51
|
Caballero-Huertas M, Moraleda-Prados J, Joly S, Ribas L. Immune genes, IL1β and Casp9, show sexual dimorphic methylation patterns in zebrafish gonads. FISH & SHELLFISH IMMUNOLOGY 2020; 97:648-655. [PMID: 31830572 DOI: 10.1016/j.fsi.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
There is crosstalk between the immune and reproductive systems in which sexual dimorphism is a common pattern in vertebrates. In recent years, epigenetics has emerged as a way to study the molecular mechanisms involved in gonadal development, those responsible for integrating environmental information that contribute to assigning a specific sexual phenotype (either an ovary or a testis). The knowledge of epigenetic mechanisms in certain molecular processes allows the development of epigenetic markers. In fish gonads, the existence of reproduction-immune system interactions is known, although the epigenetic mechanisms involved are far from clear. Here, we used the zebrafish (Danio rerio) as a model to study the DNA methylation patterns in gonads of two well-known innate immune genes: IL1β and Casp9. DNA methylation levels were studied by a candidate gene approach at single nucleotide resolution and gene expression analyses were also carried out. Results showed that there was clear sexual dimorphism in the DNA methylation levels of the two immune genes studied, being significantly higher in the testes when compared to the ovaries. In summary, and although further research is needed, this paper presents sexual dimorphic methylation patterns of two immune-related genes, thus sex-biased differences in methylation profiles should considered when analyzing immune responses in fish. Data showed here can help to develop epimarkers with forthcoming applications in livestock and fish farming production, for example, in immune fish diseases or sexual control programs as epigenetic molecular tools to predict environmental pressure in the gonads.
Collapse
Affiliation(s)
- M Caballero-Huertas
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - J Moraleda-Prados
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - S Joly
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - L Ribas
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
52
|
González CR, González B. Exploring the Stress Impact in the Paternal Germ Cells Epigenome: Can Catecholamines Induce Epigenetic Reprogramming? Front Endocrinol (Lausanne) 2020; 11:630948. [PMID: 33679612 PMCID: PMC7933579 DOI: 10.3389/fendo.2020.630948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Spermatogenesis is characterized by unique epigenetic programs that enable chromatin remodeling and transcriptional regulation for proper meiotic divisions and germ cells maturation. Paternal lifestyle stressors such as diet, drug abuse, or psychological trauma can directly impact the germ cell epigenome and transmit phenotypes to the next generation, pointing to the importance of epigenetic regulation during spermatogenesis. It is established that environmental perturbations can affect the development and behavior of the offspring through epigenetic inheritance, including changes in small non-coding RNAs, DNA methylation, and histones post-translational modifications. But how male germ cells react to lifestyle stressors and encode them in the paternal epigenome is still a research gap. Most lifestyle stressors activate catecholamine circuits leading to both acute and long-term changes in neural functions, and epigenetic mechanisms show strong links to both long-term and rapid, dynamic gene expression regulation during stress. Importantly, the testis shares a molecular and transcriptional signature with the brain tissue, including a rich expression of catecholaminergic elements in germ cells that seem to respond to stressors with similar epigenetic and transcriptional profiles. In this minireview, we put on stage the action of catecholamines as possible mediators between paternal stress responses and epigenetic marks alterations during spermatogenesis. Understanding the epigenetic regulation in spermatogenesis will contribute to unravel the coding mechanisms in the transmission of the biological impacts of stress between generations.
Collapse
Affiliation(s)
- Candela R. González
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Betina González
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Betina González,
| |
Collapse
|
53
|
|
54
|
Wu D, Huang CJ, Jiao XF, Ding ZM, Zhang SX, Miao YL, Huo LJ. Bisphenol AF compromises blood-testis barrier integrity and sperm quality in mice. CHEMOSPHERE 2019; 237:124410. [PMID: 31362132 DOI: 10.1016/j.chemosphere.2019.124410] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/04/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The profound influence of environmental chemicals on human health including inducing life-threatening gene mutation has been publicly recognized. Being a substitute for the extensively used endocrine-disrupting chemical BPA, Bisphenol AF (BPAF) has been known as teratogen with developmental toxicities and therefore potentially putting human into the risk of biological hazards. Herein, we deciphered the detrimental effects of BPAF on spermatogenesis and spermiotiliosis in sexual maturity of mice exposing to BPAF (5, 20, 50 mg/kg/d) for consecutive 28 days. BPAF exposure significantly compromises blood-testis barrier integrity and sperm quantity and quality in a dose-dependent manner. Sperms from BPAF exposure mice are featured by severe DNA damage, altered SUMOylation and ubiquitination dynamics and interfered epigenetic inheritance with hypermethylation of H3K27me3 presumably due to the aggregation of cellular reactive oxygen species (ROS). Furthermore, BPAF treatment (50 μM for 24 h) compromises cytoskeleton architecture and tight junction permeability in primary cultured Sertoli cells evidenced by dysfunction of actin regulatory proteins (e.g. Arp3 and Palladin) via activation of ERK signaling, thereby perturbing the privilege microenvironment created by Sertoli cells for spermatogenesis. Overall, our study determines BPAF is deleterious for male fertility, leading to a better appreciation of its toxicological features in our life.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chun-Jie Huang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, 64110, USA
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
55
|
Makashov AA, Malov SV, Kozlov AP. Oncogenes, tumor suppressor and differentiation genes represent the oldest human gene classes and evolve concurrently. Sci Rep 2019; 9:16410. [PMID: 31712655 PMCID: PMC6848199 DOI: 10.1038/s41598-019-52835-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 10/24/2019] [Indexed: 01/20/2023] Open
Abstract
Earlier we showed that human genome contains many evolutionarily young or novel genes with tumor-specific or tumor-predominant expression. We suggest calling such genes Tumor Specifically Expressed, Evolutionarily New (TSEEN) genes. In this paper we performed a study of the evolutionary ages of different classes of human genes, using homology searches in genomes of different taxa in human lineage. We discovered that different classes of human genes have different evolutionary ages and confirmed the existence of TSEEN gene classes. On the other hand, we found that oncogenes, tumor-suppressor genes and differentiation genes are among the oldest gene classes in humans and their evolution occurs concurrently. These findings confirm non-trivial predictions made by our hypothesis of the possible evolutionary role of hereditary tumors. The results may be important for better understanding of tumor biology. TSEEN genes may become the best tumor markers.
Collapse
Affiliation(s)
- A A Makashov
- Biomedical Center, Viborgskaya str. 8, Saint-Petersburg, 194044, Russia.,Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya ul., 29, St. Petersburg, 195251, Russia.,Research Institute of Ultra Pure Biologicals, 7 Pudozhskaya str., St. Petersburg, 197110, Russia
| | - S V Malov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St.-Petersburg State University, 41A, Sredniy av., St. Petersburg, 199004, Russia.,Department of Algorithmic Mathematics, St.-Petersburg Electrotechnical University, 5, Prof. Popova str, St. Petersburg, 197376, Russia
| | - A P Kozlov
- Biomedical Center, Viborgskaya str. 8, Saint-Petersburg, 194044, Russia. .,Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya ul., 29, St. Petersburg, 195251, Russia. .,Research Institute of Ultra Pure Biologicals, 7 Pudozhskaya str., St. Petersburg, 197110, Russia. .,Vavilov Institute of General Genetics, 3 Gubkina str., Moscow, 119333, Russia.
| |
Collapse
|
56
|
Janjic A. Assisted Evolution in Astrobiology-Convergence of Ecology and Evolutionary Biology within the Context of Planetary Colonization. ASTROBIOLOGY 2019; 19:1410-1417. [PMID: 31657949 DOI: 10.1089/ast.2019.2061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In ecology and conservation biology, the concept of assisted evolution aims at the optimization of the resilience of organisms and populations to changing environmental conditions. What has hardly been considered so far is that this concept is also relevant for future astrobiological research, since in artificial extraterrestrial habitats (e.g., plants and insects in martian greenhouses) novel environmental conditions will also affect the survival and performance of organisms. The question therefore arises whether and how space-relevant organisms can be artificially adapted to the desired circumstances in advance. Based on several adaptation and acclimatization strategies in wild ecosystems of Earth, I discuss which methods can be considered for assisted evolution in the context of astrobiological research. This includes enhanced selective breeding, induction of epigenetic inheritance, and genetic engineering, as well as possible problems of these applications. This short overview article aims to stimulate an emerging discussion as to whether humans, which are already prominent drivers of Earth's evolution, should consider such interventions for future planetary colonization as well.
Collapse
Affiliation(s)
- Aleksandar Janjic
- Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany
| |
Collapse
|
57
|
Abstract
Ewing sarcoma is a rare tumor developed in bone and soft tissues of children and teenagers. This entity is biologically led by a chromosomal translocation, typically including EWS and FLI1 genes. Little is known about Ewing sarcoma predisposition, although the role of environmental factors, ethnicity and certain polymorphisms on Ewing sarcoma susceptibility has been studied during the last few years. Its prevalence among cancer predisposition syndromes has also been thoroughly examined. This review summarizes the available evidence on predisposing factors involved in Ewing sarcoma susceptibility. On the basis of these data, an integrated approach of the most influential factors on Ewing sarcoma predisposition is proposed.
