51
|
Tábuas-Pereira M, Santana I, Kun-Rodrigues C, Bras J, Guerreiro R. CYLD variants in frontotemporal dementia associated with severe memory impairment in a Portuguese cohort. Brain 2020; 143:e67. [PMID: 32666117 DOI: 10.1093/brain/awaa183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Miguel Tábuas-Pereira
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Célia Kun-Rodrigues
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Jose Bras
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
52
|
Balka KR, De Nardo D. Molecular and spatial mechanisms governing STING signalling. FEBS J 2020; 288:5504-5529. [PMID: 33237620 DOI: 10.1111/febs.15640] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Detection of microbial nucleic acids via innate immune receptors is critical for establishing host defence against pathogens. The DNA-sensing cGAS-STING pathway has gained increasing attention in the last decade as a key pathway for combating viral and bacterial infections. cGAS-STING activation primarily promotes the secretion of antiviral type I IFNs via the key transcription factor, IRF3. In addition, cGAS-STING signalling also elicits proinflammatory cytokines through NF-κB activity. Activation of IRF3 and NF-κB is mediated by the chief signalling receptor protein STING. Interestingly, STING undergoes significant trafficking events across multiple subcellular locations, which regulates both the activation of downstream signalling pathways, as well as appropriate termination of the responses. Studies to date have provided a comprehensive view of the regulation and role of the IRF3-IFN pathway downstream of STING. However, many aspects of STING signalling remain relatively poorly defined. This review will explore the current understanding of the mechanisms through which STING elicits inflammatory and antimicrobial responses, focusing on the precise signalling and intracellular trafficking events that occur. We will also discuss exciting and emerging concepts in the field, including the importance of IFN-independent STING responses for host defence and during STING-related disease.
Collapse
Affiliation(s)
- Katherine R Balka
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Dominic De Nardo
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| |
Collapse
|
53
|
Revach OY, Liu S, Jenkins RW. Targeting TANK-binding kinase 1 (TBK1) in cancer. Expert Opin Ther Targets 2020; 24:1065-1078. [PMID: 32962465 PMCID: PMC7644630 DOI: 10.1080/14728222.2020.1826929] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION TANK-binding kinase 1 (TBK1) is a Ser/Thr kinase with a central role in coordinating the cellular response to invading pathogens and regulating key inflammatory signaling cascades. While intact TBK1 signaling is required for successful anti-viral signaling, dysregulated TBK1 signaling has been linked to a variety of pathophysiologic conditions, including cancer. Several lines of evidence support a role for TBK1 in cancer pathogenesis, but the specific roles and regulation of TBK1 remain incompletely understood. A key challenge is the diversity of cellular processes that are regulated by TBK1, including inflammation, cell cycle, autophagy, energy homeostasis, and cell death. Nevertheless, evidence from pre-clinical cancer models suggests that targeting TBK1 may be an effective strategy for anti-cancer therapy in specific settings. AREAS COVERED This review provides an overview of the roles and regulation of TBK1 with a focus on cancer pathogenesis and drug targeting of TBK1 as an anti-cancer strategy. Relevant literature was derived from a PubMed search encompassing studies from 1999 to 2020. EXPERT OPINION TBK1 is emerging as a potential target for anti-cancer therapy. Inhibition of TBK1 alone may be insufficient to restrain the growth of most cancers; hence, combination strategies will likely be necessary. Improved understanding of tumor-intrinsic and tumor-extrinsic TBK1 signaling will inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Or-yam Revach
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shuming Liu
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
54
|
Lawler C, Brady G. Poxviral Targeting of Interferon Regulatory Factor Activation. Viruses 2020; 12:v12101191. [PMID: 33092186 PMCID: PMC7590177 DOI: 10.3390/v12101191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
As viruses have a capacity to rapidly evolve and continually alter the coding of their protein repertoires, host cells have evolved pathways to sense viruses through the one invariable feature common to all these pathogens-their nucleic acids. These genomic and transcriptional pathogen-associated molecular patterns (PAMPs) trigger the activation of germline-encoded anti-viral pattern recognition receptors (PRRs) that can distinguish viral nucleic acids from host forms by their localization and subtle differences in their chemistry. A wide range of transmembrane and cytosolic PRRs continually probe the intracellular environment for these viral PAMPs, activating pathways leading to the activation of anti-viral gene expression. The activation of Nuclear Factor Kappa B (NFκB) and Interferon (IFN) Regulatory Factor (IRF) family transcription factors are of central importance in driving pro-inflammatory and type-I interferon (TI-IFN) gene expression required to effectively restrict spread and trigger adaptive responses leading to clearance. Poxviruses evolve complex arrays of inhibitors which target these pathways at a variety of levels. This review will focus on how poxviruses target and inhibit PRR pathways leading to the activation of IRF family transcription factors.
Collapse
|
55
|
Zhao P, Saltiel AR. Interaction of Adipocyte Metabolic and Immune Functions Through TBK1. Front Immunol 2020; 11:592949. [PMID: 33193441 PMCID: PMC7606291 DOI: 10.3389/fimmu.2020.592949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Adipocytes and adipose tissue play critical roles in the regulation of metabolic homeostasis. In obesity and obesity-associated metabolic diseases, immune cells infiltrate into adipose tissues. Interaction between adipocytes and immune cells re-shapes both metabolic and immune properties of adipose tissue and dramatically changes metabolic set points. Both the expression and activity of the non-canonical IKK family member TBK1 are induced in adipose tissues during diet-induced obesity. TBK1 plays important roles in the regulation of both metabolism and inflammation in adipose tissue and thus affects glucose and energy metabolism. Here we review the regulation and functions of TBK1 and the molecular mechanisms by which TBK1 regulates both metabolism and inflammation in adipose tissue. Finally, we discuss the potential of a TBK1/IKKε inhibitor as a new therapy for metabolic diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Alan R Saltiel
- Department of Medicine, University of California San Diego, La Jolla, CA, United States.,Department of Pharmacology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
56
|
Sieverding K, Ulmer J, Bruno C, Satoh T, Tsao W, Freischmidt A, Akira S, Wong PC, Ludolph AC, Danzer KM, Lobsiger CS, Brenner D, Weishaupt JH. Hemizygous deletion of Tbk1 worsens neuromuscular junction pathology in TDP-43 G298S transgenic mice. Exp Neurol 2020; 335:113496. [PMID: 33038415 DOI: 10.1016/j.expneurol.2020.113496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/26/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
Mutations in the genes TARDBP (encoding the TDP-43 protein) and TBK1 can cause familial ALS. Neuronal cytoplasmatic accumulations of the misfolded, hyperphosphorylated RNA-binding protein TDP-43 are the pathological hallmark of most ALS cases and have been suggested to be a key aspect of ALS pathogenesis. Pharmacological induction of autophagy has been shown to reduce mutant TDP-43 aggregates and alleviate motor deficits in mice. TBK1 is exemplary for several other ALS genes that regulate autophagy. Consequently, we employed double mutant mice with both a heterozygous Tbk1 deletion and transgenic expression of human TDP-43G298S to test the hypothesis that impaired autophagy reduces intracellular clearance of an aggregation-prone protein and enhances toxicity of mutant TDP-43. The heterozygous deletion of Tbk1 did not change expression or cellular distribution of TDP-43 protein, motor neuron loss or reactive gliosis in the spinal cord of double-mutant mice at the age of 19 months. However, it aggravated muscle denervation and, albeit to a small and variable degree, motor dysfunction in TDP-43G298S transgenic mice, as similarly observed in the SOD1G93A transgenic mouse model for ALS before. Conclusively, our findings suggest that TBK1 mutations can affect the neuromuscular synapse.
Collapse
Affiliation(s)
| | - Johannes Ulmer
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Clara Bruno
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - William Tsao
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, United States
| | | | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, United States
| | | | - Karin M Danzer
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Christian S Lobsiger
- Institut du Cerveau et de la Moelle Épinière, Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7225, Sorbonne Université, Paris, France
| | - David Brenner
- Department of Neurology, University of Ulm, Ulm, Germany; Division of Neurodegenerative Disorders, Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Jochen H Weishaupt
- Department of Neurology, University of Ulm, Ulm, Germany; Division of Neurodegenerative Disorders, Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Germany.
| |
Collapse
|
57
|
MHY2013 Modulates Age-related Inflammation and Insulin Resistance by Suppressing the Akt/FOXO1/IL-1β Axis and MAPK-mediated NF-κB Signaling in Aged Rat Liver. Appl Immunohistochem Mol Morphol 2020; 28:579-592. [PMID: 32902936 DOI: 10.1097/pai.0000000000000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic inflammation is a major risk factor underlying aging and age-associated diseases. It impairs normal lipid accumulation, adipose tissue function, and mitochondrial function, which eventually lead to insulin resistance. Peroxisome proliferator-activated receptors (PPARs) critically regulate gluconeogenesis, lipid metabolism, and the lipid absorption and breakdown process, and PPAR activity decreases in the liver during aging. In the present study, we investigated the ability of 2-(4-(5,6-methylenedioxybenzo[d]thiazol-2-yl)-2-methylphenoxy)-2-methylpropanoic acid (MHY2013), synthesized PPARα/PPARβ/PPARγ pan agonist, to suppress the inflammatory response and attenuate insulin resistance in aged rat liver. Six- and 20-month-old rats were divided into 4 groups: young and old rats fed ad libitum; and old rats fed ad libitum supplemented with MHY2013 (1 mg and 5 mg/kg/d for 4 wk). We found that MHY2013 supplementation efficiently downregulated the activity of nuclear factor-κB through JNK/ERK/p38 mitogen-activated protein kinase signaling in the liver of aged rats. In addition, MHY2013 treatment increased hepatic insulin signaling, and the downstream signaling activity of FOXO1, which is negatively regulated by Akt. Downregulation of Akt increases expression of FOXO1, which acts as a transcription factor and increases transcription of interleukin-1β, leading to hepatic inflammation. The major finding of this study is that MHY2013 acts as a therapeutic agent against age-related inflammation associated with insulin resistance by activating PPARα, PPARβ, and PPARγ. Thus, the study provides evidence for the anti-inflammatory properties of MHY2013, and the role it plays in the regulation of age-related alterations in signal transduction pathways.
