51
|
Behnen M, Murk K, Kursula P, Cappallo-Obermann H, Rothkegel M, Kierszenbaum AL, Kirchhoff C. Testis-expressed profilins 3 and 4 show distinct functional characteristics and localize in the acroplaxome-manchette complex in spermatids. BMC Cell Biol 2009; 10:34. [PMID: 19419568 PMCID: PMC2694148 DOI: 10.1186/1471-2121-10-34] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 05/06/2009] [Indexed: 12/03/2022] Open
Abstract
Background Multiple profilin isoforms exist in mammals; at least four are expressed in the mammalian testis. The testis-specific isoforms profilin-3 (PFN3) and profilin-4 (PFN4) may have specialized roles in spermatogenic cells which are distinct from known functions fulfilled by the "somatic" profilins, profilin-1 (PFN1) and profilin-2 (PFN2). Results Ligand interactions and spatial distributions of PFN3 and PFN4 were compared by biochemical, molecular and immunological methods; PFN1 and PFN2 were employed as controls. β-actin, phosphoinositides, poly-L-proline and mDia3, but not VASP, were confirmed as in vitro interaction partners of PFN3. In parallel experiments, PFN4 bound to selected phosphoinositides but not to poly-L-proline, proline-rich proteins, or actin. Immunofluorescence microscopy of PFN3 and PFN4 revealed distinct subcellular locations in differentiating spermatids. Both were associated first with the acroplaxome and later with the transient manchette. Predicted 3D structures indicated that PFN3 has the actin-binding site conserved, but retains only approximately half of the common poly-L-proline binding site. PFN4, in comparison, has lost both, polyproline and actin binding sites completely, which is well in line with the experimental data. Conclusion The testis-specific isoform PFN3 showed major hallmarks of the well characterized "somatic" profilin isoforms, albeit with distinct binding affinities. PFN4, on the other hand, did not interact with actin or polyproline in vitro. Rather, it seemed to be specialized for phospholipid binding, possibly providing cellular functions which are distinct from actin dynamics regulation.
Collapse
Affiliation(s)
- Martina Behnen
- Department of Andrology, University Hospital Hamburg-Eppendorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
52
|
Bae YH, Ding Z, Zou L, Wells A, Gertler F, Roy P. Loss of profilin-1 expression enhances breast cancer cell motility by Ena/VASP proteins. J Cell Physiol 2009; 219:354-64. [PMID: 19115233 DOI: 10.1002/jcp.21677] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We previously showed that silencing profilin-1 (Pfn1) expression increases breast cancer cell motility, but the underlying mechanisms have not been explored. Herein, we demonstrate that loss of Pfn1 expression leads to slower but more stable lamellipodial protrusion thereby enhancing the net protrusion rate and the overall motility of MDA-MB-231 breast cancer cells. Interestingly, MDA-MB-231 cells showed dramatic enrichment of VASP at their leading edge when Pfn1 expression was downregulated and this observation was also reproducible in other cell types including human mammary epithelial cells and vascular endothelial cells. We further demonstrate that Pfn1 downregulation results in a hyper-motile phenotype of MDA-MB-231 cells in an Ena/VASP-dependent mechanism. Pfn1-depleted cells display a strong colocalization of VASP with lamellipodin (Lpd--a PI(3,4)P(2)-binding protein that has been previously implicated in lamellipodial targeting of Ena/VASP) at the leading edge. Finally, inhibition of PI3-kinase (important for generation of PI(3,4)P(2)) delocalizes VASP from the leading edge. This observation is consistent with a possible involvement of Lpd in enhanced membrane recruitment of VASP that results from loss of Pfn1 expression. Our findings for the first time highlight a possible mechanism of how reduced expression of a pro-migratory molecule like Pfn1 could actually promote motility of breast cancer cells.
Collapse
Affiliation(s)
- Yong Ho Bae
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | | | |
Collapse
|
53
|
Bergmann S, Lang A, Rohde M, Agarwal V, Rennemeier C, Grashoff C, Preissner KT, Hammerschmidt S. Integrin-linked kinase is required for vitronectin-mediated internalization of Streptococcus pneumoniae by host cells. J Cell Sci 2009; 122:256-67. [PMID: 19118218 DOI: 10.1242/jcs.035600] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
By interacting with components of the human host, including extracellular matrix (ECM) proteins, Streptococcus pneumoniae has evolved various strategies for colonization. Here, we characterized the interaction of pneumococci with the adhesive glycoprotein vitronectin and the contribution of this protein to pneumococcal uptake by host cells in an integrin-dependent manner. Specific interaction of S. pneumoniae with the heparin-binding sites of purified multimeric vitronectin was demonstrated by flow cytometry analysis. Host-cell-bound vitronectin promoted pneumococcal adherence to and invasion into human epithelial and endothelial cells. Pneumococci were trapped by microspike-like structures, which were induced upon contact of pneumococci with host-cell-bound vitronectin. Alphavbeta3 integrin was identified as the major cellular receptor for vitronectin-mediated adherence and uptake of pneumococci. Ingestion of pneumococci by host cells via vitronectin required a dynamic actin cytoskeleton and was dependent on integrin-linked kinase (ILK), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt), as demonstrated by gene silencing or in inhibition experiments. In conclusion, pneumococci exploit the vitronectin-alphavbeta3-integrin complex as a cellular receptor for invasion and this integrin-mediated internalization requires the cooperation between the host signalling molecules ILK, PI3K and Akt.
Collapse
Affiliation(s)
- Simone Bergmann
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians University, Pettenkoferstrasse 9a, 80336 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Ezezika OC, Younger NS, Lu J, Kaiser DA, Corbin ZA, Nolen BJ, Kovar DR, Pollard TD. Incompatibility with formin Cdc12p prevents human profilin from substituting for fission yeast profilin: insights from crystal structures of fission yeast profilin. J Biol Chem 2008; 284:2088-97. [PMID: 19028693 DOI: 10.1074/jbc.m807073200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of human profilin-I does not complement the temperature-sensitive cdc3-124 mutation of the single profilin gene in fission yeast Schizosaccharomyces pombe, resulting in death from cytokinesis defects. Human profilin-I and S. pombe profilin have similar affinities for actin monomers, the FH1 domain of fission yeast formin Cdc12p and poly-L-proline (Lu, J., and Pollard, T. D. (2001) Mol. Biol. Cell 12, 1161-1175), but human profilin-I does not stimulate actin filament elongation by formin Cdc12p like S. pombe profilin. Two crystal structures of S. pombe profilin and homology models of S. pombe profilin bound to actin show how the two profilins bind to identical surfaces on animal and yeast actins even though 75% of the residues on the profilin side of the interaction differ in the two profilins. Overexpression of human profilin-I in fission yeast expressing native profilin also causes cytokinesis defects incompatible with viability. Human profilin-I with the R88E mutation has no detectable affinity for actin and does not have this dominant overexpression phenotype. The Y6D mutation reduces the affinity of human profilin-I for poly-l-proline by 1000-fold, but overexpression of Y6D profilin in fission yeast is lethal. The most likely hypotheses to explain the incompatibility of human profilin-I with Cdc12p are differences in interactions with the proline-rich sequences in the FH1 domain of Cdc12p and wider "wings" that interact with actin.
Collapse
Affiliation(s)
- Obidimma C Ezezika
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
Thirty years after its initial characterization and more than 1000 publications listed in PubMed describing its properties, the small (ca 15 kDa) protein profilin continues to surprise us with new, recently discovered functions. Originally described as an actin-binding protein, profilin has now been shown to interact with more than a dozen proteins in mammalian cells. Some of the more recently described and intriguing interactions are within neurons involving a neuronal profilin family member. Profilin is now regarded as a regulator of various cellular processes such as cytoskeletal dynamics, membrane trafficking and nuclear transport. Profilin is a necessary element in key steps of neuronal differentiation and synaptic plasticity, and embodies properties postulated for a synaptic tag. These findings identify profilin as an important factor linking cellular and behavioural plasticity in neural circuits.
Collapse
Affiliation(s)
- Andreas Birbach
- Medical University of Vienna, Währingerstrasse 13a, A-1090 Vienna, Austria.
| |
Collapse
|
56
|
Medina PMB, Worthen RJ, Forsberg LJ, Brenman JE. The actin-binding protein capulet genetically interacts with the microtubule motor kinesin to maintain neuronal dendrite homeostasis. PLoS One 2008; 3:e3054. [PMID: 18725959 PMCID: PMC2516187 DOI: 10.1371/journal.pone.0003054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Accepted: 08/06/2008] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Neurons require precise cytoskeletal regulation within neurites, containing microtubule tracks for cargo transport in axons and dendrites or within synapses containing organized actin. Due to the unique architecture and specialized function of neurons, neurons are particularly susceptible to perturbation of the cytoskeleton. Numerous actin-binding proteins help maintain proper cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS From a Drosophila forward genetic screen, we identified a mutation in capulet--encoding a conserved actin-binding protein--that causes abnormal aggregates of actin within dendrites. Through interaction studies, we demonstrate that simultaneous genetic inactivation of capulet and kinesin heavy chain, a microtubule motor protein, produces elongate cofilin-actin rods within dendrites but not axons. These rods resemble actin-rich structures induced in both mammalian neurodegenerative and Drosophila Alzheimer's models, but have not previously been identified by loss of function mutations in vivo. We further demonstrate that mitochondria, which are transported by Kinesin, have impaired distribution along dendrites in a capulet mutant. While Capulet and Cofilin may biochemically cooperate in certain circumstances, in neuronal dendrites they genetically antagonize each other. CONCLUSIONS/SIGNIFICANCE The present study is the first molecularly defined loss of function demonstration of actin-cofilin rods in vivo. This study suggests that simultaneous, seemingly minor perturbations in neuronal dendrites can synergize producing severe abnormalities affecting actin, microtubules and mitochondria/energy availability in dendrites. Additionally, as >90% of Alzheimer's and Parkinson's cases are sporadic this study suggests mechanisms by which multiple mutations together may contribute to neurodegeneration instead of reliance on single mutations to produce disease.