Collapse
|
58
|
Hanson M. The inheritance of cardiovascular disease risk. Acta Paediatr 2019; 108:1747-1756. [PMID: 30964948 DOI: 10.1111/apa.14813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease (CVD) is foremost among the non-communicable diseases (NCDs) which account for 71% of deaths globally each year. CVD is also prominent among the pre-existing conditions still accounting for nearly 25% of maternal deaths and is linked to gestational diabetes and pre-eclampsia. Markers of CVD risk have been reported even in young children, related to prenatal factors such as mother's diet or body composition. The underlying mechanisms include epigenetic changes which can alter the trajectory of risk across the life course. Preventive interventions need to commence before conception, to reduce transmission of CVD risk by promoting healthy behaviours in prospective parents, as well as in pregnancy, and postpartum through breastfeeding and healthy complementary feeding. Surprisingly, these opportunities are not emphasised in the 2018 United Nations Political Declaration on NCDs. NCDs such as CVD have communicable risk components transmitted across generations by socio-economic as well as biological factors, although the former can also become embodied in the offspring by epigenetic mechanisms. The inheritance of CVD risk, and social inequalities in such risk, thus raises wider questions about responsibility for the health of future generations at societal as well as individual levels.
Collapse
Affiliation(s)
- Mark Hanson
- Institute of Developmental Sciences University of Southampton Southampton UK
- NIHR Southampton Biomedical Research Centre University Hospital Southampton Southampton UK
| |
Collapse
|
59
|
Santangeli S, Consales C, Pacchierotti F, Habibi HR, Carnevali O. Transgenerational effects of BPA on female reproduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:1294-1305. [PMID: 31272786 DOI: 10.1016/j.scitotenv.2019.06.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is an abundant environmental contaminant and studies have shown the presence of BPA in the urine of over 90% of population tested in Canada and USA. In addition to its reported harmful effects, there is concern for its transgenerational effects. For a compound to induce transgenerational effect, an epigenetic mark should be mitotically and meiotically stable without reprogramming in primordial germ cells and post fertilization embryos. In the present study, female zebrafish were treated with an environmental dose (20 μg/L) of BPA and then crossed with untreated males. To assess epigenetic effects, transcript levels of several genes involved in female reproduction were measured in adult and in 24 hpf embryos up to F3 generation. Exposure to BPA affected adult female fertility up to F2 generation. In F0, F1 and F2 ovaries transcript levels for several genes involved in reproduction, including esr, star, lhcgr and fshr were affected. To investigate epigenetic mechanisms of gene expression modulation, we studied promoter DNA methylation. Among genes involved in gonadal differentiation, amh transcript level was reduced in 24 hpf embryos, up to the F3 generation. Variation in amh transcript level was associated with hyper-methylation of its promoter and changes in H3K4me3/H3K27me3 enrichment, coherent with gene silencing. The findings provide evidence for transgenerational effects of BPA in zebrafish and demonstrate that amh is susceptible to stable epigenetic alterations. CAPSULE: Transgenerational effects of BPA on female reproductive physiology.
Collapse
Affiliation(s)
- Stefania Santangeli
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Claudia Consales
- Laboratory of Biosafety and Risk Assessment, Division of Health Protection Technologies, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy.
| | - Francesca Pacchierotti
- Laboratory of Biosafety and Risk Assessment, Division of Health Protection Technologies, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy.
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| |
Collapse
|
60
|
Ding T, Mokshagundam S, Rinaudo PF, Osteen KG, Bruner-Tran KL. Paternal developmental toxicant exposure is associated with epigenetic modulation of sperm and placental Pgr and Igf2 in a mouse model. Biol Reprod 2019; 99:864-876. [PMID: 29741588 DOI: 10.1093/biolre/ioy111] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/04/2018] [Indexed: 01/16/2023] Open
Abstract
Preterm birth (PTB), parturition prior to 37 weeks' gestation, is the leading cause of neonatal mortality. The causes of spontaneous PTB are poorly understood; however, recent studies suggest that this condition may arise as a consequence of the parental fetal environment. Specifically, we previously demonstrated that developmental exposure of male mice (F1 animals) to the environmental endocrine disruptor 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was associated with reduced sperm quantity/quality in adulthood and control female partners frequently delivered preterm. Reproductive defects persisted in the F2 and F3 descendants, and spontaneous PTB was common. Reproductive changes in the F3 males, the first generation without direct TCDD exposure, suggest the occurrence of epigenetic alterations in the sperm, which have the potential to impact placental development. Herein, we conducted an epigenetic microarray analysis of control and F1 male-derived placentae, which identified 2171 differentially methylated regions, including the progesterone receptor (Pgr) and insulin-like growth factor (Igf2). To assess if Pgr and Igf2 DNA methylation changes were present in sperm and persist in future generations, we assessed methylation and expression of these genes in F1/F3 sperm and F3-derived placentae. Although alterations in methylation and gene expression were observed, in most tissues, only Pgr reached statistical significance. Despite the modest gene expression changes in Igf2, offspring of F1 and F3 males consistently exhibited IUGR. Taken together, our data indicate that paternal developmental TCDD exposure is associated with transgenerational placental dysfunction, suggesting epigenetic modifications within the sperm have occurred. An evaluation of additional genes and alternative epigenetic mechanisms is warranted.
Collapse
Affiliation(s)
- Tianbing Ding
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Shilpa Mokshagundam
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Paolo F Rinaudo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California, USA
| | - Kevin G Osteen
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare System, Nashville Tennessee, USA
| | - Kaylon L Bruner-Tran
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
61
|
A task that remains before us: Reconsidering inheritance as a biosocial phenomenon. Semin Cell Dev Biol 2019; 97:189-194. [PMID: 31301355 DOI: 10.1016/j.semcdb.2019.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 11/20/2022]
Abstract
What doesit mean to inherit? Debates about the meaning of inheritance are numerous in the history and the present of the biological and the social sciences. While the majority of contributions in this special issue discuss hitherto unthought of molecular mechanisms of biological inheritance, this review explores the contested territory of inheritance from a social science perspective. Specifically, it examines contemporary biological research on epigenetic forms of inheritance in its historical and social contexts. To that end, the review explores what biology itself has been inheriting when it comes to how it considers inheritance conceptually and experimentally. I delineate three particularly important strands of inheritance: inheriting a history of eugenics; inheriting determinist reasoning; and inheriting experimental reductionism. I approach the social and scientific meaning of these inheritances by following scholars such as Donna Haraway and Jacques Derrida, who frame inheritance not as a passive occurrence but as an active process, as a task that must be undertaken by those who inherit. Such a framing raises the question of what it might mean to inherit something responsibly - particularly when what needs to be inherited is not an object but a difficult history. I argue that in order to become 'response-able' to this question, researchers who investigate biological inheritance today must engage these histories critically and review their legacies in present-day research. This is a task biologists might not want to undertake alone, but in interdisciplinary collaboration with social scientists and humanities scholars, in order to mobilize multiple forms of expertise for understanding the complex biosocial processes of human inheritance.
Collapse
|
62
|
Cleary JA, Tillitt DE, Vom Saal FS, Nicks DK, Claunch RA, Bhandari RK. Atrazine induced transgenerational reproductive effects in medaka (Oryzias latipes). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:639-650. [PMID: 31108297 DOI: 10.1016/j.envpol.2019.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Atrazine is presently one of the most abundantly used herbicides in the United States, and a common contaminant of natural water bodies and drinking waters in high-use areas. Dysregulation of reproductive processes has been demonstrated in atrazine exposed fish, including alteration of key endocrine pathways on hypothalamic-pituitary-gonadal (HPG) axis. However, the potential for atrazine-induced transgenerational inheritance of reproductive effects in fish has not been investigated. The present study examined the effects of early developmental atrazine exposure on transgenerational reproductive dysregulation in Japanese medaka (Oryzias latipes). F0 medaka were exposed to atrazine (ATZ, 5 or 50 μg/L), 17α-ethinylestradiol (EE2, 0.002 or 0.05 μg/L), or solvent control during the first twelve days of development with no subsequent exposure over three generations. This exposure overlapped with the critical developmental window for embryonic germ cell development, gonadogenesis, and sex determination. Exposed males and females of the F0 generation were bred to produce an F1 generation, and this was continued until the F2 generation. Sperm count and motility were not affected in F0 males; however, both parameters were significantly reduced in the males from F2 Low EE2 (0.002 μg/L), Low ATZ (5 μg/L), and High ATZ (50 μg/L) lineages. Fecundity was unaffected by atrazine or EE2 in F0 through F2 generations; however, fertilization rate was decreased in low atrazine and EE2 exposure lineages in the F2 generation. There were significant transgenerational differences in expression of the genes involved in steroidogenesis and DNA methylation. These results suggest that although early life exposure to atrazine did not cause significant phenotypes in the directly exposed F0 generation, subsequent generations of fish were at greater risk of reproductive dysfunction.
