ill patients undergoing continuous renal replacement therapy (CRRT) remains high. Nevertheless, rapid administration of adequate antibiotic therapy can improve survival. Delivering optimized antibiotic therapy can be a challenge, as standard drug regimens often result in insufficient or excessive serum concentrations due to significant changes in the volume of distribution and/or drug clearance in these patients. Insufficient drug concentrations can be responsible for therapeutic failure and death, while excessive concentrations can cause toxic adverse events.Areas covered: We performed a narrative review of the impact of CRRT on the pharmacokinetics of the most frequently used antibiotics in critically ill patients. We have provided explanations for the changes in the PKs of antibiotics observed and suggestions to optimize dosage regimens in these patients.Expert opinion: Despite considerable efforts to identify optimal antibiotic dosage regimens for critically ill patients receiving CRRT, adequate target achievement remains too low for hydrophilic antibiotics in many patients. Whenever possible, individualized therapy based on results from therapeutic drug monitoring must be given to avoid undertreatment or toxicity.
Collapse
Affiliation(s)
- Marco Fiore
- Department of Intensive Care, Hopital Erasme, Brussels, Belgium
| | - Lorenzo Peluso
- Department of Intensive Care, Hopital Erasme, Brussels, Belgium
| | | | - Maya Hites
- Department of Infectious Diseases, Hopital Erasme, Brussels, Belgium
| |
Collapse
|
91
|
Neofytos D, Garcia-Vidal C, Lamoth F, Lichtenstern C, Perrella A, Vehreschild JJ. Invasive aspergillosis in solid organ transplant patients: diagnosis, prophylaxis, treatment, and assessment of response. BMC Infect Dis 2021; 21:296. [PMID: 33761875 PMCID: PMC7989085 DOI: 10.1186/s12879-021-05958-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Invasive aspergillosis (IA) is a rare complication in solid organ transplant (SOT) recipients. Although IA has significant implications on graft and patient survival, data on diagnosis and management of this infection in SOT recipients are still limited. METHODS Discussion of current practices and limitations in the diagnosis, prophylaxis, and treatment of IA and proposal of means of assessing treatment response in SOT recipients. RESULTS Liver, lung, heart or kidney transplant recipients have common as well as different risk factors to the development of IA, thus each category needs a separate evaluation. Diagnosis of IA in SOT recipients requires a high degree of awareness, because established diagnostic tools may not provide the same sensitivity and specificity observed in the neutropenic population. IA treatment relies primarily on mold-active triazoles, but potential interactions with immunosuppressants and other concomitant therapies need special attention. CONCLUSIONS Criteria to assess response have not been sufficiently evaluated in the SOT population and CT lesion dynamics, and serologic markers may be influenced by the underlying disease and type and severity of immunosuppression. There is a need for well-orchestrated efforts to study IA diagnosis and management in SOT recipients and to develop comprehensive guidelines for this population.
Collapse
Affiliation(s)
- Dionysios Neofytos
- Service des Maladies Infectieuses, Hôpitaux Universitaires de Genève, Rue Gabrielle-Perret-Gentil 4, Geneva, Switzerland.
| | - Carolina Garcia-Vidal
- Servicio de Enfermedades Infecciosas, Hospital Clínic de Barcelona-IDIBAPS, Universitat de Barcelona, FungiCLINIC Research group (AGAUR), Barcelona, Spain
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, 1011, Lausanne, Switzerland
- Department of Laboratories, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Christoph Lichtenstern
- Department of Anaesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, Heidelberg, Germany
| | - Alessandro Perrella
- VII Department of Infectious Disease and Immunology, Hospital D. Cotugno, Naples, Italy
- CLSE-Liver Transplant Unit, Hospital A. Cardarelli, Naples, Italy
| | - Jörg Janne Vehreschild
- Medical Department II, Hematology and Oncology, University Hospital of Frankfurt, Frankfurt, Germany
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
- German Centre for Infection Research, partner site Bonn-Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
92
|
Johnson MD, Lewis RE, Dodds Ashley ES, Ostrosky-Zeichner L, Zaoutis T, Thompson GR, Andes DR, Walsh TJ, Pappas PG, Cornely OA, Perfect JR, Kontoyiannis DP. Core Recommendations for Antifungal Stewardship: A Statement of the Mycoses Study Group Education and Research Consortium. J Infect Dis 2021; 222:S175-S198. [PMID: 32756879 DOI: 10.1093/infdis/jiaa394] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, the global public health community has increasingly recognized the importance of antimicrobial stewardship (AMS) in the fight to improve outcomes, decrease costs, and curb increases in antimicrobial resistance around the world. However, the subject of antifungal stewardship (AFS) has received less attention. While the principles of AMS guidelines likely apply to stewarding of antifungal agents, there are additional considerations unique to AFS and the complex field of fungal infections that require specific recommendations. In this article, we review the literature on AMS best practices and discuss AFS through the lens of the global core elements of AMS. We offer recommendations for best practices in AFS based on a synthesis of this evidence by an interdisciplinary expert panel of members of the Mycoses Study Group Education and Research Consortium. We also discuss research directions in this rapidly evolving field. AFS is an emerging and important component of AMS, yet requires special considerations in certain areas such as expertise, education, interventions to optimize utilization, therapeutic drug monitoring, and data analysis and reporting.
