51
|
Levis M, Dusi V, Magnano M, Cerrato M, Gallio E, Depaoli A, Ferraris F, De Ferrari GM, Ricardi U, Anselmino M. A case report of long-term successful stereotactic arrhythmia radioablation in a cardiac contractility modulation device carrier with giant left atrium, including a detailed dosimetric analysis. Front Cardiovasc Med 2022; 9:934686. [PMID: 36072883 PMCID: PMC9441661 DOI: 10.3389/fcvm.2022.934686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 12/25/2022] Open
Abstract
Introduction Catheter ablation (CA) is the current standard of care for patients suffering drug-refractory monomorphic ventricular tachycardias (MMVTs). Yet, despite significant technological improvements, recurrences remain common, leading to increased morbidity and mortality. Stereotactic arrhythmia radioablation (STAR) is increasingly being adopted to overcome the limitations of conventional CA, but its safety and efficacy are still under evaluation. Case presentation We hereby present the case of a 73-year-old patient implanted with a mitral valve prosthesis, a cardiac resynchronization therapy-defibrillator, and a cardiac contractility modulation device, who was successfully treated with STAR for recurrent drug and CA-resistant MMVT in the setting of advanced heart failure and a giant left atrium. We report a 2-year follow-up and a detailed dosimetric analysis. Conclusion Our case report supports the early as well as the long-term efficacy of 25 Gy single-session STAR. Despite the concomitant severe heart failure, with an overall heart minus planned target volume mean dosage below 5 Gy, no major detrimental cardiac side effects were detected. To the best of our knowledge, our dosimetric analysis is the most accurate reported so far in the setting of STAR, particularly for what concerns cardiac substructures and coronary arteries. A shared dosimetric planning among centers performing STAR will be crucial in the next future to fully disclose its safety profile.
Collapse
Affiliation(s)
- Mario Levis
- Department of Oncology, University of Turin, Turin, Italy
| | - Veronica Dusi
- Division of Cardiology, Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| | - Massimo Magnano
- Division of Cardiology, Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| | - Marzia Cerrato
- Department of Oncology, University of Turin, Turin, Italy
| | - Elena Gallio
- Medical Physics Unit, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Alessandro Depaoli
- Department of Radiology, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Federico Ferraris
- Division of Cardiology, Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
- *Correspondence: Gaetano Maria De Ferrari
| | | | - Matteo Anselmino
- Division of Cardiology, Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| |
Collapse
|
52
|
Herrera Siklody C, Pruvot E, Pascale P, Le Bloa M, Teres C, Domenichini G, Porretta A, Bourhis J, Schiappacasse L. Refractory ventricular tachycardia treated by a second session of stereotactic arrhythmia radioablation. Clin Transl Radiat Oncol 2022; 37:89-93. [PMID: 36118122 PMCID: PMC9478870 DOI: 10.1016/j.ctro.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/05/2022] Open
Abstract
Arrhythmia radioablation (STAR) is effective in refractory ventricular tachycardia. We report the first cases of successful re-irradiation of arrhythmogenic substrate. No radiation toxicity was observed after the second STAR. Caution is advised as data on early and late toxicities remain scarce.
Purpose Stereotactic arrhythmia radioablation (STAR) is an effective treatment for refractory ventricular tachycardia (VT), but recurrences after STAR were recently published. Herein, we report two cases of successful re-irradiation of the arrhythmogenic substrate. Cases We present two cases of re-irradiation after recurrence of a previously treated VT with radioablation at a dose of 20 Gy. The VT exit was localized on the border zone of the irradiated volume, which responded positively to re-irradiation at follow-up. Conclusion These two cases show the technical feasibility of re-irradiation to control recurrent VT after a first STAR.
Collapse
|
53
|
Piccolo C, Vigorito S, Rondi E, Piperno G, Ferrari A, Pepa M, Riva G, Durante S, Conte E, Catto V, Andreini D, Carbucicchio C, Jereczek-Fossa BA, Pompilio G, Orecchia R, Cattani F. Phantom study of stereotactic radioablation for ventricular tachycardia (STRA-MI-VT) using Cyberknife Synchrony Respiratory Tracking System with a single fiducial marker. Phys Med 2022; 100:135-141. [PMID: 35816942 DOI: 10.1016/j.ejmp.2022.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Within the STRA-MI-VT phase Ib/II trial (NCT04066517), the aim of this phantom study was to explore the feasibility of Cyberknife treatments on cardiac lesions by tracking as a single marker the lead tip of an implantable cardioverter defibrillator. The residual displacement of the lesion during the tracking was studied, planning margins were found and the dosimetric accuracy of the treatment was checked. MATERIALS AND METHODS A lead was inserted into a phantom (EasyCube phantom, Sun Nuclear Co, USA) and then placed on the translating ExacTrac Gating System (BrainLAB AG, Germany). The phantom was rotated, a virtual lesion was identified and its displacement during the tracking was studied. Two plans were compared, calculated on the unrotated volume and on the envelope of the unrotated and the rotated volumes. The plans were delivered using the Cyberknife System (Accuray Inc, USA) and their dosimetric accuracy verified by gamma analysis with gafchromic films. RESULTS The residual margin increases enhancing the distance between the lead and the lesion. It is 4 mm for distance 0 cm and 5 mm for distance 5 cm. The coverage is reduced by 3.8% (interquartile range 2.5%-4.7%) when the dose is prescribed on the unrotated volume. All treatment plans are accurate and 3% 3 mm gamma analysis results are greater than 94%. CONCLUSIONS Results showed that tracking with a single marker is feasible considering adequate residual planning margins. The volumes could be further reduced by using additional markers, for example by placing them on the patient's skin.
Collapse
Affiliation(s)
- C Piccolo
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy.
| | - S Vigorito
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - E Rondi
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - G Piperno
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - A Ferrari
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - M Pepa
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - G Riva
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - S Durante
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - E Conte
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - V Catto
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
| | - D Andreini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| | - C Carbucicchio
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - B A Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - G Pompilio
- Scientific Directorate, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - R Orecchia
- Scientific Directorate, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - F Cattani
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
54
|
Shangguan W, Xu G, Wang X, Zhang N, Liu X, Li G, Tse G, Liu T. Stereotactic Radiotherapy: An Alternative Option for Refractory Ventricular Tachycardia to Drug and Ablation Therapy. J Clin Med 2022; 11:jcm11123549. [PMID: 35743614 PMCID: PMC9225049 DOI: 10.3390/jcm11123549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Refractory ventricular tachycardia (VT) often occurs in the context of organic heart disease. It is associated with significantly high mortality and morbidity rates. Antiarrhythmic drugs and catheter ablation represent the two main treatment options for refractory VT, but their use can be associated with inadequate therapeutic responses and procedure-related complications. Stereotactic body radiotherapy (SBRT) is extensively applied in the precision treatment of solid tumors, with excellent therapeutic responses. Recently, this highly precise technology has been applied for radioablation of VT, and its early results demonstrate a favorable safety profile. This review presents the potential value of SBRT in refractory VT.
Collapse
Affiliation(s)
- Wenfeng Shangguan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| | - Gang Xu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| | - Xin Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| | - Nan Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| | - Xingpeng Liu
- Department of Heart Center, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd., Chaoyang District, Beijing 100020, China;
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
- Kent and Medway Medical School, Canterbury CT2 7FS, UK
- Correspondence: (G.T.); (T.L.)
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; (W.S.); (G.X.); (X.W.); (N.Z.); (G.L.)
- Correspondence: (G.T.); (T.L.)
| |
Collapse
|
55
|
Kluge A, Ehrbar S, Grehn M, Fleckenstein J, Baus WW, Siebert FA, Schweikard A, Andratschke N, Mayinger MC, Boda-Heggemann J, Buergy D, Celik E, Krug D, Kovacs B, Saguner AM, Rudic B, Bergengruen P, Boldt LH, Stauber A, Zaman A, Bonnemeier H, Dunst J, Budach V, Blanck O, Mehrhof F. Treatment Planning for Cardiac Radioablation: Multicenter Multiplatform Benchmarking for the XXX Trial. Int J Radiat Oncol Biol Phys 2022; 114:360-372. [PMID: 35716847 DOI: 10.1016/j.ijrobp.2022.06.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/15/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Cardiac radioablation is a novel treatment option for patients with refractory ventricular tachycardia (VT) unsuitable for catheter ablation. The quality of treatment planning depends on dose specifications, platform capabilities, and experience of the treating staff. To harmonize the treatment planning, benchmarking of this process is necessary for multicenter clinical studies such as the XXX trial. METHODS AND MATERIALS Planning computed tomography data and consensus structures from three patients were sent to five academic centers for independent plan development using a variety of platforms and techniques with the XXX study protocol serving as guideline. Three-dimensional dose distributions and treatment plan details were collected and analyzed. In addition, an objective relative plan quality ranking system for VT treatments was established. RESULTS For each case, three coplanar volumetric modulated arc (VMAT) plans for C-arm linear accelerators (LINAC) and three non-coplanar treatment plans for robotic arm LINAC were generated. All plans were suitable for clinical applications with minor deviations from study guidelines in most centers. Eleven of 18 treatment plans showed maximal one minor deviation each for target and cardiac substructures. However, dose-volume histograms showed substantial differences: in one case, the PTV≥30Gy ranged from 0.0% to 79.9% and the RIVA V14Gy ranged from 4.0% to 45.4%. Overall, the VMAT plans had steeper dose gradients in the high dose region, while the plans for the robotic arm LINAC had smaller low dose regions. Thereby, VMAT plans required only about half as many monitor units, resulting in shorter delivery times, possibly an important factor in treatment outcome. CONCLUSIONS Cardiac radioablation is feasible with robotic arm and C-arm LINAC systems with comparable plan quality. Although cross-center training and best practice guidelines have been provided, further recommendations, especially for cardiac substructures, and ranking of dose guidelines will be helpful to optimize cardiac radioablation outcomes.
Collapse
Affiliation(s)
- Anne Kluge
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Ehrbar
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Melanie Grehn
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jens Fleckenstein
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang W Baus
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frank-Andre Siebert
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Achim Schweikard
- University of Lübeck, Institute for Robotic and Cognitive Systems, Lübeck, Germany
| | - Nicolaus Andratschke
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Michael C Mayinger
- Klinik für Radio-Onkologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Buergy
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eren Celik
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Krug
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Boldizsar Kovacs
- Universitäres Herzzentrum, Klinik für Kardiologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Ardan M Saguner
- Universitäres Herzzentrum, Klinik für Kardiologie, UniversitätsSpital Zürich, University of Zurich, Zürich, CH
| | - Boris Rudic
- Medizinische Klinik, Universitätsmedizin Mannheim and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Paula Bergengruen
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif-Hendrik Boldt
- Med. Klinik m.S. Kardiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annina Stauber
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Adrian Zaman
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Hendrik Bonnemeier
- Klinik für Innere Medizin III, Abteilung für Elektrophysiologie und Rhythmologie, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Volker Budach
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Felix Mehrhof
- Klinik für Radioonkologie und Strahlentherapie, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
56
|
Dvorak P, Knybel L, Dudas D, Benyskova P, Cvek J. Stereotactic Ablative Radiotherapy of Ventricular Tachycardia Using Tracking: Optimized Target Definition Workflow. Front Cardiovasc Med 2022; 9:870127. [PMID: 35586650 PMCID: PMC9108236 DOI: 10.3389/fcvm.2022.870127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose Stereotactic arrhythmia radioablation (STAR) has been suggested as a promising therapeutic alternative in cases of failed catheter ablation for recurrent ventricular tachycardias in patients with structural heart disease. Cyberknife® robotic radiosurgery system utilizing target tracking technology is one of the available STAR treatment platforms. Tracking using implantable cardioverter-defibrillator lead tip as target surrogate marker is affected by the deformation of marker–target geometry. A simple method to account for the deformation in the target definition process is proposed. Methods Radiotherapy planning CT series include scans at expiration and inspiration breath hold, and three free-breathing scans. All secondary series are triple registered to the primary CT: 6D/spine + 3D translation/marker + 3D translation/target surrogate—a heterogeneous structure around the left main coronary artery. The 3D translation difference between the last two registrations reflects the deformation between the marker and the target (surrogate) for the respective respiratory phase. Maximum translation differences in each direction form an anisotropic geometry deformation margin (GDM) to expand the initial single-phase clinical target volume (CTV) to create an internal target volume (ITV) in the dynamic coordinates of the marker. Alternative GDM-based target volumes were created for seven recent STAR patients and compared to the original treated planning target volumes (PTVs) as well as to analogical volumes created using deformable image registration (DIR) by MIM® and Velocity® software. Intra- and inter-observer variabilities of the triple registration process were tested as components of the final ITV to PTV margin. Results A margin of 2 mm has been found to cover the image registration observer variability. GDM-based target volumes are larger and shifted toward the inspiration phase relative to the original clinical volumes based on a 3-mm isotropic margin without deformation consideration. GDM-based targets are similar (mean DICE similarity coefficient range 0.80–0.87) to their equivalents based on the DIR of the primary target volume delineated by dedicated software. Conclusion The proposed GDM method is a simple way to account for marker–target deformation-related uncertainty for tracking with Cyberknife® and better control of the risk of target underdose. The principle applies to general radiotherapy as well.
