51
|
Moynihan MA, Goodkin NF, Morgan KM, Kho PYY, Lopes Dos Santos A, Lauro FM, Baker DM, Martin P. Coral-associated nitrogen fixation rates and diazotrophic diversity on a nutrient-replete equatorial reef. THE ISME JOURNAL 2022; 16:233-246. [PMID: 34294880 PMCID: PMC8692400 DOI: 10.1038/s41396-021-01054-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
The role of diazotrophs in coral physiology and reef biogeochemistry remains poorly understood, in part because N2 fixation rates and diazotrophic community composition have only been jointly analyzed in the tissue of one tropical coral species. We performed field-based 15N2 tracer incubations during nutrient-replete conditions to measure diazotroph-derived nitrogen (DDN) assimilation into three species of scleractinian coral (Pocillopora acuta, Goniopora columna, Platygyra sinensis). Using multi-marker metabarcoding (16S rRNA, nifH, 18S rRNA), we analyzed DNA- and RNA-based communities in coral tissue and skeleton. Despite low N2 fixation rates, DDN assimilation supplied up to 6% of the holobiont's N demand. Active coral-associated diazotrophs were chiefly Cluster I (aerobes or facultative anaerobes), suggesting that oxygen may control coral-associated diazotrophy. Highest N2 fixation rates were observed in the endolithic community (0.20 µg N cm-2 per day). While the diazotrophic community was similar between the tissue and skeleton, RNA:DNA ratios indicate potential differences in relative diazotrophic activity between these compartments. In Pocillopora, DDN was found in endolithic, host, and symbiont compartments, while diazotrophic nifH sequences were only observed in the endolithic layer, suggesting a possible DDN exchange between the endolithic community and the overlying coral tissue. Our findings demonstrate that coral-associated diazotrophy is significant, even in nutrient-rich waters, and suggest that endolithic microbes are major contributors to coral nitrogen cycling on reefs.
Collapse
Affiliation(s)
- Molly A Moynihan
- Earth Observatory of Singapore, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore.
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore.
| | - Nathalie F Goodkin
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
- Earth Observatory of Singapore, Nanyang Technological University, Singapore, Singapore
- American Museum of Natural History, New York, NY, USA
| | - Kyle M Morgan
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Phyllis Y Y Kho
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | | | - Federico M Lauro
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - David M Baker
- Division for Ecology and Biodiversity, School of Biological Sciences, University of Hong Kong, Hong Kong, PR China
- The Swire Institute of Marine Science, University of Hong Kong, Hong Kong, PR China
| | - Patrick Martin
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
52
|
Han Y, Guo C, Guan X, McMinn A, Liu L, Zheng G, Jiang Y, Liang Y, Shao H, Tian J, Wang M. Comparison of Deep-Sea Picoeukaryotic Composition Estimated from the V4 and V9 Regions of 18S rRNA Gene with a Focus on the Hadal Zone of the Mariana Trench. MICROBIAL ECOLOGY 2022; 83:34-47. [PMID: 33811505 DOI: 10.1007/s00248-021-01747-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Diversity of microbial eukaryotes is estimated largely based on sequencing analysis of the hypervariable regions of 18S rRNA genes. But the use of different regions of 18S rRNA genes as molecular markers may generate bias in diversity estimation. Here, we compared the differences between the two most widely used markers, V4 and V9 regions of the 18S rRNA gene, in describing the diversity of epipelagic, bathypelagic, and hadal picoeukaryotes in the Challenger Deep of the Mariana Trench, which is a unique and little explored environment. Generally, the V9 region identified more OTUs in deeper waters than V4, while the V4 region provided greater Shannon diversity than V9. In the epipelagic zone, where Alveolata was the dominant group, picoeukaryotic community compositions identified by V4 and V9 markers are similar at different taxonomic levels. However, in the deep waters, the results of the two datasets show clear differences. These differences were mainly contributed by Retaria, Fungi, and Bicosoecida. The primer targeting the V9 region has an advantage in amplifying Bicosoecids in the bathypelagic and hadal zone of the Mariana Trench, and its high abundance in V9 dataset pointed out the possibility of Bicosoecids as a dominant group in this environment. Chrysophyceae, Fungi, MALV-I, and Retaria were identified as the dominant picoeukaryotes in the bathypelagic and hadal zone and potentially play important roles in deep-sea microbial food webs and biogeochemical cycling by their phagotrophic, saprotrophic, and parasitic life styles. Overall, the use of different markers of 18S rRNA gene allows a better assessment and understanding of the picoeukaryotic diversity in deep-sea environments.
