51
|
Roth L, Dogan S, Tuna BG, Aranyi T, Benitez S, Borrell-Pages M, Bozaykut P, De Meyer GRY, Duca L, Durmus N, Fonseca D, Fraenkel E, Gillery P, Giudici A, Jaisson S, Johansson M, Julve J, Lucas-Herald AK, Martinet W, Maurice P, McDonnell BJ, Ozbek EN, Pucci G, Pugh CJA, Rochfort KD, Roks AJM, Rotllan N, Shadiow J, Sohrabi Y, Spronck B, Szeri F, Terentes-Printzios D, Tunc Aydin E, Tura-Ceide O, Ucar E, Yetik-Anacak G. Pharmacological modulation of vascular ageing: A review from VascAgeNet. Ageing Res Rev 2023; 92:102122. [PMID: 37956927 DOI: 10.1016/j.arr.2023.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.
Collapse
Affiliation(s)
- Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sonia Benitez
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Biochemistry, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Perinur Bozaykut
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkiye
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Nergiz Durmus
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Diogo Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Košice, Slovakia
| | - Philippe Gillery
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | | | - Josep Julve
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Endocrinology, Diabetes and Nutrition group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Barry J McDonnell
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Emine Nur Ozbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christopher J A Pugh
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin, Ireland
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Noemi Rotllan
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Pathophysiology of lipid-related diseases, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yahya Sohrabi
- Molecular Cardiology, Dept. of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czechia
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Flora Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elif Tunc Aydin
- Department of Cardiology, Hospital of Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkiye
| | - Olga Tura-Ceide
- Biomedical Research Institute-IDIBGI, Girona, Spain; Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Eda Ucar
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet Aydinlar University, Istanbul, Turkiye.
| |
Collapse
|
52
|
Mancia G, Kreutz R, Brunström M, Burnier M, Grassi G, Januszewicz A, Muiesan ML, Tsioufis K, Agabiti-Rosei E, Algharably EAE, Azizi M, Benetos A, Borghi C, Hitij JB, Cifkova R, Coca A, Cornelissen V, Cruickshank JK, Cunha PG, Danser AHJ, Pinho RMD, Delles C, Dominiczak AF, Dorobantu M, Doumas M, Fernández-Alfonso MS, Halimi JM, Járai Z, Jelaković B, Jordan J, Kuznetsova T, Laurent S, Lovic D, Lurbe E, Mahfoud F, Manolis A, Miglinas M, Narkiewicz K, Niiranen T, Palatini P, Parati G, Pathak A, Persu A, Polonia J, Redon J, Sarafidis P, Schmieder R, Spronck B, Stabouli S, Stergiou G, Taddei S, Thomopoulos C, Tomaszewski M, Van de Borne P, Wanner C, Weber T, Williams B, Zhang ZY, Kjeldsen SE. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J Hypertens 2023; 41:1874-2071. [PMID: 37345492 DOI: 10.1097/hjh.0000000000003480] [Citation(s) in RCA: 1221] [Impact Index Per Article: 610.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
DOCUMENT REVIEWERS Luis Alcocer (Mexico), Christina Antza (Greece), Mustafa Arici (Turkey), Eduardo Barbosa (Brazil), Adel Berbari (Lebanon), Luís Bronze (Portugal), John Chalmers (Australia), Tine De Backer (Belgium), Alejandro de la Sierra (Spain), Kyriakos Dimitriadis (Greece), Dorota Drozdz (Poland), Béatrice Duly-Bouhanick (France), Brent M. Egan (USA), Serap Erdine (Turkey), Claudio Ferri (Italy), Slavomira Filipova (Slovak Republic), Anthony Heagerty (UK), Michael Hecht Olsen (Denmark), Dagmara Hering (Poland), Sang Hyun Ihm (South Korea), Uday Jadhav (India), Manolis Kallistratos (Greece), Kazuomi Kario (Japan), Vasilios Kotsis (Greece), Adi Leiba (Israel), Patricio López-Jaramillo (Colombia), Hans-Peter Marti (Norway), Terry McCormack (UK), Paolo Mulatero (Italy), Dike B. Ojji (Nigeria), Sungha Park (South Korea), Priit Pauklin (Estonia), Sabine Perl (Austria), Arman Postadzhian (Bulgaria), Aleksander Prejbisz (Poland), Venkata Ram (India), Ramiro Sanchez (Argentina), Markus Schlaich (Australia), Alta Schutte (Australia), Cristina Sierra (Spain), Sekib Sokolovic (Bosnia and Herzegovina), Jonas Spaak (Sweden), Dimitrios Terentes-Printzios (Greece), Bruno Trimarco (Italy), Thomas Unger (The Netherlands), Bert-Jan van den Born (The Netherlands), Anna Vachulova (Slovak Republic), Agostino Virdis (Italy), Jiguang Wang (China), Ulrich Wenzel (Germany), Paul Whelton (USA), Jiri Widimsky (Czech Republic), Jacek Wolf (Poland), Grégoire Wuerzner (Switzerland), Eugene Yang (USA), Yuqing Zhang (China).
