51
|
Crystal Structure of the ERp44-Peroxiredoxin 4 Complex Reveals the Molecular Mechanisms of Thiol-Mediated Protein Retention. Structure 2016; 24:1755-1765. [PMID: 27642162 DOI: 10.1016/j.str.2016.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/22/2016] [Accepted: 08/05/2016] [Indexed: 12/23/2022]
Abstract
ERp44 controls the localization and transport of diverse proteins in the early secretory pathway. The mechanisms that allow client recognition and the source of the oxidative power for forming intermolecular disulfides are as yet unknown. Here we present the structure of ERp44 bound to a client, peroxiredoxin 4. Our data reveal that ERp44 binds the oxidized form of peroxiredoxin 4 via thiol-disulfide interchange reactions. The structure explains the redox-dependent recognition and characterizes the essential non-covalent interactions at the interface. The ERp44-Prx4 covalent complexes can be reduced by glutathione and protein disulfide isomerase family members in the ER, allowing the two components to recycle. This work provides insights into the mechanisms of thiol-mediated protein retention and indicates the key roles of ERp44 in this biochemical cycle to optimize oxidative folding and redox homeostasis.
Collapse
|
52
|
Chattoraj S, Bhattacharyya K. Biological oscillations: Fluorescence monitoring by confocal microscopy. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
53
|
Ghosh S, Nandi S, Ghosh C, Bhattacharyya K. Fluorescence Dynamics in the Endoplasmic Reticulum of a Live Cell: Time-Resolved Confocal Microscopy. Chemphyschem 2016; 17:2818-23. [PMID: 27245117 DOI: 10.1002/cphc.201600425] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 11/11/2022]
Abstract
Fluorescence dynamics in the endoplasmic reticulum (ER) of a live non-cancer lung cell (WI38) and a lung cancer cell (A549) are studied by using time-resolved confocal microscopy. To selectively study the organelle, ER, we have used an ER-Tracker dye. From the emission maximum (λmaxem) of the ER-Tracker dye, polarity (i.e. dielectric constant, ϵ) in the ER region of the cells (≈500 nm in WI38 and ≈510 nm in A549) is estimated to be similar to that of chloroform (λmaxem =506 nm, ϵ≈5). The red shift by 10 nm in λmaxem in the cancer cell (A549) suggests a slightly higher polarity compared to the non-cancer cell (WI38). The fluorescence intensity of the ER-Tracker dye exhibits prolonged intermittent oscillations on a timescale of 2-6 seconds for the cancer cell (A549). For the non-cancer cell (WI38), such fluorescence oscillations are much less prominent. The marked fluorescence intensity oscillations in the cancer cell are attributed to enhanced calcium oscillations. The average solvent relaxation time (<τs >) of the ER region in the lung cancer cell (A549, 250±50 ps) is about four times faster than that in the non-cancer cell (WI38, 1000±50 ps).
Collapse
Affiliation(s)
- Shirsendu Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India), Fax: (91)-33-2473-2805
| | - Somen Nandi
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India), Fax: (91)-33-2473-2805
| | - Catherine Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India), Fax: (91)-33-2473-2805
| | - Kankan Bhattacharyya
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India), Fax: (91)-33-2473-2805.
| |
Collapse
|
54
|
Thulasitha WS, Umasuthan N, Jayasooriya RGPT, Noh JK, Park HC, Lee J. A thioredoxin domain-containing protein 12 from black rockfish Sebastes schlegelii: Responses to immune challenges and protection from apoptosis against oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2016; 185-186:29-37. [PMID: 26945103 DOI: 10.1016/j.cbpc.2016.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/19/2016] [Accepted: 02/28/2016] [Indexed: 01/15/2023]
Abstract
Thioredoxin (TXN) superfamily proteins are identified by the presence of a thioredoxin active site with a conserved CXXC active motif. TXN members are involved in a wide range of biochemical and biological functions including redox regulation, refolding of disulfide containing proteins, and regulation of transcription factors. In the present study, a thioredoxin domain-containing protein 12 was identified and characterized from black rockfish, Sebastes schlegelii (RfTXNDC12). The full length of RfTXNDC12 consists of a 522-bp coding region encoding a 173-amino acid protein. It has a 29-amino acid signal peptide and a single TXN active site with a consensus atypical WCGAC active motif. Multiple sequence alignment revealed that the active site is conserved among vertebrates. RfTXNDC12 shares highest identity with its Epinephelus coioides homolog. Transcriptional analysis revealed its ubiquitous expression in a wide range of tissues with the highest expression in the ovary. Immune challenges conducted with Streptococcus iniae and poly I:C caused upregulation of RfTXNDC12 transcript levels in gills and peripheral blood cells (PBCs), while lipopolysaccharide injection caused downregulation of RfTXNDC12 in gills and upregulation in PBCs. Similar to TXN, RfTXNDC12 exhibited insulin disulfide reducing activity. Interestingly, the recombinant protein showed significant protection of LNCaP cells against apoptosis induced by H2O2-mediated oxidative stress in a concentration dependent manner. Collectively, the present data indicate that RfTXNDC12 is a TXN superfamily member, which could function as a potential antioxidant enzyme and be involved in a defense mechanism against immune challenges.
Collapse
Affiliation(s)
- William Shanthakumar Thulasitha
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - R G P T Jayasooriya
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jae Koo Noh
- Genetics & Breeding Research Center, National Institute of Fisheries Science, Geoje 656-842, Republic of Korea
| | - Hae-Chul Park
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido 425-707, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
55
|
Brune KD, Leneghan DB, Brian IJ, Ishizuka AS, Bachmann MF, Draper SJ, Biswas S, Howarth M. Plug-and-Display: decoration of Virus-Like Particles via isopeptide bonds for modular immunization. Sci Rep 2016; 6:19234. [PMID: 26781591 PMCID: PMC4725971 DOI: 10.1038/srep19234] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
Virus-like particles (VLPs) are non-infectious self-assembling nanoparticles, useful in medicine and nanotechnology. Their repetitive molecularly-defined architecture is attractive for engineering multivalency, notably for vaccination. However, decorating VLPs with target-antigens by genetic fusion or chemical modification is time-consuming and often leads to capsid misassembly or antigen misfolding, hindering generation of protective immunity. Here we establish a platform for irreversibly decorating VLPs simply by mixing with protein antigen. SpyCatcher is a genetically-encoded protein designed to spontaneously form a covalent bond to its peptide-partner SpyTag. We expressed in E. coli VLPs from the bacteriophage AP205 genetically fused to SpyCatcher. We demonstrated quantitative covalent coupling to SpyCatcher-VLPs after mixing with SpyTag-linked to malaria antigens, including CIDR and Pfs25. In addition, we showed coupling to the VLPs for peptides relevant to cancer from epidermal growth factor receptor and telomerase. Injecting SpyCatcher-VLPs decorated with a malarial antigen efficiently induced antibody responses after only a single immunization. This simple, efficient and modular decoration of nanoparticles should accelerate vaccine development, as well as other applications of nanoparticle devices.
Collapse
Affiliation(s)
- Karl D. Brune
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | - Iona J. Brian
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Martin F. Bachmann
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
- University Institute of Immunology, University of Bern, Sahli Haus 2, Inselspital, Bern, CH-3010, Switzerland
| | | | - Sumi Biswas
- Jenner Institute, University of Oxford, Oxford, OX3 7DQ, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
56
|
Mohapatra S, Nandi S, Chowdhury R, Das G, Ghosh S, Bhattacharyya K. Spectral mapping of 3D multi-cellular tumor spheroids: time-resolved confocal microscopy. Phys Chem Chem Phys 2016; 18:18381-90. [DOI: 10.1039/c6cp02748b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor micro-environment of 3D multicellular spheroids and their interaction with a drug molecule are studied using time resolved confocal microscopy.
Collapse
Affiliation(s)
- Saswat Mohapatra
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Somen Nandi
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Rajdeep Chowdhury
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Gaurav Das
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Kankan Bhattacharyya
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
57
|
Jedrychowski MP, Liu L, Laflamme CJ, Karastergiou K, Meshulam T, Ding SY, Wu Y, Lee MJ, Gygi SP, Fried SK, Pilch PF. Adiporedoxin, an upstream regulator of ER oxidative folding and protein secretion in adipocytes. Mol Metab 2015; 4:758-70. [PMID: 26629401 PMCID: PMC4632174 DOI: 10.1016/j.molmet.2015.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 12/23/2022] Open
Abstract
Objective Adipocytes are robust protein secretors, most notably of adipokines, hormone-like polypeptides, which act in an endocrine and paracrine fashion to affect numerous physiological processes such as energy balance and insulin sensitivity. To understand how such proteins are assembled for secretion we describe the function of a novel endoplasmic reticulum oxidoreductase, adiporedoxin (Adrx). Methods Adrx knockdown and overexpressing 3T3-L1 murine adipocyte cell lines and a knockout mouse model were used to assess the influence of Adrx on secreted proteins as well as the redox state of ER resident chaperones. The metabolic phenotypes of Adrx null mice were characterized and compared to WT mice. The correlation of Adrx levels BMI, adiponectin levels, and other inflammatory markers from adipose tissue of human subjects was also studied. Results Adiporedoxin functions via a CXXC active site, and is upstream of protein disulfide isomerase whose direct function is disulfide bond formation, and ultimately protein secretion. Over and under expression of Adrx in vitro enhances and reduces, respectively, the secretion of the disulfide-bonded proteins including adiponectin and collagen isoforms. On a chow diet, Adrx null mice have normal body weights, and glucose tolerance, are moderately hyperinsulinemic, have reduced levels of circulating adiponectin and are virtually free of adipocyte fibrosis resulting in a complex phenotype tending towards insulin resistance. Adrx protein levels in human adipose tissue correlate positively with adiponectin levels and negatively with the inflammatory marker phospho-Jun kinase. Conclusion These data support the notion that Adrx plays a critical role in adipocyte biology and in the regulation of mouse and human metabolism via its modulation of adipocyte protein secretion. Adrx is an adipocyte specific, endoplasmic reticulum oxidoreductase upstream of disulfide bond formation. Adrx over and under expression in vitro results enhanced and decreased protein secretion, respectively. Mice lacking Adrx have lower levels of circulating adiponectin and decreased fibrosis. Adrx is expressed in human adipocytes and down regulated in proportion to the level of inflammation.