Collapse
Affiliation(s)
- Yuye Han
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
| | - Xuran Guan
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Lu Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Guiliang Zheng
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Yong Jiang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, China
- Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
| |
Collapse
|
53
|
Weig AR, Löder MGJ, Ramsperger AFRM, Laforsch C. In situ Prokaryotic and Eukaryotic Communities on Microplastic Particles in a Small Headwater Stream in Germany. Front Microbiol 2021; 12:660024. [PMID: 34912303 PMCID: PMC8667586 DOI: 10.3389/fmicb.2021.660024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023] Open
Abstract
The ubiquitous use of plastic products in our daily life is often accompanied by improper disposal. The first interactions of plastics with organisms in the environment occur by overgrowth or biofilm formation on the particle surface, which can facilitate the ingestion by animals. In order to elucidate the colonization of plastic particles by prokaryotic and eukaryotic microorganisms in situ, we investigated microbial communities in biofilms on four different polymer types and on mineral particles in a small headwater stream 500 m downstream of a wastewater treatment plant in Germany. Microplastic and mineral particles were exposed to the free-flowing water for 4 weeks in spring and in summer. The microbial composition of the developing biofilm was analyzed by 16S and 18S amplicon sequencing. Despite the expected seasonal differences in the microbial composition of pro- and eukaryotic communities, we repeatedly observed polymer type-specific differentiation in both seasons. The order of polymer type-specific prokaryotic and eukaryotic community distances calculated by Robust Aitchison principal component analysis (PCA) was the same in spring and summer samples. However, the magnitude of the distance differed considerably between polymer types. Prokaryotic communities on polyethylene particles exhibited the most considerable difference to other particles in summer, while eukaryotic communities on polypropylene particles showed the most considerable difference to other spring samples. The most contributing bacterial taxa to the polyethylene-specific differentiation belong to the Planctomycetales, Saccharimonadales, Bryobacterales, uncultured Acidiomicrobia, and Gemmatimonadales. The most remarkable differences in eukaryotic microorganism abundances could be observed in several distinct groups of Ciliophora (ciliates) and Chlorophytes (green algae). Prediction of community functions from taxonomic abundances revealed differences between spring and summer, and – to a lesser extent – also between polymer types and mineral surfaces. Our results show that different microplastic particles were colonized by different biofilm communities. These findings may be used for advanced experimental designs to investigate the role of microorganisms on the fate of microplastic particles in freshwater ecosystems.
Collapse
Affiliation(s)
- Alfons R Weig
- Genomics and Bioinformatics, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Martin G J Löder
- Animal Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Anja F R M Ramsperger
- Animal Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany.,Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
54
|
Morillas-España A, Sánchez-Zurano A, Gómez-Serrano C, Ciardi M, Acién G, Clagnan E, Adani F, Lafarga T. Potential of the cyanobacteria Anabaena sp. and Dolichospermum sp. for being produced using wastewater or pig slurry: Validation using pilot-scale raceway reactors. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
55
|
Clarke LJ, Suter L, Deagle BE, Polanowski AM, Terauds A, Johnstone GJ, Stark JS. Environmental DNA metabarcoding for monitoring metazoan biodiversity in Antarctic nearshore ecosystems. PeerJ 2021; 9:e12458. [PMID: 34820189 PMCID: PMC8601059 DOI: 10.7717/peerj.12458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Antarctic benthic ecosystems support high biodiversity but their characterization is limited to a few well-studied areas, due to the extreme environment and remoteness making access and sampling difficult. Our aim was to compare water and sediment as sources of environmental DNA (eDNA) to better characterise Antarctic benthic communities and further develop practical approaches for DNA-based biodiversity assessment in remote environments. We used a cytochrome c oxidase subunit I (COI) metabarcoding approach to characterise metazoan communities in 26 nearshore sites across 12 locations in the Vestfold Hills (East Antarctica) based on DNA extracted from either sediment cores or filtered seawater. We detected a total of 99 metazoan species from 12 phyla across 26 sites, with similar numbers of species detected in sediment and water eDNA samples. However, significantly different communities were detected in the two sample types at sites where both were collected (i.e., where paired samples were available). For example, nematodes and echinoderms were more likely to be detected exclusively in sediment and water eDNA samples, respectively. eDNA from water and sediment core samples are complementary sample types, with epifauna more likely to be detected in water column samples and infauna in sediment. More reference DNA sequences are needed for infauna/meiofauna to increase the proportion of sequences and number of taxa that can be identified. Developing a better understanding of the temporal and spatial dynamics of eDNA at low temperatures would also aid interpretation of eDNA signals from polar environments. Our results provide a preliminary scan of benthic metazoan communities in the Vestfold Hills, with additional markers required to provide a comprehensive biodiversity survey. However, our study demonstrates the choice of sample type for eDNA studies of benthic ecosystems (sediment, water or both) needs to be carefully considered in light of the research or monitoring question of interest.
Collapse
Affiliation(s)
- Laurence J Clarke
- Australian Antarctic Division, Kingston, Tasmania, Australia.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Leonie Suter
- Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Bruce E Deagle
- Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, Australia
| | | | - Aleks Terauds
- Australian Antarctic Division, Kingston, Tasmania, Australia
| | | | | |
Collapse
|
56
|
Metz S, Huber P, Accattatis V, Lopes Dos Santos A, Bigeard E, Unrein F, Chambouvet A, Not F, Lara E, Devercelli M. Freshwater protists: unveiling the unexplored in a large floodplain system. Environ Microbiol 2021; 24:1731-1745. [PMID: 34783136 DOI: 10.1111/1462-2920.15838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/23/2021] [Accepted: 10/31/2021] [Indexed: 12/25/2022]
Abstract
Protists play a fundamental role in all ecosystems, but we are still far from estimating the total diversity of many lineages, in particular in highly diverse environments, such as freshwater. Here, we survey the protist diversity of the Paraná River using metabarcoding, and we applied an approach that includes sequence similarity and phylogeny to evaluate the degree of genetic novelty of the protists' communities against the sequences described in the reference database PR2 . We observed that ~28% of the amplicon sequence variants were classified as novel according to their similarity with sequences from the reference database; most of them were related to heterotrophic groups traditionally overlooked in freshwater systems. This lack of knowledge extended to those groups within the green algae (Archaeplastida) that are well documented such as Mamiellophyceae, and also to the less studied Pedinophyceae, for which we found sequences representing novel deep-branching clusters. Among the groups with potential novel protists, Bicosoecida (Stramenopiles) were the best represented, followed by Codosiga (Opisthokonta), and the Perkinsea (Alveolata). This illustrates the lack of knowledge on freshwater planktonic protists and also the need for isolation and/or cultivation of new organisms to better understand their role in ecosystem functioning.