Collapse
Affiliation(s)
- Paul M. B. Medina
- Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ryan J. Worthen
- Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Lawrence J. Forsberg
- Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Jay E. Brenman
- Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Cell and Developmental Biology, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
57
|
The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis 2008; 26:273-87. [PMID: 18498004 DOI: 10.1007/s10585-008-9174-2] [Citation(s) in RCA: 413] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Accepted: 04/25/2008] [Indexed: 01/01/2023]
Abstract
Cancer cell metastasis is a multi-stage process involving invasion into surrounding tissue, intravasation, transit in the blood or lymph, extravasation, and growth at a new site. Many of these steps require cell motility, which is driven by cycles of actin polymerization, cell adhesion and acto-myosin contraction. These processes have been studied in cancer cells in vitro for many years, often with seemingly contradictory results. The challenge now is to understand how the multitude of in vitro observations relates to the movement of cancer cells in living tumour tissue. In this review we will concentrate on actin protrusion and acto-myosin contraction. We will begin by presenting some general principles summarizing the widely-accepted mechanisms for the co-ordinated regulation of actin polymerization and contraction. We will then discuss more recent studies that investigate how experimental manipulation of actin dynamics affects cancer cell invasion in complex environments and in vivo.
Collapse
|
58
|
Bowerman M, Shafey D, Kothary R. Smn depletion alters profilin II expression and leads to upregulation of the RhoA/ROCK pathway and defects in neuronal integrity. J Mol Neurosci 2007; 32:120-31. [PMID: 17873296 DOI: 10.1007/s12031-007-0024-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 11/30/1999] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
Spinal muscular atrophy (SMA) is the most common genetic disease resulting in infant mortality due to severe loss of alpha-motor neurons. SMA is caused by mutations or deletions of the ubiquitously expressed survival motor neuron (SMN) gene. However, why alpha-motor neurons of SMA patients are specifically affected is not clear. We demonstrate here that Smn knockdown in PC12 cells alters the expression pattern of profilin II, resulting in an increase in the neuronal-specific profilin IIa isoform. Moreover, the depletion of Smn, a known interacting partner of profilin IIa, further contributes to the increased profilin IIa availability. Altogether, this leads to an increased formation of ROCK/profilin IIa complex and an inappropriate activation of the RhoA/ROCK pathway, resulting in altered cytoskeletal integrity and a subsequent defect in neuritogenesis. This study represents the first description of a mechanism underlying SMA pathogenesis and highlights new targets for therapeutic intervention for this devastating disorder.
Collapse
|
59
|
Abstract
Expression of profilin-1 (Pfn1) is downregulated in breast cancer cells, the functional significance of which is yet to be understood. To address this question, in this study we evaluated how perturbing Pfn1 affects motility and invasion of breast cancer cells. We show that loss of Pfn1 expression leads to enhanced motility and matrigel invasiveness of MDA-MB-231 breast cancer cells. Interestingly, silencing Pfn1 expression is associated with downregulation of both cell–cell and cell–matrix adhesions with concomitant increase in motility and dramatic scattering of normal human mammary epithelial cells. Thus, these data for the first time suggest that loss of Pfn1 expression may have significance in breast cancer progression. Consistent with these findings, even a moderate overexpression of Pfn1 induces actin stress-fibres, upregulates focal adhesion, and dramatically inhibits motility and matrigel invasiveness of MDA-MB-231 cells. Using mutants of Pfn1 that are defective in binding to either actin or proline-rich ligands, we further show that overexpressed Pfn1 must have a functional actin-binding site to suppress cell motility. Finally, animal experiments reveal that overexpression of Pfn1 suppresses orthotopic tumorigenicity and micro-metastasis of MDA-MB-231 cells in nude mice. These data imply that perturbing Pfn1 could be a good molecular strategy to limit the aggressiveness of breast cancer cells.
Collapse
|
60
|
Pullikuth AK, Catling AD. Scaffold mediated regulation of MAPK signaling and cytoskeletal dynamics: a perspective. Cell Signal 2007; 19:1621-32. [PMID: 17553668 PMCID: PMC2233890 DOI: 10.1016/j.cellsig.2007.04.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 04/23/2007] [Indexed: 01/09/2023]
Abstract
Cell migration is critical for many physiological processes and is often misregulated in developmental disorders and pathological conditions including cancer and neurodegeneration. MAPK signaling and the Rho family of proteins are known regulators of cell migration that exert their influence on cellular cytoskeleton during cell adhesion and migration. Here we review data supporting the view that localized ERK signaling mediated through recently identified scaffold proteins may regulate cell migration.
Collapse
Affiliation(s)
- Ashok K. Pullikuth
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Andrew D. Catling
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| |
Collapse
|
61
|
Bertling E, Quintero-Monzon O, Mattila PK, Goode BL, Lappalainen P. Mechanism and biological role of profilin-Srv2/CAP interaction. J Cell Sci 2007; 120:1225-34. [PMID: 17376963 DOI: 10.1242/jcs.000158] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Profilin and cyclase-associated protein (CAP, known in yeast as Srv2) are ubiquitous and abundant actin monomer-binding proteins. Profilin catalyses the nucleotide exchange on actin monomers and promotes their addition to filament barbed ends. Srv2/CAP recycles newly depolymerized actin monomers from ADF/cofilin for subsequent rounds of polymerization. Srv2/CAP also harbors two proline-rich motifs and has been suggested to interact with profilin. However, the mechanism and biological role of the possible profilin-Srv2/CAP interaction has not been investigated. Here, we show that Saccharomyces cerevisiae Srv2 and profilin interact directly (K(D) approximately 1.3 microM) and demonstrate that a specific proline-rich motif in Srv2 mediates this interaction in vitro and in vivo. ADP-actin monomers and profilin do not interfere with each other's binding to Srv2, suggesting that these three proteins can form a ternary complex. Genetic and cell biological analyses on an Srv2 allele (srv2-201) defective in binding profilin reveals that a direct interaction with profilin is not essential for Srv2 cellular function. However, srv2-201 causes a moderate increase in cell size and partially suppresses the cell growth and actin organization defects of an actin binding mutant profilin (pfy1-4). Together these data suggest that Srv2 is an important physiological interaction partner of profilin.
Collapse
Affiliation(s)
- Enni Bertling
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
62
|
McLachlan GD, Cahill SM, Girvin ME, Almo SC. Acid-Induced Equilibrium Folding Intermediate of Human Platelet Profilin. Biochemistry 2007; 46:6931-43. [PMID: 17511469 DOI: 10.1021/bi0602359] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The acid-induced unfolding of human platelet profilin (HPP) can be minimally modeled as a three-state process. Equilibrium unfolding studies have been performed on human platelet profilin1 (HPP) and monitored by far-UV circular dichroism, tryptophan fluorescence, ANS binding, and NMR spectroscopy. Far-UV CD measurements obtained by acid titration demonstrate that HPP unfolds via a three-state mechanism (N --> I --> U), with a highly populated intermediate between pH 4 and 5. Approximately 80% of native helical secondary structural content remains at pH 4, as indicated by monitoring the CD signal at 222 nm. The stability (DeltaGH2O) of the native conformation at pH 7.0 (obtained by monitoring the change in tryptophan signal as a function of urea concentration) is 5.56 +/- 0.51 kcal mol-1; however, the DeltaGH2O for the intermediate species at pH 4 is 2.01 +/- 0.47 kcal mol-1. The calculated m-values for the pH 7.0 and pH 4.0 species were 1.64 +/- 0.15 and 1.34 +/- 0.17 kcal mol-1 M-1, respectively, which is an indication that the native and intermediate species are similarly compact. Additionally, translational diffusion measurements obtained by NMR spectroscopy and ANS binding studies are consistent with a globular and compact conformation at both pH 7.0 and 4.0. The pKa values for the two histidine (His) residues located on helix 4 of HPP were determined to be 5.6 and 5.7 pH units. These pKa values coincide with the midpoint of the far-UV CD acid titration curve and suggest that the protonation of one or both His residues may play a role in the formation of the unfolding intermediate. Stable intermediate species populate the 2D 1H-15N HSQC NMR spectra between pH 4 and 5. A number of backbone and side-chain resonances show significant perturbations relative to the native spectrum; however, considerable nativelike tertiary contacts remain. Interestingly, the residues on HPP that are significantly altered at low pH coincide with segments of the G-actin binding surface and poly-l-proline binding interface. The earlier reports that a decrease in pH below 6.0 induces structural alterations in profilin, favoring dissociation of the profilin-actin complex, corresponds with the structural alterations observed in the partially unfolded species. Our findings suggest that a novel mechanism for pH induced disruption of the profilin-G-actin complex involve a nativelike unfolding intermediate of profilin.