Collapse
Affiliation(s)
- Mark P. Jedrychowski
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
- Department of Cell Biology, Harvard University School of Medicine, 240 Longwood Avenue Boston, MA 02115, USA
| | - Libin Liu
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Collette J. Laflamme
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Kalypso Karastergiou
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Tova Meshulam
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Shi-Ying Ding
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Yuanyuan Wu
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Mi-Jeong Lee
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard University School of Medicine, 240 Longwood Avenue Boston, MA 02115, USA
| | - Susan K. Fried
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | - Paul F. Pilch
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
- Department of Medicine, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
- Corresponding author. Department of Biochemistry, Boston University School of Medicine, 72 E. Concord St., Boston, MA 02118, USA. Tel.: +1 617 638 4044.
| |
Collapse
|
58
|
DeClercq V, d'Eon B, McLeod RS. Fatty acids increase adiponectin secretion through both classical and exosome pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1123-33. [DOI: 10.1016/j.bbalip.2015.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/06/2015] [Accepted: 04/13/2015] [Indexed: 11/26/2022]
|
59
|
Jin D, Sun J, Huang J, Yu X, Yu A, He Y, Li Q, Yang Z. Peroxisome proliferator-activated receptor γ enhances adiponectin secretion via up-regulating DsbA-L expression. Mol Cell Endocrinol 2015; 411:97-104. [PMID: 25917454 DOI: 10.1016/j.mce.2015.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 03/24/2015] [Accepted: 04/17/2015] [Indexed: 12/17/2022]
Abstract
Disulfide-bond A oxidoreductase like-protein (DsbA-L) was identified as a molecular chaperone facilitating the assembly and secretion of adiponectin, an adipokine with multiple beneficial effects. In obesity the level of DsbA-L is reduced with a concomitant decrease of the circulating adiponectin level, especially of the high molecular weight form (HMW). Both rodent and human studies have shown that the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-γ agonists increase adiponectin levels in serum by activating PPARγ, which up-regulates critical endoplasmic reticulum (ER) chaperones thus facilitating protein folding. As shown in the present study, overexpression of PPARγ in human embryonic kidney (HEK) 293 cells elicited the cellular release of HMW adiponectin. PPARγ enhanced expression of DsbA-L by binding directly to peroxisome proliferator response element (PPRE) site within the DsbA-L promoter. Conversely, in differentiated 3T3-L1 cells, PPARγ knockdown resulted in decreased expression of Adiponectin, DsbA-L and ERp44. DsbA-L expression increased after PPARγ agonist treatment and decreased upon treatment with PPARγ antagonist in 3T3-L1 adipocytes. DsbA-L deficiency in differentiated 3T3-L1 cells impaired the secretion of adiponectin. We therefore propose that DsbA-L plays an important role in facilitating HMW adiponectin formation and release from cells under the regulation of PPARγ.
Collapse
Affiliation(s)
- Dan Jin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoling Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - An Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiduo He
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zaiqing Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
60
|
Segmental expression and C-terminal labeling of protein ERp44 through protein trans-splicing. Protein Expr Purif 2015; 112:29-36. [DOI: 10.1016/j.pep.2015.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 11/18/2022]
|
61
|
Hampe L, Radjainia M, Xu C, Harris PWR, Bashiri G, Goldstone DC, Brimble MA, Wang Y, Mitra AK. Regulation and Quality Control of Adiponectin Assembly by Endoplasmic Reticulum Chaperone ERp44. J Biol Chem 2015; 290:18111-18123. [PMID: 26060250 DOI: 10.1074/jbc.m115.663088] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 01/09/2023] Open
Abstract
Adiponectin, a collagenous hormone secreted abundantly from adipocytes, possesses potent antidiabetic and anti-inflammatory properties. Mediated by the conserved Cys(39) located in the variable region of the N terminus, the trimeric (low molecular weight (LMW)) adiponectin subunit assembles into different higher order complexes, e.g. hexamers (middle molecular weight (MMW)) and 12-18-mers (high molecular weight (HMW)), the latter being mostly responsible for the insulin-sensitizing activity of adiponectin. The endoplasmic reticulum (ER) chaperone ERp44 retains adiponectin in the early secretory compartment and tightly controls the oxidative state of Cys(39) and the oligomerization of adiponectin. Using cellular and in vitro assays, we show that ERp44 specifically recognizes the LMW and MMW forms but not the HMW form. Our binding assays with short peptide mimetics of adiponectin suggest that ERp44 intercepts and converts the pool of fully oxidized LMW and MMW adiponectin, but not the HMW form, into reduced trimeric precursors. These ERp44-bound precursors in the cis-Golgi may be transported back to the ER and released to enhance the population of adiponectin intermediates with appropriate oxidative state for HMW assembly, thereby underpinning the process of ERp44 quality control.
Collapse
Affiliation(s)
- Lutz Hampe
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Mazdak Radjainia
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Cheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 999007 Hong Kong, China
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand; Institute for Innovation in Biotechnology, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Ghader Bashiri
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - David C Goldstone
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand; Institute for Innovation in Biotechnology, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, 999007 Hong Kong, China
| | - Alok K Mitra
- School of Biological Science, The University of Auckland, Private Bag 92019, Auckland 1010, New Zealand.
| |
Collapse
|
62
|
ERp44 Exerts Redox-Dependent Control of Blood Pressure at the ER. Mol Cell 2015; 58:1015-27. [DOI: 10.1016/j.molcel.2015.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 01/16/2015] [Accepted: 03/31/2015] [Indexed: 01/09/2023]
|
63
|
Okumura M, Kadokura H, Inaba K. Structures and functions of protein disulfide isomerase family members involved in proteostasis in the endoplasmic reticulum. Free Radic Biol Med 2015; 83:314-22. [PMID: 25697777 DOI: 10.1016/j.freeradbiomed.2015.02.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/22/2015] [Accepted: 02/09/2015] [Indexed: 12/16/2022]
Abstract
The endoplasmic reticulum (ER) is an essential cellular compartment in which an enormous number of secretory and cell surface membrane proteins are synthesized and subjected to cotranslational or posttranslational modifications, such as glycosylation and disulfide bond formation. Proper maintenance of ER protein homeostasis (sometimes termed proteostasis) is essential to avoid cellular stresses and diseases caused by abnormal proteins. Accumulating knowledge of cysteine-based redox reactions catalyzed by members of the protein disulfide isomerase (PDI) family has revealed that these enzymes play pivotal roles in productive protein folding accompanied by disulfide formation, as well as efficient ER-associated degradation accompanied by disulfide reduction. Each of PDI family members forms a protein-protein interaction with a preferential partner to fulfill a distinct function. Multiple redox pathways that utilize PDIs appear to function synergistically to attain the highest quality and productivity of the ER, even under various stress conditions. This review describes the structures, physiological functions, and cooperative actions of several essential PDIs, and provides important insights into the elaborate proteostatic mechanisms that have evolved in the extremely active and stress-sensitive ER.
Collapse
Affiliation(s)
- Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Hiroshi Kadokura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
64
|
Anelli T, Sannino S, Sitia R. Proteostasis and "redoxtasis" in the secretory pathway: Tales of tails from ERp44 and immunoglobulins. Free Radic Biol Med 2015; 83:323-30. [PMID: 25744412 DOI: 10.1016/j.freeradbiomed.2015.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 01/09/2023]
Abstract
In multicellular organisms, some cells are given the task of secreting huge quantities of proteins. To comply with their duty, they generally equip themselves with a highly developed endoplasmic reticulum (ER) and downstream organelles in the secretory pathway. These professional secretors face paramount proteostatic challenges in that they need to couple efficiency and fidelity in their secretory processes. On one hand, stringent quality control (QC) mechanisms operate from the ER onward to check the integrity of the secretome. On the other, the pressure to secrete can be overwhelming, as for instance on antibody-producing cells during infection. Maintaining homeostasis is particularly hard when the products to be released contain disulfide bonds, because oxidative folding entails production of reactive oxygen species. How are redox homeostasis ("redoxtasis") and proteostasis maintained despite the massive fluxes of cargo proteins traversing the pathway? Here we describe recent findings on how ERp44, a multifunctional chaperone of the secretory pathway, can modulate these processes integrating protein QC, redoxtasis, and calcium signaling.