Collapse
Affiliation(s)
- Pavel Dvorak
- Department of Oncology, University Hospital Ostrava, Ostrava, Czechia
- Department of Radiation Protection, General University Hospital Prague, Praha, Czechia
| | - Lukas Knybel
- Department of Oncology, University Hospital Ostrava, Ostrava, Czechia
- *Correspondence: Lukas Knybel
| | - Denis Dudas
- Department of Oncology, University Hospital Motol, Praha, Czechia
| | - Pavla Benyskova
- Department of Oncology, University Hospital Ostrava, Ostrava, Czechia
| | - Jakub Cvek
- Department of Oncology, University Hospital Ostrava, Ostrava, Czechia
- Faculty of Medicine, University Hospital Ostrava, Ostrava, Czechia
| |
Collapse
|
57
|
Wight J, Bigham T, Schwartz A, Zahid AT, Bhatia N, Kiani S, Shah A, Westerman S, Higgins K, Lloyd MS. Long Term Follow-Up of Stereotactic Body Radiation Therapy for Refractory Ventricular Tachycardia in Advanced Heart Failure Patients. Front Cardiovasc Med 2022; 9:849113. [PMID: 35571173 PMCID: PMC9098944 DOI: 10.3389/fcvm.2022.849113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/06/2022] [Indexed: 12/31/2022] Open
Abstract
Background Initial studies of stereotactic body radiation therapy (SBRT) for refractory ventricular tachycardia (VT) have demonstrated impressive efficacy. Follow-up analyses have found mixed results and the role of SBRT for refractory VT remains unclear. We performed palliative, cardiac radio ablation in patients with ventricular tachycardia refractory to ablation and medical management. Methods Arrhythmogenic regions were targeted by combining computed tomography imaging with electrophysiologic mapping with collaboration from a radiation oncologist, electrophysiologist and cardiac imaging specialist. Patients were treated with a single fraction 25 Gy. Total durations of VT, the quantity of antitachycardia pacing (ATP) and shocks before and after treatment as recorded by implantable cardioverter-defibrillators (ICDs) were analyzed. Follow-up extended until most recent device interrogation unless transplant, death or repeat ablation occurred sooner. Results Fourteen patients (age 50–78, four females) were treated and had an average of two prior ablations. Nine had ACC/AHA Stage D heart failure and three had left ventricular assist devices (LVAD). Two patients died shortly after SBRT, one received a prompt heart transplant and another had significant VT durations in the following months that were inaccurately recorded by their device. Ten of the 14 patients remained with adequate data post SBRT for analysis with an average follow-up duration of 216 days. Seven of those 10 patients had a decrease in VT post SBRT. Comparing the 90 days before treatment to cumulative follow-up, patients had a 59% reduction in VT, 39% reduction in ATP and a 60% reduction in shocks. Four patients received repeat ablation following SBRT. Pneumonitis was the only complication, occurring in four of the fourteen patients. Conclusion SBRT may have value in advanced heart failure patients with refractory VT acutely but the utility over long-term follow-up appears modest. Prospective randomized data is needed to better clarify the role of SBRT in managing refractory VT.
Collapse
Affiliation(s)
- John Wight
- School of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: John Wight,
| | - Thomas Bigham
- School of Medicine, Emory University, Atlanta, GA, United States
| | - Arielle Schwartz
- School of Medicine, Emory University, Atlanta, GA, United States
| | | | - Neal Bhatia
- Section of Cardiac Electrophysiology, Emory University, Atlanta, GA, United States
| | - Soroosh Kiani
- Section of Cardiac Electrophysiology, Emory University, Atlanta, GA, United States
| | - Anand Shah
- Section of Cardiac Electrophysiology, Emory University, Atlanta, GA, United States
| | - Stacy Westerman
- Section of Cardiac Electrophysiology, Emory University, Atlanta, GA, United States
| | - Kristin Higgins
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States
| | - Michael S. Lloyd
- Section of Cardiac Electrophysiology, Emory University, Atlanta, GA, United States
| |
Collapse
|
58
|
Wiles BM, Li AC, Waight MC, Saba MM. Contemporary Management of Complex Ventricular Arrhythmias. Arrhythm Electrophysiol Rev 2022; 11:e04. [PMID: 35734144 PMCID: PMC9194914 DOI: 10.15420/aer.2021.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/06/2022] [Indexed: 12/02/2022] Open
Abstract
Percutaneous catheter ablation is an effective and safe therapy that can eliminate ventricular tachycardia, reducing the risks of both recurrent arrhythmia and shock therapies from a defibrillator. Successful ablation requires accurate identification of arrhythmic substrate and the effective delivery of energy to the targeted tissue. A thorough pre-procedural assessment is needed before considered 3D electroanatomical mapping can be performed. In contemporary practice, this must combine traditional electrophysiological techniques, such as activation and entrainment mapping, with more novel physiological mapping techniques for which there is an ever-increasing evidence base. Novel techniques to maximise energy delivery to the tissue must also be considered and balanced against their associated risks of complication. This review provides a comprehensive appraisal of contemporary practice and the evidence base that supports recent developments in mapping and ablation, while also considering potential future developments in the field.
Collapse
Affiliation(s)
- Benedict M Wiles
- Advanced Ventricular Arrhythmia Training and Research (AVATAR) Program, St George's University Hospitals NHS Foundation Trust, London, UK
- Cardiology Clinical Academic Group, St George's University of London, London, UK
| | - Anthony C Li
- Advanced Ventricular Arrhythmia Training and Research (AVATAR) Program, St George's University Hospitals NHS Foundation Trust, London, UK
- Cardiology Clinical Academic Group, St George's University of London, London, UK
| | - Michael C Waight
- Advanced Ventricular Arrhythmia Training and Research (AVATAR) Program, St George's University Hospitals NHS Foundation Trust, London, UK
- Cardiology Clinical Academic Group, St George's University of London, London, UK
| | - Magdi M Saba
- Advanced Ventricular Arrhythmia Training and Research (AVATAR) Program, St George's University Hospitals NHS Foundation Trust, London, UK
- Cardiology Clinical Academic Group, St George's University of London, London, UK
| |
Collapse
|
59
|
Haskova J, Peichl P, Šramko M, Cvek J, Knybel L, Jiravský O, Neuwirth R, Kautzner J. Case Report: Repeated Stereotactic Radiotherapy of Recurrent Ventricular Tachycardia: Reasons, Feasibility, and Safety. Front Cardiovasc Med 2022; 9:845382. [PMID: 35425817 PMCID: PMC9004321 DOI: 10.3389/fcvm.2022.845382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 11/14/2022] Open
Abstract
Stereotactic body radiotherapy (SBRT) has been reported as an attractive option for cases of failed catheter ablation of ventricular tachycardia (VT) in structural heart disease. However, even this strategy can fail for various reasons. For the first time, this case series describes three re-do cases of SBRT which were indicated for three different reasons. The purpose in the first case was the inaccuracy of the determination of the treatment volume by indirect comparison of the electroanatomical map and CT scan. A newly developed strategy of co-registration of both images allowed precise targeting of the substrate. In this case, the second treatment volume overlapped by 60% with the first one. The second reason for the re-do of SBRT was an unusual character of the substrate–large cardiac fibroma associated with different morphologies of VT from two locations around the tumor. The planned treatment volumes did not overlap. The third reason for repeated SBRT was the large intramural substrate in the setting of advanced heart failure. The first treatment volume targeted arrhythmias originating in the basal inferoseptal region, while the second SBRT was focused on adjacent basal septum without significant overlapping. Our observations suggested that SBRT for VT could be safely repeated in case of later arrhythmia recurrences (i.e., after at least 6 weeks). No acute toxicity was observed and in two cases, no side effects were observed during 32 and 22 months, respectively. To avoid re-do SBRT due to inaccurate targeting, the precise and reproducible strategy of substrate identification and co-registration with CT image should be used.
Collapse
Affiliation(s)
- Jana Haskova
- Department of Cardiology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
- *Correspondence: Jana Haskova
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| | - Marek Šramko
- Department of Cardiology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| | - Jakub Cvek
- Department of Oncology, University Hospital Ostrava, Ostrava, Czechia
- Department of Oncology, Ostrava University Medical School, Ostrava, Czechia
| | - Lukáš Knybel
- Department of Oncology, University Hospital Ostrava, Ostrava, Czechia
| | - Otakar Jiravský
- Department of Cardiology, Podlesí Hospital Trinec, Trinec, Czechia
| | - Radek Neuwirth
- Department of Cardiology, Podlesí Hospital Trinec, Trinec, Czechia
- Department of Cardiology, Masaryk University Medical School, Brno, Czechia
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czechia
| |
Collapse
|
60
|
Hayase J, Chin R, Cao M, Hu P, Shivkumar K, Bradfield JS. Non-invasive Stereotactic Body Radiation Therapy for Refractory Ventricular Arrhythmias: Venturing into the Unknown. J Innov Card Rhythm Manag 2022; 13:4894-4899. [PMID: 35251759 PMCID: PMC8887931 DOI: 10.19102/icrm.2022.130202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/02/2021] [Indexed: 11/12/2022] Open
Abstract
Stereotactic body radiation therapy (SBRT) is a promising new method for non-invasive management of life-threatening ventricular arrhythmias. Numerous case reports and case series have provided encouraging short-term results suggesting good efficacy and safety, but randomized data and long-term outcomes are not yet available. The primary hypothesis as to the mechanism of action for SBRT relates to the development of cardiac fibrosis in arrhythmogenic myocardial substrate; however, limited animal model data offer conflicting insights into this theory. The use of SBRT for patients with refractory ventricular arrhythmias is rapidly increasing, but ongoing translational science work and randomized clinical trials will be critical to address many outstanding questions regarding this novel therapy.
Collapse
Affiliation(s)
- Justin Hayase
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Robert Chin
- Radiation Oncology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Minsong Cao
- Radiation Oncology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Peng Hu
- Department of Radiological Services, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Jason S Bradfield
- UCLA Cardiac Arrhythmia Center, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| |
Collapse
|
61
|
Bellec J, Rigal L, Hervouin A, Martins R, Lederlin M, Jaksic N, Castelli J, Benali K, de Crevoisier R, Simon A. Cardiac radioablation for ventricular tachycardia: Which approach for incorporating cardiorespiratory motions into the planning target volume? Phys Med 2022; 95:16-24. [DOI: 10.1016/j.ejmp.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 10/19/2022] Open
|
62
|
Verification of rebuild-up effect on superficial cardiac lesion of ventricular tachycardia using 3-D printed phantom in volumetric-modulated arc therapy planning. Sci Rep 2022; 12:2270. [PMID: 35145129 PMCID: PMC8831566 DOI: 10.1038/s41598-022-05149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of the study was to evaluate dose distributions on the superficial cardiac lesion surrounded by low-density lungs. Volumetric modulated arc therapy (VMAT) technique was applied to optimize the dose distribution using the anisotropic analytic algorithm (AAA) and Acuros XB algorithm (AXB) using the 3-D printed cardiac phantom. We used four full and half arcs with 6-MV and 15-MV photons to investigate the rebuild-up effect near the planning target volume (PTV). Depending on the calculation algorithm (AAA vs. AXB) for full arcs plans, V95 of PTV differed by 27% for 6-MV and 29% for 15-MV, and D95 for 6-MV and 15-MV shows 24% and 30%, respectively. The maximum doses in the AXB plans on PTV were 5.1% higher than those in AAA plans at 6-MV, and 3.8% higher at 15-MV. In addition, half arcs treatment plans showed a very similar tendency with full arcs plans. Film dosimetry showed significant differences from the planned results in the AAA plans. Particularly, the dose mismatch occurred between the cardiac PTV and the left lung interface. In the case of 6-MV plans calculated by AAA, the maximum dose increased from 4.1 to 7.7% in the PTV. Furthermore, it showed that 50% of the width of dose profiles was reduced by 1.3 cm in the 6-MV plan. Conversely, in the case of the plans using the AXB algorithm, the maximum dose increased by 2.0–5.0%. In contrast to the AAA algorithm, the dose patterns at the interface demonstrated a good agreement with the plans. Dose fluctuation on the interface between superficial cardiac lesions and low-density lungs can lead to an error in the estimation of accurate dose delivery for the case of VT SBRT.