Collapse
Affiliation(s)
- Melissa D Johnson
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA
| | - Russell E Lewis
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elizabeth S Dodds Ashley
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, Laboratory of Mycology Research, McGovern Medical School, Houston, Texas, USA
| | - Theoklis Zaoutis
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - George R Thompson
- Division of Infectious Diseases, Department of Internal Medicine, University of California, Davis, Sacramento, California, USA
| | - David R Andes
- Department of Medicine and Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Peter G Pappas
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oliver A Cornely
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,German Centre for Infection Research, partner site Bonn-Cologne, Cologne, Germany.,CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.,Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany
| | - John R Perfect
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
93
|
Dadwal SS, Hohl TM, Fisher CE, Boeckh M, Papanicolaou G, Carpenter PA, Fisher BT, Slavin MA, Kontoyiannis DP. American Society of Transplantation and Cellular Therapy Series, 2: Management and Prevention of Aspergillosis in Hematopoietic Cell Transplantation Recipients. Transplant Cell Ther 2021; 27:201-211. [PMID: 33781516 PMCID: PMC9088165 DOI: 10.1016/j.jtct.2020.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
The Practice Guidelines Committee of the American Society of Transplantation and Cellular Therapy partnered with its Transplant Infectious Disease Special Interest Group to update its 2009 compendium-style infectious disease guidelines for hematopoietic cell transplantation (HCT). A completely fresh approach was taken with the goal of better serving clinical providers by publishing each standalone topic in the infectious disease series as a concise format of frequently asked questions (FAQs), tables, and figures. Adult and pediatric infectious disease and HCT content experts developed, then answered FAQs, and finalized topics with harmonized recommendations that were made by assigning an A through E strength of recommendation paired with a level of supporting evidence graded I through III. This second guideline in the series focuses on invasive aspergillosis, a potentially life-threatening infection in the peri-HCT period. The relevant risk factors, diagnostic considerations, and prophylaxis and treatment approaches are reviewed.
Collapse
Affiliation(s)
- Sanjeet S Dadwal
- Division of Infectious Diseases, City of Hope National Medical Center, Duarte, California.
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cynthia E Fisher
- Division of Infectious Diseases, University of Washington, Seattle, Washington
| | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Genofeva Papanicolaou
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Brian T Fisher
- Division of Pediatric Infectious Diseases, Children's Hospital of Philadelphia, Pennsylvania
| | - Monica A Slavin
- Department of Infectious Disease, and National Center for Infections in Cancer, Peter McCallum Cancer Center, Melbourne, Victoria, Australia
| | - D P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
94
|
Downes KJ, Goldman JL. Too Much of a Good Thing: Defining Antimicrobial Therapeutic Targets to Minimize Toxicity. Clin Pharmacol Ther 2021; 109:905-917. [PMID: 33539569 DOI: 10.1002/cpt.2190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022]
Abstract
Antimicrobials are a common cause of drug toxicity. Understanding the relationship between systemic antimicrobial exposure and toxicity is necessary to enable providers to take a proactive approach to prevent undesired drug effects. When an exposure threshold has been defined that predicts drug toxicity, therapeutic drug monitoring (TDM) can be performed to assure drug exposure does not exceed the defined threshold. Although some antimicrobials have well-defined dose-dependent toxicities, many other exposure-toxicity relationships have either not been well-defined or, in some cases, not been evaluated at all. In this review, we examine the relationship between exposures and toxicities for antibiotic, antifungal, and antiviral agents. Furthermore, we classify these relationships into four categories: known association between drug exposure and toxicity such that clinical implementation of a specific exposure threshold associated with toxicity for TDM is supported (category 1), known association between drug exposure and toxicity but the specific exposure threshold associated with toxicity is undefined (category 2), association between drug exposure and toxicity has been suggested but relationship is poorly defined (category 3), and no known association between drug exposure and toxicity (category 4). Further work to define exposure-toxicity thresholds and integrate effective TDM strategies has the potential to minimize many of the observed antimicrobial toxicities.