Collapse
Affiliation(s)
- Tiziana Anelli
- Divisions of Genetics and Cell Biology, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Sara Sannino
- Divisions of Genetics and Cell Biology, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Roberto Sitia
- Divisions of Genetics and Cell Biology, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
65
|
Brychtova V, Mohtar A, Vojtesek B, Hupp TR. Mechanisms of anterior gradient-2 regulation and function in cancer. Semin Cancer Biol 2015; 33:16-24. [PMID: 25937245 DOI: 10.1016/j.semcancer.2015.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 01/12/2023]
Abstract
Proteins targeted to secretory pathway enter the endoplasmic reticulum where they undergo post-translational modification and subsequent quality control executed by exquisite catalysts of protein folding, protein disulphide isomerases (PDIs). These enzymes can often provide strict conformational protein folding solutions to highly cysteine-rich cargo as they facilitate disulphide rearrangement in the endoplasmic reticulum. Under conditions when PDI substrates are not isomerised properly, secreted proteins can accumulate in the endoplasmic reticulum leading to endoplasmic reticulum stress initiation with implications for human disease development. Anterior Gradient-2 (AGR2) is an endoplasmic reticulum-resident PDI superfamily member that has emerged as a dominant effector of basic biological properties in vertebrates including blastoderm formation and limb regeneration. AGR2 perturbation in mammals influences disease processes including cancer progression and drug resistance, asthma, and inflammatory bowel disease. This review will focus on the molecular characteristics, function, and regulation of AGR2, views on its emerging biological functions and misappropriation in disease, and prospects for therapeutic intervention into endoplasmic reticulum-resident protein folding pathways for improving the treatment of human disease.
Collapse
Affiliation(s)
- Veronika Brychtova
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Aiman Mohtar
- Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre Cell Signalling Unit, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Borivoj Vojtesek
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Ted R Hupp
- Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 65653 Brno, Czech Republic; Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre Cell Signalling Unit, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK.
| |
Collapse
|
66
|
GDM-associated insulin deficiency hinders the dissociation of SERT from ERp44 and down-regulates placental 5-HT uptake. Proc Natl Acad Sci U S A 2014; 111:E5697-705. [PMID: 25512553 DOI: 10.1073/pnas.1416675112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-HT) transporter (SERT) regulates the level of 5-HT in placenta. Initially, we found that in gestational diabetes mellitus (GDM), whereas free plasma 5-HT levels were elevated, the 5-HT uptake rates of trophoblast were significantly down-regulated, due to impairment in the translocation of SERT molecules to the cell surface. We sought to determine the factors mediating the down-regulation of SERT in GDM trophoblast. We previously reported that an endoplasmic reticulum chaperone, ERp44, binds to Cys200 and Cys209 residues of SERT to build a disulfide bond. Following this posttranslational modification, before trafficking to the plasma membrane, SERT must be dissociated from ERp44; and this process is facilitated by insulin signaling and reversed by the insulin receptor blocker AGL2263. However, the GDM-associated defect in insulin signaling hampers the dissociation of ERp44 from SERT. Furthermore, whereas ERp44 constitutively occupies Cys200/Cys209 residues, one of the SERT glycosylation sites, Asp208 located between the two Cys residues, cannot undergo proper glycosylation, which plays an important role in the uptake efficiency of SERT. Herein, we show that the decrease in 5-HT uptake rates of GDM trophoblast is the consequence of defective insulin signaling, which entraps SERT with ERp44 and impairs its glycosylation. In this regard, restoring the normal expression of SERT on the trophoblast surface may represent a novel approach to alleviating some GDM-associated complications.
Collapse
|
67
|
Gutiérrez T, Simmen T. Endoplasmic reticulum chaperones and oxidoreductases: critical regulators of tumor cell survival and immunorecognition. Front Oncol 2014; 4:291. [PMID: 25386408 PMCID: PMC4209815 DOI: 10.3389/fonc.2014.00291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/07/2014] [Indexed: 12/25/2022] Open
Abstract
Endoplasmic reticulum (ER) chaperones and oxidoreductases are abundant enzymes that mediate the production of fully folded secretory and transmembrane proteins. Resisting the Golgi and plasma membrane-directed “bulk flow,” ER chaperones and oxidoreductases enter retrograde trafficking whenever they are pulled outside of the ER by their substrates. Solid tumors are characterized by the increased production of reactive oxygen species (ROS), combined with reduced blood flow that leads to low oxygen supply and ER stress. Under these conditions, hypoxia and the unfolded protein response upregulate their target genes. When this occurs, ER oxidoreductases and chaperones become important regulators of tumor growth. However, under these conditions, these proteins not only promote the folding of proteins, but also alter the properties of the plasma membrane and hence modulate tumor immune recognition. For instance, high levels of calreticulin serve as an “eat-me” signal on the surface of tumor cells. Conversely, both intracellular and surface BiP/GRP78 promotes tumor growth. Other ER folding assistants able to modulate the properties of tumor tissue include protein disulfide isomerase (PDI), Ero1α and GRP94. Understanding the roles and mechanisms of ER chaperones in regulating tumor cell functions and immunorecognition will lead to important insight for the development of novel cancer therapies.
Collapse
Affiliation(s)
- Tomás Gutiérrez
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
68
|
Wang DY, Abbasi C, El-Rass S, Li JY, Dawood F, Naito K, Sharma P, Bousette N, Singh S, Backx PH, Cox B, Wen XY, Liu PP, Gramolini AO. Endoplasmic reticulum resident protein 44 (ERp44) deficiency in mice and zebrafish leads to cardiac developmental and functional defects. J Am Heart Assoc 2014; 3:e001018. [PMID: 25332179 PMCID: PMC4323785 DOI: 10.1161/jaha.114.001018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Endoplasmic reticulum (ER) resident protein 44 (ERp44) is a member of the protein disulfide isomerase family, is induced during ER stress, and may be involved in regulating Ca(2+) homeostasis. However, the role of ERp44 in cardiac development and function is unknown. The aim of this study was to investigate the role of ERp44 in cardiac development and function in mice, zebrafish, and embryonic stem cell (ESC)-derived cardiomyocytes to determine the underlying role of ERp44. METHODS AND RESULTS We generated and characterized ERp44(-/-) mice, ERp44 morphant zebrafish embryos, and ERp44(-/-) ESC-derived cardiomyocytes. Deletion of ERp44 in mouse and zebrafish caused significant embryonic lethality, abnormal heart development, altered Ca(2+) dynamics, reactive oxygen species generation, activated ER stress gene profiles, and apoptotic cell death. We also determined the cardiac phenotype in pressure overloaded, aortic-banded ERp44(+/-) mice: enhanced ER stress activation and increased mortality, as well as diastolic cardiac dysfunction with a significantly lower fractional shortening. Confocal and LacZ histochemical staining showed a significant transmural gradient for ERp44 in the adult heart, in which high expression of ERp44 was observed in the outer subepicardial region of the myocardium. CONCLUSIONS ERp44 plays a critical role in embryonic heart development and is crucial in regulating cardiac cell Ca(2+) signaling, ER stress, ROS-induced oxidative stress, and activation of the intrinsic mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Ding-Yan Wang
- Department of Physiology, University of Toronto, Ontario, Canada (D.Y.W., C.A., J.Y.L., P.S., N.B., S.S., P.H.B., B.C., X.Y.W., P.P.L., A.O.G.)
| | - Cynthia Abbasi
- Department of Physiology, University of Toronto, Ontario, Canada (D.Y.W., C.A., J.Y.L., P.S., N.B., S.S., P.H.B., B.C., X.Y.W., P.P.L., A.O.G.)
| | - Suzan El-Rass
- Faculty of Medicine and Institute of Medical Science, University of Toronto, Ontario, Canada (S.E.R., F.D., K.N., P.H.B., X.Y.W., P.P.L., A.O.G.) Keenan Research Center for Biomedical Science and Zebrafish Center for Advanced Drug Discovery, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada (S.E.R., X.Y.W.)
| | - Jamie Yuanjun Li
- Department of Physiology, University of Toronto, Ontario, Canada (D.Y.W., C.A., J.Y.L., P.S., N.B., S.S., P.H.B., B.C., X.Y.W., P.P.L., A.O.G.)
| | - Fayez Dawood
- Faculty of Medicine and Institute of Medical Science, University of Toronto, Ontario, Canada (S.E.R., F.D., K.N., P.H.B., X.Y.W., P.P.L., A.O.G.)
| | - Kotaro Naito
- Faculty of Medicine and Institute of Medical Science, University of Toronto, Ontario, Canada (S.E.R., F.D., K.N., P.H.B., X.Y.W., P.P.L., A.O.G.)
| | - Parveen Sharma
- Department of Physiology, University of Toronto, Ontario, Canada (D.Y.W., C.A., J.Y.L., P.S., N.B., S.S., P.H.B., B.C., X.Y.W., P.P.L., A.O.G.)
| | - Nicolas Bousette
- Department of Physiology, University of Toronto, Ontario, Canada (D.Y.W., C.A., J.Y.L., P.S., N.B., S.S., P.H.B., B.C., X.Y.W., P.P.L., A.O.G.)
| | - Shalini Singh
- Department of Physiology, University of Toronto, Ontario, Canada (D.Y.W., C.A., J.Y.L., P.S., N.B., S.S., P.H.B., B.C., X.Y.W., P.P.L., A.O.G.)
| | - Peter H Backx
- Department of Physiology, University of Toronto, Ontario, Canada (D.Y.W., C.A., J.Y.L., P.S., N.B., S.S., P.H.B., B.C., X.Y.W., P.P.L., A.O.G.) Faculty of Medicine and Institute of Medical Science, University of Toronto, Ontario, Canada (S.E.R., F.D., K.N., P.H.B., X.Y.W., P.P.L., A.O.G.)
| | - Brian Cox
- Department of Physiology, University of Toronto, Ontario, Canada (D.Y.W., C.A., J.Y.L., P.S., N.B., S.S., P.H.B., B.C., X.Y.W., P.P.L., A.O.G.)