Collapse
Affiliation(s)
- Jacob A Cleary
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Donald E Tillitt
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Frederick S Vom Saal
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Diane K Nicks
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Rachel A Claunch
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
63
|
Bonde JPE, Tøttenborg SS, Hougaard KS. Paternal environmental exposure and offspring health. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
64
|
Horemans N, Spurgeon DJ, Lecomte-Pradines C, Saenen E, Bradshaw C, Oughton D, Rasnaca I, Kamstra JH, Adam-Guillermin C. Current evidence for a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:469-483. [PMID: 31103007 DOI: 10.1016/j.envpol.2019.04.125] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/14/2019] [Accepted: 04/27/2019] [Indexed: 05/22/2023]
Abstract
The issue of potential long-term or hereditary effects for both humans and wildlife exposed to low doses (or dose rates) of ionising radiation is a major concern. Chronic exposure to ionising radiation, defined as an exposure over a large fraction of the organism's lifespan or even over several generations, can possibly have consequences in the progeny. Recent work has begun to show that epigenetics plays an important role in adaptation of organisms challenged to environmental stimulae. Changes to so-called epigenetic marks such as histone modifications, DNA methylation and non-coding RNAs result in altered transcriptomes and proteomes, without directly changing the DNA sequence. Moreover, some of these environmentally-induced epigenetic changes tend to persist over generations, and thus, epigenetic modifications are regarded as the conduits for environmental influence on the genome. Here, we review the current knowledge of possible involvement of epigenetics in the cascade of responses resulting from environmental exposure to ionising radiation. In addition, from a comparison of lab and field obtained data, we investigate evidence on radiation-induced changes in the epigenome and in particular the total or locus specific levels of DNA methylation. The challenges for future research and possible use of changes as an early warning (biomarker) of radiosensitivity and individual exposure is discussed. Such a biomarker could be used to detect and better understand the mechanisms of toxic action and inter/intra-species susceptibility to radiation within an environmental risk assessment and management context.
Collapse
Affiliation(s)
- Nele Horemans
- Belgian Nuclear Research Centre, Boeretang 200, B-2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Agoralaan, 3590, Diepenbeek, Belgium.
| | - David J Spurgeon
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul Lez Durance, France
| | - Eline Saenen
- Belgian Nuclear Research Centre, Boeretang 200, B-2400, Mol, Belgium
| | - Clare Bradshaw
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Deborah Oughton
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, 1430, Aas, Norway
| | - Ilze Rasnaca
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, Cadarache, Saint Paul Lez Durance, France
| |
Collapse
|
65
|
Szabó B, Lang Z, Bakonyi G, Mariën J, Roelofs D, van Gestel CAM, Seres A. Transgenerational and multigenerational stress gene responses to the insecticide etofenprox in Folsomia candida (Collembola). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:181-191. [PMID: 30897417 DOI: 10.1016/j.ecoenv.2019.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Insecticide exposure may cause both transgenerational and multigenerational effects on populations, but the molecular mechanisms of these changes remain largely unclear. Many studies have focused on either transgenerational or multigenerational mechanisms but did neglect the comparative aspects. This study assessed whether the pyrethroid insecticide etofenprox (formulation Trebon® 30 EC) shows transgenerational and/or multigenerational effects on the survival and reproduction of Folsomia candida (Collembola). The activation of stress-related genes was studied to detect whether etofenprox modifies the expression of reproduction-associated genes in trans- and multigenerational treatments. A laboratory study was carried out for three generations with five insecticide concentrations in LUFA 2.2 soil. In the transgenerational treatment, only the parent generation (P) was exposed, but the subsequent generations were not. In the multigenerational treatment, all three generations were exposed to the insecticide in the same manner. Multigenerational exposure resulted in reduced reproduction effects over generations, suggesting that F. candida is capable of acclimating to enhanced concentration levels of etofenprox during prolonged exposure over multiple generations. In the transgenerational treatment, the heat shock protein 70 was up-regulated and cytochrome oxidase 6N4v1 expression down-regulated in a dose-dependent manner in the F2 generation. This finding raises the possibility of the epigenetic inheritance of insecticide impacts on parents. Furthermore, CYP6N4v1 expression was oppositely regulated in the trans- and multigenerational treatments. Our results draw attention to the differences in molecular level responses of F. candida to trans- and multigenerational etofenprox exposure.
Collapse
Affiliation(s)
- Borbála Szabó
- Department of Zoology and Animal Ecology, Szent István University, Páter K. st. 1, 2100, Gödöllő, Hungary; Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| | - Zsolt Lang
- Department of Biomathematics and Informatics, University of Veterinary Medicine, István st. 2, 1078 Budapest, Hungary
| | - Gábor Bakonyi
- Department of Zoology and Animal Ecology, Szent István University, Páter K. st. 1, 2100, Gödöllő, Hungary
| | - Janine Mariën
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Dick Roelofs
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Anikó Seres
- Department of Zoology and Animal Ecology, Szent István University, Páter K. st. 1, 2100, Gödöllő, Hungary
| |
Collapse
|
66
|
Affiliation(s)
- Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, University of Jordan, Amman, Jordan
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
67
|
Rajaleid K, Vågerö D. Stress resilience in young men mediates the effect of childhood trauma on their offspring's birth weight - An analysis of 250,000 families. SSM Popul Health 2019; 8:100429. [PMID: 31249858 PMCID: PMC6584590 DOI: 10.1016/j.ssmph.2019.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 10/31/2022] Open
Abstract
Experiencing the death of a parent during childhood is a severe trauma that seems to affect the next generation's birth weight. We studied the consequences of parental loss during childhood for men's psychological and physiological characteristics at age 18, and whether these were important for their first-born offspring's birth outcomes. We used a structured life-course approach and four-way decomposition analysis to analyse data for 250,427 three-generation families retrieved from nationwide Swedish registers and found that psychological resilience was impaired and body mass index was higher in men who had experienced parental death. Both characteristics were linked to offspring birth weight. This was lower by 18.0 g (95% confidence interval: 5.7, 30.3) for men who lost a parent at ages 8-17 compared to other ages. Resilience mediated 40% of this influence. Mediation by body mass index, systolic and diastolic blood pressure was negligible, as was the effect of parental loss on length of gestation. There was no mediation by the education of the men's future spouse. Previous literature has indicated that the period before puberty, the "slow growth period", is sensitive. Our evidence suggests that this may be too narrow a restriction: boys aged 8-17 appear to be particularly likely to respond to parental loss in a way which affects their future offspring's birth weight. We conclude that the observed transgenerational influence on birth weight is mediated by the father's psychological resilience but not by his body mass index or blood pressure.
Collapse
Affiliation(s)
- Kristiina Rajaleid
- Centre for Health Equity Studies, Department of Public Health Sciences, Stockholm University, Stockholm, Sweden.,Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Denny Vågerö
- Centre for Health Equity Studies, Department of Public Health Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
68
|
Dyke SOM, Saulnier KM, Dupras C, Webster AP, Maschke K, Rothstein M, Siebert R, Walter J, Beck S, Pastinen T, Joly Y. Points-to-consider on the return of results in epigenetic research. Genome Med 2019; 11:31. [PMID: 31122281 PMCID: PMC6533659 DOI: 10.1186/s13073-019-0646-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As epigenetic studies become more common and lead to new insights into health and disease, the return of individual epigenetic results to research participants, in particular in large-scale epigenomic studies, will be of growing importance. Members of the International Human Epigenome Consortium (IHEC) Bioethics Workgroup considered the potential ethical, legal, and social issues (ELSI) involved in returning epigenetic research results and incidental findings in order to produce a set of 'Points-to-consider' (P-t-C) for the epigenetics research community. These P-t-C draw on existing guidance on the return of genetic research results, while also integrating the IHEC Bioethics Workgroup's ELSI research on and discussion of the issues associated with epigenetic data as well as the experience of a return of results pilot study by the Personal Genome Project UK (PGP-UK). Major challenges include how to determine the clinical validity and actionability of epigenetic results, and considerations related to environmental exposures and epigenetic marks, including circumstances warranting the sharing of results with family members and third parties. Interdisciplinary collaboration and good public communication regarding epigenetic risk will be important to advance the return of results framework for epigenetic science.
Collapse
Affiliation(s)
- Stephanie O M Dyke
- Centre of Genomics and Policy, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 0G1, Canada.
- Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada.
| | - Katie M Saulnier
- Centre of Genomics and Policy, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Charles Dupras
- Centre of Genomics and Policy, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Amy P Webster
- UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | | | - Mark Rothstein
- Institute for Bioethics, Health Policy and Law, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University Medical Center, 89091, Ulm, Germany
| | - Jörn Walter
- Saarland University, 66123, Saarbrücken, Germany
| | - Stephan Beck
- UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Tomi Pastinen
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, H3A 0G1, Canada
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Yann Joly
- Centre of Genomics and Policy, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 0G1, Canada
| |
Collapse
|
69
|
Smith CM, Vera MKM, Bhandari RK. Developmental and epigenetic effects of Roundup and glyphosate exposure on Japanese medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:215-226. [PMID: 30875550 DOI: 10.1016/j.aquatox.2019.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 05/18/2023]
Abstract
Roundup and other glyphosate-based herbicides are the most commonly used herbicides in the world, yet their effects on developing fish embryos are not clearly understood. The present study, therefore, examined developmental teratogenic effects and adult-onset reproductive effects of exposure to environmentally relevant concentrations of glyphosate and Roundup in Japanese medaka fish (Oryzias latipes). Hd-rR strain medaka embryos were exposed to 0.5 mg/L glyphosate, 0.5 mg/L and 5 mg/L Roundup (glyphosate acid equivalent) for the first 15 days of their embryonic life and then allowed to sexually mature without further exposure. Whole body tissue samples were collected at 15 days post fertilization (dpf) and brain and gonad samples were collected in mature adults. Hatching success and phenotypic abnormalities were recorded up until 15 dpf. Roundup (0.5 mg/L) and glyphosate decreased cumulative hatching success, while glyphosate exposure increased developmental abnormalities in medaka fry. Expression of the maintenance DNA methyltransferase gene Dnmt1 decreased, whereas expression of methylcytosine dioxygenase genes (Tet1, Tet2 and Tet3) increased in fry at 15 dpf suggesting that epigenetic alterations increased global DNA demethylation in the developing fry. Fecundity and fertilization efficiency were not altered due to exposure. Among the reproduction-related genes in the brain, kisspeptin receptor (Gpr54-1) expression was significantly reduced in females exposed to 0.5 mg/L and 5 mg/L Roundup, and Gpr54-2 was reduced in the 0.5 mg/L Roundup treatment group. No change in expression of these genes was observed in the male brain. In the testes, expression of Fshr and Arα was significantly reduced in medaka exposed to 0.5 mg/L Roundup and glyphosate, while the expression of Dmrt1 and Dnmt1 was reduced in medaka exposed to 0.5 mg/L glyphosate. No change in expression of these genes was observed in the ovaries. The present study demonstrates that Roundup and its active ingredient glyphosate can induce developmental, reproductive, and epigenetic effects in fish; suggesting that ecological species, mainly fish, could be at risk for endocrine disruption in glyphosate and Roundup-contaminated water bodies.
Collapse
Affiliation(s)
- Chelsea M Smith
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, United States
| | - Madeline K M Vera
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, United States
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, United States.
| |
Collapse
|
70
|
Saino N, Albetti B, Ambrosini R, Caprioli M, Costanzo A, Mariani J, Parolini M, Romano A, Rubolini D, Formenti G, Gianfranceschi L, Bollati V. Inter-generational resemblance of methylation levels at circadian genes and associations with phenology in the barn swallow. Sci Rep 2019; 9:6505. [PMID: 31019206 PMCID: PMC6482194 DOI: 10.1038/s41598-019-42798-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
Regulation of gene expression can occur via epigenetic effects as mediated by DNA methylation. The potential for epigenetic effects to be transmitted across generations, thus modulating phenotypic variation and affecting ecological and evolutionary processes, is increasingly appreciated. However, the study of variation in epigenomes and inter-generational transmission of epigenetic alterations in wild populations is at its very infancy. We studied sex- and age-related variation in DNA methylation and parent-offspring resemblance in methylation profiles in the barn swallows. We focused on a class of highly conserved 'clock' genes (clock, cry1, per2, per3, timeless) relevant in the timing of activities of major ecological importance. In addition, we considerably expanded previous analyses on the relationship between methylation at clock genes and breeding date, a key fitness trait in barn swallows. We found positive assortative mating for methylation at one clock locus. Methylation varied between the nestling and the adult stage, and according to sex. Individuals with relatively high methylation as nestlings also had high methylation levels when adults. Extensive parent-nestling resemblance in methylation levels was observed. Occurrence of extra-pair fertilizations allowed to disclose evidence hinting at a prevalence of paternal germline or sperm quality effects over common environment effects in generating father-offspring resemblance in methylation. Finally, we found an association between methylation at the clock poly-Q region, but not at other loci, and breeding date. We thus provided evidence for sex-dependent variation and the first account of parent-offspring resemblance in methylation in any wild vertebrate. We also showed that epigenetics may influence phenotypic plasticity of timing of life cycle events, thus having a major impact on fitness.
Collapse
Affiliation(s)
- Nicola Saino
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy.
| | - Benedetta Albetti
- Department of Clinical Sciences and Community Health, via S. Barnaba 8, I-20122, Milan, Italy
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Alessandra Costanzo
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Jacopo Mariani
- Department of Clinical Sciences and Community Health, via S. Barnaba 8, I-20122, Milan, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Andrea Romano
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy
- Department of Ecology and Evolution, University of Lausanne, Building Biophore, CH-1015, Lausanne, Switzerland
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Giulio Formenti
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Luca Gianfranceschi
- Department of Biosciences, University of Milan, via Celoria 26, I-20133, Milan, Italy
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, via S. Barnaba 8, I-20122, Milan, Italy.
| |
Collapse
|
71
|
Shukla A, Bunkar N, Kumar R, Bhargava A, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:760-777. [PMID: 30530146 DOI: 10.1016/j.scitotenv.2018.11.381] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/23/2018] [Accepted: 11/25/2018] [Indexed: 05/28/2023]
Abstract
Air pollution is one of the leading causes of deaths in Southeast Asian countries including India. Exposure to air pollutants affects vital cellular mechanisms and is intimately linked with the etiology of a number of chronic diseases. Earlier work from our laboratory has shown that airborne particulate matter disturbs the mitochondrial machinery and causes significant damage to the epigenome. Mitochondrial reactive oxygen species possess the ability to trigger redox-sensitive signaling mechanisms and induce irreversible epigenomic changes. The electrophilic nature of reactive metabolites can directly result in deprotonation of cytosine at C-5 position or interfere with the DNA methyltransferases activity to cause alterations in DNA methylation. In addition, it also perturbs level of cellular metabolites critically involved in different epigenetic processes like acetylation and methylation of histone code and DNA hypo or hypermethylation. Interestingly, these modifications may persist through downstream generations and result in the transgenerational epigenomic inheritance. This phenomenon of subsequent transfer of epigenetic modifications is mainly associated with the germ cells and relies on the germline stability of the epigenetic states. Overall, the recent literature supports, and arguably strengthens, the contention that air pollution might contribute to transmission of epimutations from gametes to zygotes by involving mitochondrial DNA, parental allele imprinting, histone withholding and non-coding RNAs. However, larger prospective studies using innovative, integrated epigenome-wide metabolomic strategy are highly warranted to assess the air pollution induced transgenerational epigenetic inheritance and associated human health effects.
Collapse
Affiliation(s)
- Anushi Shukla
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajat Kumar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Irina Y Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
72
|
Schwab DB, Casasa S, Moczek AP. On the Reciprocally Causal and Constructive Nature of Developmental Plasticity and Robustness. Front Genet 2019; 9:735. [PMID: 30687394 PMCID: PMC6335315 DOI: 10.3389/fgene.2018.00735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/22/2018] [Indexed: 01/29/2023] Open
Abstract
Exposure to environmental variation is a characteristic feature of normal development, one that organisms can respond to during their lifetimes by actively adjusting or maintaining their phenotype in order to maximize fitness. Plasticity and robustness have historically been studied by evolutionary biologists through quantitative genetic and reaction norm approaches, while more recent efforts emerging from evolutionary developmental biology have begun to characterize the molecular and developmental genetic underpinnings of both plastic and robust trait formation. In this review, we explore how our growing mechanistic understanding of plasticity and robustness is beginning to force a revision of our perception of both phenomena, away from our conventional view of plasticity and robustness as opposites along a continuum and toward a framework that emphasizes their reciprocal, constructive, and integrative nature. We do so in three sections. Following an introduction, the first section looks inward and reviews the genetic, epigenetic, and developmental mechanisms that enable organisms to sense and respond to environmental conditions, maintaining and adjusting trait formation in the process. In the second section, we change perspective and look outward, exploring the ways in which organisms reciprocally shape their environments in ways that influence trait formation, and do so through the lens of behavioral plasticity, niche construction, and host-microbiota interactions. In the final section, we revisit established plasticity and robustness concepts in light of these findings, and highlight research opportunities to further advance our understanding of the causes, mechanisms, and consequences of these ubiquitous, and interrelated, phenomena.