Collapse
Affiliation(s)
- Kevin J Downes
- The Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,The Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer L Goldman
- Divisions of Clinical Pharmacology, Toxicology and Therapeutic Innovation and Infectious Diseases, Children's Mercy Kansas City, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri - Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
95
|
Gautier-Veyret E, Thiebaut-Bertrand A, Roustit M, Bolcato L, Depeisses J, Schacherer M, Schummer G, Fonrose X, Stanke-Labesque F. Optimization of voriconazole therapy for treatment of invasive aspergillosis: Pharmacogenomics and inflammatory status need to be evaluated. Br J Clin Pharmacol 2020; 87:2534-2541. [PMID: 33217017 DOI: 10.1111/bcp.14661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS Cytochrome 2C19 genotype-directed dosing of voriconazole (VRC) reduces the incidence of insufficient VRC trough concentrations (Cmin ) but does not account for CYP3A polymorphisms, also involved in VRC metabolism. This prospective observational study aimed to evaluate the utility of a genetic score combining CYP2C19 and CYP3A genotypes to predict insufficient initial VRC Cmin (<1 mg/L). METHODS The genetic score was determined in hematological patients treated with VRC. The higher the genetic score, the faster the metabolism of the patient. The impact of the genetic score was evaluated considering initial VRC Cmin and all VRC Cmin (n = 159) determined during longitudinal therapeutic drug monitoring. RESULTS Forty-three patients were included, of whom 41 received VRC for curative indication. Thirty-six patients had a genetic score ≥2, of whom 11 had an initial insufficient VRC Cmin . A genetic score ≥2 had a positive predictive value of 0.31 for having an initial insufficient VRC Cmin and initial VRC Cmin was not associated with the genetic score. The lack of association between the genetic score and VRC Cmin may be related to the inflammatory status of the patients (C-reactive protein [CRP] levels: median [Q1-Q3]: 43.0 [11.0-110.0] mg/L), as multivariate analysis performed on all VRC Cmin identified CRP as an independent determinant of the VRC Cmin adjusted for dose (P < .0001). CONCLUSION The combined genetic score did not predict low VRC exposure in patients with inflammation, which is frequent in patients with invasive fungal infections. Strategies for the individualization of VRC dose should integrate the inflammatory status of patients in addition to pharmacogenetic variants.
Collapse
Affiliation(s)
- Elodie Gautier-Veyret
- Inserm, CHU Grenoble Alpes, HP2, Universitaire Grenoble Alpes, Grenoble, 38000, France
| | | | - Matthieu Roustit
- Inserm, CHU Grenoble Alpes, HP2, Universitaire Grenoble Alpes, Grenoble, 38000, France
| | - Léa Bolcato
- Laboratoire de Pharmacologie, Pharmacogénétique et Toxicologie, CHU Grenoble Alpes, France
| | | | | | - Gabriel Schummer
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Xavier Fonrose
- Laboratoire de Pharmacologie, Pharmacogénétique et Toxicologie, CHU Grenoble Alpes, France
| | | |
Collapse
|
96
|
Population Pharmacokinetics of Voriconazole in Patients With Invasive Aspergillosis: Serum Albumin Level as a Novel Marker for Clearance and Dosage Optimization. Ther Drug Monit 2020; 42:872-879. [PMID: 32947557 DOI: 10.1097/ftd.0000000000000799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Voriconazole (VRCZ) is an antifungal triazole recommended as an effective first-line agent for treating invasive aspergillosis. OBJECTIVES To develop a population pharmacokinetic model of VRCZ and trough concentration-based dosing simulation for dynamic patient conditions. METHODS The authors combined plasma VRCZ data from intensive sampling, and retrospective trough concentration monitoring for analysis. Nonlinear mixed-effects modeling with subsequent model validation was performed. The recommended dosage regimens were simulated based on the developed model. RESULTS The study participants included 106 patients taking oral VRCZ. A linear one-compartment model with first-order elimination and absorption best described the observed data. The CYP2C19 phenotypes did not influence the pharmacokinetic parameters. Serum albumin (SA) levels and gamma-glutamyl transferase significantly correlated with the VRCZ clearance rate, whereas the actual body weight influenced the volume. A visual predictive check showed good consistency with the observed data, whereas SA levels across the treatment course correlated with linear clearance, irrespective of the CYP2C19 phenotype. Patients with SA levels ≤30 g/L had lower linear clearance than that in patients with SA levels >30 g/L. Dosing simulation based on the developed model indicated that patients with SA levels of ≤30 g/L required a lower daily maintenance dose to attain the therapeutic trough level. CONCLUSIONS SA level was identified as a novel marker associated with VRCZ clearance. This marker may be a practical choice for physicians to perform therapeutic drug monitoring and optimize VRCZ dosage.