| | - Xiao-Yan Wen
- Department of Physiology, University of Toronto, Ontario, Canada (D.Y.W., C.A., J.Y.L., P.S., N.B., S.S., P.H.B., B.C., X.Y.W., P.P.L., A.O.G.) Faculty of Medicine and Institute of Medical Science, University of Toronto, Ontario, Canada (S.E.R., F.D., K.N., P.H.B., X.Y.W., P.P.L., A.O.G.) Keenan Research Center for Biomedical Science and Zebrafish Center for Advanced Drug Discovery, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada (S.E.R., X.Y.W.)
| | - Peter P Liu
- Department of Physiology, University of Toronto, Ontario, Canada (D.Y.W., C.A., J.Y.L., P.S., N.B., S.S., P.H.B., B.C., X.Y.W., P.P.L., A.O.G.) Faculty of Medicine and Institute of Medical Science, University of Toronto, Ontario, Canada (S.E.R., F.D., K.N., P.H.B., X.Y.W., P.P.L., A.O.G.)
| | - Anthony O Gramolini
- Department of Physiology, University of Toronto, Ontario, Canada (D.Y.W., C.A., J.Y.L., P.S., N.B., S.S., P.H.B., B.C., X.Y.W., P.P.L., A.O.G.) Faculty of Medicine and Institute of Medical Science, University of Toronto, Ontario, Canada (S.E.R., F.D., K.N., P.H.B., X.Y.W., P.P.L., A.O.G.)
| |
Collapse
|
69
|
Mossuto MF, Sannino S, Mazza D, Fagioli C, Vitale M, Yoboue ED, Sitia R, Anelli T. A dynamic study of protein secretion and aggregation in the secretory pathway. PLoS One 2014; 9:e108496. [PMID: 25279560 PMCID: PMC4184786 DOI: 10.1371/journal.pone.0108496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/21/2014] [Indexed: 01/08/2023] Open
Abstract
Precise coordination of protein biogenesis, traffic and homeostasis within the early secretory compartment (ESC) is key for cell physiology. As a consequence, disturbances in these processes underlie many genetic and chronic diseases. Dynamic imaging methods are needed to follow the fate of cargo proteins and their interactions with resident enzymes and folding assistants. Here we applied the Halotag labelling system to study the behavior of proteins with different fates and roles in ESC: a chaperone, an ERAD substrate and an aggregation-prone molecule. Exploiting the Halo property of binding covalently ligands labelled with different fluorochromes, we developed and performed non-radioactive pulse and chase assays to follow sequential waves of proteins in ESC, discriminating between young and old molecules at the single cell level. In this way, we could monitor secretion and degradation of ER proteins in living cells. We can also follow the biogenesis, growth, accumulation and movements of protein aggregates in the ESC. Our data show that protein deposits within ESC grow by sequential apposition of molecules up to a given size, after which novel seeds are detected. The possibility of using ligands with distinct optical and physical properties offers a novel possibility to dynamically follow the fate of proteins in the ESC.
Collapse
Affiliation(s)
| | - Sara Sannino
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
- Department of Biosciences, Università degli Studi di Milano, Milan, IT
| | - Davide Mazza
- Università Vita-Salute San Raffaele, Milan, IT
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, IT
| | - Claudio Fagioli
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
| | - Milena Vitale
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
- Università Vita-Salute San Raffaele, Milan, IT
| | - Edgar Djaha Yoboue
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
| | - Roberto Sitia
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
- Università Vita-Salute San Raffaele, Milan, IT
| | - Tiziana Anelli
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, IT
- Università Vita-Salute San Raffaele, Milan, IT
| |
Collapse
|
70
|
Sannino S, Anelli T, Cortini M, Masui S, Degano M, Fagioli C, Inaba K, Sitia R. Progressive quality control of secretory proteins in the early secretory compartment by ERp44. J Cell Sci 2014; 127:4260-9. [PMID: 25097228 DOI: 10.1242/jcs.153239] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ERp44 is a pH-regulated chaperone of the secretory pathway. In the acidic milieu of the Golgi, its C-terminal tail changes conformation, simultaneously exposing the substrate-binding site for cargo capture and the RDEL motif for ER retrieval through interactions with cognate receptors. Protonation of cysteine 29 in the active site allows tail movements in vitro and in vivo. Here, we show that conserved histidine residues in the C-terminal tail also regulate ERp44 in vivo. Mutants lacking these histidine residues retain substrates more efficiently. Surprisingly, they are also O-glycosylated and partially secreted. Co-expression of client proteins prevents secretion of the histidine mutants, forcing tail opening and RDEL accessibility. Client-induced RDEL exposure allows retrieval of proteins from distinct stations along the secretory pathway, as indicated by the changes in O-glycosylation patterns upon overexpression of different partners. The ensuing gradients might help to optimize folding and assembly of different cargoes. Endogenous ERp44 is O-glycosylated and secreted by human primary endometrial cells, suggesting possible pathophysiological roles of these processes.
Collapse
Affiliation(s)
- Sara Sannino
- Divisions of Genetics and Cell Biology and Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy Department of Bioscience, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Tiziana Anelli
- Divisions of Genetics and Cell Biology and Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Margherita Cortini
- Divisions of Genetics and Cell Biology and Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Shoji Masui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Massimo Degano
- Divisions of Genetics and Cell Biology and Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Claudio Fagioli
- Divisions of Genetics and Cell Biology and Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Roberto Sitia
- Divisions of Genetics and Cell Biology and Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, 20132 Milan, Italy Università Vita-Salute San Raffaele, 20132 Milan, Italy
| |
Collapse
|
71
|
Feige MJ, Buchner J. Principles and engineering of antibody folding and assembly. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2024-2031. [PMID: 24931831 DOI: 10.1016/j.bbapap.2014.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/04/2014] [Accepted: 06/06/2014] [Indexed: 11/20/2022]
Abstract
Antibodies are uniquely suited to serve essential roles in the human immune defense as they combine several specific functions in one hetero-oligomeric protein. Their constant regions activate effector functions and their variable domains provide a stable framework that allows incorporation of highly diverse loop sequences. The combination of non-germline DNA recombination and mutation together with heavy and light chain assembly allows developing variable regions that specifically recognize essentially any antigen they may encounter. However, this diversity also requires tailor-made mechanisms to guarantee that folding and association of antibodies is carefully this diversity also requires tailor-made mechanisms to guarantee that folding and association of antibodies is carefully controlled before the protein is secreted from a plasma cell. Accordingly, the generic immunoglobulin fold β-barrel structure of antibody domains has been fine-tuned during evolution to fit the different requirements. Work over the past decades has identified important aspects of the folding and assembly of antibody domains and chains revealing domain specific variations of a general scheme. The most striking is the folding of an intrinsically disordered antibody domain in the context of its partner domain as the basis for antibody assembly and its control on the molecular level in the cell. These insights have not only allowed a better understanding of the antibody folding process but also provide a wealth of opportunities for rational optimization of antibody molecules. In this review, we summarize current concepts of antibody folding and assembly and discuss how they can be utilized to engineer antibodies with improved performance for different applications. This article is part of a Special Issue entitled: Recent advances in the molecular engineering of antibodies.
Collapse
Affiliation(s)
- Matthias J Feige
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis 38105, TN, USA.
| | - Johannes Buchner
- CIPSM at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
72
|
El Hindy M, Hezwani M, Corry D, Hull J, El Amraoui F, Harris M, Lee C, Forshaw T, Wilson A, Mansbridge A, Hassler M, Patel VB, Kehoe PG, Love S, Conway ME. The branched-chain aminotransferase proteins: novel redox chaperones for protein disulfide isomerase--implications in Alzheimer's disease. Antioxid Redox Signal 2014; 20:2497-513. [PMID: 24094038 PMCID: PMC4026213 DOI: 10.1089/ars.2012.4869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AIMS The human branched-chain aminotransferase proteins (hBCATm and hBCATc) are regulated through oxidation and S-nitrosation. However, it remains unknown whether they share common redox characteristics to enzymes such as protein disulfide isomerase (PDI) in terms of regulating cellular repair and protein misfolding. RESULTS Here, similar to PDI, the hBCAT proteins showed dithiol-disulfide isomerase activity that was mediated through an S-glutathionylated mechanism. Site-directed mutagenesis of the active thiols of the CXXC motif demonstrates that they are fundamental to optimal protein folding. Far Western analysis indicated that both hBCAT proteins can associate with PDI. Co-immunoprecipitation studies demonstrated that hBCATm directly binds to PDI in IMR-32 cells and the human brain. Electron and confocal microscopy validated the expression of PDI in mitochondria (using Mia40 as a mitochondrial control), where both PDI and Mia40 were found to be co-localized with hBCATm. Under conditions of oxidative stress, this interaction is decreased, suggesting that the proposed chaperone role for hBCATm may be perturbed. Moreover, immunohistochemistry studies show that PDI and hBCAT are expressed in the same neuronal and endothelial cells of the vasculature of the human brain, supporting a physiological role for this binding. INNOVATION This study identifies a novel redox role for hBCAT and confirms that hBCATm differentially binds to PDI under cellular stress. CONCLUSION These studies indicate that hBCAT may play a role in the stress response of the cell as a novel redox chaperone, which, if compromised, may result in protein misfolding, creating aggregates as a key feature in neurodegenerative conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Maya El Hindy
- 1 Faculty of Health and Life Sciences, University of the West of England , Coldharbor Lane, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Cominelli A, Halbout M, N'Kuli F, Lemoine P, Courtoy PJ, Marbaix E, Tyteca D, Henriet P. A unique C-terminal domain allows retention of matrix metalloproteinase-27 in the endoplasmic reticulum. Traffic 2014; 15:401-17. [PMID: 24548619 DOI: 10.1111/tra.12149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinase-27 (MMP-27) is poorly characterized. Sequence comparison suggests that a C-terminal extension (CTE) includes a potential transmembrane domain as in some membrane-type (MT)-MMPs. Having noticed that MMP-27 was barely secreted, we investigated its subcellular localization and addressed CTE contribution for MMP-27 retention. Intracellular MMP-27 was sensitive to endoglycosidase H. Subcellular fractionation and confocal microscopy evidenced retention of endogenous MMP-27 or recombinant rMMP-27 in the endoplasmic reticulum (ER) with locked exit across the intermediate compartment (ERGIC). Conversely, truncated rMMP-27 without CTE accessed downstream secretory compartments (ERGIC and Golgi) and was constitutively secreted. CTE addition to rMMP-10 (a secreted MMP) caused ER retention and blocked secretion. Addition of a PKA target sequence to the cytosolic C-terminus of transmembrane MT1-MMP/MMP-14 led to effective phosphorylation upon forskolin stimulation, but not for MMP-27, excluding transmembrane anchorage. Moreover, MMP-27 was protected from digestion by proteinase K. Finally, MT1-MMP/MMP-14 but neither endogenous nor recombinant MMP-27 partitioned in the detergent phase after Triton X-114 extraction, indicating that MMP-27 is not an integral membrane protein. In conclusion, MMP-27 is efficiently retained within the ER due to its unique CTE, which does not lead to stable membrane insertion. This could represent a novel ER retention system.