Collapse
Affiliation(s)
- Glendon D McLachlan
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
63
|
Carabeo RA, Dooley CA, Grieshaber SS, Hackstadt T. Rac interacts with Abi-1 and WAVE2 to promote an Arp2/3-dependent actin recruitment during chlamydial invasion. Cell Microbiol 2007; 9:2278-88. [PMID: 17501982 DOI: 10.1111/j.1462-5822.2007.00958.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chlamydiae are Gram-negative obligate intracellular pathogens to which access to an intracellular environment is fundamental to their development. Chlamydial attachment to host cells induces the activation of the Rac GTPase, which is required for the localization of WAVE2 at the sites of chlamydial entry. Co-immunoprecipitation experiments demonstrated that Chlamydia trachomatis infection promoted the interaction of Rac with WAVE2 and Abi-1, but not with IRSp53. siRNA depletion of WAVE2 and Abi-1 abrogated chlamydia-induced actin recruitment and significantly reduced the uptake of the pathogen by the depleted cells. Chlamydia invasion also requires the Arp2/3 complex as demonstrated by its localization to the sites of chlamydial attachment and the reduced efficiency of chlamydial invasion in cells overexpressing the VCA domain of the neural Wiskott-Aldrich syndrome protein. Thus, C. trachomatis activates Rac and promotes its interaction with WAVE2 and Abi-1 to activate the Arp2/3 complex resulting in the induction of actin cytoskeletal rearrangements that are required for invasion.
Collapse
Affiliation(s)
- Rey A Carabeo
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | | |
Collapse
|
64
|
Radha V, Rajanna A, Mitra A, Rangaraj N, Swarup G. C3G is required for c-Abl-induced filopodia and its overexpression promotes filopodia formation. Exp Cell Res 2007; 313:2476-92. [PMID: 17475248 DOI: 10.1016/j.yexcr.2007.03.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 02/27/2007] [Accepted: 03/18/2007] [Indexed: 01/26/2023]
Abstract
The Rap1 guanine nucleotide exchange factor, C3G (also known as Rap1GEF-1) is involved in signaling from growth factors, cytokines and integrins and plays a role in cell adhesion and migration, but the mechanism by which C3G regulates various cellular functions is poorly understood. We, therefore, investigated the ability of C3G to affect actin cytoskeleton-dependent morphological changes in cells. Using RNA interference, we provide evidence that C3G is required for c-Abl-induced filopodia during cell spreading on fibronectin. C3G expression induces actin cytoskeletal reorganization and promotes filopodia formation independent of its catalytic activity. It showed enrichment at filopodia tips characteristic of molecules involved in filopodia dynamics. C3G-induced filopodia were not inhibited by dominant negative mutants of Rho, Rac and Cdc42, but required Abl catalytic activity. Coexpression of N-Wasp-Crib inhibited C3G induced as well as c-Abl-induced filopodia and wiskostatin, a pharmacological inhibitor of N-Wasp attenuates C3G-induced filopodia. Cellular C3G interacts with c-Abl and C3G expression results in enhanced localization of endogenous c-Abl in the cytoplasm. We suggest that C3G and c-Abl function in an interdependent manner, in linking external signals to remodeling the cytoskeleton to induce filopodia.
Collapse
Affiliation(s)
- Vegesna Radha
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India.
| | | | | | | | | |
Collapse
|
65
|
Takenawa T, Suetsugu S. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 2007; 8:37-48. [PMID: 17183359 DOI: 10.1038/nrm2069] [Citation(s) in RCA: 706] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Wiskott-Aldrich syndrome protein (WASP) and WASP-family verprolin-homologous protein (WAVE) family proteins are scaffolds that link upstream signals to the activation of the ARP2/3 complex, leading to a burst of actin polymerization. ARP2/3-complex-mediated actin polymerization is crucial for the reorganization of the actin cytoskeleton at the cell cortex for processes such as cell movement, vesicular trafficking and pathogen infection. Large families of membrane-binding proteins were recently found to interact with WASP and WAVE family proteins, therefore providing a new layer of membrane-dependent regulation of actin polymerization.
Collapse
Affiliation(s)
- Tadaomi Takenawa
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan.
| | | |
Collapse
|
66
|
Abstract
Profilins are small proteins involved in actin dynamics. In accordance with this function, they are found in all eukaryotes and are structurally highly conserved. However, their precise role in regulating actin-related functions is just beginning to emerge. This article recapitulates the wealth of information on structure, expression and functions accumulated on profilins from many different organisms in the 30 years after their discovery as actin-binding proteins. Emphasis is given to their interaction with a plethora of many different ligands in the cytoplasm as well as in the nucleus, which is considered the basis for their various activities and the significance of the tissue-specific expression of profilin isoforms.
Collapse
Affiliation(s)
- B M Jockusch
- Cell Biology, Zoological Institute, Technical University of Braunschweig, 38092 Braunschweig, Germany.
| | | | | |
Collapse
|
67
|
Suetsugu S, Murayama K, Sakamoto A, Hanawa-Suetsugu K, Seto A, Oikawa T, Mishima C, Shirouzu M, Takenawa T, Yokoyama S. The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation. J Biol Chem 2006; 281:35347-58. [PMID: 17003044 DOI: 10.1074/jbc.m606814200] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The concave surface of the crescent-shaped Bin-amphiphysin-Rvs (BAR) domain is postulated to bind to the cell membrane to induce membrane deformation of a specific curvature. The Rac binding (RCB) domain/IRSp53-MIM homology domain (IMD) has a dimeric structure that is similar to the structure of the BAR domain; however, the RCB domain/IMD has a "zeppelin-shaped" dimer. Interestingly, the RCB domain/IMD of IRSp53 possesses Rac binding, membrane binding, and actin filament binding abilities. Here we report that the RCB domain/IMD of IRSp53 induces membrane deformation independent of the actin filaments in a Rac-dependent manner. In contrast to the BAR domain, the RCB domain/IMD did not cause long tubulation of the artificial liposomes; however, the Rac binding domain caused the formation of small buds on the liposomal surface. When expressed in cells, the Rac binding domain induced outward protrusion of the plasma membrane in a direction opposite to that induced by the BAR domain. Mapping of the amino acids responsible for membrane deformation suggests that the convex surface of the Rac binding domain binds to the membrane in a Rac-dependent manner, which may explain the mechanism of the membrane deformation induced by the RCB domain/IMD.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Department of Biochemistry, Institute of Medical Science, the University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Ding Z, Lambrechts A, Parepally M, Roy P. Silencing profilin-1 inhibits endothelial cell proliferation, migration and cord morphogenesis. J Cell Sci 2006; 119:4127-37. [PMID: 16968742 DOI: 10.1242/jcs.03178] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Expression of several actin-binding proteins including profilin-1 is up-regulated during capillary morphogenesis of endothelial cells, the biological significance of which remains unknown. Specifically, we hypothesized that profilin-1 is important for endothelial migration and proliferation. In this study, we suppressed profilin-1 expression in human umbilical vein endothelial cells by RNA-interference. Gene silencing of profilin-1 led to significant reduction in the formation of actin filaments and focal adhesions. Loss of profilin-1 expression was also associated with reduced dynamics of cell-cell adhesion. Data from both wound-healing experiments and time-lapse imaging of individual cells showed inhibition of cell migration when profilin-1 expression was suppressed. Cells lacking profilin-1 exhibited defects in membrane protrusion, both in terms of its magnitude and directional persistence. Furthermore, loss of profilin-1 expression inhibited cell growth without compromising cell survival, at least in the short-term, thus suggesting that profilin-1 also plays an important role in endothelial proliferation as hypothesized. Finally, silencing profilin-1 expression suppressed matrigel-induced early cord morphogenesis of endothelial cells. Taken together, our data suggest that profilin-1 may play important role in biological events that involve endothelial proliferation, migration and morphogenesis.
Collapse
Affiliation(s)
- Zhijie Ding
- Department of Bioengineering, University of Pittsburgh, 749 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
69
|
Chereau D, Dominguez R. Understanding the role of the G-actin-binding domain of Ena/VASP in actin assembly. J Struct Biol 2006; 155:195-201. [PMID: 16684607 DOI: 10.1016/j.jsb.2006.01.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2005] [Accepted: 01/22/2006] [Indexed: 11/26/2022]
Abstract
The Ena/VASP and WASP family of proteins play distinct roles in actin cytoskeleton remodeling. Ena/VASP is linked to actin filament elongation, whereas WASP plays a role in filament nucleation and branching mediated by Arp2/3 complex. The molecular mechanisms controlling both processes are only emerging. Both Ena/VASP and WASP are multidomain proteins. They both present poly-Pro regions, which mediate the binding of profilin-actin, followed by G-actin-binding (GAB) domains of the WASP-homology 2 (WH2) type. However, the WH2 of Ena/VASP is somewhat different from that of WASP, and has been poorly characterized. Here we demonstrate that this WH2 binds profilin-actin with higher affinity than actin alone. The results are consistent with a model whereby allosteric modulation of affinity drives the transition of profilin-actin from the poly-Pro region to the WH2 and then to the barbed end of the filament during elongation. Therefore, the function of the WH2 in Ena/VASP appears to be to "process" profilin-actin for its incorporation at the barbed end of the growing filament. Conformational changes in the newly incorporated actin subunit, resulting either from nucleotide hydrolysis or from the G- to F-actin transition, may serve as a "sensor" for the processive stepping of Ena/VASP. Conserved domain architecture suggests that WASP may work similarly.