Collapse
Affiliation(s)
- Sebastian Metz
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Plouzané, F-29280, France.,Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Buenos Aires, Argentina
| | - Paula Huber
- Departamento de Hidrobiologia, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, São Paulo, 13565-905, Brazil.,Instituto Nacional de Limnología (INALI), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Victoria Accattatis
- Departamento de Hidrobiologia, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, São Paulo, 13565-905, Brazil
| | | | - Estelle Bigeard
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Fernando Unrein
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Chascomús, Buenos Aires, Argentina
| | | | - Fabrice Not
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, Roscoff, 29680, France
| | - Enrique Lara
- Real Jardín Botánico de Madrid, CSIC, Madrid, 28014, Spain
| | - Melina Devercelli
- Departamento de Hidrobiologia, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
57
|
Shemi A, Alcolombri U, Schatz D, Farstey V, Vincent F, Rotkopf R, Ben-Dor S, Frada MJ, Tawfik DS, Vardi A. Dimethyl sulfide mediates microbial predator-prey interactions between zooplankton and algae in the ocean. Nat Microbiol 2021; 6:1357-1366. [PMID: 34697459 DOI: 10.1038/s41564-021-00971-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022]
Abstract
Phytoplankton are key components of the oceanic carbon and sulfur cycles1. During bloom events, some species can emit large amounts of the organosulfur volatile dimethyl sulfide (DMS) into the ocean and consequently the atmosphere, where it can modulate aerosol formation and affect climate2,3. In aquatic environments, DMS plays an important role as a chemical signal mediating diverse trophic interactions. Yet, its role in microbial predator-prey interactions remains elusive with contradicting evidence for its role in either algal chemical defence or in the chemo-attraction of grazers to prey cells4,5. Here we investigated the signalling role of DMS during zooplankton-algae interactions by genetic and biochemical manipulation of the algal DMS-generating enzyme dimethylsulfoniopropionate lyase (DL) in the bloom-forming alga Emiliania huxleyi6. We inhibited DL activity in E. huxleyi cells in vivo using the selective DL-inhibitor 2-bromo-3-(dimethylsulfonio)-propionate7 and overexpressed the DL-encoding gene in the model diatom Thalassiosira pseudonana. We showed that algal DL activity did not serve as an anti-grazing chemical defence but paradoxically enhanced predation by the grazer Oxyrrhis marina and other microzooplankton and mesozooplankton, including ciliates and copepods. Consumption of algal prey with induced DL activity also promoted O. marina growth. Overall, our results demonstrate that DMS-mediated grazing may be ecologically important and prevalent during prey-predator dynamics in aquatic ecosystems. The role of algal DMS revealed here, acting as an eat-me signal for grazers, raises fundamental questions regarding the retention of its biosynthetic enzyme through the evolution of dominant bloom-forming phytoplankton in the ocean.
Collapse
Affiliation(s)
- Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Uria Alcolombri
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.,Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Viviana Farstey
- The Inter-University Institute for Marine Sciences, Eilat, Israel
| | - Flora Vincent
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Miguel J Frada
- The Inter-University Institute for Marine Sciences, Eilat, Israel.,Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
58
|
Vaulot D, Geisen S, Mahé F, Bass D. pr2-primers: An 18S rRNA primer database for protists. Mol Ecol Resour 2021; 22:168-179. [PMID: 34251760 DOI: 10.1111/1755-0998.13465] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/31/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023]
Abstract
Metabarcoding of microbial eukaryotes (collectively known as protists) has developed tremendously in the last decade, almost solely relying on the 18S rRNA gene. As microbial eukaryotes are extremely diverse, many primers and primer pairs have been developed. To cover a relevant and representative fraction of the protist community in a given study system, an informed primer choice is necessary, as no primer pair can target all protists equally well. As such, a smart primer choice is very difficult even for experts and there are very few online resources available to list existing primers. We built a database listing 285 primers and 83 unique primer pairs that have been used for eukaryotic 18S rRNA gene metabarcoding. In silico performance of primer pairs was tested against two sequence databases: PR2 version 4.12.0 for eukaryotes and a subset of silva version 132 for bacteria and archaea. We developed an R-based web application enabling browsing of the database, visualization of the taxonomic distribution of the amplified sequences with the number of mismatches, and testing any user-defined primer or primer set (https://app.pr2-primers.org). Taxonomic specificity of primer pairs, amplicon size and location of mismatches can also be determined. We identified universal primer sets that matched the largest number of sequences and analysed the specificity of some primer sets designed to target certain groups. This tool enables guided primer choices that will help a wide range of researchers to include protists as part of their investigations.