Collapse
|
63
|
Hayase J, Chin R, Kwon M, Cao M, Hu P, Ajijola O, Boyle N, Shivkumar K, Bradfield JS. Surgical ablation after stereotactic body radiation therapy for ventricular arrhythmias. HeartRhythm Case Rep 2022; 8:73-76. [PMID: 35242541 PMCID: PMC8858747 DOI: 10.1016/j.hrcr.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | | | | | | | | | | | | | | | - Jason S. Bradfield
- Address reprint requests and correspondence: Dr Jason S. Bradfield, UCLA Cardiac Arrhythmia Center, 100 Medical Plaza, Suite 660, Los Angeles, CA.
| |
Collapse
|
64
|
Futyma P, Gupta D. Open surgery for ventricular tachycardia following failed stereotactic radiation treatment: A bailout when a parachute hasn't helped. HeartRhythm Case Rep 2022; 8:77-78. [PMID: 35242542 PMCID: PMC8858732 DOI: 10.1016/j.hrcr.2021.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Piotr Futyma
- Medical College, University of Rzeszów and St. Joseph’s Heart Rhythm Center, Rzeszów, Poland
| | - Dhiraj Gupta
- Department of Electrophysiology, Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| |
Collapse
|
65
|
Li H, Dong L, Bert C, Chang J, Flampouri S, Jee KW, Lin L, Moyers M, Mori S, Rottmann J, Tryggestad E, Vedam S. Report of AAPM Task Group 290: Respiratory motion management for particle therapy. Med Phys 2022; 49:e50-e81. [PMID: 35066871 PMCID: PMC9306777 DOI: 10.1002/mp.15470] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Dose uncertainty induced by respiratory motion remains a major concern for treating thoracic and abdominal lesions using particle beams. This Task Group report reviews the impact of tumor motion and dosimetric considerations in particle radiotherapy, current motion‐management techniques, and limitations for different particle‐beam delivery modes (i.e., passive scattering, uniform scanning, and pencil‐beam scanning). Furthermore, the report provides guidance and risk analysis for quality assurance of the motion‐management procedures to ensure consistency and accuracy, and discusses future development and emerging motion‐management strategies. This report supplements previously published AAPM report TG76, and considers aspects of motion management that are crucial to the accurate and safe delivery of particle‐beam therapy. To that end, this report produces general recommendations for commissioning and facility‐specific dosimetric characterization, motion assessment, treatment planning, active and passive motion‐management techniques, image guidance and related decision‐making, monitoring throughout therapy, and recommendations for vendors. Key among these recommendations are that: (1) facilities should perform thorough planning studies (using retrospective data) and develop standard operating procedures that address all aspects of therapy for any treatment site involving respiratory motion; (2) a risk‐based methodology should be adopted for quality management and ongoing process improvement.
Collapse
Affiliation(s)
- Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph Bert
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Joe Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stella Flampouri
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Kyung-Wook Jee
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Liyong Lin
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Michael Moyers
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Shinichiro Mori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Joerg Rottmann
- Center for Proton Therapy, Proton Therapy Singapore, Proton Therapy Pte Ltd, Singapore
| | - Erik Tryggestad
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Sastry Vedam
- Department of Radiation Oncology, University of Maryland, Baltimore, USA
| |
Collapse
|
66
|
Peichl P, Rafaj A, Kautzner J. Management of ventricular arrhythmias in heart failure: Current perspectives. Heart Rhythm O2 2022; 2:796-806. [PMID: 34988531 PMCID: PMC8710622 DOI: 10.1016/j.hroo.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Congestive heart failure (HF) is a progressive affliction defined as the inability of the heart to sufficiently maintain blood flow. Ventricular arrhythmias (VAs) are common in patients with HF, and conversely, advanced HF promotes the risk of VAs. Management of VA in HF requires a systematic, multimodality approach that comprises optimization of medical therapy and use of implantable cardioverter-defibrillator and/or device combined with cardiac resynchronization therapy. Catheter ablation is one of the most important strategies with the potential to abolish or decrease the number of recurrences of VA in this population. It can be a curative strategy in arrhythmia-induced cardiomyopathy and may even save lives in cases of an electrical storm. Additionally, modulation of the autonomic nervous system and stereotactic radiotherapy have been introduced as novel methods to control refractory VAs. In patients with end-stage HF and refractory VAs, an institution of the mechanical circulatory support device and cardiac transplant may be considered. This review aims to provide an overview of current evidence regarding management strategies of VAs in HF with an emphasis on interventional treatment.
Collapse
Affiliation(s)
- Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Adam Rafaj
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
67
|
Elsokkari I, Tsuji Y, Sapp JL, Nattel S. Recent insights into mechanisms and clinical approaches to electrical storm. Can J Cardiol 2021; 38:439-453. [PMID: 34979281 DOI: 10.1016/j.cjca.2021.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022] Open
Abstract
Electrical storm, characterized by repetitive ventricular tachycardia/fibrillation (VT/VF) over a short period, is becoming commoner with widespread use of implantable cardioverter-defibrillator (ICD) therapy. Electrical storm, sometimes called "arrhythmic storm" or "VT-storm", is usually a medical emergency requiring hospitalization and expert management, and significantly affects short- and long-term outcomes. This syndrome typically occurs in patients with underlying structural heart disease (ischemic or non-ischemic cardiomyopathy) or inherited channelopathies. Triggers for electrical storm should be sought but are often unidentifiable. Initial management is dictated by the hemodynamic status, while subsequent management typically involves ICD interrogation and reprogramming to reduce recurrent shocks, identification/management of triggers like electrolyte abnormalities, myocardial ischemia, or decompensated heart failure, and antiarrhythmic-drug therapy or catheter ablation. Sympathetic nervous system activation is central to the initiation and maintenance of arrhythmic storm, so autonomic modulation is a cornerstone of management. Sympathetic inhibition can be achieved with medications (particularly beta-adrenoreceptor blockers), deep sedation, or cardiac sympathetic denervation. More definitive management targets the underlying ventricular arrhythmia substrate to terminate and prevent recurrent arrhythmia. Arrhythmia targeting can be achieved with antiarrhythmic medications, catheter ablation or more novel therapies such as stereotactic radiation therapy that targets the arrhythmic substrate. Mechanistic studies point to adrenergic activation and other direct consequences of ICD-shocks in promoting further arrhythmogenesis and hypocontractility. Here, we review the pathophysiologic mechanisms, clinical features, prognosis, and therapeutic options for electrical storm. We also outline a clinical approach to this challenging and complex condition, along with its mechanistic basis.
Collapse
Affiliation(s)
- Ihab Elsokkari
- University of Sydney, Nepean Blue Mountains local health district, Australia
| | - Yukiomi Tsuji
- Department of Physiology of Visceral Function, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - John L Sapp
- Dalhousie University, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada.
| | - Stanley Nattel
- Departments of Medicine and Research Center, Montreal Heart Institute and Université de Montréal and Pharmacology and Therapeutics McGill University, Montreal, Quebec, Canada; Institute of Pharmacology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany; IHU LIYRC Institute, Bordeaux, France.
| |
Collapse
|
68
|
Pinta CDL, Besse R. Stereotactic ablative body radiotherapy for ventricular tachycardia: An alternative therapy for refractory patients. Anatol J Cardiol 2021; 25:858-862. [PMID: 34866579 DOI: 10.5152/anatoljcardiol.2021.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stereotactic ablative body radiotherapy (SABR) allows the administration of ablative doses of radiation in a focused form with a low probability of side effects and is widely used for cancer treatment. However, in the recent years its usefulness in benign cardiac pathology is being studied. In this study, we aimed to guide the cardiologist in SABR and its applications in treatment of refractory ventricular tachycardia. In this review, we analyzed published literature on PubMed and MEDLINE with papers published in the past 5 years. We included papers in the English language with information about indications, radiotherapy plan, doses and fractionations, and outcomes. All citations were evaluated for relevant content and validation.
Collapse
Affiliation(s)
| | - Raquel Besse
- Department of Internal Medicine, Ramón y Cajal Hospital; Madrid-Spain
| |
Collapse
|
69
|
Q. M. Reis C, Little B, Lee MacDonald R, Syme A, Thomas CG, Robar JL. SBRT of ventricular tachycardia using 4pi optimized trajectories. J Appl Clin Med Phys 2021; 22:72-86. [PMID: 34679247 PMCID: PMC8664144 DOI: 10.1002/acm2.13454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/05/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To investigate the possible advantages of using 4pi-optimized arc trajectories in stereotactic body radiation therapy of ventricular tachycardia (VT-SBRT) to minimize exposure of healthy tissues. METHODS AND MATERIALS Thorax computed tomography (CT) data for 15 patients were used for contouring organs at risk (OARs) and defining realistic planning target volumes (PTVs). A conventional trajectory plan, defined as two full coplanar arcs was compared to an optimized-trajectory plan provided by a 4pi algorithm that penalizes geometric overlap of PTV and OARs in the beam's-eye-view. A single fraction of 25 Gy was prescribed to the PTV in both plans and a comparison of dose sparing to OARs was performed based on comparisons of maximum, mean, and median dose. RESULTS A significant average reduction in maximum dose was observed for esophagus (18%), spinal cord (26%), and trachea (22%) when using 4pi-optimized trajectories. Mean doses were also found to decrease for esophagus (19%), spinal cord (33%), skin (18%), liver (59%), lungs (19%), trachea (43%), aorta (11%), inferior vena cava (25%), superior vena cava (33%), and pulmonary trunk (26%). A median dose reduction was observed for esophagus (40%), spinal cord (48%), skin (36%), liver (72%), lungs (41%), stomach (45%), trachea (53%), aorta (45%), superior vena cava (38%), pulmonary veins (32%), and pulmonary trunk (39%). No significant difference was observed for maximum dose (p = 0.650) and homogeneity index (p = 0.156) for the PTV. Average values of conformity number were 0.86 ± 0.05 and 0.77 ± 0.09 for the conventional and 4pi optimized plans respectively. CONCLUSIONS 4pi optimized trajectories provided significant reduction to mean and median doses to cardiac structures close to the target but did not decrease maximum dose. Significant improvement in maximum, mean and median doses for noncardiac OARs makes 4pi optimized trajectories a suitable delivery technique for treating VT.
Collapse
Affiliation(s)
- Cristiano Q. M. Reis
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsScotia Health Authority, NovaHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Radiation Oncology, London Regional Cancer ProgramLondon Health Sciences Centre790 Commissioners Road EastLondonONN6A 4L6Canada
| | - Brian Little
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsScotia Health Authority, NovaHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Adaptiiv Medical Technologies Inc405‐1344 Summer Street Halifax, NS B3H 0A8Canada
| | - Robert Lee MacDonald
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsScotia Health Authority, NovaHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Alasdair Syme
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsScotia Health Authority, NovaHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Beatrice Hunter Cancer Research InstituteHalifaxNova ScotiaCanada
| | - Christopher G. Thomas
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsScotia Health Authority, NovaHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
- Beatrice Hunter Cancer Research InstituteHalifaxNova ScotiaCanada
- Department of RadiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - James L. Robar
- Department of Radiation OncologyDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Medical PhysicsScotia Health Authority, NovaHalifaxNova ScotiaCanada
- Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
70
|
Hohmann S, Hillmann HAK, Müller-Leisse J, Eiringhaus J, Zormpas C, Merten R, Veltmann C, Duncker D. Stereotactic radioablation for ventricular tachycardia. Herzschrittmacherther Elektrophysiol 2021; 33:49-54. [PMID: 34825951 DOI: 10.1007/s00399-021-00830-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
Non-invasive stereotactic radioablation of ventricular tachycardia (VT) substrate has been proposed as a novel treatment modality for patients not eligible for catheter-based ablation or in whom this approach has failed. Initial clinical results are promising with good short-term efficacy in VT suppression and tolerable side effects. This article reviews the current clinical evidence for cardiac radioablation and gives an overview of important preclinical and translational results. Practical guidance is provided, and a cardiac radioablation planning and treatment workflow based on expert consensus and the authors' institutional experience is set out.