Collapse
Affiliation(s)
- David Chereau
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA
| | | |
Collapse
|
70
|
Hayward RD, Leong JM, Koronakis V, Campellone KG. Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling. Nat Rev Microbiol 2006; 4:358-70. [PMID: 16582930 DOI: 10.1038/nrmicro1391] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many microbial pathogens manipulate the actin cytoskeleton of eukaryotic target cells to promote their internalization, intracellular motility and dissemination. Enteropathogenic and enterohaemorrhagic Escherichia coli, which both cause severe diarrhoeal disease, can adhere to mammalian intestinal cells and induce reorganization of the actin cytoskeleton into 'pedestal-like' pseudopods beneath the extracellular bacteria. As pedestal assembly is triggered by E. coli virulence factors that mimic several host cell-signalling components, such as transmembrane receptors, their cognate ligands and cytoplasmic adaptor proteins, it can serve as a powerful model system to study eukaryotic transmembrane signalling. Here, we consider the impact of recent data on our understanding of both E. coli pathogenesis and cell biology, and the rich prospects for exploiting these bacterial factors as versatile tools to probe cellular signalling pathways.
Collapse
Affiliation(s)
- Richard D Hayward
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | |
Collapse
|
71
|
Yoo Y, Wu X, Egile C, Li R, Guan JL. Interaction of N-WASP with hnRNPK and its role in filopodia formation and cell spreading. J Biol Chem 2006; 281:15352-60. [PMID: 16574661 DOI: 10.1074/jbc.m511825200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-WASP is a member of the WASP family of proteins, which play essential roles in actin dynamics during cell adhesion and migration. hnRNPK is a member of the heterogeneous nuclear ribonucleoprotein complex, which has also been implicated in the regulation of cell spreading. Here, we identify a direct interaction between N-WASP and hnRNPK. We show that this interaction is mediated by the N-terminal WH1 domain of N-WASP and the segment of hnRNPK containing its K interaction (KI) domain. Furthermore, these two proteins are co-localized at the cell periphery in the spreading initiation center during the early stage of cell spreading. We found that co-expression of hnRNPK with N-WASP reverses the stimulation of cell spreading by N-WASP, and this effect is correlated with hnRNPK binding to N-WASP. Expression of hnRNPK does not affect subcellular localization of N-WASP protein. However, co-expression of hnRNPK with N-WASP reduced filopodia formation stimulated by N-WASP in spreading cells. Together, these results identify hnRNPK as a new negative regulator of N-WASP and suggest that hnRNPK may regulate the initial stage of cell spreading by direct association with N-WASP in the spreading initiation center.
Collapse
Affiliation(s)
- Youngdong Yoo
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
72
|
Lambrechts A, Jonckheere V, Peleman C, Polet D, De Vos W, Vandekerckhove J, Ampe C. Profilin-I-ligand interactions influence various aspects of neuronal differentiation. J Cell Sci 2006; 119:1570-8. [PMID: 16569658 DOI: 10.1242/jcs.02884] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Differentiating neurons extend membrane protrusions that develop into growing neurites. The driving force for neurite outgrowth is the dynamic actin cytoskeleton, which is regulated by actin-binding proteins. In this study, we describe for the first time, the role of profilin I and its ligand interactions in neuritogenesis of PC12 cells. High-level overexpression of wild-type profilin I had an inhibitory effect on neurite outgrowth. Low levels of profilin I did not disturb this process, but these cells developed many more filopodia along the neurite shafts. Low-level overexpression of mutant forms of profilin I changed one or more aspects of PC12 differentiation. Expression of a profilin I mutant that is defective in actin binding (profilin I(R74E)) decreased neurite length and strongly inhibited filopodia formation. Cells expressing mutants defective in binding proline-rich ligands (profilin I(W3A) and profilin I(R136D)) differentiated faster, developed more and longer neurites and more branches. The profilin I(R136D) mutant, which is also defective in phosphatidylinositol 4,5-bisphosphate binding, enhanced neurite outgrowth even in the absence of NGF. Parental PC12 cells treated with the ROCK inhibitor Y27632, differentiate faster and display longer neurites and more branches. Similar effects were seen in cells expressing profilin I(WT), profilin I(W3A) and profilin I(R74E). By contrast, the profilin I(R136D)-expressing cells were insensitive to the ROCK inhibitor, suggesting that regulation of profilin I by phosphatidylinositol 4,5-bisphosphate metabolism is crucial for proper neurite outgrowth. Taken together, our data show the importance of the interaction of profilin I with actin, proline-rich proteins and phosphatidylinositol 4,5-bisphosphate in neuronal differentiation of PC12 cells.
Collapse
Affiliation(s)
- Anja Lambrechts
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Belgium.
| | | | | | | | | | | | | |
Collapse
|
73
|
Polet D, Lambrechts A, Ono K, Mah A, Peelman F, Vandekerckhove J, Baillie DL, Ampe C, Ono S. Caenorhabditis elegans expresses three functional profilins in a tissue-specific manner. ACTA ACUST UNITED AC 2006; 63:14-28. [PMID: 16317718 PMCID: PMC2575421 DOI: 10.1002/cm.20102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Profilins are actin binding proteins, which also interact with polyphosphoinositides and proline-rich ligands. On the basis of the genome sequence, three diverse profilin homologues (PFN) are predicted to exist in Caenorhabditis elegans. We show that all three isoforms PFN-1, PFN-2, and PFN-3 are expressed in vivo and biochemical studies indicate they bind actin and influence actin dynamics in a similar manner. In addition, they bind poly(L-proline) and phosphatidylinositol 4,5-bisphosphate micelles. PFN-1 is essential whereas PFN-2 and PFN-3 are nonessential. Immunostainings revealed different expression patterns for the profilin isoforms. In embryos, PFN-1 localizes in the cytoplasm and to the cell-cell contacts at the early stages, and in the nerve ring during later stages. During late embryogenesis, expression of PFN-3 was specifically detected in body wall muscle cells. In adult worms, PFN-1 is expressed in the neurons, the vulva, and the somatic gonad, PFN-2 in the intestinal wall, the spermatheca, and the pharynx, and PFN-3 localizes in a striking dot-like fashion in body wall muscle. Thus the model organism Caenorhabditis elegans expresses three profilin isoforms and is the first invertebrate animal with tissue-specific profilin expression.
Collapse
Affiliation(s)
- D. Polet
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Medical Protein Chemistry (VIB09), Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - A. Lambrechts
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Medical Protein Chemistry (VIB09), Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - K. Ono
- Department of Pathology, Emory University, Atlanta, Georgia
| | - A. Mah
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - F. Peelman
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Medical Protein Chemistry (VIB09), Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - J. Vandekerckhove
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Medical Protein Chemistry (VIB09), Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - D. L. Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - C. Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Medical Protein Chemistry (VIB09), Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Correspondence to: C. Ampe, Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000 Ghent, Belgium. E-mail:
| | - S. Ono
- Department of Pathology, Emory University, Atlanta, Georgia
| |
Collapse
|
74
|
Boukhelifa M, Moza M, Johansson T, Rachlin A, Parast M, Huttelmaier S, Roy P, Jockusch BM, Carpen O, Karlsson R, Otey CA. The proline-rich protein palladin is a binding partner for profilin. FEBS J 2006; 273:26-33. [PMID: 16367745 DOI: 10.1111/j.1742-4658.2005.05036.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Palladin is an actin-associated protein that has been suggested to play critical roles in establishing cell morphology and maintaining cytoskeletal organization in a wide variety of cell types. Palladin has been shown previously to bind directly to three different actin-binding proteins vasodilator-stimulated phosphoprotein (VASP), alpha-actinin and ezrin, suggesting that it functions as an organizing unit that recruits actin-regulatory proteins to specific subcellular sites. Palladin contains sequences resembling a motif known to bind profilin. Here, we demonstrate that palladin is a binding partner for profilin, interacting with profilin via a poly proline-containing sequence in the amino-terminal half of palladin. Double-label immunofluorescence staining shows that palladin and profilin partially colocalize in actin-rich structures in cultured astrocytes. Our results suggest that palladin may play an important role in recruiting profilin to sites of actin dynamics.