Collapse
Affiliation(s)
- Antoine Cominelli
- Cell Biology Unit, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Box B1.75.05, B-1200, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Medraño-Fernandez I, Fagioli C, Mezghrani A, Otsu M, Sitia R. Different redox sensitivity of endoplasmic reticulum associated degradation clients suggests a novel role for disulphide bonds in secretory proteins. Biochem Cell Biol 2014; 92:113-8. [PMID: 24697695 DOI: 10.1139/bcb-2013-0090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To maintain proteostasis in the endoplasmic reticulum (ER), terminally misfolded secretory proteins must be recognized, partially unfolded, and dislocated to the cytosol for proteasomal destruction, in a complex process called ER-associated degradation (ERAD). Dislocation implies reduction of inter-chain disulphide bonds. When in its reduced form, protein disulphide isomerase (PDI) can act not only as a reductase but also as an unfoldase, preparing substrates for dislocation. PDI oxidation by Ero1 favours substrate release and transport across the ER membrane. Here we addressed the redox dependency of ERAD and found that DTT stimulates the dislocation of proteins with DTT-resistant disulphide bonds (i.e., orphan Ig-μ chains) but stabilizes a ribophorin mutant (Ri332) devoid of them. DTT promotes the association of Ri332, but not of Ig-µ, with PDI. This discrepancy may suggest that disulphide bonds in cargo proteins can be utilized to oxidize PDI, hence facilitating substrate detachment and degradation also in the absence of Ero1. Accordingly, Ero1 silencing retards Ri332 degradation, but has little if any effect on Ig-µ. Thus, some disulphides can increase the stability and simultaneously favour quality control of secretory proteins.
Collapse
Affiliation(s)
- Iria Medraño-Fernandez
- a Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | |
Collapse
|
75
|
Liu Y, Li J. Endoplasmic reticulum-mediated protein quality control in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:162. [PMID: 24817869 PMCID: PMC4012192 DOI: 10.3389/fpls.2014.00162] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/07/2014] [Indexed: 05/19/2023]
Abstract
A correct three-dimensional structure is crucial for the physiological functions of a protein, yet the folding of proteins to acquire native conformation is a fundamentally error-prone process. Eukaryotic organisms have evolved a highly conserved endoplasmic reticulum-mediated protein quality control (ERQC) mechanism to monitor folding processes of secretory and membrane proteins, allowing export of only correctly folded proteins to their physiological destinations, retaining incompletely/mis-folded ones in the ER for additional folding attempts, marking and removing terminally misfolded ones via a unique multiple-step degradation process known as ER-associated degradation (ERAD). Most of our current knowledge on ERQC and ERAD came from genetic and biochemical investigations in yeast and mammalian cells. Recent studies in the reference plant Arabidopsis thaliana uncovered homologous components and similar mechanisms in plants for monitoring protein folding and for retaining, repairing, and removing misfolded proteins. These studies also revealed critical roles of the plant ERQC/ERAD systems in regulating important biochemical/physiological processes, such as abiotic stress tolerance and plant defense. In this review, we discuss our current understanding about the molecular components and biochemical mechanisms of the plant ERQC/ERAD system in comparison to yeast and mammalian systems.
Collapse
Affiliation(s)
| | - Jianming Li
- *Correspondence: Jianming Li, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4085 Natural Science Building, 830 North University, Ann Arbor, MI 48109-1048, USA e-mail:
| |
Collapse
|
76
|
Missing links in antibody assembly control. Int J Cell Biol 2013; 2013:606703. [PMID: 24489546 PMCID: PMC3893805 DOI: 10.1155/2013/606703] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/07/2013] [Indexed: 12/21/2022] Open
Abstract
Fidelity of the humoral immune response requires that quiescent B lymphocytes display membrane bound immunoglobulin M (IgM) on B lymphocytes surface as part of the B cell receptor, whose function is to recognize an antigen. At the same time B lymphocytes should not secrete IgM until recognition of the antigen has occurred. The heavy chains of the secretory IgM have a C-terminal tail with a cysteine instead of a membrane anchor, which serves to covalently link the IgM subunits by disulfide bonds to form “pentamers” or “hexamers.” By virtue of the same cysteine, unassembled secretory IgM subunits are recognized and retained (via mixed disulfide bonds) by members of the protein disulfide isomerase family, in particular ERp44. This so-called “thiol-mediated retention” bars assembly intermediates from prematurely leaving the cell and thereby exerts quality control on the humoral immune response. In this essay we discuss recent findings on how ERp44 governs such assembly control in a pH-dependent manner, shuttling between the cisGolgi and endoplasmic reticulum, and finally on how pERp1/MZB1, possibly as a co-chaperone of GRP94, may help to overrule the thiol-mediated retention in the activated B cell to give way to antibody secretion.
Collapse
|
77
|
Araki K, Iemura SI, Kamiya Y, Ron D, Kato K, Natsume T, Nagata K. Ero1-α and PDIs constitute a hierarchical electron transfer network of endoplasmic reticulum oxidoreductases. J Cell Biol 2013; 202:861-74. [PMID: 24043701 PMCID: PMC3776355 DOI: 10.1083/jcb.201303027] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 08/08/2013] [Indexed: 01/20/2023] Open
Abstract
Ero1-α and endoplasmic reticulum (ER) oxidoreductases of the protein disulfide isomerase (PDI) family promote the efficient introduction of disulfide bonds into nascent polypeptides in the ER. However, the hierarchy of electron transfer among these oxidoreductases is poorly understood. In this paper, Ero1-α-associated oxidoreductases were identified by proteomic analysis and further confirmed by surface plasmon resonance. Ero1-α and PDI were found to constitute a regulatory hub, whereby PDI induced conformational flexibility in an Ero1-α shuttle cysteine (Cys99) facilitated intramolecular electron transfer to the active site. In isolation, Ero1-α also oxidized ERp46, ERp57, and P5; however, kinetic measurements and redox equilibrium analysis revealed that PDI preferentially oxidized other oxidoreductases. PDI accepted electrons from the other oxidoreductases via its a' domain, bypassing the a domain, which serves as the electron acceptor from reduced glutathione. These observations provide an integrated picture of the hierarchy of cooperative redox interactions among ER oxidoreductases in mammalian cells.
Collapse
Affiliation(s)
- Kazutaka Araki
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo 135-0064, Japan
- Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8047, Japan
| | - Shun-ichiro Iemura
- Innovative drug development translational research section, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yukiko Kamiya
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagaya City University, Nagoya 467-8603, Japan
| | - David Ron
- Metabolic Research Laboratories; and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke’s Hospital; University of Cambridge, Cambridge CB2 0QQ, England, UK
| | - Koichi Kato
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagaya City University, Nagoya 467-8603, Japan
- The Glycoscience Institute, Ochanomizu University, Tokyo 112-8610, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo 135-0064, Japan
| | - Kazuhiro Nagata
- Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8047, Japan
| |
Collapse
|
78
|
Abstract
In this issue of Molecular Cell, Vavassori et al. (2013) show that a pH-induced conformational change in the quality control protein ERp44 allows retrieval of secretory proteins that contain free thiols via a disulfide linkage from postendoplasmic reticulum compartments to prevent their premature secretion.
Collapse
|
79
|
Kakihana T, Araki K, Vavassori S, Iemura SI, Cortini M, Fagioli C, Natsume T, Sitia R, Nagata K. Dynamic regulation of Ero1α and peroxiredoxin 4 localization in the secretory pathway. J Biol Chem 2013; 288:29586-94. [PMID: 23979138 PMCID: PMC3795256 DOI: 10.1074/jbc.m113.467845] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the early secretory compartment (ESC), a network of chaperones and enzymes assists oxidative folding of nascent proteins. Ero1 flavoproteins oxidize protein disulfide isomerase (PDI), generating H2O2 as a byproduct. Peroxiredoxin 4 (Prx4) can utilize luminal H2O2 to oxidize PDI, thus favoring oxidative folding while limiting oxidative stress. Interestingly, neither ER oxidase contains known ER retention signal(s), raising the question of how cells prevent their secretion. Here we show that the two proteins share similar intracellular localization mechanisms. Their secretion is prevented by sequential interactions with PDI and ERp44, two resident proteins of the ESC-bearing KDEL-like motifs. PDI binds preferentially Ero1α, whereas ERp44 equally retains Ero1α and Prx4. The different binding properties of Ero1α and Prx4 increase the robustness of ER redox homeostasis.