Collapse
|
73
|
Scher MS. Fetal neurology: Principles and practice with a life-course perspective. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:1-29. [PMID: 31324306 DOI: 10.1016/b978-0-444-64029-1.00001-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clinical service, educational, and research components of a fetal/neonatal neurology program are anchored by the disciplines of developmental origins of health and disease and life-course science as programmatic principles. Prenatal participation provides perspectives on maternal, fetal, and placental contributions to health or disease for fetal and subsequent neonatal neurology consultations. This program also provides an early-life diagnostic perspective for neurologic specialties concerned with brain health and disease throughout childhood and adulthood. Animal models and birth cohort studies have demonstrated how the science of epigenetics helps to understand gene-environment interactions to better predict brain health or disease. Fetal neurology consultations provide important diagnostic contributions during critical or sensitive periods of brain development when future neurotherapeutic interventions will maximize adaptive neuroplasticity. Age-specific normative neuroinformatics databases that employ computer-based strategies to integrate clinical/demographic, neuroimaging, neurophysiologic, and genetic datasets will more accurately identify either symptomatic patients or those at risk for brain disorders who would benefit from preventive, rescue, or reparative treatment choices throughout the life span.
Collapse
Affiliation(s)
- Mark S Scher
- Division of Pediatric Neurology, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
74
|
Ben Maamar M, Nilsson E, Sadler-Riggleman I, Beck D, McCarrey JR, Skinner MK. Developmental origins of transgenerational sperm DNA methylation epimutations following ancestral DDT exposure. Dev Biol 2018; 445:280-293. [PMID: 30500333 DOI: 10.1016/j.ydbio.2018.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/01/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
Epigenetic alterations in the germline can be triggered by a number of different environmental factors from diet to toxicants. These environmentally induced germline changes can promote the epigenetic transgenerational inheritance of disease and phenotypic variation. In previous studies, the pesticide DDT was shown to promote the transgenerational inheritance of sperm differential DNA methylation regions (DMRs), also called epimutations, which can in part mediate this epigenetic inheritance. In the current study, the developmental origins of the transgenerational DMRs during gametogenesis have been investigated. Male control and DDT lineage F3 generation rats were used to isolate embryonic day 16 (E16) prospermatogonia, postnatal day 10 (P10) spermatogonia, adult pachytene spermatocytes, round spermatids, caput epididymal spermatozoa, and caudal sperm. The DMRs between the control versus DDT lineage samples were determined at each developmental stage. The top 100 statistically significant DMRs at each stage were compared and the developmental origins of the caudal epididymal sperm DMRs were assessed. The chromosomal locations and genomic features of the different stage DMRs were analyzed. Although previous studies have demonstrated alterations in the DMRs of primordial germ cells (PGCs), the majority of the DMRs identified in the caudal sperm originated during the spermatogonia stages in the testis. Interestingly, a cascade of epigenetic alterations initiated in the PGCs is required to alter the epigenetic programming during spermatogenesis to obtain the sperm epigenetics involved in the epigenetic transgenerational inheritance phenomenon.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| |
Collapse
|
75
|
Warin M, Hammarström A. Material Feminism and Epigenetics: A ‘Critical Window’ for Engagement? AUSTRALIAN FEMINIST STUDIES 2018. [DOI: 10.1080/08164649.2018.1538695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Megan Warin
- Department of Sociology, Criminology and Gender Studies, School of Social Sciences and The Fay Gale Centre for Research on Gender, University of Adelaide, Adelaide, Australia
| | - Anne Hammarström
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
76
|
Kamstra JH, Hurem S, Martin LM, Lindeman LC, Legler J, Oughton D, Salbu B, Brede DA, Lyche JL, Aleström P. Ionizing radiation induces transgenerational effects of DNA methylation in zebrafish. Sci Rep 2018; 8:15373. [PMID: 30337673 PMCID: PMC6193964 DOI: 10.1038/s41598-018-33817-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/06/2018] [Indexed: 01/08/2023] Open
Abstract
Ionizing radiation is known to cause DNA damage, yet the mechanisms underlying potential transgenerational effects of exposure have been scarcely studied. Previously, we observed effects in offspring of zebrafish exposed to gamma radiation during gametogenesis. Here, we hypothesize that these effects are accompanied by changes of DNA methylation possibly inherited by subsequent generations. We assessed DNA methylation in F1 embryos (5.5 hours post fertilization) with whole genome bisulfite sequencing following parental exposure to 8.7 mGy/h for 27 days and found 5658 differentially methylated regions (DMRs). DMRs were predominantly located at known regulatory regions, such as gene promoters and enhancers. Pathway analysis indicated the involvement of DMRs related to similar pathways found with gene expression analysis, such as development, apoptosis and cancers, which could be linked to previous observed developmental defects and genomic instability in the offspring. Follow up of 19 F1 DMRs in F2 and F3 embryos revealed persistent effects up to the F3 generation at 5 regions. These results indicate that ionizing radiation related effects in offspring can be linked to DNA methylation changes that partly can persist over generations. Monitoring DNA methylation could serve as a biomarker to provide an indication of ancestral exposures to ionizing radiation.
Collapse
Affiliation(s)
- Jorke H Kamstra
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway.
| | - Selma Hurem
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway
| | - Leonardo Martin Martin
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway.,University of Camagüey, Faculty of Agropecuary Sciences, Camagüey, 70100, Cuba
| | - Leif C Lindeman
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway.,Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Juliette Legler
- Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Utrecht University, Institute for Risk Assessment Sciences, 3508, TD, Utrecht, The Netherlands
| | - Deborah Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Brit Salbu
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Dag Anders Brede
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Jan Ludvig Lyche
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway
| | - Peter Aleström
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway
| |
Collapse
|
77
|
Heindel JJ. The developmental basis of disease: Update on environmental exposures and animal models. Basic Clin Pharmacol Toxicol 2018; 125 Suppl 3:5-13. [PMID: 30265444 DOI: 10.1111/bcpt.13118] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
At the Prenatal Programming and Toxicity (PPTox) Conference I in 2008, I presented an overview of the developmental origins of health and disease field focusing on environmental chemical exposures and disease outcomes. At that time, I noted that the field was getting off the ground with a focus on developmental exposure to a small number of endocrine disrupting chemicals (EDCs) and disease outcomes across the lifespan in animal models. In this update, I note that the DOHaD field has changed significantly over the last decade. There are new windows of susceptibility including preconception, prepuberty, a focus on the mother and not just the offspring, and a significant focus on the new field of epigenetic transgenerational inheritance. New disease focus areas have sprung up including obesity, type 2 diabetes and fatty liver disease, all with a connection to developmental exposures to EDCs. There is also a focus on the study of new EDCs, molecular mechanisms, the development of new biomarkers of exposure and disease outcomes and studies focusing on intervention and prevention studies.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Program on Endocrine Disruption Strategies, Commonweal, Bolinas, California
| |
Collapse
|
78
|
Penkler M, Müller R. [Not Available]. BERICHTE ZUR WISSENSCHAFTSGESCHICHTE 2018; 41:258-278. [PMID: 32495359 DOI: 10.1002/bewi.201801902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Michael Penkler
- Munich Center for Technology in Society, Technische Universität München, Arcisstraße 21, D-, 80333, München
| | - Ruth Müller
- Munich Center for Technology in Society, Technische Universität München, Arcisstraße 21, D-, 80333, München
| |
Collapse
|
79
|
Affiliation(s)
- Denis Noble
- University of Oxford, Oxford, United Kingdom
| |
Collapse
|
80
|
Jeremias G, Barbosa J, Marques SM, Asselman J, Gonçalves FJM, Pereira JL. Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol Ecol 2018; 27:2790-2806. [DOI: 10.1111/mec.14727] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/23/2022]
Affiliation(s)
| | - João Barbosa
- Department of Biology; University of Aveiro; Aveiro Portugal
| | - Sérgio M. Marques
- Department of Biology; University of Aveiro; Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies; University of Aveiro; Aveiro Portugal
| | - Jana Asselman
- Laboratory for Environmental Toxicology and Aquatic Ecology (GhEnToxLab); Ghent University; Ghent Belgium
| | - Fernando J. M. Gonçalves
- Department of Biology; University of Aveiro; Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies; University of Aveiro; Aveiro Portugal
| | - Joana L. Pereira
- Department of Biology; University of Aveiro; Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies; University of Aveiro; Aveiro Portugal
| |
Collapse
|
81
|
Curtis EM, Suderman M, Phillips CM, Relton C, Harvey NC. Early-life dietary and epigenetic influences on childhood musculoskeletal health: Update on the UK component of the ALPHABET project. NUTR BULL 2018. [DOI: 10.1111/nbu.12322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- E. M. Curtis
- MRC Lifecourse Epidemiology Unit, University of Southampton; Southampton UK
| | - M. Suderman
- MRC Integrative Epidemiology Unit, University of Bristol; Bristol UK
| | - C. M. Phillips
- HRB Centre for Diet and Health Research, University College Dublin; Dublin Ireland
| | - C. Relton
- MRC Integrative Epidemiology Unit, University of Bristol; Bristol UK
| | - N. C. Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton; Southampton UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust; Southampton UK
| |
Collapse
|
82
|
Li Y, Lei X, Guo W, Wu S, Duan Y, Yang X, Yang X. Transgenerational endotoxin tolerance-like effect caused by paternal dietary Astragalus polysaccharides in broilers' jejunum. Int J Biol Macromol 2018; 111:769-779. [DOI: 10.1016/j.ijbiomac.2018.01.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 02/08/2023]
|
83
|
Lee HJ, Choi NY, Park YS, Lee SW, Bang JS, Lee Y, Ryu JS, Choi SJ, Lee SH, Kim GS, Chung HW, Ko K, Lee K, Ko K. Multigenerational effects of maternal cigarette smoke exposure during pregnancy on sperm counts of F1 and F2 male offspring. Reprod Toxicol 2018; 78:169-177. [PMID: 29689290 DOI: 10.1016/j.reprotox.2018.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/03/2018] [Accepted: 04/18/2018] [Indexed: 11/15/2022]
Abstract
Animal models and human studies showed that in utero cigarette smoke exposure decreases sperm counts of offspring. This study used a mouse model to investigate the effects of maternal exposure to cigarette smoke on reproductive systems in F1 and F2 male offspring. Female ICR mice were exposed either to clean air or to cigarette smoke during pregnancy at the post-implantation stage. Epididymal sperm counts were decreased in a cigarette smoke dose-dependent manner in F1 (by 40-60%) and F2 males (by 23-40%) at postnatal day 56. In F1, the seminiferous epithelium heights were lower in the cigarette smoke-exposed groups than in the control group, and these effects were sustained in F2 males. Results suggest that maternal cigarette smoke exposure during pregnancy can have a multigenerational adverse effect on sperm counts in male offspring, which is mediated through in utero exposure of fetal germ cells to cigarette smoke.