Collapse
Affiliation(s)
- Stephan Hohmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Henrike A K Hillmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Johanna Müller-Leisse
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Jörg Eiringhaus
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christos Zormpas
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Roland Merten
- Department of Radiotherapy, Hannover Medical School, Hannover, Germany
| | - Christian Veltmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - David Duncker
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
71
|
Lee J, Bates M, Shepherd E, Riley S, Henshaw M, Metherall P, Daniel J, Blower A, Scoones D, Wilkinson M, Richmond N, Robinson C, Cuculich P, Hugo G, Seller N, McStay R, Child N, Thornley A, Kelland N, Atherton P, Peedell C, Hatton M. Cardiac stereotactic ablative radiotherapy for control of refractory ventricular tachycardia: initial UK multicentre experience. Open Heart 2021; 8:openhrt-2021-001770. [PMID: 34815300 PMCID: PMC8611439 DOI: 10.1136/openhrt-2021-001770] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022] Open
Abstract
Background Options for patients with ventricular tachycardia (VT) refractory to antiarrhythmic drugs and/or catheter ablation remain limited. Stereotactic radiotherapy has been described as a novel treatment option. Methods Seven patients with recurrent refractory VT, deemed high risk for either first time or redo invasive catheter ablation, were treated across three UK centres with non-invasive cardiac stereotactic ablative radiotherapy (SABR). Prior catheter ablation data and non-invasive mapping were combined with cross-sectional imaging to generate radiotherapy plans with aim to deliver a single 25 Gy treatment. Shared planning and treatment guidelines and prospective peer review were used. Results Acute suppression of VT was seen in all seven patients. For five patients with at least 6 months follow-up, overall reduction in VT burden was 85%. No high-grade radiotherapy treatment-related side effects were documented. Three deaths (two early, one late) occurred due to heart failure. Conclusions Cardiac SABR showed reasonable VT suppression in a high-risk population where conventional treatment had failed.
Collapse
Affiliation(s)
- Justin Lee
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Matthew Bates
- Department of Cardiology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Ewen Shepherd
- Department of Cardiology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Stephen Riley
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Michael Henshaw
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Peter Metherall
- 3D Lab, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jim Daniel
- Department of Oncology, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Alison Blower
- Department of Oncology, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - David Scoones
- Department of Pathology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Michele Wilkinson
- Northern Centre for Cancer Care, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Neil Richmond
- Northern Centre for Cancer Care, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Clifford Robinson
- Center for Noninvasive Cardiac Radioablation, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Phillip Cuculich
- Center for Noninvasive Cardiac Radioablation, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Geoffrey Hugo
- Center for Noninvasive Cardiac Radioablation, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Neil Seller
- Department of Cardiology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ruth McStay
- Department of Radiology, Newcastle NHS Hospitals Foundation Trust, Newcastle Upon Tyne, UK
| | - Nicholas Child
- Department of Cardiology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Andrew Thornley
- Department of Cardiology, South Tees Hospital NHS Foundation Trust, Middlesbrough, UK
| | - Nicholas Kelland
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Philip Atherton
- Northern Centre for Cancer Care, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Clive Peedell
- Department of Oncology, South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| | - Matthew Hatton
- Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
72
|
Siedow M, Brownstein J, Prasad RN, Loccoh E, Harfi TT, Okabe T, Tong MS, Afzal MR, Williams T. Cardiac radioablation in the treatment of ventricular tachycardia. Clin Transl Radiat Oncol 2021; 31:71-79. [PMID: 34646951 PMCID: PMC8498093 DOI: 10.1016/j.ctro.2021.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
Cardiac radioablation with SBRT is a very promising non-invasive modality for the treatment of refractory VT and potentially other cardiac arrhythmias. Initial reports indicate that it is relatively safe and associated with excellent responses, particularly in reduction of ICD-related events, need for anti-arrhythmic medications, and resulting in significantly improved quality of life for patients. Establishment of objective criteria for candidates for cardiac radioablation will accelerate the adoption of this important radiation therapy modality in the treatment of refractory VT and other cardiac arrhythmias in the coming years. In addition, in order to develop more prospective safety and efficacy data, treatment of patients should ideally be performed in the context of clinical trials or prospective registries at, or in collaboration with, experienced centers. Taken together, the future of cardiac radioablation is rich and worthy of further investigation to become a standard treatment in the armamentarium against refractory VT.
Collapse
Affiliation(s)
- Michael Siedow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jeremy Brownstein
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Rahul N. Prasad
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Emefah Loccoh
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Thura T. Harfi
- Division of Cardiovascular Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Toshimasa Okabe
- Division of Cardiovascular Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Matthew S. Tong
- Division of Cardiovascular Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Muhammad R. Afzal
- Division of Cardiovascular Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | - Terence Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
73
|
Chalkia M, Kouloulias V, Tousoulis D, Deftereos S, Tsiachris D, Vrachatis D, Platoni K. Stereotactic Arrhythmia Radioablation as a Novel Treatment Approach for Cardiac Arrhythmias: Facts and Limitations. Biomedicines 2021; 9:1461. [PMID: 34680578 PMCID: PMC8533522 DOI: 10.3390/biomedicines9101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Stereotactic ablative radiotherapy (SABR) is highly focused radiation therapy that targets well-demarcated, limited-volume malignant or benign tumors with high accuracy and precision using image guidance. Stereotactic arrhythmia radioablation (STAR) applies SABR to treat cardiac arrhythmias, including ventricular tachycardia (VT) and atrial fibrillation (AF), and has recently been a focus in research. Clinical studies have demonstrated electrophysiologic conduction blockade and histologic fibrosis after STAR, which provides a proof of principle for its potential for treating arrhythmias. This review will present the basic STAR principles, available clinical study outcomes, and how the technique has evolved since the first pre-clinical study. In addition to the clinical workflow, focus will be given on the process for stereotactic radiotherapy Quality Assurance (QA) tests, as well as the need for establishing a standardized QA protocol. Future implications and potential courses of research will also be discussed.
Collapse
Affiliation(s)
- Marina Chalkia
- Radiotherapy Unit, Second Department of Radiology, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (V.K.); (K.P.)
| | - Vassilis Kouloulias
- Radiotherapy Unit, Second Department of Radiology, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (V.K.); (K.P.)
| | - Dimitris Tousoulis
- First Department of Cardiology, ‘Hippokration’ General Hospital, Vasilissis Sofias 114, 115 27 Athens, Greece;
| | - Spyridon Deftereos
- Second Department of Cardiology, “Attikon” University Hospital, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.D.); (D.V.)
| | | | - Dimitrios Vrachatis
- Second Department of Cardiology, “Attikon” University Hospital, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (S.D.); (D.V.)
| | - Kalliopi Platoni
- Radiotherapy Unit, Second Department of Radiology, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (V.K.); (K.P.)
| |
Collapse
|
74
|
Carbucicchio C, Andreini D, Piperno G, Catto V, Conte E, Cattani F, Bonomi A, Rondi E, Piccolo C, Vigorito S, Ferrari A, Pepa M, Giuliani M, Mushtaq S, Scarà A, Calò L, Gorini A, Veglia F, Pontone G, Pepi M, Tremoli E, Orecchia R, Pompilio G, Tondo C, Jereczek-Fossa BA. Stereotactic radioablation for the treatment of ventricular tachycardia: preliminary data and insights from the STRA-MI-VT phase Ib/II study. J Interv Card Electrophysiol 2021; 62:427-439. [PMID: 34609691 PMCID: PMC8490832 DOI: 10.1007/s10840-021-01060-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022]
Abstract
Purpose We present the preliminary results of the STRA-MI-VT Study (NCT04066517), a spontaneous, phase Ib/II study, designed to prospectively test the safety and efficacy of stereotactic body radiotherapy (SBRT) in patientswith advanced cardiac disease and intractable ventricular tachycardia (VT). Methods Cardiac computed tomography (CT) integrated by electroanatomical mapping was used for substrate identification and merged with dedicated CT scans for treatment plan preparation. A single 25-Gy radioablation dose was delivered by a LINAC-based volumetric modulated arc therapy technique in a non-invasive matter. The primary safety endpoint was treatment-related adverse effects during acute and long-term follow-up (FU), obtained by regular in-hospital controls and implantable cardioverter defibrillator (ICD) remote monitoring. The primary efficacy endpoint was the reduction at 3 and 6 months of VT episodes and ICD shocks. Results Seven out of eight patients (men; age, 70 ± 7 years; ejection fraction, 27 ± 11%; 3 ischemic, 4 non-ischemic cardiomyopathies) underwent SBRT. At a median 8-month FU, no treatment-related serious adverse event occurred. Three patients died from non-SBRT-related causes. Four patients completed the 6-month FU: the number of VT decreased from 29 ± 33 to 11 ± 9 (p = .05) and 2 ± 2 (p = .08), at 3 and 6 months, respectively; shocks decreased from 11 to 0 and 2, respectively. At 6 months, all patients. showed a significant reduction of VT episodes and no electrical storm recurrence, with the complete regression of iterative VTs in 2/2 patients. Conclusion The STRA-MI-VT Study suggests that SBRT can be considered an alternative option for the treatment of VT in patients with structural heart disease and highlights the need for further clinical investigation addressing safety and efficacy. Supplementary Information The online version contains supplementary material available at 10.1007/s10840-021-01060-5.
Collapse
Affiliation(s)
- Corrado Carbucicchio
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Via Carlo Parea 4, 20138, Milan, Italy.
| | - Daniele Andreini
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Gaia Piperno
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Valentina Catto
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Via Carlo Parea 4, 20138, Milan, Italy
| | - Edoardo Conte
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Federica Cattani
- Unit of Medical Physics, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Alice Bonomi
- Biostatistics Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Elena Rondi
- Unit of Medical Physics, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Consiglia Piccolo
- Unit of Medical Physics, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Sabrina Vigorito
- Unit of Medical Physics, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Annamaria Ferrari
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Pepa
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Mattia Giuliani
- Psycho-Cardiology Service, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Saima Mushtaq
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Antonio Scarà
- Unit of Cardiology, Policlinico Casilino, Rome, Italy
| | - Leonardo Calò
- Unit of Cardiology, Policlinico Casilino, Rome, Italy
| | - Alessandra Gorini
- Psycho-Cardiology Service, Centro Cardiologico Monzino IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Fabrizio Veglia
- Biostatistics Unit, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca Pontone
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Mauro Pepi
- Clinical Area Directorate, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Elena Tremoli
- Prevention Program Directorate, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulio Pompilio
- Scientific Directorate, Centro Cardiologico Monzino IRCCS, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milano, Italy
| | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, Via Carlo Parea 4, 20138, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milano, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
75
|
Aras D, Ozturk HF, Ozdemir E, Kervan U, Kara M, Cay S, Coskun N, Ozcan F, Korkmaz A, Ozeke O, Topaloglu S, Tezcan Y. Use of Stereotactic Radioablation Therapy as a Bailout Therapy for Refractory Ventricular Tachycardia in a Patient with a No-entry Left Ventricle. J Innov Card Rhythm Manag 2021; 12:4671-4675. [PMID: 34595050 PMCID: PMC8476093 DOI: 10.19102/icrm.2021.120902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022] Open
Abstract
In patients with mechanical aortic and mitral valves and left ventricular (LV) tachycardia (VT), catheter ablation is technically challenging due to the limited access to the LV. Promising new alternatives to radiofrequency ablation include pulsed-field electroporation, percutaneous or surgical sympathetic neuromodulation, and noninvasive stereotactic radioablation therapy (SBRT). We herein describe the effect of SBRT as a bailout therapy on the management of a challenging VT case in the presence of double left-sided mechanical valves.
Collapse
Affiliation(s)
- Dursun Aras
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Huseyin Furkan Ozturk
- Department of Radiation Oncology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Elif Ozdemir
- Department of Nuclear Medicine, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Umit Kervan
- Department of Cardiovascular Surgery, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Meryem Kara
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Serkan Cay
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Nazim Coskun
- Department of Nuclear Medicine, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Firat Ozcan
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Ahmet Korkmaz
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Ozcan Ozeke
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Serkan Topaloglu
- Department of Cardiology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Yilmaz Tezcan
- Department of Radiation Oncology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
76
|
Ho G, Atwood TF, Bruggeman AR, Moore KL, McVeigh E, Villongco CT, Han FT, Hsu JC, Hoffmayer KS, Raissi F, Lin GY, Schricker A, Woods CE, Cheung JP, Taira AV, McCulloch A, Birgersdotter-Green U, Feld GK, Mundt AJ, Krummen DE. Computational ECG mapping and respiratory gating to optimize stereotactic ablative radiotherapy workflow for refractory ventricular tachycardia. Heart Rhythm O2 2021; 2:511-520. [PMID: 34667967 PMCID: PMC8505208 DOI: 10.1016/j.hroo.2021.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Stereotactic ablative radiotherapy (SAbR) is an emerging therapy for refractory ventricular tachycardia (VT). However, the current workflow is complicated, and the precision and safety in patients with significant cardiorespiratory motion and VT targets near the stomach may be suboptimal. OBJECTIVE We hypothesized that automated 12-lead electrocardiogram (ECG) mapping and respiratory-gated therapy may improve the ease and precision of SAbR planning and facilitate safe radiation delivery in patients with refractory VT. METHODS Consecutive patients with refractory VT were studied at 2 hospitals. VT exit sites were localized using a 3-D computational ECG algorithm noninvasively and compared to available prior invasive mapping. Radiotherapy (25 Gy) was delivered at end-expiration when cardiac respiratory motion was ≥0.6 cm or targets were ≤2 cm from the stomach. RESULTS In 6 patients (ejection fraction 29% ± 13%), 4.2 ± 2.3 VT morphologies per patient were mapped. Overall, 7 out of 7 computational ECG mappings (100%) colocalized to the identical cardiac segment when prior invasive electrophysiology study was available. Respiratory gating was associated with smaller planning target volumes compared to nongated volumes (71 ± 7 vs 153 ± 35 cc, P < .01). In 2 patients with inferior wall VT targets close to the stomach (6 mm proximity) or significant respiratory motion (22 mm excursion), no GI complications were observed at 9- and 12-month follow-up. Implantable cardioverter-defibrillator shocks decreased from 23 ± 12 shocks/patient to 0.67 ± 1.0 (P < .001) post-SAbR at 6.0 ± 4.9 months follow-up. CONCLUSIONS A workflow including computational ECG mapping and protocol-guided respiratory gating is feasible, is safe, and may improve the ease of SAbR planning. Studies to validate this workflow in larger populations are required.