Collapse
Affiliation(s)
- Taichi Kakihana
- From the Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8397, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Aller I, Meyer AJ. The oxidative protein folding machinery in plant cells. PROTOPLASMA 2013; 250:799-816. [PMID: 23090240 DOI: 10.1007/s00709-012-0463-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/02/2012] [Indexed: 06/01/2023]
Abstract
Formation of intra-molecular disulfides and concomitant oxidative protein folding is essential for stability and catalytic function of many soluble and membrane-bound proteins in the endomembrane system, the mitochondrial inter-membrane space and the thylakoid lumen. Disulfide generation from free cysteines in nascent polypeptide chains is generally a catalysed process for which distinct pathways exist in all compartments. A high degree of similarities between highly diverse eukaryotic and bacterial systems for generation of protein disulfides indicates functional conservation of key processes throughout evolution. However, while many aspects about molecular function of enzymatic systems promoting disulfide formation have been demonstrated for bacterial and non-plant eukaryotic organisms, it is now clear that the plant machinery for oxidative protein folding displays distinct details, suggesting that the different pathways have been adapted to plant-specific requirements in terms of compartmentation, molecular function and regulation. Here, we aim to evaluate biological diversity by comparing the plant systems for oxidative protein folding to the respective systems from non-plant eukaryotes.
Collapse
Affiliation(s)
- Isabel Aller
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | | |
Collapse
|
81
|
The protein p17 signaling pathways in cancer. Tumour Biol 2013; 34:4081-7. [PMID: 23900679 DOI: 10.1007/s13277-013-0999-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022] Open
Abstract
P17 is a novel neuronal protein expressed under physiological conditions only at very low levels in other tissues. Accumulating data indicate its crucial involvement in tumorigenic effects. Using molecular, cellular, and biocomputational methods, the current study unraveled p17 mode of action. Data indicate that mitochondria-associated p17 interacts with the proteins TMEM115, YPEL3, ERP44, CDK5RAP, and NNAT. Moreover, p17 drives the cell cycle into the G0/G1 phase and enhances survival of proliferating cells. Interference with p17 activities thus might become a novel option to influence also the tumor suppressor protein p53 signaling pathways for the treatment of tumors.
Collapse
|
82
|
Abstract
The redox proteome consists of reversible and irreversible covalent modifications that link redox metabolism to biologic structure and function. These modifications, especially of Cys, function at the molecular level in protein folding and maturation, catalytic activity, signaling, and macromolecular interactions and at the macroscopic level in control of secretion and cell shape. Interaction of the redox proteome with redox-active chemicals is central to macromolecular structure, regulation, and signaling during the life cycle and has a central role in the tolerance and adaptability to diet and environmental challenges.
Collapse
Affiliation(s)
- Young-Mi Go
- From the Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322
| | | |
Collapse
|
83
|
Wright J, Wang X, Haataja L, Kellogg AP, Lee J, Liu M, Arvan P. Dominant protein interactions that influence the pathogenesis of conformational diseases. J Clin Invest 2013; 123:3124-34. [PMID: 23722904 DOI: 10.1172/jci67260] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/28/2013] [Indexed: 02/06/2023] Open
Abstract
Misfolding of exportable proteins can trigger endocrinopathies. For example, misfolding of insulin can result in autosomal dominant mutant INS gene-induced diabetes of youth, and misfolding of thyroglobulin can result in autosomal recessive congenital hypothyroidism with deficient thyroglobulin. Both proinsulin and thyroglobulin normally form homodimers; the mutant versions of both proteins misfold in the ER, triggering ER stress, and, in both cases, heterozygosity creates potential for cross-dimerization between mutant and WT gene products. Here, we investigated these two ER-retained mutant secretory proteins and the selectivity of their interactions with their respective WT counterparts. In both cases and in animal models of these diseases, we found that conditions favoring an increased stoichiometry of mutant gene product dominantly inhibited export of the WT partner, while increased relative level of the WT gene product helped to rescue secretion of the mutant partner. Surprisingly, the bidirectional consequences of secretory blockade and rescue occur simultaneously in the same cells. Thus, in the context of heterozygosity, expression level and stability of WT subunits may be a critical factor influencing the effect of protein misfolding on clinical phenotype. These results offer new insight into dominant as well as recessive inheritance of conformational diseases and offer opportunities for the development of new therapies.
Collapse
Affiliation(s)
- Jordan Wright
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
A pH-regulated quality control cycle for surveillance of secretory protein assembly. Mol Cell 2013; 50:783-92. [PMID: 23685074 PMCID: PMC3699783 DOI: 10.1016/j.molcel.2013.04.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/02/2013] [Accepted: 04/10/2013] [Indexed: 11/30/2022]
Abstract
To warrant the quality of the secretory proteome, stringent control systems operate at the endoplasmic reticulum (ER)-Golgi interface, preventing the release of nonnative products. Incompletely assembled oligomeric proteins that are deemed correctly folded must rely on additional quality control mechanisms dedicated to proper assembly. Here we unveil how ERp44 cycles between cisGolgi and ER in a pH-regulated manner, patrolling assembly of disulfide-linked oligomers such as IgM and adiponectin. At neutral, ER-equivalent pH, the ERp44 carboxy-terminal tail occludes the substrate-binding site. At the lower pH of the cisGolgi, conformational rearrangements of this peptide, likely involving protonation of ERp44’s active cysteine, simultaneously unmask the substrate binding site and −RDEL motif, allowing capture of orphan secretory protein subunits and ER retrieval via KDEL receptors. The ERp44 assembly control cycle couples secretion fidelity and efficiency downstream of the calnexin/calreticulin and BiP-dependent quality control cycles. ERp44 governs a pH-regulated assembly control cycle in the early secretory pathway Accessibility of ERp44’s active site and –RDEL ER retrieval motif is pH dependent Unmasking of ERp44’s active site likely involves protonation of cysteine 29 ERp44 captures client proteins at cisGolgi-equivalent pH for retrieval to the ER
Collapse
|
85
|
Calì T, Ottolini D, Brini M. Calcium and Endoplasmic Reticulum-Mitochondria Tethering in Neurodegeneration. DNA Cell Biol 2013; 32:140-6. [DOI: 10.1089/dna.2013.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Tito Calì
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Denis Ottolini
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Marisa Brini
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| |
Collapse
|
86
|
Benham AM, van Lith M, Sitia R, Braakman I. Ero1-PDI interactions, the response to redox flux and the implications for disulfide bond formation in the mammalian endoplasmic reticulum. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110403. [PMID: 23530257 PMCID: PMC3638393 DOI: 10.1098/rstb.2011.0403] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The protein folding machinery of the endoplasmic reticulum (ER) ensures that proteins entering the eukaryotic secretory pathway acquire appropriate post-translational modifications and reach a stably folded state. An important component of this protein folding process is the supply of disulfide bonds. These are introduced into client proteins by ER resident oxidoreductases, including ER oxidoreductin 1 (Ero1). Ero1 is usually considered to function in a linear pathway, by ‘donating’ a disulfide bond to protein disulfide isomerase (PDI) and receiving electrons that are passed on to the terminal electron acceptor molecular oxygen. PDI engages with a range of clients as the direct catalyst of disulfide bond formation, isomerization or reduction. In this paper, we will consider the interactions of Ero1 with PDI family proteins and chaperones, highlighting the effect that redox flux has on Ero1 partnerships. In addition, we will discuss whether higher order protein complexes play a role in Ero1 function.