Collapse
|
58
|
Draberova H, Janusova S, Knizkova D, Semberova T, Pribikova M, Ujevic A, Harant K, Knapkova S, Hrdinka M, Fanfani V, Stracquadanio G, Drobek A, Ruppova K, Stepanek O, Draber P. Systematic analysis of the IL-17 receptor signalosome reveals a robust regulatory feedback loop. EMBO J 2020; 39:e104202. [PMID: 32696476 PMCID: PMC7459424 DOI: 10.15252/embj.2019104202] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
IL-17 mediates immune protection from fungi and bacteria, as well as it promotes autoimmune pathologies. However, the regulation of the signal transduction from the IL-17 receptor (IL-17R) remained elusive. We developed a novel mass spectrometry-based approach to identify components of the IL-17R complex followed by analysis of their roles using reverse genetics. Besides the identification of linear ubiquitin chain assembly complex (LUBAC) as an important signal transducing component of IL-17R, we established that IL-17 signaling is regulated by a robust negative feedback loop mediated by TBK1 and IKKε. These kinases terminate IL-17 signaling by phosphorylating the adaptor ACT1 leading to the release of the essential ubiquitin ligase TRAF6 from the complex. NEMO recruits both kinases to the IL-17R complex, documenting that NEMO has an unprecedented negative function in IL-17 signaling, distinct from its role in NF-κB activation. Our study provides a comprehensive view of the molecular events of the IL-17 signal transduction and its regulation.
Collapse
Affiliation(s)
- Helena Draberova
- Laboratory of Immunity & Cell CommunicationBIOCEVFirst Faculty of MedicineCharles UniversityVestecCzech Republic
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Sarka Janusova
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Daniela Knizkova
- Laboratory of Immunity & Cell CommunicationBIOCEVFirst Faculty of MedicineCharles UniversityVestecCzech Republic
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Tereza Semberova
- Laboratory of Immunity & Cell CommunicationBIOCEVFirst Faculty of MedicineCharles UniversityVestecCzech Republic
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Michaela Pribikova
- Laboratory of Immunity & Cell CommunicationBIOCEVFirst Faculty of MedicineCharles UniversityVestecCzech Republic
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Andrea Ujevic
- Laboratory of Immunity & Cell CommunicationBIOCEVFirst Faculty of MedicineCharles UniversityVestecCzech Republic
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Karel Harant
- Laboratory of Mass SpectrometryBIOCEVFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Sofija Knapkova
- Department of HaematooncologyUniversity Hospital OstravaOstravaCzech Republic
- Faculty of MedicineUniversity of OstravaOstravaCzech Republic
| | - Matous Hrdinka
- Department of HaematooncologyUniversity Hospital OstravaOstravaCzech Republic
- Faculty of MedicineUniversity of OstravaOstravaCzech Republic
| | - Viola Fanfani
- Institute of Quantitative Biology, Biochemistry, and BiotechnologySynthSysSchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Giovanni Stracquadanio
- Institute of Quantitative Biology, Biochemistry, and BiotechnologySynthSysSchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Ales Drobek
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Klara Ruppova
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Peter Draber
- Laboratory of Immunity & Cell CommunicationBIOCEVFirst Faculty of MedicineCharles UniversityVestecCzech Republic
- Laboratory of Adaptive ImmunityInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
59
|
Abstract
Mutations in TANK-binding kinase 1 (TBK1) are linked to ALS-FTD. In this issue of Neuron, Gerbino et al. (2020) show how missense mutations in the kinase domain of TBK1 differentially affect disease onset and progression in an ALS mouse model.
Collapse
|
60
|
Bruno C, Sieverding K, Freischmidt A, Satoh T, Walther P, Mayer B, Ludolph AC, Akira S, Yilmazer-Hanke D, Danzer KM, Lobsiger CS, Brenner D, Weishaupt JH. Haploinsufficiency of TANK-binding kinase 1 prepones age-associated neuroinflammatory changes without causing motor neuron degeneration in aged mice. Brain Commun 2020; 2:fcaa133. [PMID: 33005894 PMCID: PMC7519725 DOI: 10.1093/braincomms/fcaa133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Loss-of-function mutations in TANK-binding kinase 1 cause genetic amyotrophic lateral sclerosis and frontotemporal dementia. Consistent with incomplete penetrance in humans, haploinsufficiency of TANK-binding kinase 1 did not cause motor symptoms in mice up to 7 months of age in a previous study. Ageing is the strongest risk factor for neurodegenerative diseases. Hypothesizing that age-dependent processes together with haploinsufficiency of TANK-binding kinase 1 could create a double hit situation that may trigger neurodegeneration, we examined mice with hemizygous deletion of Tbk1 (Tbk1 +/- mice) and wild-type siblings up to 22 months. Compared to 4-month old mice, aged, 22-month old mice showed glial activation, deposition of motoneuronal p62 aggregates, muscular denervation and profound transcriptomic alterations in a set of 800 immune-related genes upon ageing. However, we did not observe differences regarding these measures between aged Tbk1 +/- and wild-type siblings. High age did also not precipitate TAR DNA-binding protein 43 aggregation, neurodegeneration or a neurological phenotype in Tbk1+/ - mice. In young Tbk1+/ - mice, however, we found the CNS immune gene expression pattern shifted towards the age-dependent immune system dysregulation observed in old mice. Conclusively, ageing is not sufficient to precipitate an amyotrophic lateral sclerosis or frontotemporal dementia phenotype or spinal or cortical neurodegeneration in a model of Tbk1 haploinsufficiency. We hypothesize that the consequences of Tbk1 haploinsufficiency may be highly context-dependent and require a specific synergistic stress stimulus to be uncovered.
Collapse
Affiliation(s)
- Clara Bruno
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
| | | | | | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Paul Walther
- Central Facility for Electron Microscopy, University of Ulm, 89081 Ulm, Germany
| | - B Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | | | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Deniz Yilmazer-Hanke
- Department of Neurology, Clinical Neuroanatomy, Neurology, University of Ulm, 89081 Ulm, Germany
| | - Karin M Danzer
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
| | - Christian S Lobsiger
- Institut du Cerveau et de la Moelle Épinière, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Sorbonne Université, 75013 Paris, France
| | - David Brenner
- Department of Neurology, University of Ulm, 89081 Ulm, Germany.,Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 61867 Mannheim, Germany
| | - Jochen H Weishaupt
- Department of Neurology, University of Ulm, 89081 Ulm, Germany.,Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 61867 Mannheim, Germany
| |
Collapse
|
61
|
Zhou R, Zhang Q, Xu P. TBK1, a central kinase in innate immune sensing of nucleic acids and beyond. Acta Biochim Biophys Sin (Shanghai) 2020; 52:757-767. [PMID: 32458982 DOI: 10.1093/abbs/gmaa051] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Indexed: 12/13/2022] Open
Abstract
Sensing of intracellular and extracellular environments is one of the fundamental processes of cell. Surveillance of aberrant nucleic acids, derived either from invading pathogens or damaged organelle, is conducted by pattern recognition receptors (PRRs) including RIG-I-like receptors, cyclic GMP-AMP synthase, absent in melanoma 2, and a few members of toll-like receptors. TANK-binding kinase 1 (TBK1), along with its close analogue I-kappa-B kinase epsilon, is a central kinase in innate adaptor complexes linking activation of PRRs to mobilization of transcriptional factors that transcribe proinflammatory cytokines, type I interferon (IFN-α/β), and myriads interferon stimulated genes. However, it still remains elusive for the precise mechanisms of activation and execution of TBK1 in signaling platforms formed by innate adaptors mitochondrial antiviral signaling protein (MAVS), stimulator of interferon genes protein (STING), and TIR-domain-containing adapter-inducing interferon-β (TRIF), as well as its complex regulations. An atlas of TBK1 substrates is in constant expanding, setting TBK1 as a key node of signaling network and a dominant player in contexts of cell biology, animal models, and human diseases. Here, we review recent advancements of activation, regulations, and functions of TBK1 under these physiological and pathological contexts.
Collapse
Affiliation(s)
- Ruyuan Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
62
|
Duan W, Guo M, Yi L, Zhang J, Bi Y, Liu Y, Li Y, Li Z, Ma Y, Zhang G, Liu Y, Song X, Li C. Deletion of Tbk1 disrupts autophagy and reproduces behavioral and locomotor symptoms of FTD-ALS in mice. Aging (Albany NY) 2020; 11:2457-2476. [PMID: 31039129 PMCID: PMC6519994 DOI: 10.18632/aging.101936] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
Haploinsufficiency of the protein kinase Tbk1 has shown to cause both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD); however, the pathogenic mechanisms are unclear. Here we show that conditional neuronal deletion of Tbk1 in leads to cognitive and locomotor deficits in mice. Tbk1-NKO mice exhibited numerous neuropathological changes, including neurofibrillary tangles, abnormal dendrites, reduced dendritic spine density, and cortical synapse loss. The Purkinje cell layer of the cerebellum presented dendritic swelling, abnormally shaped astrocytes, and p62- and ubiquitin-positive aggregates, suggesting impaired autophagy. Inhibition of autophagic flux with bafilomycin A increased total Tkb1 levels in motor neuron-like cells in vitro, suggesting autophagy-dependent degradation of Tbk1. Although Tbk1 over-expression did not affect mutant SOD1 levels in SOD1G93A-transfected cells, it increased the soluble/insoluble ratio and reduced the number and size of SOD1G93A aggregates. Finally, in vivo experiments showed that Tkb1 expression was reduced in SOD1G93A ALS transgenic mice, which showed decreased p62 protein aggregation and extended survival after ICV injection of adeno-associated viral vectors encoding Tbk1. These data shed light on the neuropathological changes that result from Tbk1 deficiency and hint at impaired autophagy as a contributing factor to the cognitive and locomotor deficits that characterize FTD-ALS in patients with Tkb1 haploinsufficiency.