Collapse
Affiliation(s)
- Daniel Vaulot
- UMR 7144, ECOMAP, Station Biologique de Roscoff, CNRS, Sorbonne Université, Roscoff, France.,Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands.,Nanjing Agricultural University, Nanjing, China
| | - Frédéric Mahé
- CIRAD, UMR PHIM, Montpellier, France.,PHIM, CIRAD, INRAE, Institut Agro, Univ Montpellier, Montpellier, France
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK.,Department of Life Sciences, The Natural History Museum, London, UK
| |
Collapse
|
59
|
De Luca D, Piredda R, Sarno D, Kooistra WHCF. Resolving cryptic species complexes in marine protists: phylogenetic haplotype networks meet global DNA metabarcoding datasets. THE ISME JOURNAL 2021; 15:1931-1942. [PMID: 33589768 PMCID: PMC8245484 DOI: 10.1038/s41396-021-00895-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
Marine protists have traditionally been assumed to be lowly diverse and cosmopolitan. Yet, several recent studies have shown that many protist species actually consist of cryptic complexes of species whose members are often restricted to particular biogeographic regions. Nonetheless, detection of cryptic species is usually hampered by sampling coverage and application of methods (e.g. phylogenetic trees) that are not well suited to identify relatively recent divergence and ongoing gene flow. In this paper, we show how these issues can be overcome by inferring phylogenetic haplotype networks from global metabarcoding datasets. We use the Chaetoceros curvisetus (Bacillariophyta) species complex as study case. Using two complementary metabarcoding datasets (Ocean Sampling Day and Tara Oceans), we equally resolve the cryptic complex in terms of number of inferred species. We detect new hypothetical species in both datasets. Gene flow between most of species is absent, but no barcoding gap exists. Some species have restricted distribution patterns whereas others are widely distributed. Closely related taxa occupy contrasting biogeographic regions, suggesting that geographic and ecological differentiation drive speciation. In conclusion, we show the potential of the analysis of metabarcoding data with evolutionary approaches for systematic and phylogeographic studies of marine protists.
Collapse
Affiliation(s)
- Daniele De Luca
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Department of Biology, Botanical Garden of Naples, University of Naples Federico II, Naples, Italy
| | - Roberta Piredda
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Diana Sarno
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Wiebe H C F Kooistra
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
60
|
O'Brien PA, Andreakis N, Tan S, Miller DJ, Webster NS, Zhang G, Bourne DG. Testing cophylogeny between coral reef invertebrates and their bacterial and archaeal symbionts. Mol Ecol 2021; 30:3768-3782. [PMID: 34060182 DOI: 10.1111/mec.16006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Marine invertebrates harbour a complex suite of bacterial and archaeal symbionts, a subset of which are probably linked to host health and homeostasis. Within a complex microbiome it can be difficult to tease apart beneficial or parasitic symbionts from nonessential commensal or transient microorganisms; however, one approach is to detect strong cophylogenetic patterns between microbial lineages and their respective hosts. We employed the Procrustean approach to cophylogeny (PACo) on 16S rRNA gene derived microbial community profiles paired with COI, 18S rRNA and ITS1 host phylogenies. Second, we undertook a network analysis to identify groups of microbes that were co-occurring within our host species. Across 12 coral, 10 octocoral and five sponge species, each host group and their core microbiota (50% prevalence within host species replicates) had a significant fit to the cophylogenetic model. Independent assessment of each microbial genus and family found that bacteria and archaea affiliated to Endozoicomonadaceae, Spirochaetaceae and Nitrosopumilaceae have the strongest cophylogenetic signals. Further, local Moran's I measure of spatial autocorrelation identified 14 ASVs, including Endozoicomonadaceae and Spirochaetaceae, whose distributions were significantly clustered by host phylogeny. Four co-occurring subnetworks were identified, each of which was dominant in a different host group. Endozoicomonadaceae and Spirochaetaceae ASVs were abundant among the subnetworks, particularly one subnetwork that was exclusively comprised of these two bacterial families and dominated the octocoral microbiota. Our results disentangle key microbial interactions that occur within complex microbiomes and reveal long-standing, essential microbial symbioses in coral reef invertebrates.
Collapse
Affiliation(s)
- Paul A O'Brien
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,AIMS@JCU, Townsville, Qld, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Nikos Andreakis
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia
| | - Shangjin Tan
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Qld, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Qld, Australia.,AIMS@JCU, Townsville, Qld, Australia.,Australian Centre for Ecogenomics, University of Queensland, Brisbane, Qld, Australia
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, Qld, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia.,AIMS@JCU, Townsville, Qld, Australia
| |
Collapse
|
61
|
A Comparison of DNA Metabarcoding and Microscopy Methodologies for the Study of Aquatic Microbial Eukaryotes. DIVERSITY 2021. [DOI: 10.3390/d13050180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The procedures and methodologies employed to study microbial eukaryotic plankton have been thoroughly discussed. Two main schools exist—one insisting on classic microscopy methodologies and the other supporting modern high-throughput sequencing (DNA metabarcoding). However, few studies have attempted to combine both these approaches; most studies implement one method while ignoring the other. This work aims to contribute to this discussion and examine the advantages and disadvantages of each methodology by comparing marine plankton community results from microscopy and DNA metabarcoding. The results obtained by the two methodologies do not vary significantly for Bacillariophyta, although they do for Dinoflagellata and Ciliophora. The lower the taxonomic level, the higher the inconsistency between the two methodologies for all the studied groups. Considering the different characteristics of microscopy-based identification and DNA metabarcoding, this work underlines that each method should be chosen depending on the aims of the study. DNA metabarcoding provides a better estimate of the taxonomic richness of an ecosystem while microscopy provides more accurate quantitative results regarding abundance and biomass. In any case, the combined use of the two methods, if properly standardized, can provide much more reliable and accurate results for the study of marine microbial eukaryotes.