Collapse
|
97
|
Spivey J, Wrenn R, Liu B, Maziarz E, Kram B. Characterization of Isavuconazole serum concentrations after enteral feeding tube administration in a hospitalized cohort: A case series. J Clin Pharm Ther 2020; 46:528-531. [PMID: 33247433 DOI: 10.1111/jcpt.13317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Invasive fungal infections often occur in patients with comorbidities that complicate oral administration. Serum concentrations of isavuconazole were characterized after enteral tube administration. CASE DESCRIPTION Thirteen of 14 isavuconazole concentrations were >1 mg/dl (median 1.6 mg/dl) among those receiving enteral tube administration, which was comparable to intravenous (median 1.9 mg/dl). Higher concentrations were observed during oral administration (median 3 mg/dl). WHAT IS NEW AND CONCLUSION Administration of isavuconazole via tube resulted in concentrations comparable to FDA-approved routes of administration. This route may be feasible and appropriate for select patients.
Collapse
Affiliation(s)
- Justin Spivey
- Department of Pharmacy, Duke University Hospital, Durham, NC, USA
| | - Rebekah Wrenn
- Department of Pharmacy, Duke University Hospital, Durham, NC, USA
| | - Beiyu Liu
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Eileen Maziarz
- Department of Medicine (Infectious Diseases Division), Duke University Hospital, Durham, NC, USA
| | - Bridgette Kram
- Department of Pharmacy, Duke University Hospital, Durham, NC, USA
| |
Collapse
|
98
|
Chan SY, Hughes RM, Woo K, Perales MA, Neofytos D, Papanicolaou G. Reasons for voriconazole prophylaxis discontinuation in allogeneic hematopoietic cell transplant recipients: A real-life paradigm. Med Mycol 2020; 58:1029-1036. [PMID: 32171012 PMCID: PMC7657092 DOI: 10.1093/mmy/myaa008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
We sought to describe the clinical experience of voriconazole as primary antifungal prophylaxis (AFP) in allogeneic hematopoietic cell transplant recipients (allo-HCTr). This was a single-center retrospective study of adult allo-HCTr (1 January 2014 to 31 December 2016) who received ≥two doses of voriconazole-AFP. Voriconazole-AFP was started on day +7 post-HCT and continued at least through day +60 post-HCT, or longer as clinically indicated. We reviewed the rate, reasons, and risk factors of voriconazole-AFP discontinuation until day-100 post-HCT. A total of 327 patients were included. Voriconazole-AFP was continued for a median of 69 days (mean: 57.9; range 1, 100): for a median of 90 days (mean :84; range 2, 100) in 180/327 (55%) in the standard-of-care (SOC) group and 20 days (mean :25.6 ; range 1, 89; P-value < .001) in 147/327 (45%) patients in the early-discontinuation-group. Early-voriconazole-AFP discontinuation was due to adverse events, drug interactions, insurance coverage, and other reasons in 101/147 (68.7%), 27 (18.4%), 13 (8.8%), and 6 (4.1%) patients, respectively. Early-voriconazole-AFP discontinuation occurred in 73/327 (22.3%) patients due to hepatotoxicity. Important predictors for early-voriconazole-AFP discontinuation included: graft-versus-host disease grade ≥2 (odds ratio [OR]: 1.9, P-value: .02), alanine-aminotransferase ≥75 IU/ml on voriconazole-administration day-14 (OR: 5.6, P-value: .02) and total bilirubin ≥1.3 mg/dl on voriconazole-administration day-7 (OR: 3.0, P-value: .03). There were 13 proven/probable invasive fungal infections by day-180 post-HCT (8/147, 5.4%, and 5/180, 2.8% in the early-discontinuation and SOC-groups, respectively; log-rank:0.13). By day-180 post HCT, 23/147 (15.6%) and 14/180 (7.8%) patients in the early-discontinuation and SOC-groups had died, respectively (log-rank:0.03). Voriconazole-AFP was discontinued in up to 45% of allo-HCTr. Hepatotoxicity during the first 2 weeks post-HCT is a significant predictor of early-voriconazole-AFP discontinuation.