Collapse
Affiliation(s)
- Gordon Ho
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California
| | - Todd F. Atwood
- Department of Radiation Medicine, University of California San Diego, La Jolla, California
| | - Andrew R. Bruggeman
- Department of Radiation Medicine, University of California San Diego, La Jolla, California
| | - Kevin L. Moore
- Department of Radiation Medicine, University of California San Diego, La Jolla, California
| | - Elliot McVeigh
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | | | - Frederick T. Han
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California
| | - Jonathan C. Hsu
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California
| | - Kurt S. Hoffmayer
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California
| | - Farshad Raissi
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California
| | - Grace Y. Lin
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Amir Schricker
- Department of Cardiac Electrophysiology, Mills-Peninsula Medical Center, Sutter Health, Burlingame, California
| | - Christopher E. Woods
- Department of Cardiac Electrophysiology, Mills-Peninsula Medical Center, Sutter Health, Burlingame, California
| | - Joey P. Cheung
- Department of Radiation Oncology, Mills-Peninsula Medical Center, Sutter Health, Burlingame, California
| | - Al V. Taira
- Department of Radiation Oncology, Mills-Peninsula Medical Center, Sutter Health, Burlingame, California
| | - Andrew McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | | | - Gregory K. Feld
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California
| | - Arno J. Mundt
- Department of Radiation Medicine, University of California San Diego, La Jolla, California
| | - David E. Krummen
- Department of Medicine-Cardiology, University of California San Diego, La Jolla, California
| |
Collapse
|
77
|
Wei C, Qian PC, Boeck M, Bredfeldt JS, Blankstein R, Tedrow UB, Mak R, Zei PC. Cardiac stereotactic body radiation therapy for ventricular tachycardia: Current experience and technical gaps. J Cardiovasc Electrophysiol 2021; 32:2901-2914. [PMID: 34587335 DOI: 10.1111/jce.15259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Despite advances in drug and catheter ablation therapy, long-term recurrence rates for ventricular tachycardia remain suboptimal. Cardiac stereotactic body radiotherapy (SBRT) is a novel treatment that has demonstrated reduction of arrhythmia episodes and favorable short-term safety profile in treatment-refractory patients. Nevertheless, the current clinical experience is early and limited. Recent studies have highlighted variable duration of treatment effect and substantial recurrence rates several months postradiation. Contributing to these differential outcomes are disparate approaches groups have taken in planning and delivering radiation, owing to both technical and knowledge gaps limiting optimization and standardization of cardiac SBRT. METHODS AND FINDINGS In this report, we review the historical basis for cardiac SBRT and existing clinical data. We then elucidate the current technical gaps in cardiac radioablation, incorporating the current clinical experience, and summarize the ongoing and needed efforts to resolve them. CONCLUSION Cardiac SBRT is an emerging therapy that holds promise for the treatment of ventricular tachycardia. Technical gaps remain, to be addressed by ongoing research and growing clincial experience.
Collapse
Affiliation(s)
- Chen Wei
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pierre C Qian
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michelle Boeck
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jeremy S Bredfeldt
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ron Blankstein
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Usha B Tedrow
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Raymond Mak
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Paul C Zei
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
78
|
Zhang DM, Navara R, Yin T, Szymanski J, Goldsztejn U, Kenkel C, Lang A, Mpoy C, Lipovsky CE, Qiao Y, Hicks S, Li G, Moore KMS, Bergom C, Rogers BE, Robinson CG, Cuculich PS, Schwarz JK, Rentschler SL. Cardiac radiotherapy induces electrical conduction reprogramming in the absence of transmural fibrosis. Nat Commun 2021; 12:5558. [PMID: 34561429 PMCID: PMC8463558 DOI: 10.1038/s41467-021-25730-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Cardiac radiotherapy (RT) may be effective in treating heart failure (HF) patients with refractory ventricular tachycardia (VT). The previously proposed mechanism of radiation-induced fibrosis does not explain the rapidity and magnitude with which VT reduction occurs clinically. Here, we demonstrate in hearts from RT patients that radiation does not achieve transmural fibrosis within the timeframe of VT reduction. Electrophysiologic assessment of irradiated murine hearts reveals a persistent supraphysiologic electrical phenotype, mediated by increases in NaV1.5 and Cx43. By sequencing and transgenic approaches, we identify Notch signaling as a mechanistic contributor to NaV1.5 upregulation after RT. Clinically, RT was associated with increased NaV1.5 expression in 1 of 1 explanted heart. On electrocardiogram (ECG), post-RT QRS durations were shortened in 13 of 19 patients and lengthened in 5 patients. Collectively, this study provides evidence for radiation-induced reprogramming of cardiac conduction as a potential treatment strategy for arrhythmia management in VT patients.
Collapse
Affiliation(s)
- David M Zhang
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Rachita Navara
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Tiankai Yin
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Jeffrey Szymanski
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Uri Goldsztejn
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Camryn Kenkel
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Adam Lang
- Department of Pathology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Catherine E Lipovsky
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Yun Qiao
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Stephanie Hicks
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Gang Li
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Kaitlin M S Moore
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Carmen Bergom
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Clifford G Robinson
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Phillip S Cuculich
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Julie K Schwarz
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Stacey L Rentschler
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA.
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
79
|
Zhang DM, Szymanski J, Bergom C, Cuculich PS, Robinson CG, Schwarz JK, Rentschler SL. Leveraging Radiobiology for Arrhythmia Management: A New Treatment Paradigm? Clin Oncol (R Coll Radiol) 2021; 33:723-734. [PMID: 34535357 DOI: 10.1016/j.clon.2021.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/01/2023]
Abstract
Radiation therapy is a well-established approach for safely and non-invasively treating solid tumours and benign diseases with high precision and accuracy. Cardiac radiation therapy has recently emerged as a non-invasive treatment option for the management of refractory ventricular tachycardia. Here we summarise existing clinical and preclinical literature surrounding cardiac radiobiology and discuss how these studies may inform basic and translational research, as well as clinical treatment paradigms in the management of arrhythmias.
Collapse
Affiliation(s)
- D M Zhang
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - J Szymanski
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - C Bergom
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - P S Cuculich
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - C G Robinson
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - J K Schwarz
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - S L Rentschler
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Biomedical Engineering, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Developmental Biology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
80
|
Abdel-Kafi S, Sramko M, Omara S, de Riva M, Cvek J, Peichl P, Kautzner J, Zeppenfeld K. Accuracy of electroanatomical mapping-guided cardiac radiotherapy for ventricular tachycardia: pitfalls and solutions. Europace 2021; 23:1989-1997. [PMID: 34524422 DOI: 10.1093/europace/euab195] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/12/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS To analyse and optimize the interobserver agreement for gross target volume (GTV) delineation on cardiac computed tomography (CCT) based on electroanatomical mapping (EAM) data acquired to guide radiotherapy for ventricular tachycardia (VT). METHODS AND RESULTS Electroanatomical mapping data were exported and merged with the segmented CCT using manual registration by two observers. A GTV was created by both observers for predefined left ventricular (LV) areas based on preselected endocardial EAM points indicating a two-dimensional (2D) surface area of interest. The influence of (interobserver) registration accuracy and availability of EAM data on the final GTV and 2D surface location within each LV area was evaluated. The median distance between the CCT and EAM after registration was 2.7 mm, 95th percentile 6.2 mm for observer #1 and 3.0 mm, 95th percentile 7.6 mm for observer #2 (P = 0.9). Created GTVs were significantly different (8 vs. 19 mL) with lowest GTV overlap (35%) for lateral wall target areas. Similarly, the highest shift between 2D surfaces was observed for the septal LV (6.4 mm). The optimal surface registration accuracy (2.6 mm) and interobserver agreement (Δ interobserver EAM surface registration 1.3 mm) was achieved if at least three cardiac chambers were mapped, including high-quality endocardial LV EAM. CONCLUSION Detailed EAM of at least three chambers allows for accurate co-registration of EAM data with CCT and high interobserver agreement to guide radiotherapy of VT. However, the substrate location should be taken in consideration when creating a treatment volume margin.
Collapse
Affiliation(s)
- Saif Abdel-Kafi
- Willem Einthoven Center for Cardiac Arrhythmia research and Management, Department of Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Marek Sramko
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21 Praha 4, Prague, Czech Republic.,First Faculty of Medicine, Charles University, Kateřinská 1660/32, 121 08 Nové Město, Prague, Czech Republic
| | - Sharif Omara
- Willem Einthoven Center for Cardiac Arrhythmia research and Management, Department of Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Marta de Riva
- Willem Einthoven Center for Cardiac Arrhythmia research and Management, Department of Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Jakub Cvek
- Department of Oncology, University Hospital Ostrava, listopadu 1790/5, 708 00 Ostrava-Poruba, Ostrava, Czech Republic
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21 Praha 4, Prague, Czech Republic
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, 140 21 Praha 4, Prague, Czech Republic
| | - Katja Zeppenfeld
- Willem Einthoven Center for Cardiac Arrhythmia research and Management, Department of Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
81
|
Guarracini F, Casella M, Muser D, Barbato G, Notarstefano P, Sgarito G, Marini M, Grandinetti G, Mariani MV, Boriani G, Ricci RP, De Ponti R, Lavalle C. Clinical management of electrical storm: a current overview. J Cardiovasc Med (Hagerstown) 2021; 22:669-679. [PMID: 32925390 DOI: 10.2459/jcm.0000000000001107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The number of patients affected by electrical storm has been continuously increasing in emergency departments. Patients are often affected by multiple comorbidities requiring multidisciplinary interventions to achieve a clinical stability. Careful reprogramming of cardiac devices, correction of electrolyte imbalance, knowledge of underlying heart disease and antiarrhythmic drugs in the acute phase play a crucial role. The aim of this review is to provide a comprehensive overview of pharmacological treatment, latest transcatheter ablation techniques and advanced management of patients with electrical storm.
Collapse
Affiliation(s)
| | - Michela Casella
- Heart Rhythm Center, Centro Cardiologico Monzino, Milan.,Department of Clinical, Special and Dental Sciences, Cardiology and Arrhythmology Clinic, University Hospital 'UmbertoI-Lancisi-Salesi', Marche Polytechnic University, Ancona
| | - Daniele Muser
- Cardiothoracic Department, University Hospital of Udine, Udine
| | | | | | - Giuseppe Sgarito
- Cardiology Division, ARNAS Ospedale Civico e Benfratelli, Palermo
| | | | | | - Marco V Mariani
- Department of Cardiology, Policlinico Universitario Umberto I, Roma
| | - Giuseppe Boriani
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Policlinico di Modena, Modena
| | | | - Roberto De Ponti
- Department of Heart and Vessels, Ospedale di Circolo & Macchi Foundation, University of Insubria, Varese, Italy
| | - Carlo Lavalle
- Department of Cardiology, Policlinico Universitario Umberto I, Roma
| | | |
Collapse
|
82
|
Hindley N, Lydiard S, Shieh CC, Keall P. Proof-of-concept for x-ray based real-time image guidance during cardiac radioablation. Phys Med Biol 2021; 66. [PMID: 34315136 DOI: 10.1088/1361-6560/ac1834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/27/2021] [Indexed: 11/11/2022]
Abstract
Cardiac radioablation offers non-invasive treatments for refractory arrhythmias. However, treatment delivery for this technique remains challenging. In this paper, we introduce the first method for real-time image guidance during cardiac radioablation for refractory atrial fibrillation on a standard linear accelerator. Our proposed method utilizes direct diaphragm tracking on intrafraction images to estimate the respiratory component of cardiac substructure motion. We compare this method to treatment scenarios without real-time image guidance using the 4D-XCAT digital phantom. Pre-treatment and intrafraction imaging was simulated for 8 phantoms with unique anatomies programmed using cardiorespiratory motion from healthy volunteers. As every voxel in the 4D-XCAT phantom is labelled precisely according to the corresponding anatomical structure, this provided ground-truth for quantitative evaluation. Tracking performance was compared to the ground-truth for simulations with and without real-time image guidance using the left atrium as an exemplar target. Differences in target volume size, mean volumetric coverage, minimum volumetric coverage and geometric error were recorded for each simulation. We observed that differences in target volume size were statistically significant (p < 0.001) across treatment scenarios and that real-time image guidance enabled reductions in target volume size ranging from 11% to 24%. Differences in mean and minimum volumetric coverage were statistically insignificant (bothp = 0.35) while differences in geometric error were statistically significant (p = 0.039). The results of this study provide proof-of-concept for x-ray based real-time image guidance during cardiac radioablation.