Collapse
|
62
|
Bruhn CS, Wohlrab S, Krock B, Lundholm N, John U. Seasonal plankton succession is in accordance with phycotoxin occurrence in Disko Bay, West Greenland. HARMFUL ALGAE 2021; 103:101978. [PMID: 33980456 DOI: 10.1016/j.hal.2021.101978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Harmful algal blooms (HABs) are occurring more frequently in the world's oceans, probably as a consequence of climate change. HABs have not been considered a serious concern in the Arctic, even though the Arctic warms faster than any other region. While phycotoxins and toxin-producing phytoplankton have been found in Arctic waters on several occasions, there is a lack of information on seasonal succession of species and whether the occurrence of harmful species correlates with the presence of their respective phycotoxins. Hence, there is no baseline to assess future changes of HABs in this area. Here, we investigated two periods, from winter to spring and from the spring bloom until summer, in Disko Bay, West Greenland and followed the succession of toxins and their producers using metabarcoding, as well as analyses of particulate and dissolved toxins. We observed a typical seasonal succession with a spring bloom dominated by diatoms, followed by dinoflagellates in summer, with the two most important potentially toxic taxa found being Pseudo-nitzschia spp. and Alexandrium ostenfeldii. The Pseudo-nitzschia spp. peak correlated with a clear increase in particulate domoic acid, reaching 0.05 pg/L. Presence of Alexandrium ostenfeldii could be linked to an increase in spirolides, up to 56.4 pg/L in the particulate phase. Generally, the majority of detected dissolved toxins followed the succession pattern of the particulate toxins with a delay in time. Our results further show that Arctic waters are a suitable habitat for various toxin producers and that the strong seasonality of this environment is reflected by changing abundances of different toxins that pose a potential threat to the ecosystem and its beneficiaries.
Collapse
Affiliation(s)
- Claudia Sabine Bruhn
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Sylke Wohlrab
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity, Ammerländer Heersstraße 231, 26129 Oldenburg, Germany
| | - Bernd Krock
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Nina Lundholm
- Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark
| | - Uwe John
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity, Ammerländer Heersstraße 231, 26129 Oldenburg, Germany.
| |
Collapse
|
63
|
Manning T, Thilagaraj AV, Mouradov D, Piola R, Grandison C, Gordon M, Shimeta J, Mouradov A. Diversity of dinoflagellate assemblages in coastal temperate and offshore tropical waters of Australia. BMC Ecol Evol 2021; 21:27. [PMID: 33588746 PMCID: PMC7885227 DOI: 10.1186/s12862-021-01745-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dinoflagellates are a ubiquitous and ecologically important component of marine phytoplankton communities, with particularly notable species including those associated with harmful algal blooms (HABs) and those that bioluminesce. High-throughput sequencing offers a novel approach compared to traditional microscopy for determining species assemblages and distributions of dinoflagellates, which are poorly known especially in Australian waters. RESULTS We assessed the composition of dinoflagellate assemblages in two Australian locations: coastal temperate Port Phillip Bay and offshore tropical waters of Davies Reef (Great Barrier Reef). These locations differ in certain environmental parameters reflecting latitude as well as possible anthropogenic influences. Molecular taxonomic assessment revealed more species than traditional microscopy, and it showed statistically significant differences in dinoflagellate assemblages between locations. Bioluminescent species and known associates of HABs were present at both sites. Dinoflagellates in both areas were mainly represented by the order Gymnodiniales (66%-82% of total sequence reads). In the warm waters of Davies Reef, Gymnodiniales were equally represented by the two superclades, Gymnodiniales sensu stricto (33%) and Gyrodinium (34%). In contrast, in cooler waters of Port Phillip Bay, Gymnodiniales was mainly represented by Gyrodinium (82%). In both locations, bioluminescent dinoflagellates represented up to 0.24% of the total sequence reads, with Protoperidinium the most abundant genus. HAB-related species, mainly represented by Gyrodinium, were more abundant in Port Phillip Bay (up to 47%) than at Davies Reef (28%), potentially reflecting anthropogenic influence from highly populated and industrial areas surrounding the bay. The entire assemblage of dinoflagellates, as well as the subsets of HAB and bioluminescent species, were strongly correlated with water quality parameters (R2 = 0.56-0.92). Significant predictors differed between the subsets: HAB assemblages were explained by salinity, temperature, dissolved oxygen, and total dissolved solids; whereas, bioluminescent assemblages were explained only by salinity and dissolved oxygen, and had greater variability. CONCLUSION High-throughput sequencing and genotyping revealed greater diversity of dinoflagellate assemblages than previously known in both subtropical and temperate Australian waters. Significant correlations of assemblage structure with environmental variables suggest the potential for explaining the distribution and composition of both HAB species and bioluminescent species.