Collapse
Affiliation(s)
- Weisong Duan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Neurological Laboratory of Hebei Province, Shijiazhuang, People's Republic of China.,Institute of Cardiocerebrovascular Disease, Shijiazhuang, People's Republic of China
| | - Moran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Le Yi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jie Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yue Bi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yakun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yuanyuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhongyao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yanqin Ma
- Jiangsu Nhwa Pharmaceutical Co. Ltd, Nantong 226000, People's Republic of China
| | - Guisen Zhang
- Jiangsu Nhwa Pharmaceutical Co. Ltd, Nantong 226000, People's Republic of China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Neurological Laboratory of Hebei Province, Shijiazhuang, People's Republic of China.,Institute of Cardiocerebrovascular Disease, Shijiazhuang, People's Republic of China
| | - Xueqing Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Neurological Laboratory of Hebei Province, Shijiazhuang, People's Republic of China.,Institute of Cardiocerebrovascular Disease, Shijiazhuang, People's Republic of China
| | - Chunyan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Neurological Laboratory of Hebei Province, Shijiazhuang, People's Republic of China.,Institute of Cardiocerebrovascular Disease, Shijiazhuang, People's Republic of China
| |
Collapse
|
63
|
UBQLN2 Promotes the Production of Type I Interferon via the TBK1-IRF3 Pathway. Cells 2020; 9:cells9051205. [PMID: 32413959 PMCID: PMC7290724 DOI: 10.3390/cells9051205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations of Ubiquilin 2 (UBQLN2) or TANK-binding kinase 1 (TBK1) are associated with amyotrophic lateral sclerosis and frontotemporal degeneration (ALS/FTD). However, the mechanisms whereby UBQLN2 or TBK1 mutations lead to ALS and FTD remain unclear. Here, we explored the effect of UBQLN2 on TBK1 in HEK-293T cells or in CRISPR-Cas9-mediated IRF3 and IRF7 knockout (KO) cells. We found an interaction between TBK1 and UBQLN2, which was affected by ALS/FTD-linked mutations in TBK1 or UBQLN2. Co-expression of UBQLN2 with TBK1 elevated the protein level of TBK1 as well as the phosphorylation of TBK1 and IRF3 in a UBQLN2 dose-dependent manner, and this phosphorylation was reduced by mutant UBQLN2. In addition, the cellular production of IFN1 and related pro-inflammatory cytokines was substantially elevated when UBQLN2 and TBK1 were co-expressed, which was also decreased by mutant UBQLN2. Functional assay revealed that mutant UBQLN2 significantly reduced the binding affinity of TBK1 for its partners, including IRF3, (SQSTM1)/p62 and optineurin (OPTN). Moreover, complete loss of IRF3 abolished the induction of IFN1 and related pro-inflammatory cytokines enhanced by UBQLN2 in HEK-293T cells, whereas no significant change in IRF7 knockout cells was observed. Thus, our findings suggest that UBQLN2 promotes IRF3 phosphorylation via TBK1, leading to enhanced IFN1 induction, and also imply that the dysregulated TBK1-IRF3 pathway may play a role in UBQLN2-related neurodegeneration.
Collapse
|
64
|
PDE2A Is Indispensable for Mouse Liver Development and Hematopoiesis. Int J Mol Sci 2020; 21:ijms21082902. [PMID: 32326334 PMCID: PMC7215450 DOI: 10.3390/ijms21082902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphodiesterase 2A (PDE2A) is a cAMP-cGMP hydrolyzing enzyme essential for mouse development and the PDE2A knockout model (PDE2A−/−) is embryonic lethal. Notably, livers of PDE2A−/− embryos at embryonic day 14.5 (E14.5) have extremely reduced size. Morphological, cellular and molecular analyses revealed loss of integrity in the PDE2A−/− liver niche that compromises the hematopoietic function and maturation. Hematopoietic cells isolated from PDE2A−/− livers are instead able to differentiate in in vitro assays, suggesting the absence of blood cell-autonomous defects. Apoptosis was revealed in hepatoblasts and at the endothelial and stromal compartments in livers of PDE2A−/− embryos. The increase of the intracellular cAMP level and of the inducible cAMP early repressor (ICER) in liver of PDE2A−/− embryos might explain the impairment of liver development by downregulating the expression of the anti-apoptotic gene Bcl2. In summary, we propose PDE2A as an essential gene for integrity maintenance of liver niche and the accomplishment of hematopoiesis.
Collapse
|
65
|
Workman LM, Zhang L, Fan Y, Zhang W, Habelhah H. TRAF2 Ser-11 Phosphorylation Promotes Cytosolic Translocation of the CD40 Complex To Regulate Downstream Signaling Pathways. Mol Cell Biol 2020; 40:e00429-19. [PMID: 32041822 PMCID: PMC7156217 DOI: 10.1128/mcb.00429-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/14/2019] [Accepted: 01/29/2020] [Indexed: 11/20/2022] Open
Abstract
CD40 plays an important role in immune responses by activating the c-Jun N-terminal protein kinase (JNK) and NF-κB pathways; however, the precise mechanisms governing the spatiotemporal activation of these two signaling pathways are not fully understood. Here, using four different TRAF2-deficient cell lines (A20.2J, CH12.LX, HAP1, and mouse embryonic fibroblasts [MEFs]) reconstituted with wild-type or phosphorylation mutant forms of TRAF2, along with immunoprecipitation, immunoblotting, gene expression, and immunofluorescence analyses, we report that CD40 ligation elicits TANK-binding kinase 1 (TBK1)-mediated phosphorylation of TRAF2 at Ser-11. This phosphorylation interfered with the interaction between TRAF2's RING domain and membrane phospholipids and enabled translocation of the TRAF2 complex from CD40 to the cytoplasm. We also observed that this cytoplasmic translocation is required for full activation of the JNK pathway and the secondary phase of the NF-κB pathway. Moreover, we found that in the absence of Ser-11 phosphorylation, the TRAF2 RING domain interacts with phospholipids, leading to the translocation of the TRAF2 complex to lipid rafts, resulting in its degradation and activation of the noncanonical NF-κB pathway. Thus, our results provide new insights into the CD40 signaling mechanisms whereby Ser-11 phosphorylation controls RING domain-dependent subcellular localization of TRAF2 to modulate the spatiotemporal activation of the JNK and NF-κB pathways.
Collapse
Affiliation(s)
- Lauren M Workman
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Laiqun Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Yumei Fan
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Weizhou Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Hasem Habelhah
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
66
|
Balka KR, Louis C, Saunders TL, Smith AM, Calleja DJ, D'Silva DB, Moghaddas F, Tailler M, Lawlor KE, Zhan Y, Burns CJ, Wicks IP, Miner JJ, Kile BT, Masters SL, De Nardo D. TBK1 and IKKε Act Redundantly to Mediate STING-Induced NF-κB Responses in Myeloid Cells. Cell Rep 2020; 31:107492. [PMID: 32268090 DOI: 10.1016/j.celrep.2020.03.056] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 02/09/2020] [Accepted: 03/17/2020] [Indexed: 01/13/2023] Open
Abstract
Stimulator of Interferon Genes (STING) is a critical component of host innate immune defense but can contribute to chronic autoimmune or autoinflammatory disease. Once activated, the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS)-STING pathway induces both type I interferon (IFN) expression and nuclear factor-κB (NF-κB)-mediated cytokine production. Currently, these two signaling arms are thought to be mediated by a single upstream kinase, TANK-binding kinase 1 (TBK1). Here, using genetic and pharmacological approaches, we show that TBK1 alone is dispensable for STING-induced NF-κB responses in human and mouse immune cells, as well as in vivo. We further demonstrate that TBK1 acts redundantly with IκB kinase ε (IKKε) to drive NF-κB upon STING activation. Interestingly, we show that activation of IFN regulatory factor 3 (IRF3) is highly dependent on TBK1 kinase activity, whereas NF-κB is significantly less sensitive to TBK1/IKKε kinase inhibition. Our work redefines signaling events downstream of cGAS-STING. Our findings further suggest that cGAS-STING will need to be targeted directly to effectively ameliorate the inflammation underpinning disorders associated with STING hyperactivity.
Collapse
Affiliation(s)
- Katherine R Balka
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tahnee L Saunders
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Amber M Smith
- Departments of Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dale J Calleja
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Damian B D'Silva
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Fiona Moghaddas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Maximilien Tailler
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Yifan Zhan
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher J Burns
- Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ian P Wicks
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Rheumatology Unit, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Jonathan J Miner
- Departments of Medicine, Molecular Microbiology, and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin T Kile
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Health and Medical Sciences Faculty Office, University of Adelaide, Adelaide, SA 5005, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
67
|
Gerbino V, Kaunga E, Ye J, Canzio D, O'Keeffe S, Rudnick ND, Guarnieri P, Lutz CM, Maniatis T. The Loss of TBK1 Kinase Activity in Motor Neurons or in All Cell Types Differentially Impacts ALS Disease Progression in SOD1 Mice. Neuron 2020; 106:789-805.e5. [PMID: 32220666 DOI: 10.1016/j.neuron.2020.03.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/30/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
DNA sequence variants in the TBK1 gene associate with or cause sporadic or familial amyotrophic lateral sclerosis (ALS). Here we show that mice bearing human ALS-associated TBK1 missense loss-of-function mutations, or mice in which the Tbk1 gene is selectively deleted in motor neurons, do not display a neurodegenerative disease phenotype. However, loss of TBK1 function in motor neurons of the SOD1G93A mouse model of ALS impairs autophagy, increases SOD1 aggregation, and accelerates early disease onset without affecting lifespan. By contrast, point mutations that decrease TBK1 kinase activity in all cells also accelerate disease onset but extend the lifespan of SOD1 mice. This difference correlates with the failure to activate high levels of expression of interferon-inducible genes in glia. We conclude that loss of TBK1 kinase activity impacts ALS disease progression through distinct pathways in different spinal cord cell types and further implicate the importance of glia in neurodegeneration.
Collapse
Affiliation(s)
- Valeria Gerbino
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Esther Kaunga
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Junqiang Ye
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Daniele Canzio
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Sean O'Keeffe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Noam D Rudnick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Paolo Guarnieri
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Cathleen M Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; New York Genome Center, New York, NY 10013, USA; Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
68
|
Newton K. Multitasking Kinase RIPK1 Regulates Cell Death and Inflammation. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036368. [PMID: 31427374 DOI: 10.1101/cshperspect.a036368] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Receptor-interacting serine threonine kinase 1 (RIPK1) is a widely expressed kinase that is essential for limiting inflammation in both mice and humans. Mice lacking RIPK1 die at birth from multiorgan inflammation and aberrant cell death, whereas humans lacking RIPK1 are immunodeficient and develop very early-onset inflammatory bowel disease. In contrast to complete loss of RIPK1, inhibiting the kinase activity of RIPK1 genetically or pharmacologically prevents cell death and inflammation in several mouse disease models. Indeed, small molecule inhibitors of RIPK1 are in phase I clinical trials for amyotrophic lateral sclerosis, and phase II clinical trials for psoriasis, rheumatoid arthritis, and ulcerative colitis. This review focuses on which signaling pathways use RIPK1, how activation of RIPK1 is regulated, and when activation of RIPK1 appears to be an important driver of inflammation.
Collapse
Affiliation(s)
- Kim Newton
- Department of Physiological Chemistry, Genentech, South San Francisco, California 94080, USA
| |
Collapse
|
69
|
Abramzon YA, Fratta P, Traynor BJ, Chia R. The Overlapping Genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Neurosci 2020; 14:42. [PMID: 32116499 PMCID: PMC7012787 DOI: 10.3389/fnins.2020.00042] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two diseases that form a broad neurodegenerative continuum. Considerable effort has been made to unravel the genetics of these disorders, and, based on this work, it is now clear that ALS and FTD have a significant genetic overlap. TARDBP, SQSTM1, VCP, FUS, TBK1, CHCHD10, and most importantly C9orf72, are the critical genetic players in these neurological disorders. Discoveries of these genes have implicated autophagy, RNA regulation, and vesicle and inclusion formation as the central pathways involved in neurodegeneration. Here we provide a summary of the significant genes identified in these two intrinsically linked neurodegenerative diseases and highlight the genetic and pathological overlaps.