Collapse
Affiliation(s)
- Hye Jeong Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea; Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea
| | - Na Young Choi
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea; Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea
| | - Yo Seph Park
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea; Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea
| | - Seung-Won Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea; Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea
| | - Jin Seok Bang
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea; Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea
| | - Yukyeong Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea; Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea
| | - Jae-Sung Ryu
- Stem Cell Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Seong-Jin Choi
- Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea
| | - Sang-Hyub Lee
- Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea
| | - Gwang Soo Kim
- Department of Nuclear Medicine, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Hyun Woo Chung
- Department of Nuclear Medicine, Konkuk University Medical Center, Seoul, Republic of Korea; Department of Nuclear Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kisung Ko
- Department of Medicine, Therapeutic Protein Engineering Lab, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Kyuhong Lee
- Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea; Department of Human and Environment Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea; Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea; Research Institute of Medical Science, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
84
|
The transgenerational effect of maternal and paternal F1 low birth weight on bone health of second and third generation offspring. J Dev Orig Health Dis 2018; 10:144-153. [PMID: 29631641 DOI: 10.1017/s204017441800020x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Low birth weight programs diseases in adulthood, including adverse bone health. These diseases can have intergenerational and transgenerational origins, whereby transmission to subsequent generations occurs via both parental lines. Uteroplacental insufficiency surgery (Restricted) or sham surgery (Control) was performed on gestational day 18, in F0 Wistar-Kyoto rats. F1 Restricted males and females mated with breeders in order to generate F2 offspring of maternal and paternal lineages. F2 males and females were randomly selected for breeding to generate F3 offspring. F2 and F3 offspring did not have differences in birth weight irrespective of F1 low birth weight and parental line. Maternal line females had minor alterations to trabecular content and density at 6 months, these differences were not sustained at 12 months. Maternal line males had changes to trabecular content at 6 and 12 months; however, differences were no longer present at 16 months. Despite altered bone geometry at 12 and 16 months, bending strength remained unaffected at both ages. Bone health of paternal line females was not affected at 6 and 12 months. Paternal line males at 6 months had changes to trabecular and cortical content; cortical thickness, periosteal circumference and bending strength; however, these differences were no longer sustained at 12 and 16 months. Our data demonstrate that there is no transgenerational transmission of adverse bone health in F2 and F3 offspring, derived from low F1 birth weight females and males. Our results are novel, as bone health across generations and both parental lines has not been investigated in a model of low birth weight due to uteroplacental insufficiency.
Collapse
|
85
|
Nilsson EE, Sadler-Riggleman I, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy016. [PMID: 30038800 PMCID: PMC6051467 DOI: 10.1093/eep/dvy016] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/01/2018] [Accepted: 05/15/2018] [Indexed: 05/21/2023]
Abstract
Ancestral environmental exposures such as toxicants, abnormal nutrition or stress can promote the epigenetic transgenerational inheritance of disease and phenotypic variation. These environmental factors induce the epigenetic reprogramming of the germline (sperm and egg). The germline epimutations can in turn increase disease susceptibility of subsequent generations of the exposed ancestors. A variety of environmental factors, species and exposure specificity of this induced epigenetic transgenerational inheritance of disease is discussed with a consideration of generational toxicology. The molecular mechanisms and processes involved in the ability of these inherited epimutations to increase disease susceptibility are discussed. In addition to altered disease susceptibility, the potential impact of the epigenetic inheritance on phenotypic variation and evolution is considered. Observations suggest environmentally induced epigenetic transgenerational inheritance of disease is a critical aspect of disease etiology, toxicology and evolution that needs to be considered.
Collapse
Affiliation(s)
- Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
- Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +1-509-335-1524; Fax: +1-509-335-2176; E-mail:
| |
Collapse
|
86
|
Ben Maamar M, Sadler-Riggleman I, Beck D, Skinner MK. Epigenetic Transgenerational Inheritance of Altered Sperm Histone Retention Sites. Sci Rep 2018; 8:5308. [PMID: 29593303 PMCID: PMC5871750 DOI: 10.1038/s41598-018-23612-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/12/2018] [Indexed: 12/18/2022] Open
Abstract
A variety of environmental toxicants and factors have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. Epigenetic alterations in the germline (sperm or egg) are required to transmit transgenerational phenotypes. The current study was designed to investigate the potential role of histones in sperm to help mediate the epigenetic transgenerational inheritance. The agricultural fungicide vinclozolin and the pesticide DDT (dichlorodiphenyltrichloroethane) were independently used to promote the epigenetic transgenerational inheritance of disease. Purified cauda epididymal sperm were collected from the transgenerational F3 generation control and exposure lineage male rats for histone analysis. A reproducible core of histone H3 retention sites was observed using an H3 chromatin immunoprecipitation (ChIP-Seq) analysis in control lineage sperm. Interestingly, the same core group of H3 retention sites plus additional differential histone retention sites (DHRs) were observed in the F3 generation exposure lineage sperm. Although new histone H3 retention sites were observed, negligible change in histone modification (methylation of H3K27me3) was observed between the control and exposure lineages. Observations demonstrate that in addition to alterations in sperm DNA methylation and ncRNA previously identified, the induction of differential histone retention sites (DHRs) also appear to be involved in environmentally induced epigenetic transgenerational inheritance.