Collapse
Affiliation(s)
- Tahnee Manning
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | | | - Dmitri Mouradov
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Richard Piola
- Maritime Division, Defence Science & Technology Group, Fishermans Bend, Canberra, VIC, Australia
| | - Clare Grandison
- Maritime Division, Defence Science & Technology Group, Fishermans Bend, Canberra, VIC, Australia
| | - Matthew Gordon
- Maritime Division, Defence Science & Technology Group, Fishermans Bend, Canberra, VIC, Australia
| | - Jeff Shimeta
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Aidyn Mouradov
- School of Science, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
64
|
Annual phytoplankton dynamics in coastal waters from Fildes Bay, Western Antarctic Peninsula. Sci Rep 2021; 11:1368. [PMID: 33446791 PMCID: PMC7809266 DOI: 10.1038/s41598-020-80568-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/22/2020] [Indexed: 01/04/2023] Open
Abstract
Year-round reports of phytoplankton dynamics in the West Antarctic Peninsula are rare and mainly limited to microscopy and/or pigment-based studies. We analyzed the phytoplankton community from coastal waters of Fildes Bay in the West Antarctic Peninsula between January 2014 and 2015 using metabarcoding of the nuclear and plastidial 18/16S rRNA gene from both size-fractionated and flow cytometry sorted samples. Overall 14 classes of photosynthetic eukaryotes were present in our samples with the following dominating: Bacillariophyta (diatoms), Pelagophyceae and Dictyochophyceae for division Ochrophyta, Mamiellophyceae and Pyramimonadophyceae for division Chlorophyta, Haptophyta and Cryptophyta. Each metabarcoding approach yielded a different image of the phytoplankton community with for example Prymnesiophyceae more prevalent in plastidial metabarcodes and Mamiellophyceae in nuclear ones. Diatoms were dominant in the larger size fractions and during summer, while Prymnesiophyceae and Cryptophyceae were dominant in colder seasons. Pelagophyceae were particularly abundant towards the end of autumn (May). In addition of Micromonas polaris and Micromonas sp. clade B3, both previously reported in Arctic waters, we detected a new Micromonas 18S rRNA sequence signature, close to, but clearly distinct from M. polaris, which potentially represents a new clade specific of the Antarctic. These results highlight the need for complementary strategies as well as the importance of year-round monitoring for a comprehensive description of phytoplankton communities in Antarctic coastal waters.
Collapse
|
65
|
De Luca D, Kooistra WHCF, Sarno D, Biffali E, Piredda R. Empirical evidence for concerted evolution in the 18S rDNA region of the planktonic diatom genus Chaetoceros. Sci Rep 2021; 11:807. [PMID: 33437054 PMCID: PMC7804092 DOI: 10.1038/s41598-020-80829-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/28/2020] [Indexed: 11/08/2022] Open
Abstract
Concerted evolution is a process of homogenisation of repetitive sequences within a genome through unequal crossing over and gene conversion. This homogenisation is never fully achieved because mutations always create new variants. Classically, concerted evolution has been detected as "noise" in electropherograms and these variants have been characterised through cloning and sequencing of subsamples of amplified products. However, this approach limits the number of detectable variants and provides no information about the abundance of each variant. In this study, we investigated concerted evolution by using environmental time-series metabarcoding data, single strain high-throughput sequencing (HTS) and a collection of Sanger reference barcode sequences. We used six species of the marine planktonic diatom genus Chaetoceros as study system. Abundance plots obtained from environmental metabarcoding and single strain HTS showed the presence of a haplotype far more abundant than all the others (the "dominant" haplotype) and identical to the reference sequences of that species obtained with Sanger sequencing. This distribution fitted best with Zipf's law among the rank abundance/ dominance models tested. Furthermore, in each strain 99% of reads showed a similarity of 99% with the dominant haplotype, confirming the efficiency of the homogenisation mechanism of concerted evolution. We also demonstrated that minor haplotypes found in the environmental samples are not only technical artefacts, but mostly intragenomic variation generated by incomplete homogenisation. Finally, we showed that concerted evolution can be visualised inferring phylogenetic networks from environmental data. In conclusion, our study provides an important contribution to the understanding of concerted evolution and to the interpretation of DNA barcoding and metabarcoding data based on multigene family markers.
Collapse
Affiliation(s)
- Daniele De Luca
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
- Department of Biology, University of Naples Federico II, Botanical Garden of Naples, Via Foria 223, 80139, Naples, Italy.
| | - Wiebe H C F Kooistra
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Diana Sarno
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Elio Biffali
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Roberta Piredda
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
66
|
Bird C, LeKieffre C, Jauffrais T, Meibom A, Geslin E, Filipsson HL, Maire O, Russell AD, Fehrenbacher JS. Heterotrophic Foraminifera Capable of Inorganic Nitrogen Assimilation. Front Microbiol 2020; 11:604979. [PMID: 33343548 PMCID: PMC7744380 DOI: 10.3389/fmicb.2020.604979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/11/2020] [Indexed: 11/17/2022] Open
Abstract
Nitrogen availability often limits biological productivity in marine systems, where inorganic nitrogen, such as ammonium is assimilated into the food web by bacteria and photoautotrophic eukaryotes. Recently, ammonium assimilation was observed in kleptoplast-containing protists of the phylum foraminifera, possibly via the glutamine synthetase/glutamate synthase (GS/GOGAT) assimilation pathway imported with the kleptoplasts. However, it is not known if the ubiquitous and diverse heterotrophic protists have an innate ability for ammonium assimilation. Using stable isotope incubations (15N-ammonium and 13C-bicarbonate) and combining transmission electron microscopy (TEM) with quantitative nanoscale secondary ion mass spectrometry (NanoSIMS) imaging, we investigated the uptake and assimilation of dissolved inorganic ammonium by two heterotrophic foraminifera; a non-kleptoplastic benthic species, Ammonia sp., and a planktonic species, Globigerina bulloides. These species are heterotrophic and not capable of photosynthesis. Accordingly, they did not assimilate 13C-bicarbonate. However, both species assimilated dissolved 15N-ammonium and incorporated it into organelles of direct importance for ontogenetic growth and development of the cell. These observations demonstrate that at least some heterotrophic protists have an innate cellular mechanism for inorganic ammonium assimilation, highlighting a newly discovered pathway for dissolved inorganic nitrogen (DIN) assimilation within the marine microbial loop.