Collapse
Affiliation(s)
- Yevgeniya A. Abramzon
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, United States
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Pietro Fratta
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Bryan J. Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, United States
- Department of Neurology, Brain Science Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, United States
| |
Collapse
|
70
|
Studencka-Turski M, Çetin G, Junker H, Ebstein F, Krüger E. Molecular Insight Into the IRE1α-Mediated Type I Interferon Response Induced by Proteasome Impairment in Myeloid Cells of the Brain. Front Immunol 2019; 10:2900. [PMID: 31921161 PMCID: PMC6932173 DOI: 10.3389/fimmu.2019.02900] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
Proteostasis is critical for cells to maintain the balance between protein synthesis, quality control, and degradation. This is particularly important for myeloid cells of the central nervous system as their immunological function relies on proper intracellular protein turnover by the ubiquitin-proteasome system. Accordingly, disruption of proteasome activity due to, e.g., loss-of-function mutations within genes encoding proteasome subunits, results in systemic autoinflammation. On the molecular level, pharmacological inhibition of proteasome results in endoplasmic reticulum (ER) stress-activated unfolded protein response (UPR) as well as an induction of type I interferons (IFN). Nevertheless, our understanding as to whether and to which extent UPR signaling regulates type I IFN response is limited. To address this issue, we have tested the effects of proteasome dysfunction upon treatment with proteasome inhibitors in primary murine microglia and microglia-like cell line BV-2. Our data show that proteasome impairment by bortezomib is a stimulus that activates all three intracellular ER-stress transducers activation transcription factor 6, protein kinase R-like endoplasmic reticulum kinase and inositol-requiring protein 1 alpha (IRE1α), causing a full activation of the UPR. We further demonstrate that impaired proteasome activity in microglia cells triggers an induction of IFNβ1 in an IRE1-dependent manner. An inhibition of the IRE1 endoribonuclease activity significantly attenuates TANK-binding kinase 1-mediated activation of type I IFN. Moreover, interfering with TANK-binding kinase 1 activity also compromised the expression of C/EBP homologous protein 10, thereby emphasizing a multilayered interplay between UPR and type IFN response pathway. Interestingly, the induced protein kinase R-like endoplasmic reticulum kinase-activation transcription factor 4-C/EBP homologous protein 10 and IRE1-X-box-binding protein 1 axes caused a significant upregulation of proinflammatory cytokine interleukin 6 expression that exacerbates STAT1/STAT3 signaling in cells with dysfunctional proteasomes. Altogether, these findings indicate that proteasome impairment disrupts ER homeostasis and triggers a complex interchange between ER-stress sensors and type I IFN signaling, thus inducing in myeloid cells a state of chronic inflammation.
Collapse
Affiliation(s)
- Maja Studencka-Turski
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Gonca Çetin
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Heike Junker
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
71
|
Hagan RS, Torres-Castillo J, Doerschuk CM. Myeloid TBK1 Signaling Contributes to the Immune Response to Influenza. Am J Respir Cell Mol Biol 2019; 60:335-345. [PMID: 30290124 DOI: 10.1165/rcmb.2018-0122oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages provide key elements of the host response to influenza A virus (IAV) infection, including expression of type I IFN and inflammatory cytokines and chemokines. TBK1 (TNF receptor-associated factor family member-associated NF-κB activator-binding kinase 1) contributes to IFN expression and antiviral responses in some cell types, but its role in the innate response to IAV in vivo is unknown. We hypothesized that macrophage TBK1 contributes to both IFN and non-IFN components of host defense and IAV pathology. We generated myeloid-conditional TBK1 knockout mice and assessed the in vitro and in vivo consequences of IAV infection. Myeloid-specific loss of TBK1 in vivo resulted in less severe host response to IAV, as assessed by decreased mortality, weight loss, and hypoxia and less inflammatory changes in BAL fluid relative to wild-type mice despite no differences in viral load. Mice lacking myeloid TBK1 showed less recruitment of CD64+SiglecF-Ly6Chi inflammatory macrophages, less expression of inflammatory cytokines in the BAL fluid, and less expression of both IFN regulatory factor and NF-κB target genes in the lung. Analysis of sorted alveolar macrophages, inflammatory macrophages, and lung interstitial macrophages revealed that each subpopulation requires TBK1 for distinct components of the response to IAV infection. Our findings define roles for myeloid TBK1 in IAV-induced lung inflammation apart from IFN type I expression and point to myeloid TBK1 as a central and cell type-specific regulator of virus-induced lung damage.
Collapse
Affiliation(s)
- Robert S Hagan
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,2 Marsico Lung Institute, and
| | - Jose Torres-Castillo
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,2 Marsico Lung Institute, and
| | - Claire M Doerschuk
- 1 Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,2 Marsico Lung Institute, and.,3 Center for Airways Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
72
|
Ye J, Cheung J, Gerbino V, Ahlsén G, Zimanyi C, Hirsh D, Maniatis T. Effects of ALS-associated TANK binding kinase 1 mutations on protein-protein interactions and kinase activity. Proc Natl Acad Sci U S A 2019; 116:24517-24526. [PMID: 31748271 PMCID: PMC6900539 DOI: 10.1073/pnas.1915732116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Exonic DNA sequence variants in the Tbk1 gene associate with both sporadic and familial amyotrophic lateral sclerosis (ALS). Here, we examine functional defects in 25 missense TBK1 mutations, focusing on kinase activity and protein-protein interactions. We identified kinase domain (KD) mutations that abolish kinase activity or display substrate-specific defects in specific pathways, such as innate immunity and autophagy. By contrast, mutations in the scaffold dimerization domain (SDD) of TBK1 can cause the loss of kinase activity due to structural disruption, despite an intact KD. Familial ALS mutations in ubiquitin-like domain (ULD) or SDD display defects in dimerization; however, a subset retains kinase activity. These observations indicate that TBK1 dimerization is not required for kinase activation. Rather, dimerization seems to increase protein stability and enables efficient kinase-substrate interactions. Our study revealed many aspects of TBK1 activities affected by ALS mutations, highlighting the complexity of disease pathogenicity and providing insights into TBK1 activation mechanism.
Collapse
Affiliation(s)
- Junqiang Ye
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027
| | - Jonah Cheung
- Special Projects Group, New York Structural Biology Center, New York, NY 10027
| | - Valeria Gerbino
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027
| | - Göran Ahlsén
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027
| | - Christina Zimanyi
- Special Projects Group, New York Structural Biology Center, New York, NY 10027
| | - David Hirsh
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032
- Special Projects Group, New York Structural Biology Center, New York, NY 10027
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032;
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027
- New York Genome Center, New York, NY 10013
| |
Collapse
|
73
|
Liu P, Kerins MJ, Tian W, Neupane D, Zhang DD, Ooi A. Differential and overlapping targets of the transcriptional regulators NRF1, NRF2, and NRF3 in human cells. J Biol Chem 2019; 294:18131-18149. [PMID: 31628195 PMCID: PMC6885608 DOI: 10.1074/jbc.ra119.009591] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
The nuclear factor (erythroid 2)-like (NRF) transcription factors are a subset of cap'n'collar transcriptional regulators. They consist of three members, NRF1, NRF2, and NRF3, that regulate the expression of genes containing antioxidant-response elements (AREs) in their promoter regions. Although all NRF members regulate ARE-containing genes, each is associated with distinct roles. A comprehensive study of differential and overlapping DNA-binding and transcriptional activities of the NRFs has not yet been conducted. Here, we performed chromatin immunoprecipitation (ChIP)-exo sequencing, an approach that combines ChIP with exonuclease treatment to pinpoint regulatory elements in DNA with high precision, in conjunction with RNA-sequencing to define the transcriptional targets of each NRF member. Our approach, done in three U2OS cell lines, identified 31 genes that were regulated by all three NRF members, 27 that were regulated similarly by all three, and four genes that were differentially regulated by at least one NRF member. We also found genes that were up- or down-regulated by only one NRF member, with 84, 84, and 22 genes that were regulated by NRF1, NRF2, and NRF3, respectively. Analysis of the ARE motifs identified in ChIP peaks revealed that NRF2 prefers binding to AREs flanked by GC-rich regions and that NRF1 prefers AT-rich flanking regions. Thus, sequence preference, likely in combination with upstream signaling events, determines NRF member activation under specific cellular contexts. Our analysis provides a comprehensive description of differential and overlapping gene regulation by the transcriptional regulators NRF1, NRF2, and NRF3.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Michael J. Kerins
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Wang Tian
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Durga Neupane
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
74
|
Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, Hodges JR, Kiernan MC, Loy CT, Kassiou M, Kril JJ. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol 2019; 15:540-555. [PMID: 31324897 DOI: 10.1038/s41582-019-0231-z] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders with different pathological signatures, genetic variability and complex disease mechanisms, for which no effective treatments exist. Despite advances in understanding the underlying pathology of FTD, sensitive and specific fluid biomarkers for this disease are lacking. As in other types of dementia, mounting evidence suggests that neuroinflammation is involved in the progression of FTD, including cortical inflammation, microglial activation, astrogliosis and differential expression of inflammation-related proteins in the periphery. Furthermore, an overlap between FTD and autoimmune disease has been identified. The most substantial evidence, however, comes from genetic studies, and several FTD-related genes are also implicated in neuroinflammation. This Review discusses specific evidence of neuroinflammatory mechanisms in FTD and describes how advances in our understanding of these mechanisms, in FTD as well as in other neurodegenerative diseases, might facilitate the development and implementation of diagnostic tools and disease-modifying treatments for FTD.
Collapse
Affiliation(s)
- Fiona Bright
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Eryn L Werry
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Carol Dobson-Stone
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Olivier Piguet
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Clement T Loy
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Jillian J Kril
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
75
|
Sears NC, Boese EA, Miller MA, Fingert JH. Mendelian genes in primary open angle glaucoma. Exp Eye Res 2019; 186:107702. [PMID: 31238079 DOI: 10.1016/j.exer.2019.107702] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
Abstract
Mutations in each of three genes, myocilin (MYOC), optineurin (OPTN), and TANK binding kinase 1 (TBK1), may cause primary open-angle glaucoma (POAG) that is inherited as a Mendelian trait. MYOC mutations cause 3-4% of POAG cases with IOP >21 mmHg, while mutations in OPTN, TBK1, and MYOC each cause ∼1% of POAG with IOP ≤21 mmHg, i.e. normal tension glaucoma. Identification of these disease-causing genes has provided insights into glaucoma pathogenesis. Mutations in MYOC cause a cascade of abnormalities in the trabecular meshwork including intracellular retention of MYOC protein, decreased aqueous outflow, higher intraocular pressure, and glaucoma. Investigation of MYOC mutations demonstrated that abnormal retention of intracellular MYOC and stimulation of endoplasmic reticular (ER) stress may be important steps in the development of MYOC-associated glaucoma. Mutations in OPTN and TBK1 cause a dysregulation of autophagy which may directly cause retinal ganglion cell damage and normal tension glaucoma. Discovery of these Mendelian causes of glaucoma has also provided a new set of potential therapeutic targets that may ultimately lead to novel, gene-directed glaucoma treatments.