Collapse
Affiliation(s)
| | - Reinhold Kreutz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Berlin, Germany
| | - Mattias Brunström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Michel Burnier
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Guido Grassi
- Clinica Medica, University Milano-Bicocca, Milan, Italy
| | - Andrzej Januszewicz
- Department of Hypertension, National Institute of Cardiology, Warsaw, Poland
| | - Maria Lorenza Muiesan
- UOC 2 Medicina, ASST Spedali Civili di Brescia, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Konstantinos Tsioufis
- First Department of Cardiology, Medical School, University of Athens, Hippokration Hospital, Athens, Greece
| | | | - Engi Abd Elhady Algharably
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Clinical Pharmacology and Toxicology, Berlin, Germany
| | - Michel Azizi
- Université Paris Cité, Paris, France; AP-HP Hôpital Européen Georges-Pompidou, Hypertension Department and DMU CARTE
- INSERM, Paris
| | - Athanase Benetos
- Université de Lorraine, CHRU-Nancy, Department of Geriatric Medicine and INSERM DCAC, Nancy, France
| | - Claudio Borghi
- Department of Medical and Surgical Sciences-IRCCS AOU S. Orsola di Bologna, Bologna, Italy
| | - Jana Brguljan Hitij
- University Medical Centre Ljubljana, Department of Hypertension, Medical University Ljubljana, Ljubljana, Slovenia
| | - Renata Cifkova
- Center for Cardiovascular Prevention, Thomayer University Hospital
- Department of Medicine II, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Antonio Coca
- Hypertension and Vascular Risk Unit, Department of Internal Medicine, Hospital Clínic, University of Barcelona, Spain
| | | | | | - Pedro G Cunha
- Center for the Research and Treatment of Arterial Hypertension and Cardiovascular Risk, Internal Medicine Department, Hospital Senhora da Oliveira, Guimarães/Minho University
- Life and Health Science Research Institute (ICVS), School of Medicine, University of Minho; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A H Jan Danser
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | | | - Maria Dorobantu
- University of Medicine and Pharmacy 'Carol Davila', The Romanian Academy
| | - Michalis Doumas
- 2nd Prop Department of Internal Medicine, Aristotle University, Thessaloniki, Greece
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Jean-Michel Halimi
- Service de Néphrologie-Hypertension, Dialyses, Transplantation Rénale, CHRU Tours
- Equipe d'Accueil EA4245, Université de Tours
- INI-CRCT, Tours, France
| | - Zoltán Járai
- South-Buda Center Hospital St. Imre University Hospital, Budapest & Semmelweis University, Budapest, Hungary
| | - Bojan Jelaković
- UHC Zagreb, Dept for Nephrology, Hypertension, Dialysis and Transplantation, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Tatiana Kuznetsova
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | | | - Dragan Lovic
- Singidunum University, Clinic for internal Disease Intermedica Cardiology Department, Hypertension Centre, Nis, Serbia
| | - Empar Lurbe
- Consorcio Hospital General Universitario de Valencia, Valencia
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), Madrid
- University of Valencia, Valencia, Spain
| | - Felix Mahfoud
- Cardiology, Angiology and Intensive Care Medicine, Saarland University Hospital and Saarland University, Homburg, Germany
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Marius Miglinas
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Krzystof Narkiewicz
- Department of Hypertension and Diabetology, Medical University of Gdańsk, Gdańsk, Poland