Collapse
Affiliation(s)
| | - Suzanne Lydiard
- ACRF Image X Institute, University of Sydney, Sydney, Australia.,Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Chun-Chien Shieh
- ACRF Image X Institute, University of Sydney, Sydney, Australia.,Sydney Neuroimaging Analysis Centre, University of Sydney, Sydney, Australia
| | - Paul Keall
- ACRF Image X Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
83
|
Krug D, Blanck O, Andratschke N, Guckenberger M, Jumeau R, Mehrhof F, Boda-Heggemann J, Seidensaal K, Dunst J, Pruvot E, Scholz E, Saguner AM, Rudic B, Boldt LH, Bonnemeier H. Recommendations regarding cardiac stereotactic body radiotherapy for treatment refractory ventricular tachycardia. Heart Rhythm 2021; 18:2137-2145. [PMID: 34380072 DOI: 10.1016/j.hrthm.2021.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ventricular tachycardia (VT) is a potentially lethal complication of structural heart disease. Despite optimal management, a subgroup of patients continue to suffer from recurrent VT. Recently, cardiac stereotactic body radiotherapy (CSBRT) has been introduced as a treatment option in patients with VT refractory to antiarrhythmic drugs and catheter ablation. OBJECTIVE The purpose of this study was to establish an expert consensus regarding the conduct and use of CSBRT for refractory VT. METHODS We conducted a modified Delphi process. Thirteen experts from institutions from Germany and Switzerland participated in the modified Delphi process. Statements regarding the following topics were generated: treatment setting, institutional expertise and technical requirements, patient selection, target volume definition, and monitoring during and after CSBRT. Agreement was rated on a 5-point Likert scale. Cutoffs for agreement were defined in analogy to the RAND methodology. RESULTS There was strong agreement regarding the experimental status of the procedure and the preference for treatment in clinical trials. CSBRT should be conducted at specialized centers with a strong expertise in the management of patients with ventricular arrhythmias and in stereotactic body radiotherapy for moving targets. CSBRT should be restricted to patients with refractory VT with optimal antiarrhythmic medication who underwent prior catheter ablation or have contraindications. Target volume delineation for CSBRT is complex. Therefore, interdisciplinary processes that should include cardiology/electrophysiology and radiation oncology as well as medical physics, radiology, and nuclear medicine are needed. Optimal follow-up is required. CONCLUSION Prospective trials and pooled registries are needed to gain further insight into this promising treatment option for patients with refractory VT.
Collapse
Affiliation(s)
- David Krug
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Kiel, Germany.
| | - Oliver Blanck
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | - Raphael Jumeau
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Radiation Oncology Institute, Hirslanden Clinique Bois-Cerf, Lausanne, Switzerland
| | - Felix Mehrhof
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Dunst
- Department of Radiation Oncology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Etienne Pruvot
- Heart and Vessel Department, Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eberhard Scholz
- Department of Cardiology, Heidelberg Center for Heart Rhythm Disorders (HCR), University of Heidelberg, Heidelberg, Germany
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland
| | - Boris Rudic
- Department of Internal Medicine I, Section for Electrophysiology und Rhythmology, University Medical Center Mannheim, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Leif-Hendrik Boldt
- Department of Internal Medicine and Cardiology, Charité University Medicine Berlin-Campus Virchow Klinikum, Berlin, Germany
| | - Hendrik Bonnemeier
- Department of Internal Medicine III, Section for Electrophysiology und Rhythmology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
84
|
Qian PC, Quadros K, Aguilar M, Wei C, Boeck M, Bredfeldt J, Cochet H, Blankstein R, Mak R, Sauer WH, Tedrow UB, Zei PC. Substrate Modification Using Stereotactic Radioablation to Treat Refractory Ventricular Tachycardia in Patients With Ischemic Cardiomyopathy. JACC Clin Electrophysiol 2021; 8:49-58. [PMID: 34364832 DOI: 10.1016/j.jacep.2021.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study aimed to determine the feasibility of using radioablation for arrhythmogenic a substrate modification. BACKGROUND Stereotactic body radiation therapy (SBRT) is a promising therapy for ventricular tachycardia (VT) refractory to catheter ablation. METHODS A total of 6 male patients (median age 72 years) with ischemic cardiomyopathy (left ventricular ejection fraction 20% [interquartile range (IQR): 16%-25%]) and VT refractory to antiarrhythmic medications and catheter ablations underwent SBRT to extensive scar substrate. In addition to electroanatomical mapping, 5 of 6 patients had computed tomography segmentation using MUSIC (Institut Hospitalo-Universitaire l'Institut de Rythmologie et Modélisation Cardiaque, Bordeaux, France). Regions of wall thinning <5 mm, calcification, and intramyocardial fat were targeted for radioablation at 25 Gy. RESULTS The median planning target volume was 319 (IQR: 280-330) mL. Device-treated or sustained VT episodes were not significantly reduced by radioablation (median 42 [IQR: 19-269] to 29 [IQR: 0-81]; P = 0.438). However, a reduction in device shocks was observed from 12 (IQR: 3-19) to 0 (IQR: 0-1) (P = 0.046). Over a follow-up period of 231 (IQR: 212-311) days, 3 patients died of end-stage heart failure and 3 of 6 patients had possible adverse events (heart failure exacerbation, pneumonia, and an asymptomatic pericardial effusion). CONCLUSIONS Substrate modification using SBRT assisted by computed tomography segmentation is feasible for treatment of VT in patients with ischemic cardiomyopathy. Although a significant reduction in device shocks was observed, suboptimal VT burden reduction and significant mortality rate in this cohort of patients with advanced cardiomyopathy underscore the need to improve mechanistic understanding for antiarrhythmic effects to guide dosing and targeting of scar substrates.
Collapse
Affiliation(s)
- Pierre C Qian
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Ken Quadros
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Aguilar
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Chen Wei
- Harvard Medical School, Boston, Massachusetts, USA
| | - Michelle Boeck
- Harvard Medical School, Boston, Massachusetts, USA; Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jeremy Bredfeldt
- Harvard Medical School, Boston, Massachusetts, USA; Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Hubert Cochet
- IHU Liryc, Univ. Bordeaux and Inria Sophia Antipolis, France, Université de Bordeaux, Pessac, France; Inria, Sophia Antipolis, France
| | - Ron Blankstein
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond Mak
- Harvard Medical School, Boston, Massachusetts, USA; Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - William H Sauer
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Usha B Tedrow
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Paul C Zei
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
85
|
The Rapidly-Developing Area of Radiocardiology: Principles, Complications and Applications of Radiotherapy on the Heart. Can J Cardiol 2021; 37:1818-1827. [PMID: 34303782 DOI: 10.1016/j.cjca.2021.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Ventricular arrhythmias are the leading cause of sudden cardiac death. Current treatment strategies for VT, including antiarrhythmic drugs and catheter ablation, have limited efficacy in patients with structural heart disease. Non-invasive ablation with the use of externally applied radiation (cardiac radio-ablation) has emerged as a promising and novel approach to treating recurrent VTs. However, the heart is generally an "organ at risk" for radiation treatments, such that very little is known on the effects of radiotherapy on cardiac ultrastructure and electrophysiological properties. Furthermore, there has been limited interaction between the fields of cardiology and radiation oncology and physics. The advent of cardiac radio-ablation will undoubtedly increase interactions between cardiologists, cardiac electrophysiologists, radiation oncologists and physicists There is an important knowledge gap separating these specialties while scientific developments, technical optimization and improvements are dependent on intense multidisciplinary collaboration. This manuscript seeks to review the basic of radiation physics and biology for cardiovascular specialists in an effort to facilitate constructive scientific and clinical collaborations to improve patient outcomes.
Collapse
|
86
|
Peichl P, Kautzner J. Intracavitary thrombus: A hidden piece of puzzle that may influence the outcome of ablation for ventricular tachycardia. J Cardiovasc Electrophysiol 2021; 32:2484-2485. [PMID: 34270143 DOI: 10.1111/jce.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
87
|
Evaluation of Motion Compensation Methods for Noninvasive Cardiac Radioablation of Ventricular Tachycardia. Int J Radiat Oncol Biol Phys 2021; 111:1023-1032. [PMID: 34217790 DOI: 10.1016/j.ijrobp.2021.06.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Noninvasive cardiac radioablation is increasingly used for treatment of refractory ventricular tachycardia. Attempts to limit normal tissue exposure are important, including managing motion of the target. An interplay between cardiac and respiratory motion exists for cardiac radioablation, which has not been studied in depth. The objectives of this study were to estimate target motion during abdominal compression free breathing (ACFB) and respiratory gated (RG) deliveries and to investigate the quality of either implanted cardioverter defibrillator lead tip or the diaphragm as a gating surrogate. METHODS AND MATERIALS Eleven patients underwent computed tomography (CT) simulation with an ACFB 4-dimensional CT (r4DCT) and an exhale breath-hold cardiac 4D-CT (c4DCT). The target, implanted cardioverter defibrillator lead tip and diaphragm trajectories were measured for each patient on the r4DCT and c4DCT using rigid registration of each 4D phase to the reference (0%) phase. Motion ranges for ACFB and exhale (40%-60%) RG delivery were estimated from the target trajectories. Surrogate quality was estimated as the correlation with the target motion magnitudes. RESULTS Mean (range) target motion across patients from r4DCT was as follows: left/right (LR), 3.9 (1.7-6.9); anteroposterior (AP), 4.1 (2.2-5.4); and superoinferior (SI), 4.7 (2.2-7.9) mm. Mean (range) target motion from c4DCT was as follows: LR, 3.4 (1.0-4.8); AP, 4.3 (2.6-6.5); and SI, 4.1 (1.4-8.0) mm. For an ACFB, treatment required mean (range) margins to be 4.5 (3.1-6.9) LR, 4.8 (3-6.5) AP, and 5.5 (2.3-8.0) mm SI. For RG, mean (range) internal target volume motion would be 3.6 (1.1-4.8) mm LR, 4.3 (2.6-6.5) mm AP, and 4.2 (2.2-8.0) mm SI. The motion correlations between the surrogates and target showed a high level of interpatient variability. CONCLUSIONS In ACFB patients, a simulated exhale-gated approach did not lead to large projected improvements in margin reduction. Furthermore, the variable correlation between readily available gating surrogates could mitigate any potential advantage to gating and should be evaluated on a patient-specific basis.
Collapse
|
88
|
Yugo D, Lo LW, Wu YH, Chung FP, Lin YJ, Chang SL, Hu YF, Chao TF, Liao JN, Chang TY, Lin CY, Tuan TC, Kuo L, Wu CI, Liu CM, Liu SH, Cheng WH, Lugtu IC, Jain A, Chen SA. Case series on stereotactic body radiation therapy in non-ischemic cardiomyopathy patients with recurrent ventricular tachycardia. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2021; 44:1085-1093. [PMID: 33932305 DOI: 10.1111/pace.14254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/11/2021] [Accepted: 04/25/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The efficacy of stereotactic body radiation therapy (SBRT) as an alternative treatment for recurrent ventricular tachycardia (VT) is still unclear. This study aimed to report the outcome of SBRT in VT patients with nonischemic cardiomyopathy (NICM). METHODS The determination of the target substrate for radiation was based on the combination of CMR results and electroanatomical mapping merged with the real-time CT scan image. Radiation therapy was performed by Flattening-filter-free (Truebeam) system, and afterward, patients were followed up for 13.5 ± 2.8 months. We analyzed the outcome of death, incidence of recurrent VT, ICD shocks, anti-tachycardia pacing (ATP) sequences, and possible irradiation side-effects. RESULTS A total of three cases of NICM patients with anteroseptal scar detected by CMR. SBRT was successfully performed in all patients. During the follow-up, we found that VT recurrences occurred in all patients. In one patient, it happened during a 6-week blanking period, while the others happened afterward. Re-hospitalization due to VT only appeared in one patient. Through ICD interrogation, we found that all patients have reduced VT burden and ATP therapies. All of the patients died during the follow-up period. Radiotherapy-related adverse events did not occur in all patients. CONCLUSIONS SBRT therapy reduces the number of VT burden and ATP sequence therapy in NICM patients with VT, which had a failed previous catheter ablation. However, the efficacy and safety aspects, especially in NICM cases, remained unclear.