Collapse
Affiliation(s)
- Nathan C Sears
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Erin A Boese
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mathew A Miller
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John H Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
76
|
Peltzer N, Walczak H. Cell Death and Inflammation – A Vital but Dangerous Liaison. Trends Immunol 2019; 40:387-402. [DOI: 10.1016/j.it.2019.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/07/2023]
|
77
|
Zhao Y, Zagani R, Park SM, Yoshida N, Shah P, Reinecker HC. Microbial recognition by GEF-H1 controls IKKε mediated activation of IRF5. Nat Commun 2019; 10:1349. [PMID: 30902986 PMCID: PMC6430831 DOI: 10.1038/s41467-019-09283-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/27/2019] [Indexed: 02/08/2023] Open
Abstract
During infection, transcription factor interferon regulatory factor 5 (IRF5) is essential for the control of host defense. Here we show that the microtubule-associated guanine nucleotide exchange factor (GEF)-H1, is required for the phosphorylation of IRF5 by microbial muramyl-dipeptides (MDP), the minimal structural motif of peptidoglycan of both Gram-positive and Gram-negative bacteria. Specifically, GEF-H1 functions in a microtubule based recognition system for microbial peptidoglycans that mediates the activation of IKKε which we identify as a new upstream IKKα/β and IRF5 kinase. The deletion of GEF-H1 or dominant-negative variants of GEF-H1 prevent activation of IKKε and phosphorylation of IRF5. The GEF-H1-IKKε-IRF5 signaling axis functions independent of NOD-like receptors and is critically required for the recognition of intracellular peptidoglycans and host defenses against Listeria monocytogenes.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Rachid Zagani
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sung-Moo Park
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Naohiro Yoshida
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Pankaj Shah
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Hans-Christian Reinecker
- Department of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
78
|
Shin CH, Choi DS. Essential Roles for the Non-Canonical IκB Kinases in Linking Inflammation to Cancer, Obesity, and Diabetes. Cells 2019; 8:cells8020178. [PMID: 30791439 PMCID: PMC6406369 DOI: 10.3390/cells8020178] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Non-canonical IκB kinases (IKKs) TBK1 and IKKε have essential roles as regulators of innate immunity and cancer. Recent work has also implicated these kinases in distinctively controlling glucose homeostasis and repressing adaptive thermogenic and mitochondrial biogenic response upon obesity-induced inflammation. Additionally, TBK1 and IKKε regulate pancreatic β-cell regeneration. In this review, we summarize current data on the functions and molecular mechanisms of TBK1 and IKKε in orchestrating inflammation to cancer, obesity, and diabetes.
Collapse
Affiliation(s)
- Chong Hyun Shin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
79
|
Brenner D, Sieverding K, Bruno C, Lüningschrör P, Buck E, Mungwa S, Fischer L, Brockmann SJ, Ulmer J, Bliederhäuser C, Philibert CE, Satoh T, Akira S, Boillée S, Mayer B, Sendtner M, Ludolph AC, Danzer KM, Lobsiger CS, Freischmidt A, Weishaupt JH. Heterozygous Tbk1 loss has opposing effects in early and late stages of ALS in mice. J Exp Med 2019; 216:267-278. [PMID: 30635357 PMCID: PMC6363427 DOI: 10.1084/jem.20180729] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 10/24/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Heterozygous loss-of-function mutations of TANK-binding kinase 1 (TBK1 ) cause familial ALS, yet downstream mechanisms of TBK1 mutations remained elusive. TBK1 is a pleiotropic kinase involved in the regulation of selective autophagy and inflammation. We show that heterozygous Tbk1 deletion alone does not lead to signs of motoneuron degeneration or disturbed autophagy in mice during a 200-d observation period. Surprisingly, however, hemizygous deletion of Tbk1 inversely modulates early and late disease phases in mice additionally overexpressing ALS-linked SOD1G93A , which represents a "second hit" that induces both neuroinflammation and proteostatic dysregulation. At the early stage, heterozygous Tbk1 deletion impairs autophagy in motoneurons and prepones both the clinical onset and muscular denervation in SOD1G93A/Tbk1+/- mice. At the late disease stage, however, it significantly alleviates microglial neuroinflammation, decelerates disease progression, and extends survival. Our results indicate a profound effect of TBK1 on brain inflammatory cells under pro-inflammatory conditions and point to a complex, two-edged role of TBK1 in SOD1-linked ALS.
Collapse
Affiliation(s)
- David Brenner
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Clara Bruno
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Eva Buck
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Simon Mungwa
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Lena Fischer
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Johannes Ulmer
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Clémentine E Philibert
- Institut du Cerveau et de la Moelle Épinière, Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7225, Sorbonne Université, Paris, France
| | - Takashi Satoh
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Séverine Boillée
- Institut du Cerveau et de la Moelle Épinière, Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7225, Sorbonne Université, Paris, France
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | | | - Karin M Danzer
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Christian S Lobsiger
- Institut du Cerveau et de la Moelle Épinière, Institut National de la Santé et de la Recherche Médicale Unité 1127, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7225, Sorbonne Université, Paris, France
| | | | | |
Collapse
|
80
|
Yin N, Yang Y, Wang X, Yang C, Ma X, Shaukat A, Zhao G, Deng G. MiR-19a mediates the negative regulation of the NF-κB pathway in lipopolysaccharide-induced endometritis by targeting TBK1. Inflamm Res 2019; 68:231-240. [PMID: 30673803 DOI: 10.1007/s00011-019-01213-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE In both humans and animals, endometritis is severe inflammation of the uterus, and it causes great economic losses in dairy cow production. MicroRNAs have been reported to play an important role in various inflammatory diseases. However, the regulatory mechanisms of miR-19a in endometritis remain unclear. Thus, the aims of this study are to investigate the role of miR-19a in a mouse model of lipopolysaccharide (LPS)-induced endometritis and elucidate the possible mechanisms in bovine endometrial epithelial cells (bEECs). METHODS AND RESULTS Histological analysis showed that LPS induced severe pathological changes, suggesting that the endometritis mouse model was well established. The qPCR assay indicated that miR-19a expression in the uterine tissues of mice with endometritis and in bEECs with LPS stimulation was significantly reduced. The overexpression of miR-19a significantly decreased the expression of inflammatory cytokines (TNF-α, IL-6 and IL-1β) and the phosphorylation of NF-κB p65 and IκBα. Similar results were also obtained following the knockdown of TBK1. Furthermore, a dual luciferase reporter assay further validated that miR-19a inhibited TBK1 expression by binding directly to the 3'-UTR of TBK1. CONCLUSION We demonstrated that miR-19a has anti-inflammatory effects and mediates the negative regulation of the NF-κB Pathway in LPS-induced endometritis by targeting TBK1.
Collapse
Affiliation(s)
- Nannan Yin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaoyan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
81
|
Li J, Yan C, Liu J, Yan J, Feng H. SIKE of black carp is a substrate of TBK1 and suppresses TBK1-mediated antiviral signaling. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:157-164. [PMID: 30253130 DOI: 10.1016/j.dci.2018.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
RIG-I like receptor (RLR) signaling functions importantly in host innate immune response against RNA virus, which is tightly regulated by a number of mechanisms to prevent aberrant interferon production. The suppressor of IKKε (SIKE) has been identified as a suppressor of IKKε and TBK1, which are key components of RLR signaling. In this study, SIKE homologue (bcSIKE) of black carp (Mylopharyngodon piceus) has been cloned and characterized. The transcription of bcSIKE varied in host cells in response to the stimulation of LPS, poly (I:C) and viruses. bcSIKE migrated around 27 KDa in immunoblot assay and distributed in both cytoplasm and nucleus of host cell in immunofluorescent (IF) staining test. bcSIKE showed no IFN-inducing ability in reporter assay and EPC cells expressing bcSIKE showed no enhanced antiviral ability against either grass carp reovirus (GCRV) or spring viremia of carp virus (SVCV). However, bcSIKE obviously dampened the IFN-inducing ability of RLR signaling members in reporter assay when bcSIKE was co-expressed with these molecules in EPC cells. The association between bcSIKE and bcTBK1 has been identified through IF and co-immunoprecipitation (co-IP) assay. The plaque assay demonstrated clearly that bcTBK1-mediated antiviral activity in EPC cells against both GCRV and SVCV was down regulated by bcSIKE. All the data generated in this paper support the conclusion that bcSIKE interacts with bcTBK1 and inhibits bcTBK1-mediated antiviral signaling during host innate immune activation, which is reported in teleost for the first time.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Chuanzhe Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ji Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
82
|
Roles for the IKK-Related Kinases TBK1 and IKKε in Cancer. Cells 2018; 7:cells7090139. [PMID: 30223576 PMCID: PMC6162516 DOI: 10.3390/cells7090139] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 01/21/2023] Open
Abstract
While primarily studied for their roles in innate immune response, the IκB kinase (IKK)-related kinases TANK-binding kinase 1 (TBK1) and IKKε also promote the oncogenic phenotype in a variety of cancers. Additionally, several substrates of these kinases control proliferation, autophagy, cell survival, and cancer immune responses. Here we review the involvement of TBK1 and IKKε in controlling different cancers and in regulating responses to cancer immunotherapy.