Collapse
Affiliation(s)
- Shuk Ying Chan
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Rachel M Hughes
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kimberly Woo
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Miguel-Angel Perales
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dionysios Neofytos
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Infectious Disease Service, Geneva University Hospital, Geneva, Switzerland
| | - Genovefa Papanicolaou
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
99
|
Teng GJ, Bai XR, Zhang L, Liu HJ, Nie XH. Remission of hepatotoxicity in chronic pulmonary aspergillosis patients after lowering trough concentration of voriconazole. World J Clin Cases 2020; 8:4700-4707. [PMID: 33195637 PMCID: PMC7642544 DOI: 10.12998/wjcc.v8.i20.4700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/29/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Chronic pulmonary aspergillosis (CPA) is a rare syndrome that is often accompanied by gradual lung tissue destruction. Voriconazole is usually employed as the first-line agent for CPA treatment. However, some patients can develop hepatotoxicity and often were forced to stop voriconazole treatment.
AIM To record the improving trend of liver function and the therapeutic effects in patients after lowering the trough concentration of voriconazole.
METHODS This study retrospectively analyzed 12 adult CPA patients who developed hepatotoxicity during the voriconazole treatment. In these patients, the oral dose was reduced to 3/4 or 1/2 of the standard dose (4 mg/kg, twice daily), and the lower limit of voriconazole trough concentration was maintained more than 0.5 µg/mL. The trend of remission of liver toxicity after drug reduction in 12 patients was recorded. During the same period, 25 patients who received standard doses served as the control group. Data from the two groups were collected and analyzed for different parameters such as demographic characteristics, underlying pulmonary disorders, laboratory tests, and therapeutic effect. The differences between the two groups were statistically compared.
RESULTS Hepatotoxicity occurred in 12 patients within 28-65 d after oral voriconazole treatment. Hepatotoxicity was mainly manifested by the significantly increased level of gamma-glutamyltransferase and a slight increase of alanine aminotransferase and aspartate aminotransferase. The oral dose of voriconazole was reduced to approximately 3 mg/kg in seven patients and approximately 2 mg/kg in five patients. The average trough concentrations for the 12 patients before and after voriconazole oral dose reduction were 3.17 ± 1.47 µg/mL (1.5-6.0 µg/mL) and 1.70 ± 0.78 µg/mL (0.6-3.3 µg/mL), respectively (P = 0.02). After lowering the trough concentrations, the hepatotoxicity was alleviated in all the patients. However, gamma-glutamyltransferase levels declined slowly. After 4 mo of treatment, 7 of the 12 patients were successfully treated in the low trough concentrations group (41.7%). Similarly, 8 of the 25 patients in the standard treatment dose group (32.0%) were effectively treated. There was no statistical difference between the groups (P = 0.72).
CONCLUSION Reducing the lower limit of the voriconazole trough concentration to 0.5 µg/mL can alleviate the hepatotoxicity and maintained certain clinical efficacy in CPA patients; however, patients should be closely monitored.