| | - Teemu Niiranen
- Department of Internal Medicine, Turku University Hospital and University of Turku, Turku
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Paolo Palatini
- Studium Patavinum, Department of Medicine, University of Padova, Padova, Italy
| | - Gianfranco Parati
- IRCCS, Istituto Auxologico Italiano, Ospedale San Luca
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Atul Pathak
- Princess Grace Hospital Monaco (Centre Hospitalier Princesse Grace, CHPG)
| | - Alexandre Persu
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires Saint-Luc and Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | | | - Josep Redon
- Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III (ISCIII), Madrid
- Incliva Research Institute, University of Valencia
- CIBEROBN, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Pantelis Sarafidis
- 1st Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Greece
| | - Roland Schmieder
- University Hospital Erlangen, Friedrich Alexander University Erlangen/Nürnberg, Germany
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Stella Stabouli
- First Department of Pediatrics, Aristotle University Thessaloniki, Hippokratio Hospital, Thessaloniki
| | - George Stergiou
- Hypertension Center STRIDE-7, School of Medicine, Third Department of Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester
- Manchester Royal Infirmary, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Christoph Wanner
- Division of Nephrology, Wuerzburg University Clinic, Wuerzburg, Germany
| | - Thomas Weber
- Cardiology Department, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Bryan Williams
- Institute of Cardiovascular Sciences, University College London (UCL); National Institute for Health Research UCL Hospitals Biomedical Research Centre, London, UK
| | - Zhen-Yu Zhang
- Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sverre E Kjeldsen
- Departments of Cardiology and Nephrology, Institute for Clinical Medicine, and Ullevål Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
53
|
Du M, Wang Y, Hu G, Wang D, Man Z, Chu C, Liao Y, Chen C, Ma Q, Yan Y, Jia H, Sun Y, Zhang X, Luo W, Chang M, Mu J. Association of high-normal albuminuria and vascular aging: Hanzhong adolescent hypertension study. J Clin Hypertens (Greenwich) 2023; 25:1096-1104. [PMID: 37966821 PMCID: PMC10710548 DOI: 10.1111/jch.14749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Normoalbuminuria has recently been associated with increased cardiovascular risk, and vascular aging is proposed as the early manifestation of cardiovascular disease. Here, the authors aimed to examine the association of high-normal albuminuria and vascular aging in a Chinese cohort. From our previously established cohort, 1942 participants with estimated glomerular filtration rate ≥60 mL/min/1.73 m2 or urinary albumin-creatinine ratio (UACR) <30 mg/g were enrolled. Brachial-ankle pulse wave velocity (baPWV) ≥1400 cm/s and/or carotid intima-media thickness (CIMT) ≥0.9 mm were used as indicators of vascular aging. Multivariate regression and receiving operating characteristic curve analysis were performed to examine the relationship between continuous and categorical UACR with vascular aging. We found an average UACR value of 8.08 (5.45-12.52) mg/g in this study. BaPWV and CIMT demonstrated positive correlations with lg-UACR (p < .05). High-normal albuminuria (10-29 mg/g) was significantly associated with the presence of vascular aging after adjusting for multiple cardiovascular confounders (OR = 1.540, 95% CI = 1.203-1.972, p = .001). In addition, a lg-UACR cutoff point of 0.918 lg(mg/g) (equal to UACR of 8.285 mg/g) was significantly associated with the presence of vascular aging and its components for all participants and those without hypertension or diabetes and without medication (p < .05). Briefly, high-normal albuminuria was significantly associated with vascular aging in this sample of Chinese adults. These findings implied the warning of elevated UACR even within normal range in clinical practice and the importance of UACR screening in normoalbuminuria for early detection and prevention of cardiovascular disease in otherwise healthy participants.