Collapse
|
83
|
Xu D, Jin T, Zhu H, Chen H, Ofengeim D, Zou C, Mifflin L, Pan L, Amin P, Li W, Shan B, Naito MG, Meng H, Li Y, Pan H, Aron L, Adiconis X, Levin JZ, Yankner BA, Yuan J. TBK1 Suppresses RIPK1-Driven Apoptosis and Inflammation during Development and in Aging. Cell 2018; 174:1477-1491.e19. [PMID: 30146158 PMCID: PMC6128749 DOI: 10.1016/j.cell.2018.07.041] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/28/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022]
Abstract
Aging is a major risk factor for both genetic and sporadic neurodegenerative disorders. However, it is unclear how aging interacts with genetic predispositions to promote neurodegeneration. Here, we investigate how partial loss of function of TBK1, a major genetic cause for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comorbidity, leads to age-dependent neurodegeneration. We show that TBK1 is an endogenous inhibitor of RIPK1 and the embryonic lethality of Tbk1-/- mice is dependent on RIPK1 kinase activity. In aging human brains, another endogenous RIPK1 inhibitor, TAK1, exhibits a marked decrease in expression. We show that in Tbk1+/- mice, the reduced myeloid TAK1 expression promotes all the key hallmarks of ALS/FTD, including neuroinflammation, TDP-43 aggregation, axonal degeneration, neuronal loss, and behavior deficits, which are blocked upon inhibition of RIPK1. Thus, aging facilitates RIPK1 activation by reducing TAK1 expression, which cooperates with genetic risk factors to promote the onset of ALS/FTD.
Collapse
Affiliation(s)
- Daichao Xu
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Taijie Jin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, 201210 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Hong Zhu
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Hongbo Chen
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Dimitry Ofengeim
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Chengyu Zou
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Lauren Mifflin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Lifeng Pan
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd., 200032 Shanghai, China
| | - Palak Amin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Wanjin Li
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, 201210 Shanghai, China
| | - Masanori Gomi Naito
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Huyan Meng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, 201210 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, 201210 Shanghai, China
| | - Heling Pan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, 201210 Shanghai, China
| | - Liviu Aron
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Bruce A Yankner
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA; Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, 201210 Shanghai, China.
| |
Collapse
|
84
|
Weil R, Laplantine E, Curic S, Génin P. Role of Optineurin in the Mitochondrial Dysfunction: Potential Implications in Neurodegenerative Diseases and Cancer. Front Immunol 2018; 9:1243. [PMID: 29971063 PMCID: PMC6018216 DOI: 10.3389/fimmu.2018.01243] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Optineurin (Optn) is a 577 aa protein encoded by the Optn gene. Mutations of Optn are associated with normal tension glaucoma and amyotrophic lateral sclerosis, and its gene has also been linked to the development of Paget’s disease of bone and Crohn’s disease. Optn is involved in diverse cellular functions, including NF-κB regulation, membrane trafficking, exocytosis, vesicle transport, reorganization of actin and microtubules, cell cycle control, and autophagy. Besides its role in xenophagy and autophagy of aggregates, Optn has been identified as a primary autophagy receptor, among the five adaptors that translocate to mitochondria during mitophagy. Mitophagy is a selective macroautophagy process during which irreparable mitochondria are degraded, preventing accumulation of defective mitochondria and limiting the release of reactive oxygen species and proapoptotic factors. Mitochondrial quality control via mitophagy is central to the health of cells. One of the important surveillance pathways of mitochondrial health is the recently defined signal transduction pathway involving the mitochondrial PTEN-induced putative kinase 1 (PINK1) protein and the cytosolic RING-between-RING ubiquitin ligase Parkin. Both of these proteins, when mutated, have been identified in certain forms of Parkinson’s disease. By targeting ubiquitinated mitochondria to autophagosomes through its association with autophagy related proteins, Optn is responsible for a critical step in mitophagy. This review reports recent discoveries on the role of Optn in mitophagy and provides insight into its link with neurodegenerative diseases. We will also discuss the involvement of Optn in other pathologies in which mitophagy dysfunctions are involved including cancer.
Collapse
Affiliation(s)
- Robert Weil
- Laboratory of Signaling and Pathogenesis, Institut Pasteur, CNRS UMR3691, Paris, France
| | - Emmanuel Laplantine
- Laboratory of Signaling and Pathogenesis, Institut Pasteur, CNRS UMR3691, Paris, France
| | - Shannel Curic
- Laboratory of Signaling and Pathogenesis, Institut Pasteur, CNRS UMR3691, Paris, France
| | - Pierre Génin
- Laboratory of Signaling and Pathogenesis, Institut Pasteur, CNRS UMR3691, Paris, France
| |
Collapse
|
85
|
Cruz VH, Arner EN, Wynne KW, Scherer PE, Brekken RA. Loss of Tbk1 kinase activity protects mice from diet-induced metabolic dysfunction. Mol Metab 2018; 16:139-149. [PMID: 29935921 PMCID: PMC6157474 DOI: 10.1016/j.molmet.2018.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/30/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE TANK Binding Kinase 1 (TBK1) has been implicated in the regulation of metabolism through studies with the drug amlexanox, an inhibitor of the IκB kinase (IKK)-related kinases. Amlexanox induced weight loss, reduced fatty liver and insulin resistance in high fat diet (HFD) fed mice and has now progressed into clinical testing for the treatment and prevention of obesity and type 2 diabetes. However, since amlexanox is a dual IKKε/TBK1 inhibitor, the specific metabolic contribution of TBK1 is not clear. METHODS To distinguish metabolic functions unique to TBK1, we examined the metabolic profile of global Tbk1 mutant mice challenged with an obesogenic diet and investigated potential mechanisms for the improved metabolic phenotype. RESULTS AND CONCLUSION We report that systemic loss of TBK1 kinase function has an overall protective effect on metabolic readouts in mice on an obesogenic diet, which is mediated by loss of an inhibitory interaction between TBK1 and the insulin receptor.
Collapse
Affiliation(s)
- Victoria H Cruz
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, USA
| | - Emily N Arner
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, USA
| | - Katherine W Wynne
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, USA
| | | | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
86
|
Outlioua A, Pourcelot M, Arnoult D. The Role of Optineurin in Antiviral Type I Interferon Production. Front Immunol 2018; 9:853. [PMID: 29755463 PMCID: PMC5932347 DOI: 10.3389/fimmu.2018.00853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022] Open
Abstract
After a viral infection and the stimulation of some pattern-recognition receptors as the toll-like receptor 3 in the endosomes or the RIG-I-like receptors in the cytosol, activation of the IKK-related kinase TBK1 leads to the production of type I interferons (IFNs) after phosphorylation of the transcription factors IRF3 and IRF7. Recent findings indicate an involvement of K63-linked polyubiquitination and of the Golgi-localized protein optineurin (OPTN) in the activation of this crucial kinase involved in innate antiviral immunity. This review summarizes the sensing of viruses and the signaling leading to type I IFN production following TBK1 activation through its ubiquitination and the sensing of ubiquitin chains by OPTN at the Golgi apparatus.
Collapse
Affiliation(s)
- Ahmed Outlioua
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Molecular Genetics and Immunophysiopathology Research Team, Health and Environment Laboratory, Aïn Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Marie Pourcelot
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- ANSES, INRA, ENVA, UPEC, UMR_1161 Virology, LabEx IBEID, Maisons-Alfort, France
| | - Damien Arnoult
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
| |
Collapse
|
87
|
Lork M, Kreike M, Staal J, Beyaert R. Importance of Validating Antibodies and Small Compound Inhibitors Using Genetic Knockout Studies-T Cell Receptor-Induced CYLD Phosphorylation by IKKε/TBK1 as a Case Study. Front Cell Dev Biol 2018; 6:40. [PMID: 29755980 PMCID: PMC5932415 DOI: 10.3389/fcell.2018.00040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/23/2018] [Indexed: 12/16/2022] Open
Abstract
CYLD is a deubiquitinating enzyme that plays a crucial role in immunity and inflammation as a negative regulator of NF-κB transcription factor and JNK kinase signaling. Defects in either of these pathways contribute to the progression of numerous inflammatory and autoimmune disorders. Therefore, we set out to unravel molecular mechanisms that control CYLD activity in the context of T cell receptor (TCR) signaling. More specifically, we focused on CYLD phosphorylation at Ser418, which can be detected upon immunoblotting of cell extracts with phospho(Ser418)-CYLD specific antibodies. Jurkat T cells stimulated with either anti-CD3/anti-CD28 or PMA/Ionomycin (to mimic TCR signaling) were used as a model system. The role of specific kinases was analyzed using pharmacological as well as genetic approaches. Our initial data indicated that CYLD is directly phosphorylated by the noncanonical IκB kinases (IKKs) IKKε and TANK Binding Kinase 1 (TBK1) at Ser418 upon TCR stimulation. Treatment with MRT67307, a small compound inhibitor for IKKε and TBK1, inhibited TCR-induced CYLD phosphorylation. However, the phospho(Ser418)-CYLD immunoreactive band was still present in CRISPR/Cas9 generated IKKε/TBK1 double knockout cell lines, where it could still be prevented by MRT67307, indicating that the initially observed inhibitory effect of MRT67307 on TCR-induced CYLD phosphorylation is IKKε/TBK1-independent. Most surprisingly, the phospho(Ser418)-CYLD immunoreactive band was still detectable upon immunoblotting of cell extracts obtained from CYLD deficient cells. These data demonstrate the non-specificity of MRT67307 and phospho(Ser418)-CYLD specific antibodies, implying that previously published results based on these tools may also have led to wrong conclusions. We therefore advise to use genetic knockout studies or alternative approaches for a better validation of antibodies and small compound inhibitors. Interestingly, immunoprecipitation with the phospho(Ser418)-CYLD antibody, followed by immunoblotting with anti-CYLD, revealed that CYLD is phosphorylated by IKKε/TBK1 at Ser418 upon T cell stimulation, but that its direct detection with the phospho(Ser418)-CYLD-specific antibody in a western blot is masked by another inducible protein of the same size that is recognized by the same antibody.
Collapse
Affiliation(s)
- Marie Lork
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Marja Kreike
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| |
Collapse
|
88
|
Louis C, Burns C, Wicks I. TANK-Binding Kinase 1-Dependent Responses in Health and Autoimmunity. Front Immunol 2018; 9:434. [PMID: 29559975 PMCID: PMC5845716 DOI: 10.3389/fimmu.2018.00434] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/19/2018] [Indexed: 01/05/2023] Open
Abstract
The pathogenesis of autoimmune diseases, such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) is driven by genetic predisposition and environmental triggers that lead to dysregulated immune responses. These include the generation of pathogenic autoantibodies and aberrant production of inflammatory cytokines. Current therapies for RA and other autoimmune diseases reduce inflammation by targeting inflammatory mediators, most of which are innate response cytokines, resulting in generalized immunosuppression. Overall, this strategy has been very successful, but not all patients respond, responses can diminish over time and numerous side effects can occur. Therapies that target the germinal center (GC) reaction and/or antibody-secreting plasma cells (PC) potentially provide a novel approach. TANK-binding kinase 1 (TBK1) is an IKK-related serine/threonine kinase best characterized for its involvement in innate antiviral responses through the induction of type I interferons. TBK1 is also gaining attention for its roles in humoral immune responses. In this review, we discuss the role of TBK1 in immunological pathways involved in the development and maintenance of antibody responses, with particular emphasis on its potential relevance in the pathogenesis of humoral autoimmunity. First, we review the role of TBK1 in the induction of type I IFNs. Second, we highlight how TBK1 mediates inducible T cell co-stimulator signaling to the GC T follicular B helper population. Third, we discuss emerging evidence on the contribution of TBK1 to autophagic pathways and the potential implications for immune cell function. Finally, we discuss the therapeutic potential of TBK1 inhibition in autoimmunity.