Collapse
Affiliation(s)
- Clare Bird
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom.,School of GeoSciences, Grant Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlotte LeKieffre
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,UMR CNRS 6112 LPG, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, Angers, France
| | - Thierry Jauffrais
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, New Caledonia
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Centre for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, Switzerland
| | - Emmanuelle Geslin
- UMR CNRS 6112 LPG, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, Angers, France
| | | | - Olivier Maire
- Université de Bordeaux, EPOC, UMR 5805, Talence, France.,CNRS, EPOC, UMR 5805, Talence, France
| | - Ann D Russell
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, United States
| | - Jennifer S Fehrenbacher
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
67
|
Steiner PA, Geijo J, Fadeev E, Obiol A, Sintes E, Rattei T, Herndl GJ. Functional Seasonality of Free-Living and Particle-Associated Prokaryotic Communities in the Coastal Adriatic Sea. Front Microbiol 2020; 11:584222. [PMID: 33304331 PMCID: PMC7701263 DOI: 10.3389/fmicb.2020.584222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/23/2020] [Indexed: 01/04/2023] Open
Abstract
Marine snow is an important habitat for microbes, characterized by chemical and physical properties contrasting those of the ambient water. The higher nutrient concentrations in marine snow lead to compositional differences between the ambient water and the marine snow-associated prokaryotic community. Whether these compositional differences vary due to seasonal environmental changes, however, remains unclear. Thus, we investigated the seasonal patterns of the free-living and marine snow-associated microbial community composition and their functional potential in the northern Adriatic Sea. Our data revealed seasonal patterns in both, the free-living and marine snow-associated prokaryotes. The two assemblages were more similar to each other in spring and fall than in winter and summer. The taxonomic distinctness resulted in a contrasting functional potential. Motility and adaptations to low temperature in winter and partly anaerobic metabolism in summer characterized the marine snow-associated prokaryotes. Free-living prokaryotes were enriched in genes indicative for functions related to phosphorus limitation in winter and in genes tentatively supplementing heterotrophic growth with proteorhodopsins and CO-oxidation in summer. Taken together, the results suggest a strong influence of environmental parameters on both free-living and marine snow-associated prokaryotic communities in spring and fall leading to higher similarity between the communities, while the marine snow habitat in winter and summer leads to a specific prokaryotic community in marine snow in these two seasons.
Collapse
Affiliation(s)
- Paul A. Steiner
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Javier Geijo
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Eduard Fadeev
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Aleix Obiol
- Institut de Ciències del Mar, Institut de Ci ncies del Mar – Consejo Superior de Investigaciones Cient ficas (ICM-CSIC), Barcelona, Spain
| | - Eva Sintes
- Instituto Español de Oceanografia, Centre Oceanogràfic de les Balears, Palma, Spain
| | - Thomas Rattei
- Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology and Biogeochemistry, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
68
|
Piredda R, Grimm GW, Schulze ED, Denk T, Simeone MC. High-throughput sequencing of 5S-IGS in oaks: Exploring intragenomic variation and algorithms to recognize target species in pure and mixed samples. Mol Ecol Resour 2020; 21:495-510. [PMID: 32997899 DOI: 10.1111/1755-0998.13264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Abstract
Measuring biological diversity is a crucial but difficult undertaking, as exemplified in oaks where complex patterns of morphological, ecological, biogeographical and genetic differentiation collide with traditional taxonomy, which measures biodiversity in number of species (or higher taxa). In this pilot study, we generated high-throughput sequencing amplicon data of the intergenic spacer of the 5S nuclear ribosomal DNA cistron (5S-IGS) in oaks, using six mock samples that differ in geographical origin, species composition and pool complexity. The potential of the marker for automated genotaxonomy applications was assessed using a reference data set of 1,770 5S-IGS cloned sequences, covering the entire taxonomic breadth and distribution range of western Eurasian Quercus, and applying similarity (blast) and evolutionary approaches (maximum-likelihood trees and Evolutionary Placement Algorithm). Both methods performed equally well, allowing correct identification of species in sections Ilex and Cerris in the pure and mixed samples, and main lineages shared by species of sect. Quercus. Application of different cut-off thresholds revealed that medium- to high-abundance (>10 or 25) sequences suffice for a net species identification of samples containing one or a few individuals. Lower thresholds identify phylogenetic correspondence with all target species in highly mixed samples (analogous to environmental bulk samples) and include rare variants pointing towards reticulation, incomplete lineage sorting, pseudogenic 5S units and in situ (natural) contamination. Our pipeline is highly promising for future assessments of intraspecific and interpopulation diversity, and of the genetic resources of natural ecosystems, which are fundamental to empower fast and solid biodiversity conservation programmes worldwide.