Collapse
Affiliation(s)
- Ming‐Fei Du
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Yang Wang
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Gui‐Lin Hu
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Dan Wang
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Zi‐Yue Man
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Chao Chu
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Yue‐Yuan Liao
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Chen Chen
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Qiong Ma
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Yu Yan
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Hao Jia
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Yue Sun
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Xi Zhang
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
| | - Wen‐Jing Luo
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ming‐Ke Chang
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jian‐Jun Mu
- Department of Cardiovascular MedicineFirst Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Key Laboratory of Molecular Cardiology of Shaanxi ProvinceXi'anChina
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University)Ministry of EducationXi'anChina
- International Joint Research Center for Cardiovascular Precision Medicine of Shaanxi ProvinceXi'anChina
| |
Collapse
|
54
|
Bianchini E, Guala A, Golemati S, Alastruey J, Climie RE, Dalakleidi K, Francesconi M, Fuchs D, Hartman Y, Malik AEF, Makūnaitė M, Nikita KS, Park C, Pugh CJA, Šatrauskienė A, Terentes-Printizios D, Teynor A, Thijssen D, Schmidt-Trucksäss A, Zupkauskienė J, Boutouyrie P, Bruno RM, Reesink KD. The Ultrasound Window Into Vascular Ageing: A Technology Review by the VascAgeNet COST Action. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2183-2213. [PMID: 37148467 DOI: 10.1002/jum.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Non-invasive ultrasound (US) imaging enables the assessment of the properties of superficial blood vessels. Various modes can be used for vascular characteristics analysis, ranging from radiofrequency (RF) data, Doppler- and standard B/M-mode imaging, to more recent ultra-high frequency and ultrafast techniques. The aim of the present work was to provide an overview of the current state-of-the-art non-invasive US technologies and corresponding vascular ageing characteristics from a technological perspective. Following an introduction about the basic concepts of the US technique, the characteristics considered in this review are clustered into: 1) vessel wall structure; 2) dynamic elastic properties, and 3) reactive vessel properties. The overview shows that ultrasound is a versatile, non-invasive, and safe imaging technique that can be adopted for obtaining information about function, structure, and reactivity in superficial arteries. The most suitable setting for a specific application must be selected according to spatial and temporal resolution requirements. The usefulness of standardization in the validation process and performance metric adoption emerges. Computer-based techniques should always be preferred to manual measures, as long as the algorithms and learning procedures are transparent and well described, and the performance leads to better results. Identification of a minimal clinically important difference is a crucial point for drawing conclusions regarding robustness of the techniques and for the translation into practice of any biomarker.