Collapse
Affiliation(s)
- Dony Yugo
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Cardiology and Vascular Medicine, Faculty of Medicine University of Indonesia, Jakarta, Indonesia.,Arrhythmia Division, Pusat Jantung Nasional Harapan Kita, Jakarta, Indonesia
| | - Li-Wei Lo
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuan-Hung Wu
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fa-Po Chung
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yenn-Jiang Lin
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Lin Chang
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Feng Hu
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tze-Fan Chao
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jo-Nan Liao
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Yung Chang
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Yu Lin
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ta-Chuan Tuan
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ling Kuo
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-I Wu
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Min Liu
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shin-Huei Liu
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Han Cheng
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Isaiah C Lugtu
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Heart Institute, Chinese General Hospital and Medical Center, Metro Manila, Philippines
| | - Ankit Jain
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Cardiology, Vardhman Mahavir Medical College, New Delhi, India
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
89
|
Ho LT, Chen JLY, Chan HM, Huang YC, Su MY, Kuo SH, Chang YC, Lin JL, Chen WJ, Lee WJ, Lin LY. First Asian population study of stereotactic body radiation therapy for ventricular arrhythmias. Sci Rep 2021; 11:10360. [PMID: 33990651 PMCID: PMC8121933 DOI: 10.1038/s41598-021-89857-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/22/2021] [Indexed: 12/31/2022] Open
Abstract
We report the first Asian series on stereotactic body radiation (SBRT) for refractory ventricular arrhythmia (VA) in Taiwanese patients. Three-dimensional electroanatomic maps, delayed-enhancement magnetic resonance imaging (DE-MRI), and dual-energy computed tomography (CT) were used to identify scar substrates. The main target volume was treated with a single radiation dose of 25 Gy and the margin volume received 20 Gy using simultaneous integrated boost delivered by the Varian TrueBeam system. Efficacy was assessed according to VA events recorded by an implantable cardioverter-defibrillator (ICD) or a 24-h Holter recorder. Pre- and post-radiation therapy imaging studies were performed. From February 2019 to December 2019, seven patients (six men, one woman; mean age, 55 years) were enrolled and treated. One patient died of hepatic failure. In the remaining six patients, at a median follow-up of 14.5 months, the VA burden and ICD shocks significantly decreased (only one patient with one ICD shock after treatment). Increased intensity on DE-MRI might be associated with a lower risk for VA recurrence, whereas dual-energy CT had lower detection sensitivity. No acute or minimal late adverse events occurred. In patients with refractory VA, SBRT is associated with a marked reduction in VA burden and ICD shocks, and DE-MRI might be useful for monitoring treatment effects.
Collapse
Affiliation(s)
- Li-Ting Ho
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Jenny Ling-Yu Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan.,Department of Radiology, National Taiwan University College of Medicine, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Hsing-Min Chan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Yu-Cheng Huang
- Department of Radiology, National Taiwan University College of Medicine, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan.,Department of Medical Imaging, National Taiwan University College of Medicine and Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Mao-Yuan Su
- Department of Medical Imaging, National Taiwan University College of Medicine and Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Sung-Hsin Kuo
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Yeun-Chung Chang
- Department of Radiology, National Taiwan University College of Medicine, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan.,Department of Medical Imaging, National Taiwan University College of Medicine and Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Jiunn-Lee Lin
- Cardiovascular Center, Taipei Medical University Shuang Ho Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Wen-Jone Chen
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan
| | - Wen-Jeng Lee
- Department of Radiology, National Taiwan University College of Medicine, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan. .,Department of Medical Imaging, National Taiwan University College of Medicine and Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan.
| | - Lian-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, No. 7, Chuang-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
90
|
Whitaker J, Mak RH, Zei PC. Non-invasive ablation of arrhythmias with stereotactic ablative radiotherapy. Trends Cardiovasc Med 2021; 32:287-296. [PMID: 33951498 DOI: 10.1016/j.tcm.2021.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022]
Abstract
Stereotactic ablative radiotherapy (SABR), or stereotactic body radiotherapy (SBRT), has recently been applied in the field of arrhythmia management. It has been most widely assessed in the treatment of ventricular tachycardia (VT) but may also have potential in the treatment of other arrhythmias as well, often termed stereotactic arrhythmia radiotherapy (STAR). The non-invasive delivery of treatment for VT has the potential to spare an often physiologically vulnerable group of patients the burden of long catheter ablation procedures with the potential for prolonged periods of hemodynamic instability. Cardiac SABR also has the capacity to direct ablative therapy at substrate that is inaccessible using current transchatheter techniques. For these reasons cardiac SABR has generated significant enthusiasm as an emerging treatment modality for VT. We consider in review the pre-clinical data pertaining to the use of SABR in cardiac tissue and recent clinical evidence regarding the application of SABR in the field of arrhythmia management.
Collapse
Affiliation(s)
- John Whitaker
- Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Raymond H Mak
- Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Paul C Zei
- Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| |
Collapse
|
91
|
Ren XY, He PK, Gao XS, Zhao ZL, Zhao B, Bai Y, Liu SW, Li K, Qin SB, Ma MW, Zhou J, Rong Y. Dosimetric feasibility of stereotactic ablative radiotherapy in pulmonary vein isolation for atrial fibrillation using intensity-modulated proton therapy. J Appl Clin Med Phys 2021; 22:79-88. [PMID: 33817981 PMCID: PMC8130224 DOI: 10.1002/acm2.13239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose To evaluate dosimetric properties of intensity‐modulated proton therapy (IMPT) for simulated treatment planning in patients with atrial fibrillation (AF) targeting left atrial‐pulmonary vein junction (LA‐PVJ), in comparison with volumetric‐modulated arc therapy (VMAT) and helical tomotherapy (TOMO). Methods Ten thoracic 4D‐CT scans with respiratory motion and one with cardiac motion were used for the study. Ten respiratory 4D‐CTs were planned with VMAT, TOMO, and IMPT for simulated AF. Targets at the LA‐PVJ were defined as wide‐area circumferential ablation line. A single fraction of 25 Gy was prescribed to all plans. The interplay effects from cardiac motion were evaluated based on the cardiac 4D‐CT scan. Dose‐volume histograms (DVHs) of the ITV and normal tissues were compared. Statistical analysis was evaluated via one‐way Repeated‐Measures ANOVA and Friedman’s test with Bonferroni’s multiple comparisons test. Results The median volume of ITV was 8.72cc. All plans had adequate target coverage (V23.75Gy ≥ 99%). Compared with VMAT and TOMO, IMPT resulted in significantly lower dose of most normal tissues. For VMAT, TOMO, and IMPT plans, Dmean of the whole heart was 5.52 ± 0.90 Gy, 5.89 ± 0.78 Gy, and 3.01 ± 0.57 Gy (P < 0.001), mean dose of pericardium was 4.74 ± 0.76 Gy, 4.98 ± 0.62 Gy, and 2.59 ± 0.44 Gy (P < 0.001), and D0.03cc of left circumflex artery (LCX) was 13.96 ± 5.45 Gy, 14.34 ± 5.91 Gy, and 8.43 ± 7.24 Gy (P < 0.001), respectively. However, no significant advantage for one technique over the others was observed when examining the D0.03cc of esophagus and main bronchi. Conclusions IMPT targeting LA‐PVJ for patients with AF has high potential to reduce dose to surrounding tissues compared to VMAT or TOMO. Motion mitigation techniques are critical for a particle‐therapy approach.
Collapse
Affiliation(s)
- Xue-Ying Ren
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Peng-Kang He
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Zhi-Lei Zhao
- Department of Radiation Oncology, Yizhou International Proton Therapy Medical Center, Hebei, China
| | - Bo Zhao
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Yun Bai
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Si-Wei Liu
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Kang Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Shang-Bin Qin
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Ming-Wei Ma
- Department of Radiation Oncology, Peking University First Hospital, Beijing, China
| | - Jing Zhou
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| |
Collapse
|
92
|
Lee Y, Yoon HI, Kim JS, Kim AY, Tsevendee S, Uhm JS. Incessant ventricular tachycardia treated with cardiac radioablation in an 11-year-old boy with dilated cardiomyopathy. HeartRhythm Case Rep 2021; 7:186-190. [PMID: 33786318 PMCID: PMC7987900 DOI: 10.1016/j.hrcr.2020.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Youngchae Lee
- Division of Cardiology, Severance Cardiovascular Hospital, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Hospital, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Jin-Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Hospital, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Ah-Young Kim
- Department of Pediatric Cardiology, Severance Cardiovascular Hospital, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Saruul Tsevendee
- Department of Cardiology, Third State Central Hospital, Ulaanbaatar, Mongolia
| | - Jae-Sun Uhm
- Division of Cardiology, Severance Cardiovascular Hospital, College of Medicine, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
93
|
Miszczyk M, Jadczyk T, Gołba K, Wojakowski W, Wita K, Bednarek J, Blamek S. Clinical Evidence behind Stereotactic Radiotherapy for the Treatment of Ventricular Tachycardia (STAR)-A Comprehensive Review. J Clin Med 2021; 10:jcm10061238. [PMID: 33802802 PMCID: PMC8002399 DOI: 10.3390/jcm10061238] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
The electrophysiology-guided noninvasive cardiac radioablation, also known as STAR (stereotactic arrhythmia radioablation) is an emerging treatment method for persistent ventricular tachycardia. Since its first application in 2012 in Stanford Cancer Institute, and a year later in University Hospital Ostrava, Czech Republic, the authors from all around the world have published case reports and case series, and several prospective trials were established. In this article, we would like to discuss the available clinical evidence, analyze the potentially clinically relevant differences in methodology, and address some of the unique challenges that come with this treatment method.
Collapse
Affiliation(s)
- Marcin Miszczyk
- IIIrd Department of Radiotherapy and Chemotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland
- Correspondence: ; Tel.: +48-663-040-809
| | - Tomasz Jadczyk
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-055 Katowice, Poland; (T.J.); (W.W.)
- International Clinical Research Center, Interventional Cardiac Electrophysiology Group, St. Anne’s University Hospital Brno, 664/53 Brno, Czech Republic
| | - Krzysztof Gołba
- Upper-Silesian Heart Center, Department of Electrocardiology, 40-055 Katowice, Poland;
- Department of Electrocardiology and Heart Failure, Medical University of Silesia, 40-055 Katowice, Poland
| | - Wojciech Wojakowski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-055 Katowice, Poland; (T.J.); (W.W.)
| | - Krystian Wita
- First Department of Cardiology, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Jacek Bednarek
- Department of Electrocardiology, John Paul II Hospital, 31-202 Cracow, Poland;
| | - Sławomir Blamek
- Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|
94
|
Cha MJ, Seo JW, Kim HJ, Kim MK, Yoon HS, Jo SW, Oh S, Chang JH. Early Changes in Rat Heart After High-Dose Irradiation: Implications for Antiarrhythmic Effects of Cardiac Radioablation. J Am Heart Assoc 2021; 10:e019072. [PMID: 33660526 PMCID: PMC8174197 DOI: 10.1161/jaha.120.019072] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background Noninvasive cardiac radioablation is employed to treat ventricular arrhythmia. However, myocardial changes leading to early‐period antiarrhythmic effects induced by high‐dose irradiation are unknown. This study investigated dose‐responsive histologic, ultrastructural, and functional changes within 1 month after irradiation in rat heart. Methods and Results Whole hearts of wild‐type Lewis rats (N=95) were irradiated with single fraction 20, 25, 30, 40, or 50 Gy and explanted at 1 day or 1, 2, 3, or 4 weeks’ postirradiation. Microscopic pathologic changes of cardiac structures by light microscope with immunohistopathologic staining, ultrastructure by electron microscopy, and functional evaluation by ECG and echocardiography were studied. Despite high‐dose irradiation, no myocardial necrosis and apoptosis were observed. Intercalated discs were widened and disrupted, forming uneven and twisted junctions between adjacent myocytes. Diffuse vacuolization peaked at 3 weeks, suggesting irradiation dose‐responsiveness, which was correlated with interstitial and intracellular edema. CD68 immunostaining accompanying vacuolization suggested mononuclear cell infiltration. These changes were prominent in working myocardium but not cardiac conduction tissue. Intracardiac conduction represented by PR and QTc intervals on ECG was delayed compared with baseline measurements. ST segment was initially depressed and gradually elevated. Ventricular chamber dimensions and function remained intact without pericardial effusion. Conclusions Mononuclear cell–related intracellular and extracellular edema with diffuse vacuolization and intercalated disc widening were observed within 1 month after high‐dose irradiation. ECG indicated intracardiac conduction delay with prominent ST‐segment changes. These observations suggest that early antiarrhythmic effects after cardiac radioablation result from conduction disturbances and membrane potential alterations without necrosis.