Collapse
Affiliation(s)
- Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
87
|
Skinner MK, Ben Maamar M, Sadler-Riggleman I, Beck D, Nilsson E, McBirney M, Klukovich R, Xie Y, Tang C, Yan W. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 2018; 11:8. [PMID: 29482626 PMCID: PMC5827984 DOI: 10.1186/s13072-018-0178-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/16/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Environmental toxicants such as DDT have been shown to induce the epigenetic transgenerational inheritance of disease (e.g., obesity) through the germline. The current study was designed to investigate the DDT-induced concurrent alterations of a number of different epigenetic processes including DNA methylation, non-coding RNA (ncRNA) and histone retention in sperm. METHODS Gestating females were exposed transiently to DDT during fetal gonadal development, and then, the directly exposed F1 generation, the directly exposed germline F2 generation and the transgenerational F3 generation sperm were investigated. RESULTS DNA methylation and ncRNA were altered in each generation sperm with the direct exposure F1 and F2 generations being predominantly distinct from the F3 generation epimutations. The piRNA and small tRNA were the most predominant classes of ncRNA altered. A highly conserved set of histone retention sites were found in the control lineage generations which was not significantly altered between generations, but a large number of new histone retention sites were found only in the transgenerational generation DDT lineage sperm. CONCLUSIONS Therefore, all three different epigenetic processes were concurrently altered as DDT induced the epigenetic transgenerational inheritance of sperm epimutations. The direct exposure generations sperm epigenetic alterations were distinct from the transgenerational sperm epimutations. The genomic features and gene associations with the epimutations were investigated to help elucidate the integration of these different epigenetic processes. Observations demonstrate all three epigenetic processes are involved in transgenerational inheritance. The different epigenetic processes appear to be integrated in mediating the epigenetic transgenerational inheritance phenomenon.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Margaux McBirney
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Rachel Klukovich
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
88
|
Lakhotia SC. From Heterochromatin to Long Noncoding RNAs in Drosophila: Expanding the Arena of Gene Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:75-118. [PMID: 28815537 DOI: 10.1007/978-981-10-5203-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent years have witnessed a remarkable interest in exploring the significance of pervasive noncoding transcripts in diverse eukaryotes. Classical cytogenetic studies using the Drosophila model system unraveled the perplexing attributes and "functions" of the "gene"-poor heterochromatin. Recent molecular studies in the fly model are likewise revealing the very diverse and significant roles played by long noncoding RNAs (lncRNAs) in development, gene regulation, chromatin organization, cell and nuclear architecture, etc. There has been a rapid increase in the number of identified lncRNAs, although a much larger number still remains unknown. The diversity of modes of actions and functions of the limited number of Drosophila lncRNAs, which have been examined, already reflects the profound roles of such RNAs in generating and sustaining the biological complexities of eukaryotes. Several of the known Drosophila lncRNAs originate as independent sense or antisense transcripts from promoter or intergenic, intronic, or 5'/3'-UTR regions, while many of them are independent genes that produce only lncRNAs or coding as well as noncoding RNAs. The different lncRNAs affect chromatin organization (local or large-scale pan-chromosomal), transcription, RNA processing/stability, or translation either directly through interaction with their target DNA sequences or indirectly by acting as intermediary molecules for specific regulatory proteins or may act as decoys/sinks, or storage sites for specific proteins or groups of proteins, or may provide a structural framework for the assembly of substructures in nucleus/cytoplasm. It is interesting that many of the "functions" alluded to heterochromatin in earlier cytogenetic studies appear to find correlates with the known subtle as well as far-reaching actions of the different small and long noncoding RNAs. Further studies exploiting the very rich and powerful genetic and molecular resources available for the Drosophila model are expected to unravel the mystery underlying the long reach of ncRNAs.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
89
|
Andersen GB, Tost J. A Summary of the Biological Processes, Disease-Associated Changes, and Clinical Applications of DNA Methylation. Methods Mol Biol 2018; 1708:3-30. [PMID: 29224136 DOI: 10.1007/978-1-4939-7481-8_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA methylation at cytosines followed by guanines, CpGs, forms one of the multiple layers of epigenetic mechanisms controlling and modulating gene expression through chromatin structure. It closely interacts with histone modifications and chromatin remodeling complexes to form the local genomic and higher-order chromatin landscape. DNA methylation is essential for proper mammalian development, crucial for imprinting and plays a role in maintaining genomic stability. DNA methylation patterns are susceptible to change in response to environmental stimuli such as diet or toxins, whereby the epigenome seems to be most vulnerable during early life. Changes of DNA methylation levels and patterns have been widely studied in several diseases, especially cancer, where interest has focused on biomarkers for early detection of cancer development, accurate diagnosis, and response to treatment, but have also been shown to occur in many other complex diseases. Recent advances in epigenome engineering technologies allow now for the large-scale assessment of the functional relevance of DNA methylation. As a stable nucleic acid-based modification that is technically easy to handle and which can be analyzed with great reproducibility and accuracy by different laboratories, DNA methylation is a promising biomarker for many applications.
Collapse
Affiliation(s)
- Gitte Brinch Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France.
| |
Collapse
|
90
|
Denham J. Exercise and epigenetic inheritance of disease risk. Acta Physiol (Oxf) 2018; 222. [PMID: 28371392 DOI: 10.1111/apha.12881] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Epigenetics is the study of gene expression changes that occur in the absence of altered genotype. Current evidence indicates a role for environmentally induced alterations to epigenetic modifications leading to health and disease changes across multiple generations. This phenomenon is called intergenerational or transgenerational epigenetic inheritance of health or disease. Environmental insults, in the form of toxins, plastics and particular dietary interventions, perturb the epigenetic landscape and influence the health of F1 through to F4 generations in rodents. There is, however, the possibility that healthy lifestyles and environmental factors, such as exercise training, could lead to favourable, heritable epigenetic modifications that augment transcriptional programmes protective of disease, including metabolic dysfunction, heart disease and cancer. The health benefits conferred by regular physical exercise training are unquestionable, yet many of the molecular changes may have heritable health implications for future generations. Similar to other environmental factors, exercise modulates the epigenome of somatic cells and researchers are beginning to study exercise epigenetics in germ cells. The germ cell epigenetic modifications affected by exercise offer a molecular mechanism for the inheritance of health and disease risk. The aims of this review are to: (i) provide an update on the expanding field of exercise epigenetics; (ii) offer an overview of data on intergenerational/transgenerational epigenetic inheritance of disease by environmental insults; (iii) to discuss the potential of exercise-induced intergenerational inheritance of health and disease risk; and finally, outline potential mechanisms and avenues for future work on epigenetic inheritance through exercise.
Collapse
Affiliation(s)
- J. Denham
- School of Science and Technology; University of New England; Armidale NSW Australia
| |
Collapse
|
91
|
Rattan S, Brehm E, Gao L, Niermann S, Flaws JA. Prenatal exposure to di(2-ethylhexyl) phthalate disrupts ovarian function in a transgenerational manner in female mice. Biol Reprod 2018; 98:130-145. [PMID: 29165555 PMCID: PMC5803793 DOI: 10.1093/biolre/iox154] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/26/2017] [Accepted: 11/17/2017] [Indexed: 01/04/2023] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer found in polyvinyl chloride products such as vinyl flooring, plastic food containers, medical devices, and children's toys. DEHP is a ubiquitous environmental contaminant and is a known endocrine disrupting chemical. Little is known about the effects of prenatal DEHP exposure on the ovary and whether effects occur in subsequent generations. Thus, we tested the hypothesis that prenatal exposure to DEHP disrupts ovarian functions in the F1, F2, and F3 generations of female mice. To test this hypothesis, pregnant CD-1 mice were orally dosed with corn oil (vehicle control) or DEHP (20 and 200 μg/kg/day and 200, 500, and 750 mg/kg/day) daily from gestation day 10.5 until birth (7-28 dams/treatment group). F1 females were mated with untreated males to obtain the F2 generation, and F2 females were mated with untreated males to produce the F3 generation. On postnatal days 1, 8, 21, and 60, ovaries were collected and used for histological evaluation of follicle numbers and sera were used to measure progesterone, testosterone, 17β-estradiol, luteinizing hormone, and follicle stimulating hormone levels. In the F1 generation, prenatal exposure to DEHP disrupted body and organ weights, decreased folliculogenesis, and increased serum 17β-estradiol levels. In the F2 generation, exposure to DEHP decreased body and organ weights, dysregulated folliculogenesis, and disrupted serum progesterone levels. In the F3 generation, DEHP exposure accelerated folliculogenesis. These data suggest that prenatal exposure to DEHP leads to adverse multigenerational and transgenerational effects on ovarian function.
Collapse
Affiliation(s)
| | | | | | - Sarah Niermann
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Illinois, USA
| |
Collapse
|
92
|
Frías-Lasserre D, Villagra CA. The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Front Microbiol 2017; 8:2483. [PMID: 29312192 PMCID: PMC5744636 DOI: 10.3389/fmicb.2017.02483] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Neo-Darwinian explanations of organic evolution have settled on mutation as the principal factor in producing evolutionary novelty. Mechanistic characterizations have been also biased by the classic dogma of molecular biology, where only proteins regulate gene expression. This together with the rearrangement of genetic information, in terms of genes and chromosomes, was considered the cornerstone of evolution at the level of natural populations. This predominant view excluded both alternative explanations and phenomenologies that did not fit its paradigm. With the discovery of non-coding RNAs (ncRNAs) and their role in the control of genetic expression, new mechanisms arose providing heuristic power to complementary explanations to evolutionary processes overwhelmed by mainstream genocentric views. Viruses, epimutation, paramutation, splicing, and RNA editing have been revealed as paramount functions in genetic variations, phenotypic plasticity, and diversity. This article discusses how current epigenetic advances on ncRNAs have changed the vision of the mechanisms that generate variation, how organism-environment interaction can no longer be underestimated as a driver of organic evolution, and how it is now part of the transgenerational inheritance and evolution of species.
Collapse
Affiliation(s)
- Daniel Frías-Lasserre
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | |
Collapse
|
93
|
Was the Watchmaker Blind? Or Was She One-Eyed? BIOLOGY 2017; 6:biology6040047. [PMID: 29261138 PMCID: PMC5745452 DOI: 10.3390/biology6040047] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022]
Abstract
The question whether evolution is blind is usually presented as a choice between no goals at all ('the blind watchmaker') and long-term goals which would be external to the organism, for example in the form of special creation or intelligent design. The arguments either way do not address the question whether there are short-term goals within rather than external to organisms. Organisms and their interacting populations have evolved mechanisms by which they can harness blind stochasticity and so generate rapid functional responses to environmental challenges. They can achieve this by re-organising their genomes and/or their regulatory networks. Epigenetic as well as DNA changes are involved. Evolution may have no foresight, but it is at least partially directed by organisms themselves and by the populations of which they form part. Similar arguments support partial direction in the evolution of behavior.