Collapse
Affiliation(s)
| | - Andrea Guala
- Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Spyretta Golemati
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Jordi Alastruey
- Department of Biomedical Engineering, King's College London, London, UK
| | - Rachel E Climie
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Université de Paris, Hopital Europeen Georges Pompidou - APHP, Paris, France
| | - Kalliopi Dalakleidi
- Biomedical Simulations and Imaging (BIOSIM) Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Martina Francesconi
- Institute of Clinical Physiology, CNR, Pisa, Italy
- University of Pisa, Pisa, Italy
| | - Dieter Fuchs
- Fujifilm VisualSonics, Amsterdam, The Netherlands
| | - Yvonne Hartman
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Afrah E F Malik
- CARIM School for Cardiovascular Diseases and Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Monika Makūnaitė
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Konstantina S Nikita
- Biomedical Simulations and Imaging (BIOSIM) Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Chloe Park
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Christopher J A Pugh
- Cardiff School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Agnė Šatrauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Centre of Cardiology and Angiology, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Dimitrios Terentes-Printizios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Teynor
- Faculty of Computer Science, Augsburg University of Applied Sciences, Augsburg, Germany
| | - Dick Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, University of Basel, Basel, Switzerland
| | - Jūratė Zupkauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Pierre Boutouyrie
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Université de Paris, Hopital Europeen Georges Pompidou - APHP, Paris, France
| | - Rosa Maria Bruno
- INSERM, U970, Paris Cardiovascular Research Center (PARCC), Université de Paris, Hopital Europeen Georges Pompidou - APHP, Paris, France
| | - Koen D Reesink
- CARIM School for Cardiovascular Diseases and Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
55
|
Stone K, Veerasingam D, Meyer ML, Heffernan KS, Higgins S, Maria Bruno R, Bueno CA, Döerr M, Schmidt-Trucksäss A, Terentes-Printzios D, Voicehovska J, Climie RE, Park C, Pucci G, Bahls M, Stoner L. Reimagining the Value of Brachial-Ankle Pulse Wave Velocity as a Biomarker of Cardiovascular Disease Risk-A Call to Action on Behalf of VascAgeNet. Hypertension 2023; 80:1980-1992. [PMID: 37470189 PMCID: PMC10510846 DOI: 10.1161/hypertensionaha.123.21314] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
This review critiques the literature supporting clinical assessment and management of cardiovascular disease and cardiovascular disease risk stratification with brachial-ankle pulse wave velocity (baPWV). First, we outline what baPWV actually measures-arterial stiffness of both large central elastic arteries and medium-sized muscular peripheral arteries of the lower limb. Second, we argue that baPWV is not a surrogate for carotid-femoral pulse wave velocity. While both measures are dependent on the properties of the aorta, baPWV is also strongly dependent on the muscular arteries of the lower extremities. Increased lower-extremity arterial stiffness amplifies and hastens wave reflections at the level of the aorta, widens pulse pressure, increases afterload, and reduces coronary perfusion. Third, we used an established evaluation framework to identify the value of baPWV as an independent vascular biomarker. There is sufficient evidence to support (1) proof of concept; (2) prospective validation; (3) incremental value; and (4) clinical utility. However, there is limited or no evidence to support (5) clinical outcomes; (6) cost-effectiveness; (8) methodological consensus; or (9) reference values. Fourth, we address future research requirements. The majority of the evaluation criteria, (1) proof of concept, (2) prospective validation, (3) incremental value, (4) clinical utility and (9) reference values, can be supported using existing cohort datasets, whereas the (5) clinical outcomes and (6) cost-effectiveness criteria require prospective investigation. The (8) methodological consensus criteria will require an expert consensus statement. Finally, we finish this review by providing an example of a future clinical practice model.
Collapse
Affiliation(s)
- Keeron Stone
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, Wales, United Kingdom (K.S.)
- National Cardiovascular Research Network, Wales (K.S.)
| | - Dave Veerasingam
- Cardiothoracic Surgery, Galway University Hospital, Ireland (D.V.)
| | - Michelle L Meyer
- Department of Emergency Medicine, University of North Carolina at Chapel Hill (M.L.M.)
| | | | - Simon Higgins
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill (S.H., L.S.)
| | - Rosa Maria Bruno
- Université Paris Cité, Inserm, PARCC, France (R.M.B.)
- Clinical Pharmacology Unit, AP-HP, Hôpital européen Georges Pompidou, Paris, France (R.M.B.)
| | - Celia Alvarez Bueno
- Health and Social Research Center, Universidad de Castilla La Mancha, Cuenca, Spain (C.A.B.)
- Universidad Politécnica y Artística del Paraguay, Asunción, Paraguay (C.A.B.)
| | - Marcus Döerr
- Department of Internal Medicine B, University Medicine Greifswald, Germany (M.D., M.B.)