Collapse
Affiliation(s)
- Malika Boukhelifa
- Department of Cell and Molecular Physiology and Neuroscience Center, University of North Carolina at Chapel Hill, 27599-7545, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
The migration of endothelial cells (ECs) plays an important role in vascular remodeling and regeneration. EC migration can be regulated by different mechanisms such as chemotaxis, haptotaxis, and mechanotaxis. This review will focus on fluid shear stress-induced mechanotransduction during EC migration. EC migration and mechanotransduction can be modulated by cytoskeleton, cell surface receptors such as integrins and proteoglycans, the chemical and physical properties of extracellular matrix (ECM) and cell-cell adhesions. The shear stress applied on the luminal surface of ECs can be sensed by cell membrane and associated receptor and transmitted throughout the cell to cell-ECM adhesions and cell-cell adhesions. As a result, shear stress induces directional migration of ECs by promoting lamellipodial protrusion and the formation of focal adhesions (FAs) at the front in the flow direction and the disassembly of FAs at the rear. Persistent EC migration in the flow direction can be driven by polarized activation of signaling molecules and the positive feedback loops constituted by Rho GTPases, cytoskeleton, and FAs at the leading edge. Furthermore, shear stress-induced EC migration can overcome the haptotaxis of ECs. Given the hemodynamic environment of the vascular system, mechanotransduction during EC migration has a significant impact on vascular development, angiogenesis, and vascular wound healing.
Collapse
Affiliation(s)
- Song Li
- Department of Bioengineering and Center for Functional Tissue Engineering, University of California-Berkeley, San Francisco/Berkeley, California 94720, USA.
| | | | | |
Collapse
|
76
|
Chereau D, Kerff F, Graceffa P, Grabarek Z, Langsetmo K, Dominguez R. Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc Natl Acad Sci U S A 2005; 102:16644-9. [PMID: 16275905 PMCID: PMC1283820 DOI: 10.1073/pnas.0507021102] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 (WH2) is a small and widespread actin-binding motif. In the WASP family, WH2 plays a role in filament nucleation by Arp2/3 complex. Here we describe the crystal structures of complexes of actin with the WH2 domains of WASP, WASP-family verprolin homologous protein, and WASP-interacting protein. Despite low sequence identity, WH2 shares structural similarity with the N-terminal portion of the actin monomer-sequestering thymosin beta domain (Tbeta). We show that both domains inhibit nucleotide exchange by targeting the cleft between actin subdomains 1 and 3, a common binding site for many unrelated actin-binding proteins. Importantly, WH2 is significantly shorter than Tbeta but binds actin with approximately 10-fold higher affinity. WH2 lacks a C-terminal extension that in Tbeta4 becomes involved in monomer sequestration by interfering with intersubunit contacts in F-actin. Owing to their shorter length, WH2 domains connected in tandem by short linkers can coexist with intersubunit contacts in F-actin and are proposed to function in filament nucleation by lining up actin subunits along a filament strand. The WH2-central region of WASP-family proteins is proposed to function in an analogous way by forming a special class of tandem repeats whose function is to line up actin and Arp2 during Arp2/3 nucleation. The structures also suggest a mechanism for how profilin-binding Pro-rich sequences positioned N-terminal to WH2 could feed actin monomers directly to WH2, thereby playing a role in filament elongation.
Collapse
Affiliation(s)
- David Chereau
- Boston Biomedical Research Institute, Watertown, MA 02472, USA
| | | | | | | | | | | |
Collapse
|
77
|
Suetsugu S, Tezuka T, Morimura T, Hattori M, Mikoshiba K, Yamamoto T, Takenawa T. Regulation of actin cytoskeleton by mDab1 through N-WASP and ubiquitination of mDab1. Biochem J 2005; 384:1-8. [PMID: 15361067 PMCID: PMC1134082 DOI: 10.1042/bj20041103] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Migration of cells is critical to development of the central nervous system. Reelin, which was identified from the reeler mutant mice having a defect in the multilamellar structure of the brain, is thought to be a key signalling molecule that functions as a cue for determination of cell position. mDab1 (mouse Disabled homologue 1) functions downstream of Reelin. However, the mechanism by which mDab1 regulates cell migration during brain development is unknown. In the present paper, we show that mDab1 associates with N-WASP (neuronal Wiskott-Aldrich syndrome protein) in vitro and in brains of embryonic mice. mDab1 activates N-WASP directly, and induces actin polymerization through the Arp2/3 (actin-related protein 2/3) complex. mDab1 induces formation of filopodia when it is overexpressed in COS-7 cells. This filopodium formation is dependent on N-WASP, because expression of an N-WASP mutant that cannot induce Arp2/3-complex-mediated actin polymerization suppressed filopodium formation. The PTB (phosphotyrosine-binding) domain of mDab1 binds to N-WASP via the NRFY (Asn-Arg-Phe-Tyr) sequence close to the CRIB (Cdc42/Rac-interactive binding) motif of N-WASP and activates N-WASP in vitro. When mDab1 is phosphorylated by Fyn kinase in COS-7 cells, mDab1 is ubiquitinated in a Cbl-dependent manner, and mDab1 does not induce filopodium in the presence of activated Fyn. These findings suggest that mDab1 regulates the actin cytoskeleton through N-WASP, which is negatively regulated by phosphorylation-mediated ubiquitination of mDab1.
Collapse
Affiliation(s)
- Shiro Suetsugu
- *Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
- †CREST, Japan Science and Technology Corporation (JST), 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
| | - Tohru Tezuka
- ‡Department of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
| | - Toshifumi Morimura
- §Department of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
- ∥Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mitsuharu Hattori
- ¶Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- **PREST, Japan Science and Technology Corporation (JST), Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Katsuhiko Mikoshiba
- §Department of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
- ∥Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tadashi Yamamoto
- ‡Department of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
| | - Tadaomi Takenawa
- *Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
- †CREST, Japan Science and Technology Corporation (JST), 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
78
|
Badour K, Zhang J, Siminovitch KA. Involvement of the Wiskott-Aldrich syndrome protein and other actin regulatory adaptors in T cell activation. Semin Immunol 2005; 16:395-407. [PMID: 15541654 DOI: 10.1016/j.smim.2004.08.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actin cytoskeleton is a dynamic structure recognized for many years as integral to the coupling of external stimuli to cell activation and ensuing changes in morphology and movement. It is only recently, however, that a molecular understanding of actin involvement in these activities has emerged coincident with the identification of cytosolic signaling effectors that couple extracellular stimuli to induction of actin nucleation. Notable among these actin regulatory effectors are members of the Wiskott-Aldrich syndrome protein (WASp) family, a group of cytoskeletal adaptors imbued with the capacity to connect various signal transduction pathways to the Arp 2/3 complex and Arp 2/3-mediated actin polymerization. In T cells, the functional characterization of WASp and other actin-modulatory adaptors has proved instrumental in delineating the molecular interactions evoking actin cytoskeletal reorganization downstream of antigen receptor engagement and in clarifying the influence of actin-based processes on T cell activation. In this review, the structural and functional properties of the major actin regulatory cytoskeletal adaptors in T cells are described with an emphasis on the roles of these proteins in fostering the TCR actin cytoskeletal interplay required for induction of T cell activation and expression of dynamic effector responses.
Collapse
Affiliation(s)
- Karen Badour
- Department of Medicine, McLaughlin Centre of Molecular Medicine, University of Toronto, Mount Sinai Hospital, Samuel Lunenfeld and Toronto General Hospital Research Institutes, 600 University Avenue, #656A, Toronto, Ont., Canada M5G 1X5.
| | | | | |
Collapse
|
79
|
Abstract
Profilins are small actin-binding proteins that are essential in all organisms that have been examined to date. In vitro, profilins regulate the dynamics of actin polymerization, which is their key role in vivo during cell motility. However, there is growing evidence that, apart from actin binding, profilins function as hubs that control a complex network of molecular interactions. Profilins interact with a plethora of proteins and the importance of this aspect of their function is just beginning to be understood. In this article, I will summarize recent findings in mammalian cells and mice, and discuss the evidence of a role for profilins in cellular processes such as membrane trafficking, small-GTPase signaling and nuclear activities, in addition to neurological diseases and tumor formation.
Collapse
Affiliation(s)
- Walter Witke
- EMBL, Program for Mouse Biology, Campus Adriano Buzzati-Traverso, 00016 Monterotondo, Italy.
| |
Collapse
|
80
|
Leng Y, Zhang J, Badour K, Arpaia E, Freeman S, Cheung P, Siu M, Siminovitch K. Abelson-interactor-1 promotes WAVE2 membrane translocation and Abelson-mediated tyrosine phosphorylation required for WAVE2 activation. Proc Natl Acad Sci U S A 2005; 102:1098-103. [PMID: 15657136 PMCID: PMC545868 DOI: 10.1073/pnas.0409120102] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
WAVE2 is a member of the Wiskott-Aldrich syndrome protein family of cytoskeletal regulatory proteins shown to link Rac activation to actin remodeling via induction of Arp 2/3 activity. WAVE2 is thought to be regulated by its positioning in a macromolecular complex also containing the Abelson-(Abl) interactor-1 (Abi-1) adaptor, but the molecular basis and biologic relevance of WAVE2 inclusion in this complex are ill defined. Here we show that Abi-1 binding to WAVE2 is mediated by discrete motifs in the Abi-1 coiled-coil and WAVE2 WAVE-homology domains and increases markedly in conjunction with Abi-1-WAVE2 translocation and colocalization at the leading edge in B16F1 cells after fibronectin stimulation. Abi-1 also couples WAVE2 to Abl after cell stimulation, an interaction that triggers Abl membrane translocation with WAVE2, Abi-1, and activated Rac, as well as Abl-mediated tyrosine phosphorylation and WAVE2 activation. By contrast, mutation of tyrosine residue Y150, identified here as the major site of Abl-mediated WAVE2 tyrosine phosphorylation, as well as disruption of WAVE2-Abi-1 binding, impairs induction of WAVE2-driven actin polymerization and its membrane translocation in association with activated Rac. Similarly, WAVE2 tyrosine phosphorylation and induction of membrane actin rearrangement are abrogated in fibroblasts lacking the Abl family kinase. Together, these data reveal that Abi-1-mediated coupling of Abl to WAVE2 promotes Abl-evoked WAVE2 tyrosine phosphorylation required to link WAVE2 with activated Rac and with actin polymerization and remodeling at the cell periphery.