Collapse
Affiliation(s)
- Adam M Benham
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
| | | | | | | |
Collapse
|
87
|
Oka OBV, Bulleid NJ. Forming disulfides in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2425-9. [PMID: 23434683 DOI: 10.1016/j.bbamcr.2013.02.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 11/25/2022]
Abstract
Protein disulfide bonds are an important co- and post-translational modification for proteins entering the secretory pathway. They are covalent interactions between two cysteine residues which support structural stability and promote the assembly of multi-protein complexes. In the mammalian endoplasmic reticulum (ER), disulfide bond formation is achieved by the combined action of two types of enzyme: one capable of forming disulfides de novo and another able to introduce these disulfides into substrates. The initial process of introducing disulfides into substrate proteins is catalyzed by the protein disulfide isomerase (PDI) oxidoreductases which become reduced and, therefore, have to be re-oxidized to allow for further rounds of disulfide exchange. This review will discuss the various pathways operating in the ER that facilitate oxidation of the PDI oxidoreductases and ultimately catalyze disulfide bond formation in substrate proteins. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
|
88
|
Regulation of inositol 1,4,5-trisphosphate receptors during endoplasmic reticulum stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1612-24. [PMID: 23380704 DOI: 10.1016/j.bbamcr.2013.01.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/13/2013] [Accepted: 01/21/2013] [Indexed: 12/15/2022]
Abstract
The endoplasmic reticulum (ER) performs multiple functions in the cell: it is the major site of protein and lipid synthesis as well as the most important intracellular Ca(2+) reservoir. Adverse conditions, including a decrease in the ER Ca(2+) level or an increase in oxidative stress, impair the formation of new proteins, resulting in ER stress. The subsequent unfolded protein response (UPR) is a cellular attempt to lower the burden on the ER and to restore ER homeostasis by imposing a general arrest in protein synthesis, upregulating chaperone proteins and degrading misfolded proteins. This response can also lead to autophagy and, if the stress can not be alleviated, to apoptosis. The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and IP3-induced Ca(2+) signaling are important players in these processes. Not only is the IP3R activity modulated in a dual way during ER stress, but also other key proteins involved in Ca(2+) signaling are modulated. Changes also occur at the structural level with a strengthening of the contacts between the ER and the mitochondria, which are important determinants of mitochondrial Ca(2+) uptake. The resulting cytoplasmic and mitochondrial Ca(2+) signals will control cellular decisions that either promote cell survival or cause their elimination via apoptosis. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
89
|
Smirle J, Au CE, Jain M, Dejgaard K, Nilsson T, Bergeron J. Cell biology of the endoplasmic reticulum and the Golgi apparatus through proteomics. Cold Spring Harb Perspect Biol 2013; 5:a015073. [PMID: 23284051 DOI: 10.1101/cshperspect.a015073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Enriched endoplasmic reticulum (ER) and Golgi membranes subjected to mass spectrometry have uncovered over a thousand different proteins assigned to the ER and Golgi apparatus of rat liver. This, in turn, led to the uncovering of several hundred proteins of poorly understood function and, through hierarchical clustering, showed that proteins distributed in patterns suggestive of microdomains in cognate organelles. This has led to new insights with respect to their intracellular localization and function. Another outcome has been the critical testing of the cisternal maturation hypothesis showing overwhelming support for a predominant role of COPI vesicles in the transport of resident proteins of the ER and Golgi apparatus (as opposed to biosynthetic cargo). Here we will discuss new insights gained and also highlight new avenues undertaken to further explore the cell biology of the ER and the Golgi apparatus through tandem mass spectrometry.
Collapse
Affiliation(s)
- Jeffrey Smirle
- The Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | |
Collapse
|
90
|
Lisa S, Domingo B, Martínez J, Gilch S, Llopis JF, Schätzl HM, Gasset M. Failure of prion protein oxidative folding guides the formation of toxic transmembrane forms. J Biol Chem 2012; 287:36693-701. [PMID: 22955286 DOI: 10.1074/jbc.m112.398776] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mechanism by which pathogenic mutations in the globular domain of the cellular prion protein (PrP(C)) increase the likelihood of misfolding and predispose to diseases is not yet known. Differences in the evidences provided by structural and metabolic studies of these mutants suggest that in vivo folding could be playing an essential role in their pathogenesis. To address this role, here we use the single or combined M206S and M213S artificial mutants causing labile folds and express them in cells. We find that these mutants are highly toxic, fold as transmembrane PrP, and lack the intramolecular disulfide bond. When the mutations are placed in a chain with impeded transmembrane PrP formation, toxicity is rescued. These results suggest that oxidative folding impairment, as on aging, can be fundamental for the genesis of intracellular neurotoxic intermediates key in prion neurodegenerations.
Collapse
Affiliation(s)
- Silvia Lisa
- Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
91
|
Liebrand TW, Smit P, Abd-El-Haliem A, de Jonge R, Cordewener JH, America AH, Sklenar J, Jones AM, Robatzek S, Thomma BP, Tameling WI, Joosten MH. Endoplasmic reticulum-quality control chaperones facilitate the biogenesis of Cf receptor-like proteins involved in pathogen resistance of tomato. PLANT PHYSIOLOGY 2012; 159:1819-33. [PMID: 22649272 PMCID: PMC3425215 DOI: 10.1104/pp.112.196741] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/24/2012] [Indexed: 05/04/2023]
Abstract
Cf proteins are receptor-like proteins (RLPs) that mediate resistance of tomato (Solanum lycopersicum) to the foliar pathogen Cladosporium fulvum. These transmembrane immune receptors, which carry extracellular leucine-rich repeats that are subjected to posttranslational glycosylation, perceive effectors of the pathogen and trigger a defense response that results in plant resistance. To identify proteins required for the functionality of these RLPs, we performed immunopurification of a functional Cf-4-enhanced green fluorescent protein fusion protein transiently expressed in Nicotiana benthamiana, followed by mass spectrometry. The endoplasmic reticulum (ER) heat shock protein70 binding proteins (BiPs) and lectin-type calreticulins (CRTs), which are chaperones involved in ER-quality control, were copurifying with Cf-4-enhanced green fluorescent protein. The tomato and N. benthamiana genomes encode four BiP homologs and silencing experiments revealed that these BiPs are important for overall plant viability. For the three tomato CRTs, virus-induced gene silencing targeting the plant-specific CRT3a gene resulted in a significantly compromised Cf-4-mediated defense response and loss of full resistance to C. fulvum. We show that upon knockdown of CRT3a the Cf-4 protein accumulated, but the pool of Cf-4 protein carrying complex-type N-linked glycans was largely reduced. Together, our study on proteins required for Cf function reveals an important role for the CRT ER chaperone CRT3a in the biogenesis and functionality of this type of RLP involved in plant defense.
Collapse
Affiliation(s)
- Thomas W.H. Liebrand
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Patrick Smit
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | | | - Ronnie de Jonge
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Jan H.G. Cordewener
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Antoine H.P. America
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Jan Sklenar
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Alexandra M.E. Jones
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Silke Robatzek
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Bart P.H.J. Thomma
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Wladimir I.L. Tameling
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | | |
Collapse
|
92
|
Higa A, Chevet E. Redox signaling loops in the unfolded protein response. Cell Signal 2012; 24:1548-55. [DOI: 10.1016/j.cellsig.2012.03.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/20/2012] [Indexed: 12/30/2022]
|
93
|
Adrain C, Freeman M. New lives for old: evolution of pseudoenzyme function illustrated by iRhoms. Nat Rev Mol Cell Biol 2012; 13:489-98. [PMID: 22781900 DOI: 10.1038/nrm3392] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Large-scale sequencing of genomes has revealed that most enzyme families include inactive homologues. These pseudoenzymes are often well conserved, implying a selective pressure to retain them during evolution, and therefore that they have significant function. Mechanistic insights and evolutionary lessons are now emerging from the study of a broad range of such 'dead' enzymes. The recently discovered iRhoms - inactive homologues of rhomboid proteases - have joined derlins and other members of the rhomboid-like clan in regulating the fate of proteins as they pass through the secretory pathway. There is a strong case that dead enzymes, which have been rather overlooked, may be a rich source of biological regulators.
Collapse
Affiliation(s)
- Colin Adrain
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | |
Collapse
|
94
|
Anelli T, Bergamelli L, Margittai E, Rimessi A, Fagioli C, Malgaroli A, Pinton P, Ripamonti M, Rizzuto R, Sitia R. Ero1α regulates Ca(2+) fluxes at the endoplasmic reticulum-mitochondria interface (MAM). Antioxid Redox Signal 2012; 16:1077-87. [PMID: 21854214 DOI: 10.1089/ars.2011.4004] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS The endoplasmic reticulum (ER) is involved in many functions, including protein folding, redox homeostasis, and Ca(2+) storage and signaling. To perform these multiple tasks, the ER is composed of distinct, specialized subregions, amongst which mitochondrial-associated ER membranes (MAM) emerge as key signaling hubs. How these multiple functions are integrated with one another in living cells remains unclear. RESULTS Here we show that Ero1α, a key controller of oxidative folding and ER redox homeostasis, is enriched in MAM and regulates Ca(2+) fluxes. Downregulation of Ero1α by RNA interference inhibits mitochondrial Ca(2+) fluxes and modifies the activity of mitochondrial Ca(2+) uniporters. The overexpression of redox active Ero1α increases passive Ca(2+) efflux from the ER, lowering [Ca(2+)](ER) and mitochondrial Ca(2+) fluxes in response to IP3 agonists. INNOVATION The unexpected observation that Ca(2+) fluxes are affected by either increasing or decreasing the levels of Ero1α reveals a pivotal role for this oxidase in the early secretory compartment and implies a strict control of its amounts. CONCLUSIONS Taken together, our results indicate that the levels, subcellular localization, and activity of Ero1α coordinately regulate Ca(2+) and redox homeostasis and signaling in the early secretory compartment.
Collapse
|
95
|
Ramming T, Appenzeller-Herzog C. The physiological functions of mammalian endoplasmic oxidoreductin 1: on disulfides and more. Antioxid Redox Signal 2012; 16:1109-18. [PMID: 22220984 DOI: 10.1089/ars.2011.4475] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE The oxidative process of disulfide-bond formation is essential for the folding of most secretory and membrane proteins in the endoplasmic reticulum (ER). It is driven by electron relay pathways that transfer two electrons derived from the fusion of two adjacent cysteinyl side chains onto various types of chemical oxidants. The conserved, ER-resident endoplasmic oxidoreductin 1 (Ero1) sulfhydryl oxidases that reduce molecular oxygen to generate an active-site disulfide represent one of these pathways. In mammals, two family members exist, Ero1α and Ero1β. RECENT ADVANCES The two mammalian Ero1 enzymes differ in transcriptional and post-translational regulation, tissue distribution, and catalytic turnover. A specific protein-protein interaction between either isoform and protein disulfide isomerase (PDI) facilitates the propagation of disulfides from Ero1 via PDI to nascent polypeptides, and inbuilt oxidative shutdown mechanisms in Ero1α and Ero1β prevent excessive oxidation of PDI. CRITICAL ISSUES Besides disulfide-bond generation, Ero1α also regulates calcium release from the ER and the secretion of disulfide-linked oligomers through its reversible association with the chaperone ERp44. This review explores the functional repertoire and possible redundancy of mammalian Ero1 enzymes. FUTURE DIRECTIONS Systematic analyses of different knockout mouse models will be the most promising strategy to shed new light on unique and tissue-specific roles of Ero1α and Ero1β. Moreover, in-depth characterization of the known physical interactions of Ero1 with peroxidases and PDI family members will help broaden our functional and mechanistic understanding of Ero1 enzymes.