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Germany (M.D., M.B.)
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise, and Health (A.S.-T.), University of Basel, Switzerland
- Department of Clinical Research, University Hospital Basel (A.S.-T.), University of Basel, Switzerland
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Athens Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Greece (D.T.-P.)
| | - Jūlija Voicehovska
- Internal Diseases Department, Riga Stradins University, Latvia (J.V.)
- Nephrology and Renal Replacement Clinics, Riga East University Hospital, Latvia (J.V.)
| | - Rachel E Climie
- Menzies Institute for Medical Research, University of Tasmania (R.E.C.)
| | - Chloe Park
- MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, London, United Kingdom (C.P.)
| | - Giacomo Pucci
- Department of Medicine, University of Perugia, Unit of Internal Medicine, "Santa Maria" Terni Hospital, Italy (G.P.)
| | - Martin Bahls
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Germany (M.D., M.B.)
| | - Lee Stoner
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill (S.H., L.S.)
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill (L.S.)
- Center for Health Promotion and Disease Prevention, University of North Carolina at Chapel Hill (L.S.)
| |
Collapse
|
56
|
Climie RE, Dillon HT, Horne-Okano Y, Wallace I, Avery S, Kingwell BA, La Gerche A, Howden EJ. Vascular Aging Is Accelerated in Hematological Cancer Survivors Who Undergo Allogeneic Stem Cell Transplant. Hypertension 2023; 80:1881-1889. [PMID: 37476996 DOI: 10.1161/hypertensionaha.123.21115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Survivors of allogeneic stem cell transplant (SCT) receive intensive cancer treatments that are associated with cardiovascular dysfunction. Markers of vascular age can indicate early signs of adverse (cardio)vascular changes; however, the impact of SCT on these makers is unknown. We aimed to determine the short (3 months) and longer-term (≥2 years) effect of SCT on markers of vascular age in hematologic cancer survivors compared with an age-matched noncancer control group. METHODS The short-term effects of SCT, markers of vascular age (aortic compliance, arterial elastance, and ventricular-vascular coupling) were assessed via cardiac magnetic resonance imaging (cardiac and aortic volumes) before and ≈3 months post-SCT in 13 short-term survivors and compared with 11 controls. The longer-term impact was assessed by comparing 14 long-term survivors (6.5 [2-20] years post-SCT) to the short-term survivors (post-SCT) and controls (n=16). RESULTS The groups were similar for age and body mass index. In the short-term survivors, no significant group-by-time interactions were observed for any markers of vascular aging from pretransplant to posttransplant (net difference for change in compliance between groups -0.07 [95% CI, -1.49 to 1.35]). For the time-course analysis, aortic compliance was significantly lower in both SCT groups (overall P=0.007) compared with controls, whereas ventricular-vascular coupling was higher in both survivor groups as was arterial elastance in long-term SCT survivors (ie, worse; P<0.01 for all). CONCLUSION This study provides evidence of an accelerated vascular aging phenotype in allogeneic SCT survivors and provides insight into the increased burden of cardiovascular disease among hematologic cancer survivors.
Collapse
Affiliation(s)
- Rachel E Climie
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia (R.E.C.)
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Australia (R.E.C., H.T.S., Y.H.-O., I.W., A.L.G., E.J.H.)
| | - Hayley T Dillon
- Institute of Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia (H.T.D.)
| | - Yuki Horne-Okano
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Australia (R.E.C., H.T.S., Y.H.-O., I.W., A.L.G., E.J.H.)
| | - Imogen Wallace
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Australia (R.E.C., H.T.S., Y.H.-O., I.W., A.L.G., E.J.H.)
| | - Sharon Avery
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, Australia (S.A.)
| | | | - Andre La Gerche
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Australia (R.E.C., H.T.S., Y.H.-O., I.W., A.L.G., E.J.H.)