Collapse
Affiliation(s)
- Yan Leng
- Departments of Medicine, Immunology, Medical Genetics, and Microbiology, University of Toronto and The Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Cardiovascular disease is the most important cause of morbidity and mortality in developed countries, causing twice as many deaths as cancer in the USA. The major cardiovascular diseases, including coronary artery disease (CAD), myocardial infarction (MI), congestive heart failure (CHF) and common congenital heart disease (CHD), are caused by multiple genetic and environmental factors, as well as the interactions between them. The underlying molecular pathogenic mechanisms for these disorders are still largely unknown, but gene expression may play a central role in the development and progression of cardiovascular disease. Microarrays are high-throughput genomic tools that allow the comparison of global expression changes in thousands of genes between normal and diseased cells/tissues. Microarrays have recently been applied to CAD/MI, CHF and CHD to profile changes in gene expression patterns in diseased and non-diseased patients. This same technology has also been used to characterise endothelial cells, vascular smooth muscle cells and inflammatory cells, with or without various treatments that mimic disease processes involved in CAD/MI. These studies have led to the identification of unique subsets of genes associated with specific diseases and disease processes. Ongoing microarray studies in the field will provide insights into the molecular mechanism of cardiovascular disease and may generate new diagnostic and therapeutic markers.
Collapse
Affiliation(s)
- Stephen Archacki
- Center for Molecular Genetics, Department of Molecular Cardiology, Lerner Research Institute; Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences Cleveland State University, Cleveland, OH 44115, USA
| | - Qing Wang
- Center for Molecular Genetics, Department of Molecular Cardiology, Lerner Research Institute; Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
82
|
Lederer M, Jockusch BM, Rothkegel M. Profilin regulates the activity of p42POP, a novel Myb-related transcription factor. J Cell Sci 2004; 118:331-41. [PMID: 15615774 DOI: 10.1242/jcs.01618] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Profilins, regulators of cytoplasmic actin dynamics, also bind to several nuclear proteins but the significance of these interactions is mostly unclear. Here, we describe a novel Myb-related transcription factor, p42POP, as a new ligand for profilin and show that profilin regulates its activity. p42POP comprises a unique combination of domains and is widely expressed in mouse tissues. In contrast to many other Myb proteins, it contains only one functional tryptophan-cluster motif. This is followed by an acidic domain, a leucine zipper that mediates dimerization and functional nuclear import and export signals that can direct p42POP to either the nuclear or the cytoplasmic compartment. Binding to profilins is mediated by a proline-rich cluster. p42POP-profilin complexes can be precipitated from cell lysates. In transfected cells displaying p42POP in the nucleus, nuclear profilin is markedly increased. When p42POP is anchored at mitochondrial membranes, profilin is targeted to this location. Hence, in a cellular environment, p42POP and profilin are found in the same protein complex. In luciferase assays, p42POP acts as repressor and this activity is substantially reduced by profilins, indicating that profilin can regulate p42POP activity and is therefore involved in gene regulation.
Collapse
Affiliation(s)
- Marcell Lederer
- Cell Biology, Zoological Institute, Technical University of Braunschweig, 38092 Braunschweig, Germany
| | | | | |
Collapse
|
83
|
Roy P, Jacobson K. Overexpression of profilin reduces the migration of invasive breast cancer cells. ACTA ACUST UNITED AC 2004; 57:84-95. [PMID: 14691948 DOI: 10.1002/cm.10160] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The exact role profilin plays in cell migration is not clear. In this study, we have evaluated the effect of overexpression of profilin on the migration of breast cancer cells. Overexpression was carried out by stably expressing GFP-profilin in BT474 cells. It was observed that even a moderate level of overexpression of profilin significantly impaired the ability of BT474 cells to spread on fibronectin-coated substrate and migrate in response to EGF. GFP-profilin expressing cells also showed increased resistance to detachment in response to trypsin and increased tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin compared to the parental and GFP-expressing (control) cell lines. These results suggest that perturbation of profilin levels may offer a good strategy for controlling the metastatic potential of breast cancer cells.
Collapse
Affiliation(s)
- Partha Roy
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC, USA.
| | | |
Collapse
|
84
|
Imai K, Nonoyama S, Ochs HD. WASP (Wiskott-Aldrich syndrome protein) gene mutations and phenotype. Curr Opin Allergy Clin Immunol 2004; 3:427-36. [PMID: 14612666 DOI: 10.1097/00130832-200312000-00003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT), characterized by chronic microthrombocytopenia with and without immunodeficiency, are caused by mutations of the WAS protein (WASP) gene. WASP has been reported to interact with many cytoplasmic molecules linking cellular signaling to the actin cytoskeleton. In this review we will focus on recent molecular findings that provide a better understanding of the pathogenesis of this complex disease and explore the correlation of genotype and clinical phenotype. RECENT FINDINGS Recent investigations have provided evidence that WASP and several related proteins are involved in the reorganization of the actin cytoskeleton by activating Arp2/3-mediated actin polymerization. This function is controlled mainly by a small GTPase Cdc42. Activated GTP-bound Cdc42 dissociates the intramolecular autoinhibitory loop formation of WASP. In addition, WASP is involved in cytoplasmic signaling by its interaction with a variety of adaptor molecules or kinases and serves as a link to actin reorganization, which is important for immunological synapse formation, cell trafficking and motility. Tyrosine or serine phosphorylation of WASP increases the actin polymerization activity of WASP via Arp2/3. Mutation analysis of WAS/XLT patients has provided evidence for a strong correlation between phenotype and genotype. Gene therapy for WASP-deficient human lymphocytes and Wasp-deficient mice was performed successfully. SUMMARY The study of WASP and its mutations has led to a better understanding of the pathogenesis of the syndrome (thrombocytopenia, immunodeficiency, atopic dermatitis, autoimmune and malignant diseases) and the mechanisms required for cell mobility, cell-cell interaction and cytoplasmic signaling, as well as thrombopoiesis and maintenance of the number of platelets.
Collapse
Affiliation(s)
- Kohsuke Imai
- INSERM (The French Institute of Health and Medical Research) U429, Hôpital Necker-Enfants Malades, Paris, France.
| | | | | |
Collapse
|
85
|
Jeng RL, Goley ED, D'Alessio JA, Chaga OY, Svitkina TM, Borisy GG, Heinzen RA, Welch MD. A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell Microbiol 2004; 6:761-9. [PMID: 15236643 DOI: 10.1111/j.1462-5822.2004.00402.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spotted fever group Rickettsia are obligate intracellular pathogens that exploit the host cell actin cytoskeleton to promote motility and cell-to-cell spread. Although other pathogens such as Listeria monocytogenes use an Arp2/3 complex-dependent nucleation mechanism to generate comet tails consisting of Y-branched filament arrays, Rickettsia polymerize tails consisting of unbranched filaments by a previously unknown mechanism. We identified genes in several Rickettsia species encoding proteins (termed RickA) with similarity to the WASP family of Arp2/3-complex activators. Rickettsia rickettsii RickA activated both the nucleation and Y-branching activities of the Arp2/3 complex like other WASP-family proteins, and was sufficient to direct the motility of microscopic beads in cell extracts. Actin tails generated by RickA-coated beads consisted of Y-branched filament networks. These data suggest that Rickettsia use an Arp2/3 complex-dependent actin-nucleation mechanism similar to that of other pathogens. We propose that additional Rickettsia or host factors reorganize the Y-branched networks into parallel arrays in a manner similar to a recently proposed model of filopodia formation.
Collapse
Affiliation(s)
- Robert L Jeng
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Paavilainen VO, Bertling E, Falck S, Lappalainen P. Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol 2004; 14:386-94. [PMID: 15246432 DOI: 10.1016/j.tcb.2004.05.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The actin cytoskeleton is a vital component of several key cellular and developmental processes in eukaryotes. Many proteins that interact with filamentous and/or monomeric actin regulate the structure and dynamics of the actin cytoskeleton. Actin-filament-binding proteins control the nucleation, assembly, disassembly and crosslinking of actin filaments, whereas actin-monomer-binding proteins regulate the size, localization and dynamics of the large pool of unpolymerized actin in cells. In this article, we focus on recent advances in understanding how the six evolutionarily conserved actin-monomer-binding proteins - profilin, ADF/cofilin, twinfilin, Srv2/CAP, WASP/WAVE and verprolin/WIP - interact with actin monomers and regulate their incorporation into filament ends. We also present a model of how, together, these ubiquitous actin-monomer-binding proteins contribute to cytoskeletal dynamics and actin-dependent cellular processes.