Collapse
|
94
|
Patkin E, Grudinina N, Sasina L, Noniashvili E, Pavlinova L, Suchkova I, Kustova M, Kolmakov N, Van Truong T, Sofronov G. Asymmetric DNA methylation between sister chromatids of metaphase chromosomes in mouse embryos upon bisphenol A action. Reprod Toxicol 2017; 74:1-9. [DOI: 10.1016/j.reprotox.2017.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/24/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022]
|
95
|
Lakhotia SC. Non-coding RNAs demystify constitutive heterochromatin as essential modulator of epigenotype. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0221-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
96
|
Vaiserman AM, Koliada AK, Jirtle RL. Non-genomic transmission of longevity between generations: potential mechanisms and evidence across species. Epigenetics Chromatin 2017; 10:38. [PMID: 28750655 PMCID: PMC5531095 DOI: 10.1186/s13072-017-0145-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
Accumulating animal and human data indicate that environmental exposures experienced during sensitive developmental periods may strongly influence risk of adult disease. Moreover, the effects triggered by developmental environmental cues can be transgenerationally transmitted, potentially affecting offspring health outcomes. Increasing evidence suggests a central role of epigenetic mechanisms (heritable alterations in gene expression occurring without changes in underlying DNA sequence) in mediating these effects. This review summarizes the findings from animal models, including worms, insects, and rodents, and also from human studies, indicating that lifespan and longevity-associated characteristics can be transmitted across generations via non-genetic factors.
Collapse
Affiliation(s)
- Alexander M Vaiserman
- D.F. Chebotarev Institute of Gerontology, NAMS, Vyshgorodskaya st. 67, Kiev, 04114, Ukraine.
| | - Alexander K Koliada
- D.F. Chebotarev Institute of Gerontology, NAMS, Vyshgorodskaya st. 67, Kiev, 04114, Ukraine
| | - Randy L Jirtle
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.,Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
97
|
Rothstein MA, Harrell HL, Marchant GE. Transgenerational epigenetics and environmental justice. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx011. [PMID: 29492313 PMCID: PMC5804551 DOI: 10.1093/eep/dvx011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 05/20/2023]
Abstract
Human transmission to offspring and future generations of acquired epigenetic modifications has not been definitively established, although there are several environmental exposures with suggestive evidence. This article uses three examples of hazardous substances with greater exposures in vulnerable populations: pesticides, lead, and diesel exhaust. It then considers whether, if there were scientific evidence of transgenerational epigenetic inheritance, there would be greater attention given to concerns about environmental justice in environmental laws, regulations, and policies at all levels of government. To provide a broader perspective on environmental justice the article discusses two of the most commonly cited approaches to environmental justice. John Rawls's theory of justice as fairness, a form of egalitarianism, is frequently invoked for the principle that differential treatment of individuals is justified only if actions are designed to benefit those with the greatest need. Another theory, the capabilities approach of Amartya Sen and Martha Nussbaum, focuses on whether essential capabilities of society, such as life and health, are made available to all individuals. In applying principles of environmental justice the article considers whether there is a heightened societal obligation to protect the most vulnerable individuals from hazardous exposures that could adversely affect their offspring through epigenetic mechanisms. It concludes that unless there were compelling evidence of transgenerational epigenetic harms, it is unlikely that there would be a significant impetus to adopt new policies to prevent epigenetic harms by invoking principles of environmental justice.
Collapse
Affiliation(s)
- Mark A. Rothstein
- Institute for Bioethics, Health Policy and Law, University of Louisville School of Medicine, 501 East Broadway #310, Louisville, KY 40202, USA
| | - Heather L. Harrell
- Institute for Bioethics, Health Policy and Law, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Gary E. Marchant
- Center for Law, Science & Innovation, Sandra Day O'Connor College of Law, Arizona State University, Phoenix, AZ 85004, USA
| |
Collapse
|
98
|
Beck D, Sadler-Riggleman I, Skinner MK. Generational comparisons (F1 versus F3) of vinclozolin induced epigenetic transgenerational inheritance of sperm differential DNA methylation regions (epimutations) using MeDIP-Seq. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx016. [PMID: 29147574 PMCID: PMC5685552 DOI: 10.1093/eep/dvx016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Environmentally induced epigenetic transgenerational inheritance of disease and phenotypic variation has been shown to involve DNA methylation alterations in the germline (e.g. sperm). These differential DNA methylation regions (DMRs) are termed epimutations and in part transmit the transgenerational phenotypes. The agricultural fungicide vinclozolin exposure of a gestating female rat has previously been shown to promote transgenerational disease and epimutations in F3 generation (great-grand-offspring) animals. The current study was designed to investigate the actions of direct fetal exposure on the F1 generation rat sperm DMRs compared to the F3 transgenerational sperm DMRs. A protocol involving methylated DNA immunoprecipitation (MeDIP) followed by next-generation sequencing (Seq) was used in the current study. Bioinformatics analysis of the MeDIP-Seq data was developed and several different variations in the bioinformatic analysis were evaluated. Observations indicate needs to be considered. Interestingly, the F1 generation DMRs were found to be fewer in number and for the most part distinct from the F3 generation epimutations. Observations suggest the direct exposure induced F1 generation sperm DMRs appear to promote in subsequent generations alterations in the germ cell developmental programming that leads to the distinct epimutations in the F3 generation. This may help explain the differences in disease and phenotypes between the direct exposure F1 generation and transgenerational F3 generation. Observations demonstrate a distinction between the direct exposure versus transgenerational epigenetic programming induced by environmental exposures and provide insights into the molecular mechanisms involved in the epigenetic transgenerational inheritance phenomenon.
Collapse
Affiliation(s)
- Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
- Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +1-509-335-1524; Fax: +1-509-335-2176; E-mail:
| |
Collapse
|
99
|
Transgenerational inheritance of neurobehavioral and physiological deficits from developmental exposure to benzo[a]pyrene in zebrafish. Toxicol Appl Pharmacol 2017; 329:148-157. [PMID: 28583304 DOI: 10.1016/j.taap.2017.05.033] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Benzo[a]pyrene (B[a]P) is a well-known genotoxic polycylic aromatic compound whose toxicity is dependent on signaling via the aryl hydrocarbon receptor (AHR). It is unclear to what extent detrimental effects of B[a]P exposures might impact future generations and whether transgenerational effects might be AHR-dependent. This study examined the effects of developmental B[a]P exposure on 3 generations of zebrafish. Zebrafish embryos were exposed from 6 to 120h post fertilization (hpf) to 5 and 10μM B[a]P and raised in chemical-free water until adulthood (F0). Two generations were raised from F0 fish to evaluate transgenerational inheritance. Morphological, physiological and neurobehavioral parameters were measured at two life stages. Juveniles of the F0 and F2 exhibited hyper locomotor activity, decreased heartbeat and mitochondrial function. B[a]P exposure during development resulted in decreased global DNA methylation levels and generally reduced expression of DNA methyltransferases in wild type zebrafish, with the latter effect largely reversed in an AHR2-null background. Adults from the F0 B[a]P exposed lineage displayed social anxiety-like behavior. Adults in the F2 transgeneration manifested gender-specific increased body mass index (BMI), increased oxygen consumption and hyper-avoidance behavior. Exposure to benzo[a]pyrene during development resulted in transgenerational inheritance of neurobehavioral and physiological deficiencies. Indirect evidence suggested the potential for an AHR2-dependent epigenetic route.
Collapse
|
100
|
Wang KCW, Botting KJ, Zhang S, McMillen IC, Brooks DA, Morrison JL. Akt signaling as a mediator of cardiac adaptation to low birth weight. J Endocrinol 2017; 233:R81-R94. [PMID: 28219933 DOI: 10.1530/joe-17-0039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022]
Abstract
Intrauterine insults, such as poor nutrition and placental insufficiency, can alter cardiomyocyte development, and this can have significant long-term implications for heart health. Consequently, epidemiological studies have shown that low-birth-weight babies have an increased risk of death from cardiovascular disease in adult life. In addition, intrauterine growth restriction can result in increased left ventricular hypertrophy, which is the strongest predictor for poor health outcomes in cardiac patients. The mechanisms responsible for these associations are not clear, but a suboptimal intrauterine environment can program alternative expression of genes such as cardiac IGF-2/H19, IGF-2R and AT1R through either an increase or decrease in DNA methylation or histone acetylation at specific loci. Furthermore, hypoxia and other intrauterine insults can also activate the IGF-1 receptor via IGF-1 and IGF-2, and the AT1 receptor via angiotensin signaling pathways; both of which can result in the phosphorylation of Akt and the activation of a range of downstream pathways. In turn, Akt activation can increase cardiac angiogenesis and cardiomyocyte apoptosis and promote a reversion of metabolism in postnatal life to a fetal phenotype, which involves increased reliance on glucose. Cardiac Akt can also be indirectly regulated by microRNAs and conversely can target microRNAs that will eventually affect other specific cardiac genes and proteins. This review aims to discuss our understanding of this complex network of interactions, which may help explain the link between low birth weight and the increased risk of cardiovascular disease in adult life.
Collapse
Affiliation(s)
- Kimberley C W Wang
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Song Zhang
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research GroupSchool of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|