Collapse
Affiliation(s)
- Thomas Ramming
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Switzerland
| | | |
Collapse
|
96
|
Raturi A, Simmen T. Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:213-24. [PMID: 22575682 DOI: 10.1016/j.bbamcr.2012.04.013] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/12/2012] [Accepted: 04/25/2012] [Indexed: 01/01/2023]
Abstract
More than a billion years ago, bacterial precursors of mitochondria became endosymbionts in what we call eukaryotic cells today. The true significance of the word "endosymbiont" has only become clear to cell biologists with the discovery that the endoplasmic reticulum (ER) superorganelle dedicates a special domain for the metabolic interaction with mitochondria. This domain, identified in all eukaryotic cell systems from yeast to man and called the mitochondria-associated membrane (MAM), has a distinct proteome, specific tethers on the cytosolic face and regulatory proteins in the ER lumen of the ER. The MAM has distinct biochemical properties and appears as ER tubules closely apposed to mitochondria on electron micrographs. The functions of the MAM range from lipid metabolism and calcium signaling to inflammasome formation. Consistent with these functions, the MAM is enriched in lipid metabolism enzymes and calcium handling proteins. During cellular stress situations, like an altered cellular redox state, the MAM alters its set of regulatory proteins and thus alters MAM functions. Notably, this set prominently comprises ER chaperones and oxidoreductases that connect protein synthesis and folding inside the ER to mitochondrial metabolism. Moreover, ER membranes associated with mitochondria also accommodate parts of the machinery that determines mitochondrial membrane dynamics and connect mitochondria to the cytoskeleton. Together, these exciting findings demonstrate that the physiological interactions between the ER and mitochondria are so bilateral that we are tempted to compare their relationship to the one of a married couple: distinct, but inseparable and certainly dependent on each other. In this paradigm, the MAM stands for the intracellular location where the two organelles tie the knot. Resembling "real life", the happy marriage between the two organelles prevents the onset of diseases that are characterized by disrupted metabolism and decreased lifespan, including neurodegeneration and cancer. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
Affiliation(s)
- Arun Raturi
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
97
|
Freyaldenhoven S, Li Y, Kocabas AM, Ziu E, Ucer S, Ramanagoudr-Bhojappa R, Miller GP, Kilic F. The role of ERp44 in maturation of serotonin transporter protein. J Biol Chem 2012; 287:17801-17811. [PMID: 22451649 DOI: 10.1074/jbc.m112.345058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In heterologous and endogenous expression systems, we studied the role of ERp44 and its complex partner endoplasmic reticulum (ER) oxidase 1-α (Ero1-Lα) in mechanisms regulating disulfide bond formation for serotonin transporter (SERT), an oligomeric glycoprotein. ERp44 is an ER lumenal chaperone protein that favors the maturation of disulfide-linked oligomeric proteins. ERp44 plays a critical role in the release of proteins from the ER via binding to Ero1-Lα. Mutation in the thioredoxin-like domain hampers the association of ERp44C29S with SERT, which has three Cys residues (Cys-200, Cys-209, and Cys-109) on the second external loop. We further explored the role of the protein chaperones through shRNA knockdown experiments for ERp44 and Ero1-Lα. Those efforts resulted in increased SERT localization to the plasma membrane but decreased serotonin (5-HT) uptake rates, indicating the importance of the ERp44 retention mechanism in the proper maturation of SERT proteins. These data were strongly supported with the data received from the N-biotinylaminoethyl methanethiosulfonate (MTSEA-biotin) labeling of SERT on ERp44 shRNA cells. MTSEA-biotin only interacts with the free Cys residues from the external phase of the plasma membrane. Interestingly, it appears that Cys-200 and Cys-209 of SERT in ERp44-silenced cells are accessible to labeling by MTSEA-biotin. However, in the control cells, these Cys residues are occupied and produced less labeling with MTSEA-biotin. Furthermore, ERp44 preferentially associated with SERT mutants (C200S, C209S, and C109A) when compared with wild type. These interactions with the chaperone may reflect the inability of Cys-200 and Cys-209 SERT mutants to form a disulfide bond and self-association as evidenced by immunoprecipitation assays. Based on these collective findings, we hypothesize that ERp44 together with Ero1-Lα plays an important role in disulfide formation of SERT, which may be a prerequisite step for the assembly of SERT molecules in oligomeric form.
Collapse
Affiliation(s)
- Samuel Freyaldenhoven
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Yicong Li
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Arif M Kocabas
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Enrit Ziu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Serra Ucer
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Raman Ramanagoudr-Bhojappa
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Fusun Kilic
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.
| |
Collapse
|
98
|
Sun W, Cao Y, Jansen Labby K, Bittel P, Boller T, Bent AF. Probing the Arabidopsis flagellin receptor: FLS2-FLS2 association and the contributions of specific domains to signaling function. THE PLANT CELL 2012; 24:1096-113. [PMID: 22388452 PMCID: PMC3336135 DOI: 10.1105/tpc.112.095919] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/08/2012] [Accepted: 02/14/2012] [Indexed: 05/20/2023]
Abstract
Flagellin sensing2 (FLS2) is a transmembrane receptor kinase that activates antimicrobial defense responses upon binding of bacterial flagellin or the flagellin-derived peptide flg22. We find that some Arabidopsis thaliana FLS2 is present in FLS2-FLS2 complexes before and after plant exposure to flg22. flg22 binding capability is not required for FLS2-FLS2 association. Cys pairs flank the extracellular leucine rich repeat (LRR) domain in FLS2 and many other LRR receptors, and we find that the Cys pair N-terminal to the FLS2 LRR is required for normal processing, stability, and function, possibly due to undescribed endoplasmic reticulum quality control mechanisms. By contrast, disruption of the membrane-proximal Cys pair does not block FLS2 function, instead increasing responsiveness to flg22, as indicated by a stronger oxidative burst. There was no evidence for intermolecular FLS2-FLS2 disulfide bridges. Truncated FLS2 containing only the intracellular domain associates with full-length FLS2 and exerts a dominant-negative effect on wild-type FLS2 function that is dependent on expression level but independent of the protein kinase capacity of the truncated protein. FLS2 is insensitive to disruption of multiple N-glycosylation sites, in contrast with the related receptor EF-Tu receptor that can be rendered nonfunctional by disruption of single glycosylation sites. These and additional findings more precisely define the molecular mechanisms of FLS2 receptor function.
Collapse
Affiliation(s)
- Wenxian Sun
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yangrong Cao
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706
| | - Kristin Jansen Labby
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706
| | - Pascal Bittel
- Botanisches Institut der Universität Basel, CH-4056 Basel, Switzerland
| | - Thomas Boller
- Botanisches Institut der Universität Basel, CH-4056 Basel, Switzerland
| | - Andrew F. Bent
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706
- Address correspondence to
| |
Collapse
|
99
|
Emerging role of ER quality control in plant cell signal perception. Protein Cell 2012; 3:10-6. [PMID: 22259121 DOI: 10.1007/s13238-012-2004-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 12/26/2011] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum quality control (ER-QC) is a conserved mechanism in surveillance of secreted signaling factors during cell-to-cell communication in eukaryotes. Recent data show that the ER-QC plays important roles in diverse cell-to-cell signaling processes during immune response, vegetative and reproductive development in plants. Pollen tube guidance is a precisely guided cell-cell communication process between the male and female gametophytes during plant reproduction. Recently, the female signal has been identified as small secreted peptides, but how the pollen tube responds to this signal is still unclear. In this review, we intend to summarize the role of ER-QC in plants and discuss the recent advances regarding our understanding of the mechanism of pollen tube response to the female signals.
Collapse
|
100
|
ERp44 C160S/C212S mutants regulate IP3R1 channel activity. Protein Cell 2011; 2:990-6. [PMID: 22183808 DOI: 10.1007/s13238-011-1116-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/20/2011] [Indexed: 10/14/2022] Open
Abstract
Previous studies have indicated that ERp44 inhibits inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release (IICR) via IP(3)R(1), but the mechanism remains largely unexplored. Using extracellular ATP to induce intracellular calcium transient as an IICR model, Ca(2+) image, pull down assay, and Western blotting experiments were carried out in the present study. We found that extracellular ATP induced calcium transient via IP(3)Rs (IICR) and the IICR were markedly decreased in ERp44 overexpressed Hela cells. The inhibitory effect of C160S/C212S but not C29S/T396A/ΔT(331-377) mutants of ERp44 on IICR were significantly decreased compared with ERp44. However, the binding capacity of ERp44 to L3V domain of IP(3)R(1) (1L3V) was enhanced by ERp44 C160S/C212S mutation. Taken together, these results suggest that the mutants of ERp44, C160/C212, can more tightly bind to IP(3)R(1) but exhibit a weak inhibition of IP(3)R(1) channel activity in Hela cells.
Collapse
|