Collapse
Affiliation(s)
- Myung-Jin Cha
- Division of Cardiology Department of Internal Medicine Seoul National University Hospital Seoul South Korea
| | - Jeong-Wook Seo
- Departments of Pathology Seoul National University Hospital Seoul South Korea
| | - Hak Jae Kim
- Department of Radiation Oncology Seoul National University College of Medicine Seoul Korea.,Department of Radiation Oncology Seoul National University Hospital Seoul South Korea.,Cancer Research InstituteSeoul National University College of Medicine Seoul Korea
| | - Moo-Kang Kim
- Division of Cardiology Department of Internal Medicine Seoul National University Hospital Seoul South Korea
| | - Hye-Sun Yoon
- Division of Cardiology Department of Internal Medicine Seoul National University Hospital Seoul South Korea
| | - Seong Won Jo
- Seoul National University College of Medicine Seoul Korea
| | - Seil Oh
- Division of Cardiology Department of Internal Medicine Seoul National University Hospital Seoul South Korea
| | - Ji Hyun Chang
- Department of Radiation Oncology Seoul National University College of Medicine Seoul Korea.,Department of Radiation Oncology Seoul National University Hospital Seoul South Korea
| |
Collapse
|
95
|
Lydiard, PGDip S, Blanck O, Hugo G, O’Brien R, Keall P. A Review of Cardiac Radioablation (CR) for Arrhythmias: Procedures, Technology, and Future Opportunities. Int J Radiat Oncol Biol Phys 2021; 109:783-800. [DOI: 10.1016/j.ijrobp.2020.10.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
|
96
|
Conte E, Mushtaq S, Carbucicchio C, Piperno G, Catto V, Mancini ME, Formenti A, Annoni A, Guglielmo M, Baggiano A, Muscogiuri G, Belmonte M, Cattani F, Pontone G, Jereczek-Fossa BA, Orecchia R, Tondo C, Andreini D. State of the art paper: Cardiovascular CT for planning ventricular tachycardia ablation procedures. J Cardiovasc Comput Tomogr 2021; 15:394-402. [PMID: 33563533 DOI: 10.1016/j.jcct.2021.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
In the last 20 years coronary computed tomography angiography (CCTA) gained a pivotal role in the evaluation of patients with suspected coronary artery disease (CAD) as finally recognized by the ESC guidelines on stable CAD. Technological advances have progressively improved the temporal resolution of CT scanners, contemporary reducing acquisition time, radiation dose and contrast volume needed for the whole heart volume acquisition, further expanding the role of cardiac CT beyond coronary anatomy evaluation. Aim of the present review is to discuss use and benefit of cardiac CT for the planning and preparation of VT ablation.
Collapse
Affiliation(s)
| | | | | | - Gaia Piperno
- Division of Radiotherapy IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | | | | | | | | | | | | | | | | | - Federica Cattani
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Barbara Alicja Jereczek-Fossa
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Claudio Tondo
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Daniele Andreini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy.
| |
Collapse
|
97
|
Sacher F, Gandjbakhch E, Maury P, Jenny C, Khalifa J, Boveda S, Defaye P, Gras D, Klug D, Laurent G, Lellouche N, Mansourati J, Marijon E, Piot O, Taieb J, Cochet H, Maingon P, Pruvot E, Fauchier L. Focus on stereotactic radiotherapy: A new way to treat severe ventricular arrhythmias? Arch Cardiovasc Dis 2021; 114:140-149. [PMID: 33478860 DOI: 10.1016/j.acvd.2020.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Ventricular tachycardia has a significant recurrence rate after ablation for several reasons, including inaccessible substrate. A non-invasive technique to ablate any defined areas of myocardium involved in arrhythmogenesis would be a potentially important therapeutic improvement if shown to be safe and effective. Early feasibility studies of single-fraction stereotactic body radiotherapy have demonstrated encouraging results, but rigorous evaluation and follow-up are required. In this document, the basic concepts of stereotactic body radiotherapy are summarized, before focusing on stereotactic arrhythmia radioablation. We describe the effect of radioablation on cardiac tissue and its interaction with intracardiac devices, depending on the dose. The different clinical studies on ventricular tachycardia radioablation are analysed, with a focus on target identification, which is the key feature of this approach. Our document ends with the indications and requirements for practicing this type of procedure in 2020. Finally, because of the limited number of patients treated so far, we encourage multicentre registries with long-term follow-up.
Collapse
Affiliation(s)
- Frédéric Sacher
- Department of cardiology, IHU Liryc, electrophysiology and heart modelling institute, Bordeaux university hospital (CHU), university of Bordeaux, 33600 Pessac, France.
| | - Estelle Gandjbakhch
- Department of cardiology, La Pitié-Salpétrière university hospital, AP-HP, 75013 Paris, France
| | - Philippe Maury
- Department of cardiology, Toulouse university hospital, 31059 Toulouse, France
| | - Catherine Jenny
- Department of radiotherapy, La Pitié-Salpétrière university hospital, AP-HP, 75013 Paris, France
| | - Jonathan Khalifa
- Departments of radiotherapy and cardiology, Toulouse university hospital, 31059 Toulouse, France
| | - Serge Boveda
- Department of cardiology, clinique Pasteur, 31076 Toulouse, France
| | - Pascal Defaye
- Department of cardiology, Grenoble university hospital, 38700 La Tronche, France
| | - Daniel Gras
- Department of cardiology, nouvelles cliniques nantaises, 44277 Nantes, France
| | - Didier Klug
- Department of cardiology, Lille university hospital, 59000 Lille, France
| | - Gabriel Laurent
- Department of cardiology, Dijon university hospital, 21000 Dijon, France
| | - Nicolas Lellouche
- Department of cardiology, hôpital Henri-Mondor, AP-HP, 94010 Créteil, France
| | - Jacques Mansourati
- Department of cardiology, Brest university hospital, 29609 Brest, France
| | - Eloi Marijon
- Department of cardiology, hôpital européen Georges-Pompidou, AP-HP, 75015 Paris, France
| | - Olivier Piot
- Department of cardiology, centre cardiologique du nord, 93200 Saint-Denis, France
| | - Jerome Taieb
- Department of cardiology, Aix-en-Provence hospital, 13616 Aix-en-Provence, France
| | - Hubert Cochet
- Department of radiology, IHU Liryc, electrophysiology and heart modelling institute, Bordeaux university hospital (CHU), university of Bordeaux, 33600 Pessac, France
| | - Philippe Maingon
- Department of radiotherapy, La Pitié-Salpétrière university hospital, AP-HP, 75013 Paris, France
| | - Etienne Pruvot
- Department of cardiology, CHUV, 1011 Lausanne, Switzerland
| | - Laurent Fauchier
- Department of cardiology, Tours university hospital, 37000 Tours, France
| | | |
Collapse
|
98
|
Campbell T, Bennett RG, Kotake Y, Kumar S. Updates in Ventricular Tachycardia Ablation. Korean Circ J 2021; 51:15-42. [PMID: 33377327 PMCID: PMC7779814 DOI: 10.4070/kcj.2020.0436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Sudden cardiac death (SCD) due to recurrent ventricular tachycardia is an important clinical sequela in patients with structural heart disease. As a result, ventricular tachycardia (VT) has emerged as a major clinical and public health problem. The mechanism of VT is predominantly mediated by re-entry in the presence of arrhythmogenic substrate (scar), though focal mechanisms are also important. Catheter ablation for VT, when compared to standard medical therapy, has been shown to improve VT-free survival and burden of device therapies. Approaches to VT ablation are dependent on the underlying disease process, broadly classified into idiopathic (no structural heart disease) or structural heart disease (ischemic or non-ischemic heart disease). This update aims to review recent advances made for the treatment of VT ablation, with respect to current clinical trials, peri-procedure risk assessments, pre-procedural cardiac imaging, electro-anatomic mapping and advances in catheter and non-catheter based ablation techniques.
Collapse
Affiliation(s)
- Timothy Campbell
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| | - Richard G Bennett
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| | - Yasuhito Kotake
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia.
| |
Collapse
|
99
|
Peichl P, Sramko M, Cvek J, Kautzner J. A case report of successful elimination of recurrent ventricular tachycardia by repeated stereotactic radiotherapy: the importance of accurate target volume delineation. EUROPEAN HEART JOURNAL-CASE REPORTS 2020; 5:ytaa516. [PMID: 33598611 PMCID: PMC7873794 DOI: 10.1093/ehjcr/ytaa516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/10/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022]
Abstract
Background Stereotactic body radiotherapy (SBRT) has emerged recently as a novel therapeutic alternative for patients with ventricular tachycardias (VTs) resistant to convetional treatment. Nevertheless, many aspects related to SBRT are currently unknown. Case summary A 66-year-old man with ischaemic heart disease, a history of coronary artery bypass graft surgery and left ventricular dysfunction was referred for recurrent symptomatic episodes of slow VT (108 b.p.m.). The arrhythmia was resistant to antiarrhythmic drug therapy with amiodarone and repeated catheter ablation. The patient was scheduled to SBRT, however, the first session failed to suppress VT recurrences. After 20 months, the patient underwent re-do ablation procedure that revealed a newly developed scar with its core adjacent to the presumed critical part of the VT substrate. Catheter ablation again failed to eliminate VT and the second session of SBRT was scheduled. To improve targeting of the VT substrate for SBRT, we applied our recently developed original method for integration of data from the electroanatomical mapping system with computer tomography images. The second session of SBRT with precise targeting using the novel strategy led within 3 months to the successful elimination of VT. Discussion This case report describes a patient in whom the recurrent VT was abolished only by properly targeted SBRT. Above all, the case highlights the importance of precise identification and targeting for SBRT. Our case also documents in vivo, by electroanatomical voltage mapping, the development of SBRT-related myocardial lesion. This represents an important mechanistic proof of the concept of SBRT.
Collapse
Affiliation(s)
- Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine (IKEM), Vídeňská 1958/9, Prague 140 21, Czech Republic
| | - Marek Sramko
- Department of Cardiology, Institute for Clinical and Experimental Medicine (IKEM), Vídeňská 1958/9, Prague 140 21, Czech Republic
| | - Jakub Cvek
- Department of Oncology, University Hospital Ostrava, 17. listopadu 1790/5, Ostrava, 708 00, Czech Republic
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine (IKEM), Vídeňská 1958/9, Prague 140 21, Czech Republic
| |
Collapse
|
100
|
Chiu MH, Mitchell LB, Ploquin N, Faruqi S, Kuriachan VP. Review of Stereotactic Arrhythmia Radioablation Therapy for Cardiac Tachydysrhythmias. CJC Open 2020; 3:236-247. [PMID: 33778440 PMCID: PMC7984992 DOI: 10.1016/j.cjco.2020.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/06/2020] [Indexed: 12/04/2022] Open
Abstract
Cardiac tachyarrhythmias are a major cause of morbidity and mortality. Treatments for these tachyarrhythmias include antiarrhythmic drugs, catheter ablation, surgical ablation, cardiac implantable electronic devices, and cardiac transplantation. Each of these treatment approaches is effective in some patients but there is considerable room for improvement, particularly with respect to the most common of the tachydysrhythmias, atrial fibrillation, and the most dangerous of the tachydysrhythmias, ventricular tachycardia (VT) or ventricular fibrillation. Noninvasive stereotactic ablative radiation therapy is emerging as an effective treatment for refractory tachyarrhythmias. Animal models have shown successful ablation of arrhythmogenic myocardial substrates with minimal short-term complications. Studies of stereotactic radioablation involving patients with refractory VT have shown a reduction in VT recurrence and promising early safety data. In this review, we provide the background for the application of stereotactic arrhythmia radioablation therapy along with promising results from early applications of the technology.
Collapse
Affiliation(s)
- Michael H Chiu
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - L Brent Mitchell
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Nicolas Ploquin
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Salman Faruqi
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Vikas P Kuriachan
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|