Collapse
Affiliation(s)
- Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Chris Burns
- Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ian Wicks
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Rheumatology Unit, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
89
|
TBK1 as a regulator of autoimmunity and antitumor immunity. Cell Mol Immunol 2018; 15:743-745. [PMID: 29503440 DOI: 10.1038/cmi.2017.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 01/19/2023] Open
|
90
|
Targeting IκappaB kinases for cancer therapy. Semin Cancer Biol 2018; 56:12-24. [PMID: 29486318 DOI: 10.1016/j.semcancer.2018.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
The inhibitory kappa B kinases (IKKs) and IKK related kinases are crucial regulators of the pro-inflammatory transcription factor, nuclear factor kappa B (NF-κB). The dysregulation in the activities of these kinases has been reported in several cancer types. These kinases are known to regulate survival, proliferation, invasion, angiogenesis, and metastasis of cancer cells. Thus, IKK and IKK related kinases have emerged as an attractive target for the development of cancer therapeutics. Several IKK inhibitors have been developed, few of which have advanced to the clinic. These inhibitors target IKK either directly or indirectly by modulating the activities of other signaling molecules. Some inhibitors suppress IKK activity by disrupting the protein-protein interaction in the IKK complex. The inhibition of IKK has also been shown to enhance the efficacy of conventional chemotherapeutic agents. Because IKK and NF-κB are the key components of innate immunity, suppressing IKK is associated with the risk of immune suppression. Furthermore, IKK inhibitors may hit other signaling molecules and thus may produce off-target effects. Recent studies suggest that multiple cytoplasmic and nuclear proteins distinct from NF-κB and inhibitory κB are also substrates of IKK. In this review, we discuss the utility of IKK inhibitors for cancer therapy. The limitations associated with the intervention of IKK are also discussed.
Collapse
|
91
|
Adhikary R, Sultana S, Bishayi B. Clitoria ternatea flower petals: Effect on TNFR1 neutralization via downregulation of synovial matrix metalloproteases. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:209-222. [PMID: 28826781 DOI: 10.1016/j.jep.2017.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/17/2017] [Accepted: 08/12/2017] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clitoria ternatea Linn. (C. ternatea) is a traditionally used herb in arthritis, and its anti-arthritic activity has been attributed to polyphenols (e.g. quercetins) from its flower petal. AIM OF THE STUDY The present study was designed to investigate whether C. ternatea or quercetin-3ß-D-glucoside (QG) support the antibody mediated TNFα-receptor 1 (TNFR1) neutralization to ameliorate arthritis in mice. MATERIALS AND METHODS Development of collagen-induced arthritis (CIA) in male Swiss mice (20-22g, 3-4 weeks of age) was followed by estimation of synovial polymorphonuclear cell (PMN) accumulation (in terms of myeloperoxidase activity), synovial and systemic release of cytokines, chemokines and C-reactive protein (CRP) by enzyme-linked immunosorbent assay (ELISA), biochemical estimation of synovial free radical generation and antioxidant status, as well as immunoblot assessment of synovial TNFR1, toll-like receptor 2(TLR2), cyclooxygenase-2(COX-2) and inducible nitric oxide synthase (iNOS) expression; and zymographic analysis of synovial matrix-metalloprotease-2 (MMP-2) activity. RESULTS CIA was induced from day 2 post-secondary immunizations as evidenced from arthritic scores and joint swelling in parallel to increased inflammatory and oxidative stress parameters in synovial joints. Long term supplementation with extract from Clitoria ternatea flower petals CTE (50mg/kg) and QG (2.5mg/kg) upto 24 days post booster immunization augmented anti-arthritic potential of TNFR1 neutralization with anti-TNFR1 antibody (10μg per mice) in terms of reduced MPO activity, decrease in release of pro-inflammatory cytokines, chemokines, reactive oxygen species (ROS)/ reactive nitrogen species (RNS) production in parallel to significant (p<0.05) reduction in TNFR1, TLR2, iNOS, COX-2 and MMP-2 expression. CONCLUSION CTE and QG possess potential anti-arthritic activity which targets synovial MMP-2 in arthritic joints and TNFR1 targeting followed by CTE or QG treatment might become a combinatorial approach in future therapeutic research in treatment of arthritis.
Collapse
Affiliation(s)
- Rana Adhikary
- Department of Physiology, Immunology and Microbiology laboratory. University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Sahin Sultana
- Department of Physiology, Immunology and Microbiology laboratory. University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology and Microbiology laboratory. University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
92
|
Shin HM, Shim HJ, Kim AY, Lee YJ, Nam H, Youn HS. Eicosapentaenoic acid suppresses TRIF-dependent signaling pathway of TLRs by targeting TBK1. J Food Biochem 2017. [DOI: 10.1111/jfbc.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyeon-Myeong Shin
- Department of Biomedical Laboratory Science; College of Medical Sciences, Soonchunhyang University; Asan-Si Chungnam 336-745 Republic of Korea
| | - Hyun-Jin Shim
- Department of Biomedical Laboratory Science; College of Medical Sciences, Soonchunhyang University; Asan-Si Chungnam 336-745 Republic of Korea
| | - Ah-Yeon Kim
- Department of Biomedical Laboratory Science; College of Medical Sciences, Soonchunhyang University; Asan-Si Chungnam 336-745 Republic of Korea
| | - Yoo Jung Lee
- Department of Biomedical Laboratory Science; College of Medical Sciences, Soonchunhyang University; Asan-Si Chungnam 336-745 Republic of Korea
| | - Hyeonjeong Nam
- Department of Biomedical Laboratory Science; College of Medical Sciences, Soonchunhyang University; Asan-Si Chungnam 336-745 Republic of Korea
| | - Hyung-Sun Youn
- Department of Biomedical Laboratory Science; College of Medical Sciences, Soonchunhyang University; Asan-Si Chungnam 336-745 Republic of Korea
| |
Collapse
|
93
|
Mielcarska MB, Bossowska-Nowicka M, Toka FN. Functional failure of TLR3 and its signaling components contribute to herpes simplex encephalitis. J Neuroimmunol 2017; 316:65-73. [PMID: 29305044 DOI: 10.1016/j.jneuroim.2017.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/17/2017] [Accepted: 12/17/2017] [Indexed: 02/06/2023]
Abstract
Herpes simplex encephalitis (HSE) is a severe neurological disease in children and adults caused by herpes simplex virus. This review discusses recent findings on the role of Toll-like receptor 3 (TLR3) deficiencies in the HSE development. Critical checkpoints in the TLR3 signaling that contribute to innate response are discussed, including the importance of TLR3 ligand recognition site and transportation in the cell. We also indicate unresolved issues in the TLR3 functioning that might lead to thorough understanding of immunity during HSE. Such a knowledge base will lead to discovery and design of a rationale therapeutic and preventive approach against HSE.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 Str., 02-786 Warsaw, Poland.
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 Str., 02-786 Warsaw, Poland
| | - Felix Ngosa Toka
- Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 Str., 02-786 Warsaw, Poland; Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, PO Box 334, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
94
|
Fang R, Jiang Q, Zhou X, Wang C, Guan Y, Tao J, Xi J, Feng JM, Jiang Z. MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner. PLoS Pathog 2017; 13:e1006720. [PMID: 29125880 PMCID: PMC5699845 DOI: 10.1371/journal.ppat.1006720] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/22/2017] [Accepted: 10/30/2017] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial antiviral-signaling protein (MAVS) transmits signals from RIG-I-like receptors after RNA virus infections. However, the mechanism by which MAVS activates downstream components, such as TBK1 and IKKα/β, is unclear, although previous work suggests the involvement of NEMO or TBK1-binding proteins TANK, NAP1, and SINTBAD. Here, we report that MAVS-mediated innate immune activation is dependent on TRAFs, partially on NEMO, but not on TBK1-binding proteins. MAVS recruited TBK1/IKKε by TRAFs that were pre-associated with TBK1/IKKε via direct interaction between the coiled-coil domain of TRAFs and the SDD domain of TBK1/IKKε. TRAF2-/-3-/-5-/-6-/- cells completely lost RNA virus responses. TRAFs' E3 ligase activity was required for NEMO activation by synthesizing ubiquitin chains that bound to NEMO for NF-κB and TBK1/IKKε activation. NEMO-activated IKKα/β were important for TBK1/IKKε activation through IKKα/β-mediated TBK1/IKKε phosphorylation. Moreover, individual TRAFs differently mediated TBK1/IKKε activation and thus fine-tuned antiviral immunity under physiological conditions.
Collapse
Affiliation(s)
- Run Fang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Qifei Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Xiang Zhou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Chenguang Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yukun Guan
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Jianli Tao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Jianzhong Xi
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Ji-Ming Feng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
95
|
Kuss-Duerkop SK, Wang J, Mena I, White K, Metreveli G, Sakthivel R, Mata MA, Muñoz-Moreno R, Chen X, Krammer F, Diamond MS, Chen ZJ, García-Sastre A, Fontoura BMA. Influenza virus differentially activates mTORC1 and mTORC2 signaling to maximize late stage replication. PLoS Pathog 2017; 13:e1006635. [PMID: 28953980 PMCID: PMC5617226 DOI: 10.1371/journal.ppat.1006635] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus usurps host signaling factors to regulate its replication. One example is mTOR, a cellular regulator of protein synthesis, growth and motility. While the role of mTORC1 in viral infection has been studied, the mechanisms that induce mTORC1 activation and the substrates regulated by mTORC1 during influenza virus infection have not been established. In addition, the role of mTORC2 during influenza virus infection remains unknown. Here we show that mTORC2 and PDPK1 differentially phosphorylate AKT upon influenza virus infection. PDPK1-mediated phoshorylation of AKT at a distinct site is required for mTORC1 activation by influenza virus. On the other hand, the viral NS1 protein promotes phosphorylation of AKT at a different site via mTORC2, which is an activity dispensable for mTORC1 stimulation but known to regulate apoptosis. Influenza virus HA protein and down-regulation of the mTORC1 inhibitor REDD1 by the virus M2 protein promote mTORC1 activity. Systematic phosphoproteomics analysis performed in cells lacking the mTORC2 component Rictor in the absence or presence of Torin, an inhibitor of both mTORC1 and mTORC2, revealed mTORC1-dependent substrates regulated during infection. Members of pathways that regulate mTORC1 or are regulated by mTORC1 were identified, including constituents of the translation machinery that once activated can promote translation. mTORC1 activation supports viral protein expression and replication. As mTORC1 activation is optimal midway through the virus life cycle, the observed effects on viral protein expression likely support the late stages of influenza virus replication when infected cells undergo significant stress. Drug-resistant influenza viruses commonly arise due to frequent genetic changes and current antiviral drugs are not highly efficient. These underscore the need for new antiviral therapies effective against influenza viruses. Understanding how influenza virus uses cellular proteins for infection can potentially identify novel targets for pharmacological intervention. Influenza virus modulates cellular pathways to promote its replication and avoid immune restriction. Here we reveal the interplay between the cellular protein mTOR, which functions in two distinct protein complexes, and influenza virus infection. mTOR complex 1 (mTORC1) is activated during influenza virus infection through a cascade of specific modifications, or phosphorylation events, and by reducing the levels of another cellular protein termed REDD1, which is an mTORC1 inhibitor. Activation of mTORC1 results in additional phosphorylation events that together promote viral protein expression and replication. On the other hand, mTOR complex 2 (mTORC2) phosphorylates AKT at a specific site during infection, which is a process mediated by the viral NS1 protein that is known to regulate viral-mediated cell death. Since these effects occur midway through the virus life cycle in the infected cell, mTORC1 and mTORC2 activation are likely important to regulate the cellular environment in order to facilitate the late stages of viral infection.