- Cardiology Department, St Vincent's Hospital Melbourne, Fitzroy, Australia (A.L.G.)
| | - Erin J Howden
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Australia (R.E.C., H.T.S., Y.H.-O., I.W., A.L.G., E.J.H.)
| |
Collapse
|
57
|
Maier JA, Andrés V, Castiglioni S, Giudici A, Lau ES, Nemcsik J, Seta F, Zaninotto P, Catalano M, Hamburg NM. Aging and Vascular Disease: A Multidisciplinary Overview. J Clin Med 2023; 12:5512. [PMID: 37685580 PMCID: PMC10488447 DOI: 10.3390/jcm12175512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Vascular aging, i.e., the deterioration of the structure and function of the arteries over the life course, predicts cardiovascular events and mortality. Vascular degeneration can be recognized before becoming clinically symptomatic; therefore, its assessment allows the early identification of individuals at risk. This opens the possibility of minimizing disease progression. To review these issues, a search was completed using PubMed, MEDLINE, and Google Scholar from 2000 to date. As a network of clinicians and scientists involved in vascular medicine, we here describe the structural and functional age-dependent alterations of the arteries, the clinical tools for an early diagnosis of vascular aging, and the cellular and molecular events implicated. It emerges that more studies are necessary to identify the best strategy to quantify vascular aging, and to design proper physical activity programs, nutritional and pharmacological strategies, as well as social interventions to prevent, delay, and eventually revert the disease.
Collapse
Affiliation(s)
- Jeanette A. Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy;
- VAS-European Independent foundation in Angiology/Vascular Medicine, 20157 Milano, Italy; (M.C.); (N.M.H.)
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy;
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands;
- GROW School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Emily S. Lau
- Division of Cardiology Massachusetts General Hospital, Boston, MA 02114, USA;
| | - János Nemcsik
- Health Service of Zugló (ZESZ), Department of Family Medicine, Semmelweis University, Stáhly u. 7-9, 1085 Budapest, Hungary;
| | - Francesca Seta
- Vascular Biology Section, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Paola Zaninotto
- UCL Research Department of Epidemiology & Public Health, University College London, London WC1E 6BT, UK;
| | - Mariella Catalano
- VAS-European Independent foundation in Angiology/Vascular Medicine, 20157 Milano, Italy; (M.C.); (N.M.H.)
- Inter-University Research Center on Vascular Disease, Università di Milano, 20157 Milano, Italy
| | - Naomi M. Hamburg
- VAS-European Independent foundation in Angiology/Vascular Medicine, 20157 Milano, Italy; (M.C.); (N.M.H.)
- Vascular Biology Section, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
58
|
Bianchini E, Lønnebakken MT, Wohlfahrt P, Piskin S, Terentes‐Printzios D, Alastruey J, Guala A. Magnetic Resonance Imaging and Computed Tomography for the Noninvasive Assessment of Arterial Aging: A Review by the VascAgeNet COST Action. J Am Heart Assoc 2023; 12:e027414. [PMID: 37183857 PMCID: PMC10227315 DOI: 10.1161/jaha.122.027414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Magnetic resonance imaging and computed tomography allow the characterization of arterial state and function with high confidence and thus play a key role in the understanding of arterial aging and its translation into the clinic. Decades of research into the development of innovative imaging sequences and image analysis techniques have led to the identification of a large number of potential biomarkers, some bringing improvement in basic science, others in clinical practice. Nonetheless, the complexity of some of these biomarkers and the image analysis techniques required for their computation hamper their widespread use. In this narrative review, current biomarkers related to aging of the aorta, their founding principles, the sequence, and postprocessing required, and their predictive values for cardiovascular events are summarized. For each biomarker a summary of reference values and reproducibility studies and limitations is provided. The present review, developed in the COST Action VascAgeNet, aims to guide clinicians and technical researchers in the critical understanding of the possibilities offered by these advanced imaging modalities for studying the state and function of the aorta, and their possible clinically relevant relationships with aging.