Collapse
Affiliation(s)
- Ville O Paavilainen
- Program in Cellular Biotechnology, Institute of Biotechnology, PO Box 56, University of Helsinki, Helsinki 00014, Finland
| | | | | | | |
Collapse
|
87
|
Stradal TEB, Rottner K, Disanza A, Confalonieri S, Innocenti M, Scita G. Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol 2004; 14:303-11. [PMID: 15183187 DOI: 10.1016/j.tcb.2004.04.007] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Theresia E B Stradal
- German Research Centre for Biotechnology, Department of Cell Biology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
88
|
McKenna ST, Vidali L, Hepler PK. Profilin inhibits pollen tube growth through actin-binding, but not poly-L-proline-binding. PLANTA 2004; 218:906-915. [PMID: 14712393 DOI: 10.1007/s00425-003-1174-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 11/03/2003] [Indexed: 05/24/2023]
Abstract
Previously, we have shown that excess profilin inhibits pollen tube growth at significantly lower concentrations than it blocks cytoplasmic streaming. To elucidate the mechanism by which profilin achieves this function, we have employed mutant profilins from Schizosaccharomyces pombe [J. Lu and T.D. Pollard (2001) Mol Biol Cell 12:1161-1175], which have defects in actin-binding, ability to inhibit polymerization, and poly- l-proline (PLP)-binding. Using Lilium longiflorum L. pollen and S. pombe profilins as wild-type (wt) standards, mutant profilins have been injected into pollen tubes of Lilium, and examined for their effects on growth rate and cell morphology. Our results show that mutant Y5D (68% actin-binding; 1.1% PLP-binding) is indistinguishable from wt-standard profilins. However mutant K81F (2.7% actin-binding; 77% PLP-binding) and especially mutant K67E (<1% actin-binding; 100% PLP-binding) are significantly less effective than wt-standard profilins in their ability to inhibit pollen tube growth. PLP also inhibits pollen tube growth. However, PLP is not different from K67E/PLP combined, which has no actin-binding, suggesting that PLP does not function by binding to profilin. In addition, there are differences in the morphology and F-actin organization in cells injected with PLP versus wt-profilin. Whereas wt-profilin causes a fragmentation and marked reduction in the amount of F-actin [L. Vidali et al. (2001) Mol Biol Cell 12:2534-2545], PLP generates an extensive disorganization without any apparent reduction in the amount of F-actin. We conclude that along with actin-binding activity of profilin, PLP-containing proteins also participate in the growth control process, and can do so independently of binding to profilin.
Collapse
|
89
|
Wittenmayer N, Jandrig B, Rothkegel M, Schlüter K, Arnold W, Haensch W, Scherneck S, Jockusch BM. Tumor suppressor activity of profilin requires a functional actin binding site. Mol Biol Cell 2004; 15:1600-8. [PMID: 14767055 PMCID: PMC379259 DOI: 10.1091/mbc.e03-12-0873] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Profilin 1 (PFN1) is a regulator of the microfilament system and is involved in various signaling pathways. It interacts with many cytoplasmic and nuclear ligands. The importance of PFN1 for human tissue differentiation has been demonstrated by the findings that human cancer cells, expressing conspicuously low PFN1 levels, adopt a nontumorigenic phenotype upon raising their PFN1 level. In the present study, we characterize the ligand binding site crucial for profilin's tumor suppressor activity. Starting with CAL51, a human breast cancer cell line highly tumorigenic in nude mice, we established stable clones that express PFN1 mutants differentially defective in ligand binding. Clones expressing PFN1 mutants with reduced binding to either poly-proline-stretch ligands or phosphatidyl-inositol-4,5-bisphosphate, but with a functional actin binding site, were normal in growth, adhesion, and anchorage dependence, with only a weak tendency to elicit tumors in nude mice, similar to controls expressing wild-type PFN1. In contrast, clones expressing a mutant with severely reduced capacity to bind actin still behaved like the parental CAL51 and were highly tumorigenic. We conclude that the actin binding site on profilin is instrumental for normal differentiation of human epithelia and the tumor suppressor function of PFN1.
Collapse
Affiliation(s)
- Nina Wittenmayer
- Cell Biology, Zoological Institute, Technical University of Braunschweig, D-38092 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Vasanji A, Ghosh PK, Graham LM, Eppell SJ, Fox PL. Polarization of Plasma Membrane Microviscosity during Endothelial Cell Migration. Dev Cell 2004; 6:29-41. [PMID: 14723845 DOI: 10.1016/s1534-5807(03)00397-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cell movement is characterized by anterior-posterior polarization of multiple cell structures. We show here that the plasma membrane is polarized in moving endothelial cells (EC); in particular, plasma membrane microviscosity (PMM) is increased at the cell leading edge. Our studies indicate that cholesterol has an important role in generation of this microviscosity gradient. In vitro studies using synthetic lipid vesicles show that membrane microviscosity has a substantial and biphasic influence on actin dynamics; a small amount of cholesterol increases actin-mediated vesicle deformation, whereas a large amount completely inhibits deformation. Experiments in migrating ECs confirm the important role of PMM on actin dynamics. Angiogenic growth factor-stimulated cells exhibit substantially increased membrane microviscosity at the cell front but, unexpectedly, show decreased rates of actin polymerization. Our results suggest that increased PMM in lamellipodia may permit more productive actin filament and meshwork formation, resulting in enhanced rates of cell movement.
Collapse
Affiliation(s)
- Amit Vasanji
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
91
|
Mizutani K, Suetsugu S, Takenawa T. FBP11 regulates nuclear localization of N-WASP and inhibits N-WASP-dependent microspike formation. Biochem Biophys Res Commun 2004; 313:468-74. [PMID: 14697212 DOI: 10.1016/j.bbrc.2003.11.139] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
WASP family proteins are involved in cortical actin cytoskeleton reorganization. Neural Wiskott-Aldrich syndrome protein (N-WASP), a ubiquitously expressed WASP homologous protein, directly binds with Cdc42, activating Arp2/3 complex. In this study, we show that N-WASP-dependent microspike formation is inhibited by formin binding protein 11 (FBP11). Endogenous FBP11 localizes with nuclear-speckles, and co-localization of N-WASP and FBP11 was observed when they were co-expressed. Epidermal growth factor (EGF) induced actin-microspike formation in COS7 cells. However, transient expression of FBP11 suppressed N-WASP-dependent actin-microspike formation by trapping N-WASP in the nucleus. These results indicate that FBP11 regulates localization of N-WASP, thus negatively regulating the function of N-WASP in the cytoplasm.
Collapse
Affiliation(s)
- Kiyohito Mizutani
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
92
|
Grenklo S, Johansson T, Bertilson L, Karlsson R. Anti-actin antibodies generated against profilin:actin distinguish between non-filamentous and filamentous actin, and label cultured cells in a dotted pattern. Eur J Cell Biol 2004; 83:413-23. [PMID: 15506565 DOI: 10.1078/0171-9335-00400] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Actin polymerization is a prominent feature of migrating cells, where it powers the protrusion of the leading edge. Many studies have characterized the well-ordered and dynamic arrangement of filamentous actin in this submembraneous space. However, less is known about the organization of unpolymerized actin. Previously, we reported on the use of covalently coupled profilin:actin to study actin dynamics and presented evidence that profilin-bound actin is a major source of actin for filament growth. To locate profilin:actin in the cell we have now used this non-dissociable complex for antibody generation, and obtained monospecific anti-actin and anti-profilin antibodies from two separate immunizations. Fluorescence microscopy revealed drastic differences in the staining pattern generated by the anti-actin antibody preparations. With one, distinct puncta appeared at the actin-rich leading edge and sometimes aligned with microtubules in the interior of the lamella, while the other displayed typical actin filament staining. Labelling experiments in vitro demonstrated failure of the first antibody to recognize filamentous actin and none of the two bound microtubules. The two anti-profilin antibodies purified in parallel generated a punctated pattern similar to that seen with the first anti-actin antibody. All antibody preparations labelled the nuclei.
Collapse
Affiliation(s)
- Staffan Grenklo
- Department of Cell Biology, WGI, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
93
|
Huber AB, Kolodkin AL, Ginty DD, Cloutier JF. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 2003; 26:509-63. [PMID: 12677003 DOI: 10.1146/annurev.neuro.26.010302.081139] [Citation(s) in RCA: 562] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The guidance of axons during the establishment of the nervous system is mediated by a variety of extracellular cues that govern cytoskeletal dynamics in axonal growth cones. A large number of these guidance cues and their cell-surface receptors have now been identified, and the intracellular signaling pathways by which these cues induce cytoskeletal rearrangements are becoming defined. This review summarizes our current understanding of the major families of axon guidance cues and their receptors, with a particular emphasis on receptor signaling mechanisms. We also discuss recent advances in understanding receptor cross talk and how the activities of guidance cues and their receptors are modulated during neural development.