Collapse
Affiliation(s)
- Guo-Jie Teng
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Xiang-Rong Bai
- Pharmacy Department, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Lin Zhang
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Hong-Jun Liu
- Department of Evidence-based Medicine, Xuanwu Hospital Capital Medical University, Beijing, China, Beijing 100053, China
| | - Xiu-Hong Nie
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| |
Collapse
|
100
|
Blanco-Dorado S, Maroñas O, Latorre-Pellicer A, Rodríguez Jato MT, López-Vizcaíno A, Gómez Márquez A, Bardán García B, Belles Medall D, Barbeito Castiñeiras G, Pérez Del Molino Bernal ML, Campos-Toimil M, Otero Espinar F, Blanco Hortas A, Durán Piñeiro G, Zarra Ferro I, Carracedo Á, Lamas MJ, Fernández-Ferreiro A. Impact of CYP2C19 Genotype and Drug Interactions on Voriconazole Plasma Concentrations: A Spain Pharmacogenetic-Pharmacokinetic Prospective Multicenter Study. Pharmacotherapy 2020; 40:17-25. [PMID: 31782536 DOI: 10.1002/phar.2351] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Voriconazole, a first-line agent for the treatment of invasive fungal infections, is mainly metabolized by cytochrome P450 (CYP) 2C19. A significant portion of patients fail to achieve therapeutic voriconazole trough concentrations, with a consequently increased risk of therapeutic failure. OBJECTIVE To show the association between subtherapeutic voriconazole concentrations and factors affecting voriconazole pharmacokinetics: CYP2C19 genotype and drug-drug interactions. METHODS Adults receiving voriconazole for antifungal treatment or prophylaxis were included in a multicenter prospective study conducted in Spain. The prevalence of subtherapeutic voriconazole troughs was analyzed in the rapid metabolizer and ultra-rapid metabolizer patients (RMs and UMs, respectively), and compared with the rest of the patients. The relationship between voriconazole concentration, CYP2C19 phenotype, adverse events (AEs), and drug-drug interactions was also assessed. RESULTS In this study 78 patients were included with a wide variability in voriconazole plasma levels with only 44.8% of patients attaining trough concentrations within the therapeutic range of 1 and 5.5 µg/ml. The allele frequency of *17 variant was found to be 29.5%. Compared with patients with other phenotypes, RMs and UMs had a lower voriconazole plasma concentration (RM/UM: 1.85 ± 0.24 µg/ml vs other phenotypes: 2.36 ± 0.26 µg/ml). Adverse events were more common in patients with higher voriconazole concentrations (p<0.05). No association between voriconazole trough concentration and other factors (age, weight, route of administration, and concomitant administration of enzyme inducer, enzyme inhibitor, glucocorticoids, or proton pump inhibitors) was found. CONCLUSION These results suggest the potential clinical utility of using CYP2C19 genotype-guided voriconazole dosing to achieve concentrations in the therapeutic range in the early course of therapy. Larger studies are needed to confirm the impact of pharmacogenetics on voriconazole pharmacokinetics.
Collapse
Affiliation(s)
- Sara Blanco-Dorado
- Pharmacy Department, University Clinical Hospital Santiago de Compostela (CHUS), Santiago de Compostela, Spain.,Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Olalla Maroñas
- Genomic Medicine Group, Centro Nacional de Genotipado (CEGEN-PRB3), CIBERER, CIMUS, University of Santiago de Compostela (USC), Santiago de Compostela, Spain.,Galician Foundation of Genomic Medicine, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
| | - Ana Latorre-Pellicer
- Genomic Medicine Group, Centro Nacional de Genotipado (CEGEN-PRB3), CIBERER, CIMUS, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - María Teresa Rodríguez Jato
- Pharmacy Department, University Clinical Hospital Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Ana López-Vizcaíno
- Pharmacy Department, University Hospital Lucus Augusti (HULA), Lugo, Spain
| | | | | | | | - Gema Barbeito Castiñeiras
- Microbiology Department, University Clinical Hospital Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | | | - Manuel Campos-Toimil
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Francisco Otero Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Andrés Blanco Hortas
- Epidemiology Unit, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), University Hospital Lucus Augusti (HULA), Lugo, Spain
| | - Goretti Durán Piñeiro
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
| | - Irene Zarra Ferro
- Pharmacy Department, University Clinical Hospital Santiago de Compostela (CHUS), Santiago de Compostela, Spain.,Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
| | - Ángel Carracedo
- Genomic Medicine Group, Centro Nacional de Genotipado (CEGEN-PRB3), CIBERER, CIMUS, University of Santiago de Compostela (USC), Santiago de Compostela, Spain.,Galician Foundation of Genomic Medicine, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
| | - María Jesús Lamas
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital Santiago de Compostela (CHUS), Santiago de Compostela, Spain.,Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| |
Collapse
|