Collapse
Affiliation(s)
- Sharon K. Kuss-Duerkop
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Juan Wang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kris White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Giorgi Metreveli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ramanavelan Sakthivel
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Miguel A. Mata
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Raquel Muñoz-Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Xiang Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zhijian J. Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Beatriz M. A. Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
96
|
Fang R, Wang C, Jiang Q, Lv M, Gao P, Yu X, Mu P, Zhang R, Bi S, Feng JM, Jiang Z. NEMO-IKKβ Are Essential for IRF3 and NF-κB Activation in the cGAS-STING Pathway. THE JOURNAL OF IMMUNOLOGY 2017; 199:3222-3233. [PMID: 28939760 DOI: 10.4049/jimmunol.1700699] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022]
Abstract
Cytosolic dsDNA activates the cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway to produce cytokines, including type I IFNs. The roles of many critical proteins, including NEMO, IKKβ, and TBK1, in this pathway are unclear because of the lack of an appropriate system to study. In this article, we report that lower FBS concentrations in culture medium conferred high sensitivities to dsDNA in otherwise unresponsive cells, whereas higher FBS levels abrogated this sensitivity. Based on this finding, we demonstrated genetically that NEMO was critically involved in the cGAS-STING pathway. Cytosolic DNA activated TRIM32 and TRIM56 to synthesize ubiquitin chains that bound NEMO and subsequently activated IKKβ. Activated IKKβ, but not IKKα, was required for TBK1 and NF-κB activation. In contrast, TBK1 was reciprocally required for NF-κB activation, probably by directly phosphorylating IKKβ. Thus, our findings identified a unique innate immune activation cascade in which TBK1-IKKβ formed a positive feedback loop to assure robust cytokine production during cGAS-STING activation.
Collapse
Affiliation(s)
- Run Fang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Chenguang Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Qifei Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Mengze Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Pengfei Gao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Xiaoyu Yu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Ping Mu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Sheng Bi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| | - Ji-Ming Feng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Beijing 100871, China; .,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China; and
| |
Collapse
|
97
|
Cooper JM, Ou YH, McMillan EA, Vaden RM, Zaman A, Bodemann BO, Makkar G, Posner BA, White MA. TBK1 Provides Context-Selective Support of the Activated AKT/mTOR Pathway in Lung Cancer. Cancer Res 2017; 77:5077-5094. [PMID: 28716898 PMCID: PMC5833933 DOI: 10.1158/0008-5472.can-17-0829] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/19/2017] [Accepted: 07/05/2017] [Indexed: 12/27/2022]
Abstract
Emerging observations link dysregulation of TANK-binding kinase 1 (TBK1) to developmental disorders, inflammatory disease, and cancer. Biochemical mechanisms accounting for direct participation of TBK1 in host defense signaling have been well described. However, the molecular underpinnings of the selective participation of TBK1 in a myriad of additional cell biological systems in normal and pathophysiologic contexts remain poorly understood. To elucidate the context-selective role of TBK1 in cancer cell survival, we employed a combination of broad-scale chemogenomic and interactome discovery strategies to generate data-driven mechanism-of-action hypotheses. This approach uncovered evidence that TBK1 supports AKT/mTORC1 pathway activation and function through direct modulation of multiple pathway components acting both upstream and downstream of the mTOR kinase itself. Furthermore, we identified distinct molecular features in which mesenchymal, Ras-mutant lung cancer is acutely dependent on TBK1-mediated support of AKT/mTORC1 pathway activation for survival. Cancer Res; 77(18); 5077-94. ©2017 AACR.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mesoderm/drug effects
- Mesoderm/metabolism
- Mesoderm/pathology
- Phosphorylation/drug effects
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Regulatory Elements, Transcriptional/drug effects
- Signal Transduction/drug effects
- Small Molecule Libraries/pharmacology
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jonathan M Cooper
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Yi-Hung Ou
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | | | - Rachel M Vaden
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Aubhishek Zaman
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Brian O Bodemann
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Gurbani Makkar
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Bruce A Posner
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| | - Michael A White
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
98
|
Abstract
Inhibitor of kappa B kinase epsilon (IKKε) and TANK-binding kinase 1 (TBK1) are non-canonical IKKs. IKKε and TBK1 share the kinase domain and are similar in their ability to activate the nuclear factor-kappa B signaling pathway. IKKε and TBK1 are overexpressed through multiple mechanisms in various human cancers. However, the expression of IKKε and TBK1 in gastric cancer and their role in prognosis have not been studied. To investigate overexpression of the IKKε and TBK1 proteins in gastric cancer and their relationship with clinicopathologic factors, we performed immunohistochemical staining using a tissue microarray. Tissue microarray samples were obtained from 1,107 gastric cancer patients who underwent R0 gastrectomy with extensive lymph node dissection and adjuvant chemotherapy. We identified expression of IKKε in 150 (13.6%) and TBK1 in 38 (3.4%) gastric cancers. Furthermore, co-expression of IKKε and TBK1 was identified in 1.5% of cases. Co-expression of IKKε and TBK1 was associated with differentiated intestinal histology and earlier T stage. In a multivariate binary logistic regression model, intestinal histologic type by Lauren classification and early AJCC stage were significant predictors for expression of IKKε and TBK1 proteins in gastric cancer. Changes in IKKε and TBK1 expression may be involved in the development of intestinal-type gastric cancer. The overexpression of IKKε and TBK1 should be considered in selected patients with intestinal-type gastric cancer. In conclusion, this is the first large-scale study investigating the relationships between expression of IKKε and TBK1 and clinicopathologic features of gastric cancer. The role of IKKε and TBK1 in intestinal-type gastric cancer pathogenesis should be elucidated by further investigation.
Collapse
|
99
|
The PYRIN domain-only protein POP2 inhibits inflammasome priming and activation. Nat Commun 2017; 8:15556. [PMID: 28580931 PMCID: PMC5465353 DOI: 10.1038/ncomms15556] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 04/07/2017] [Indexed: 01/23/2023] Open
Abstract
Inflammasomes are protein platforms linking recognition of microbe, pathogen-associated and damage-associated molecular patterns by cytosolic sensory proteins to caspase-1 activation. Caspase-1 promotes pyroptotic cell death and the maturation and secretion of interleukin (IL)-1β and IL-18, which trigger inflammatory responses to clear infections and initiate wound-healing; however, excessive responses cause inflammatory disease. Inflammasome assembly requires the PYRIN domain (PYD)-containing adaptor ASC, and depends on PYD–PYD interactions. Here we show that the PYD-only protein POP2 inhibits inflammasome assembly by binding to ASC and interfering with the recruitment of ASC to upstream sensors, which prevents caspase-1 activation and cytokine release. POP2 also impairs macrophage priming by inhibiting the activation of non-canonical IκB kinase ɛ and IκBα, and consequently protects from excessive inflammation and acute shock in vivo. Our findings advance our understanding of the complex regulatory mechanisms that maintain a balanced inflammatory response and highlight important differences between individual POP members. Excessive inflammasome activation leads to inflammatory diseases, but how inflammasomes are regulated by PYD-only adaptors is unclear. Here the authors show that the PYD-only protein POP2 inhibits both inflammasome priming and assembly by interfering, respectively, with IκBα activation and NLRP3-ASC interaction.
Collapse
|
100
|
Molecular characterization, expression of chicken TBK1 gene and its effect on IRF3 signaling pathway. PLoS One 2017; 12:e0177608. [PMID: 28493975 PMCID: PMC5426785 DOI: 10.1371/journal.pone.0177608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/28/2017] [Indexed: 11/19/2022] Open
Abstract
TRAF family member-associated NF-κB activator (TANK)-binding kinase1 (TBK1) is a serine-threonine kinase at the crossroads of multiple interferon (IFN)-inducing signaling pathways in innate immunity. The importance of TBK1 in antiviral immunity is well established in mammal models, but in chicken, the molecular characterization and potential function of TBK1 remain unclear. In the present study, the open-reading frame (ORF) of chicken TBK1 (chTBK1) was cloned and characterized. The sequencing results revealed that the chTBK1 ORF consists of 2190 base pairs (bp) encoding a deduced protein of 729 amino acid residues. Multiple sequence alignment analysis demonstrated chTBK1 similarity to other birds and mammals, which indicates that it is evolutionarily conserved. Quantitative real-time PCR (qRT-PCR) results showed that chTBK1 was ubiquitously expressed in chicken tissues and expression was especially high in immune tissues. In addition, the expression of chTBK1 was significantly up-regulated by infection with avian leukosis virus subgroup J (ALV-J) both in vivo and in chicken embryo fibroblasts (CEFs) challenged with ALV-J or stimulated with poly I:C in vitro. Consistent with the activation of chTBK1, the interferon regulatory factor 3 (IRF3) and IFNβ gene in CEFs were also up-regulated after challenge with ALV-J or polyI:C. In contrast, the expression of IRF3 and IFNβ in CEFs was significantly reduced by siRNA targeting the chTBK1 gene compared with a negative control (NC) during ALV-J infection or polyI:C transfection. In conclusion, our results demonstrated that chTBK1 may be an important immunoregulator for IRF3 and IFNβ induction in response to viral stimulation in chicken.
Collapse
|