Collapse
Affiliation(s)
- Andrea B Huber
- Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
94
|
Suetsugu S, Takenawa T. Translocation of N-WASP by nuclear localization and export signals into the nucleus modulates expression of HSP90. J Biol Chem 2003; 278:42515-23. [PMID: 12871950 DOI: 10.1074/jbc.m302177200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-WASP regulates the actin cytoskeleton through activation of the Arp2/3 complex. N-WASP localizes at the cell periphery, where it controls actin polymerization downstream of signal molecules such as adapter proteins, Cdc42, Src family kinases, and phosphoinositides. N-WASP also localizes in the nucleus; however, the role of N-WASP in the nucleus is unclear. Here, we show that localization of N-WASP is controlled through phosphorylation by Src family kinases in which phosphorylated N-WASP is exported from the nucleus in a nuclear export signal (NES) and leptomycin B-dependent manner. N-WASP had nuclear localization signal (NLS) at its basic region and NES close to the phosphorylation site by Src family kinases, indicating that phosphorylation controls the accessibility to the NES through conformational changes. Increased levels of unphosphorylated N-WASP in the nucleus suppressed expression of HSP90 and transcription from a heat shock element (HSE). N-WASP bound heat shock transcription factor (HSTF) and enhanced the HSTF association with HSE. In addition, nuclear N-WASP was present in the protein complex that associates with HSE, suggesting that N-WASP participates in suppression of HSP90 transcription. Increased levels of unphosphorylated N-WASP also decreased the activities of Src family kinases in cells but not in experiments in vitro with pure N-WASP and Fyn. Because HSP90 is essential for the activities of Src family kinases, these results suggest that localization of N-WASP modulates Src kinase activity by regulating HSP90 expression.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Japan
| | | |
Collapse
|
95
|
Ackermann M, Matus A. Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat Neurosci 2003; 6:1194-200. [PMID: 14555951 DOI: 10.1038/nn1135] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Accepted: 09/15/2003] [Indexed: 11/09/2022]
Abstract
Morphological changes in dendritic spines have been implicated in connective plasticity in brain circuitry, but the underlying pathway leading from synaptic transmission to structural change is unknown. Using primary neurons expressing GFP-tagged proteins, we found that profilin, a regulator of actin polymerization, is targeted to spine heads when postsynaptic NMDA receptors are activated and that actin-based changes in spine shape are concomitantly blocked. Profilin targeting was triggered by electrical stimulation patterns known to induce the long-term changes in synaptic responsiveness associated with memory formation. These results suggest that, in addition to electrophysiological changes, NMDA receptor activation initiates changes in the actin cytoskeleton of dendritic spines that stabilize synaptic structure.
Collapse
|
96
|
Suetsugu S, Yamazaki D, Kurisu S, Takenawa T. Differential Roles of WAVE1 and WAVE2 in Dorsal and Peripheral Ruffle Formation for Fibroblast Cell Migration. Dev Cell 2003; 5:595-609. [PMID: 14536061 DOI: 10.1016/s1534-5807(03)00297-1] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cell migration is driven by actin polymerization at the leading edge of lamellipodia, where WASP family verprolin-homologous proteins (WAVEs) activate Arp2/3 complex. When fibroblasts are stimulated with PDGF, formation of peripheral ruffles precedes that of dorsal ruffles in lamellipodia. Here, we show that WAVE2 deficiency impairs peripheral ruffle formation and WAVE1 deficiency impairs dorsal ruffle formation. During directed cell migration in the absence of extracellular matrix (ECM), cells migrate with peripheral ruffles at the leading edge and WAVE2, but not WAVE1, is essential. In contrast, both WAVE1 and WAVE2 are essential for invading migration into ECM, suggesting that the leading edge in ECM has characteristics of both ruffles. WAVE1 is colocalized with ECM-degrading enzyme MMP-2 in dorsal ruffles, and WAVE1-, but not WAVE2-, dependent migration requires MMP activity. Thus, WAVE2 is essential for leading edge extension for directed migration in general and WAVE1 is essential in MMP-dependent migration in ECM.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | | | | | | |
Collapse
|
97
|
Abstract
Evolutionarily conserved in eukaryotes, formin homology (FH) proteins, or formins, exert their effects on the actin and microtubule (MT) networks during meiosis, mitosis, the maintenance of cell polarity, vesicular trafficking, signaling to the nucleus and embryonic development. Once thought to be only molecular scaffolds that indirectly affected cellular functions through the binding of other proteins, recent in vitro studies have illustrated that they can function as actin nucleators in the formation of new filaments. The connection between formins and MTs is less well understood. In yeast, the MT effects appear to be dependent on the ability of formins to generate polarized actin cables whereas, in mammalian cells, formin signals that cause MT stabilization and polarization might be more direct. A subclass of formins, the Diaphanous-related formins (Drfs), can act as effectors for Rho small GTPases, yet it is not clear what GTPase binding contributes to formin function.
Collapse
Affiliation(s)
- Bradley J Wallar
- Laboratory of Cell Structure and Signal Integration, Van Andel Research Institute, 333 Bostwick Avenue N.E., Grand Rapids, MI 49503, USA
| | | |
Collapse
|
98
|
Rodal AA, Manning AL, Goode BL, Drubin DG. Negative regulation of yeast WASp by two SH3 domain-containing proteins. Curr Biol 2003; 13:1000-8. [PMID: 12814545 DOI: 10.1016/s0960-9822(03)00383-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND WASp family proteins promote actin filament assembly by activating Arp2/3 complex and are regulated spatially and temporally to assemble specialized actin structures used in diverse cellular processes. Some WASp family members are autoinhibited until bound by activating ligands; however, regulation of the budding yeast WASp homolog (Las17/Bee1) has not yet been explored. RESULTS We isolated full-length Las17 and characterized its biochemical activities on yeast Arp2/3 complex. Purified Las17 was not autoinhibited; in this respect, it is more similar to SCAR/WAVE than to WASp proteins. Las17 was a much stronger activator of Arp2/3 complex than its carboxyl-terminal (WA) fragment. In addition, actin polymerization stimulated by Las17-Arp2/3 was much less sensitive to the inhibitory effects of profilin compared to polymerization stimulated by WA-Arp2/3. Two SH3 domain-containing binding partners of Las17, Sla1 and Bbc1, were purified and were shown to cooperate in inhibiting Las17 activity. The two SLA1 SH3 domains required for this inhibitory activity in vitro were also required in vivo, in combination with BBC1, for cell viability and normal actin organization. CONCLUSIONS Full-length Las17 is not autoinhibited and activates Arp2/3 complex more strongly than its WA domain alone, revealing an important role for the Las17 amino terminus in Arp2/3 complex activation. Two of the SH3 domain-containing ligands of Las17, Sla1 and Bbc1, cooperate to inhibit Las17 activity in vitro and are required for a shared function in actin organization in vivo. Our results show that, like SCAR/WAVE, WASp proteins can be controlled by negative regulation through the combined actions of multiple ligands.
Collapse
Affiliation(s)
- Avital A Rodal
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA
| | | | | | | |
Collapse
|
99
|
Nakagawa H, Miki H, Nozumi M, Takenawa T, Miyamoto S, Wehland J, Small JV. IRSp53 is colocalised with WAVE2 at the tips of protruding lamellipodia and filopodia independently of Mena. J Cell Sci 2003; 116:2577-83. [PMID: 12734400 DOI: 10.1242/jcs.00462] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The insulin receptor tyrosine kinase substrate p53 (IRSp53) links Rac and WAVE2 and has been implicated in lamellipodia protrusion. Recently, however, IRSp53 has been reported to bind to both Cdc42 and Mena to induce filopodia. To shed independent light on IRSp53 function we determined the localisations and dynamics of IRSp53 and WAVE2 in B16 melanoma cells. In cells spread well on a laminin substrate, IRSp53 was localised by antibody labelling at the tips of both lamellipodia and filopodia. The same localisation was observed in living cells with IRSp53 tagged with enhanced green florescence protein (EGFP-IRSp53), but only during protrusion. From the transfection of deletion mutants the N-terminal region of IRSp53, which binds active Rac, was shown to be responsible for its localisation. Although IRSp53 has been reported to regulate filopodia formation with Mena, EGFP-IRSp53 showed the same localisation in MVD7 Ena/VASP (vasodilator stimulated phosphoprotein) family deficient cells. WAVE2 tagged with DsRed1 colocalised with EGFP-IRSp53 at the tips of protruding lamellipodia and filopodia and, in double-transfected cells, the IRSp53 signal in filopodia decreased before that of WAVE2 during retraction. These results suggest an alternative modulatory role for IRSp53 in the extension of both filopodia and lamellipodia, through WAVE2.
Collapse
Affiliation(s)
- Hiroyuki Nakagawa
- Department of Cell Biology, Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, Salzburg A-5020, Austria
| | | | | | | | | | | | | |
Collapse
|
100
|
Skare P, Kreivi JP, Bergström A, Karlsson R. Profilin I colocalizes with speckles and Cajal bodies: a possible role in pre-mRNA splicing. Exp Cell Res 2003; 286:12-21. [PMID: 12729790 DOI: 10.1016/s0014-4827(03)00102-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Profilin is one of the major components controlling actin polymerization. Here, profilin I was located in fibroblasts and HeLa cells by the use of two different sets of affinity-purified antibodies. Both antibody preparations labeled nuclei in a speckle-like pattern and displayed extensive colocalization with small nuclear ribonucleoprotein particle (snRNP)-core proteins and p80 coilin-containing Cajal bodies. Treatment with actinomycin D led to largely similar reorganizations of snRNPs and profilin, while profilin and Cajal bodies separated under these conditions. One of the profilin antibodies interfered with pre-mRNA splicing in vitro, further indicating a role for profilin during pre-mRNA processing.
Collapse
Affiliation(s)
- Petra Skare
- Department of Cell Biology, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|