Collapse
Affiliation(s)
| | - Mai Tone Lønnebakken
- Department of Clinical ScienceUniversity of BergenBergenNorway
- Department of Heart DiseaseHaukeland University HospitalBergenNorway
| | - Peter Wohlfahrt
- Department of Preventive CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
- Centre for Cardiovascular PreventionCharles University Medical School I and Thomayer HospitalPragueCzech Republic
- Department of Medicine IICharles University in Prague, First Faculty of MedicinePragueCzech Republic
| | - Senol Piskin
- Department of Mechanical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
- Modeling, Simulation and Extended Reality LaboratoryIstinye UniversityIstanbulTurkey
| | - Dimitrios Terentes‐Printzios
- First Department of Cardiology, Hippokration Hospital, Athens Medical SchoolNational and Kapodistrian University of AthensGreece
| | - Jordi Alastruey
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - Andrea Guala
- Vall d’Hebron Institut de Recerca (VHIR)BarcelonaSpain
- CIBER‐CV, Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
59
|
Baba M, Maris M, Jianu D, Luca CT, Stoian D, Mozos I. The Impact of the Blood Lipids Levels on Arterial Stiffness. J Cardiovasc Dev Dis 2023; 10:127. [PMID: 36975891 PMCID: PMC10056627 DOI: 10.3390/jcdd10030127] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Arterial stiffness is a recognized predictor of cardiovascular morbidity and death. It is an early indicator of arteriosclerosis and is influenced by numerous risk factors and biological processes. The lipid metabolism is crucial and standard blood lipids, non-conventional lipid markers and lipid ratios are associated with arterial stiffness. The objective of this review was to determine which lipid metabolism marker has a greater correlation with vascular aging and arterial stiffness. Triglycerides (TG) are the standard blood lipids that have the strongest associations with arterial stiffness, and are often linked to the early stages of cardiovascular diseases, particularly in patients with low LDL-C levels. Studies often show that lipid ratios perform better overall than any of the individual variables used alone. The relation between arterial stiffness and TG/HDL-C has the strongest evidence. It is the lipid profile of atherogenic dyslipidemia that is found in several chronic cardio-metabolic disorders, and is considered one of the main causes of lipid-dependent residual risk, regardless of LDL-C concentration. Recently, the use of alternative lipid parameters has also been increasing. Both non-HDL and ApoB are very well correlated with arterial stiffness. Remnant cholesterol is also a promising alternative lipid parameter. The findings of this review suggest that the main focus should be on blood lipids and arterial stiffness, especially in individuals with cardio-metabolic disorders and residual cardiovascular risk.
Collapse
Affiliation(s)
- Mirela Baba
- Center for Translational Research and Systems Medicine, “Victor Babeş” University of Medicine and Pharmacy, 300173 Timisoara, Romania
| | - Mihaela Maris
- Center for Translational Research and Systems Medicine, “Victor Babeş” University of Medicine and Pharmacy, 300173 Timisoara, Romania
- Department of Functional Sciences-Pathophysiology, “Victor Babeş” University of Medicine and Pharmacy, 300173 Timisoara, Romania
| | - Daniela Jianu
- 1st Department of Internal Medicine, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Internal Medicine, Military Hospital, 300080 Timisoara, Romania
| | - Constantin Tudor Luca
- Department of Cardiology, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Cardiology, Institute of Cardiovascular Diseases, 300310 Timisoara, Romania
| | - Dana Stoian
- 2nd Department of Internal Medicine, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Center of Molecular Research in Nephrology and Vascular Disease, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioana Mozos
- Center for Translational Research and Systems Medicine, “Victor Babeş” University of Medicine and Pharmacy, 300173 Timisoara, Romania
- Department of Functional Sciences-Pathophysiology, “Victor Babeş” University of Medicine and Pharmacy, 300173 Timisoara, Romania
| |
Collapse
|