Collapse
Affiliation(s)
| | - Guido W Grimm
- Orléans, France.,Department of Palaeontology, University of Vienna, Vienna, Austria
| | | | - Thomas Denk
- Swedish Museum of Natural History, Stockholm, Sweden
| | - Marco Cosimo Simeone
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli studi della Tuscia, Viterbo, Italy
| |
Collapse
|
69
|
Suter L, Polanowski AM, Clarke LJ, Kitchener JA, Deagle BE. Capturing open ocean biodiversity: Comparing environmental DNA metabarcoding to the continuous plankton recorder. Mol Ecol 2020; 30:3140-3157. [PMID: 32767849 DOI: 10.1111/mec.15587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/24/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Environmental DNA (eDNA) metabarcoding is emerging as a novel, objective tool for monitoring marine metazoan biodiversity. Zooplankton biodiversity in the vast open ocean is currently monitored through continuous plankton recorder (CPR) surveys, using ship-based bulk plankton sampling and morphological identification. We assessed whether eDNA metabarcoding (2 L filtered seawater) could capture similar Southern Ocean zooplankton biodiversity as conventional CPR bulk sampling (~1,500 L filtered seawater per CPR sample). We directly compared eDNA metabarcoding with (a) conventional morphological CPR sampling and (b) bulk DNA metabarcoding of CPR collected plankton (two transects for each comparison, 40 and 44 paired samples, respectively). A metazoan-targeted cytochrome c oxidase I (COI) marker was used to characterize species-level diversity. In the 2 L seawater eDNA samples, this marker amplified large amounts of non-metazoan picoplanktonic algae, but eDNA metabarcoding still detected up to 1.6 times more zooplankton species than morphologically analysed bulk CPR samples. COI metabarcoding of bulk DNA samples mostly avoided nonmetazoan amplifications and recovered more zooplankton species than eDNA metabarcoding. However, eDNA metabarcoding detected roughly two thirds of metazoan species and identified similar taxa contributing to community differentiation across the subtropical front separating transects. We observed a diurnal pattern in eDNA data for copepods which perform diel vertical migrations, indicating a surprisingly short temporal eDNA signal. Compared to COI, a eukaryote-targeted 18S ribosomal RNA marker detected a higher proportion, but lower diversity, of metazoans in eDNA. With refinement and standardization of methodology, eDNA metabarcoding could become an efficient tool for monitoring open ocean biodiversity.
Collapse
Affiliation(s)
- Leonie Suter
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Tas., Australia
| | - Andrea Maree Polanowski
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Tas., Australia
| | - Laurence John Clarke
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Tas., Australia.,Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | - John Andrew Kitchener
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Tas., Australia
| | - Bruce Emerson Deagle
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Tas., Australia.,Commonwealth Scientific and Industrial Research Organisation, Battery Point, Tas., Australia
| |
Collapse
|
70
|
O'Brien PA, Tan S, Yang C, Frade PR, Andreakis N, Smith HA, Miller DJ, Webster NS, Zhang G, Bourne DG. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. THE ISME JOURNAL 2020; 14:2211-2222. [PMID: 32444811 PMCID: PMC7608455 DOI: 10.1038/s41396-020-0671-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/01/2023]
Abstract
Microbiome assemblages of plants and animals often show a degree of correlation with host phylogeny; an eco-evolutionary pattern known as phylosymbiosis. Using 16S rRNA gene sequencing to profile the microbiome, paired with COI, 18S rRNA and ITS1 host phylogenies, phylosymbiosis was investigated in four groups of coral reef invertebrates (scleractinian corals, octocorals, sponges and ascidians). We tested three commonly used metrics to evaluate the extent of phylosymbiosis: (a) intraspecific versus interspecific microbiome variation, (b) topological comparisons between host phylogeny and hierarchical clustering (dendrogram) of host-associated microbial communities, and (c) correlation of host phylogenetic distance with microbial community dissimilarity. In all instances, intraspecific variation in microbiome composition was significantly lower than interspecific variation. Similarly, topological congruency between host phylogeny and the associated microbial dendrogram was more significant than would be expected by chance across all groups, except when using unweighted UniFrac distance (compared with weighted UniFrac and Bray-Curtis dissimilarity). Interestingly, all but the ascidians showed a significant positive correlation between host phylogenetic distance and associated microbial dissimilarity. Our findings provide new perspectives on the diverse nature of marine phylosymbioses and the complex roles of the microbiome in the evolution of marine invertebrates.
Collapse
Affiliation(s)
- Paul A O'Brien
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Shangjin Tan
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Chentao Yang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Pedro R Frade
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Nikos Andreakis
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Hillary A Smith
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - David J Miller
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| | - Guojie Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China.
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.
- Australian Institute of Marine Science, Townsville, QLD, Australia.
- AIMS@JCU, Townsville, QLD, Australia.
| |
Collapse
|
71
|
Margiotta F, Balestra C, Buondonno A, Casotti R, D'Ambra I, Di Capua I, Gallia R, Mazzocchi MG, Merquiol L, Pepi M, Percopo I, Saggiomo M, Sarno D, Zingone A. Do plankton reflect the environmental quality status? The case of a post-industrial Mediterranean Bay. MARINE ENVIRONMENTAL RESEARCH 2020; 160:104980. [PMID: 32907718 DOI: 10.1016/j.marenvres.2020.104980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
While the effects of industrial contamination in coastal areas may persist for years in benthos communities, plankton should not show permanent impairments because of their high spatial dynamics, fast turnover times and pronounced seasonality. To test this hypothesis, in 2019 we conducted five surveys in the Bay of Pozzuoli (Gulf of Naples, Mediterranean Sea), in front of a dismissed steel factory and in the adjacent inshore coastal waters. High seasonal variability was observed for bacteria, phytoplankton and mesozooplankton, whereas plankton spatial gradients were relatively smooth during each survey. Plankton biomass and diversity did not reveal any effects of past industrial activities not even at the innermost stations of the Bay, which however showed some signals of present anthropogenic pressure. Hydrodynamic and morphological features likely play a prominent role in maintaining a relatively good status of the plankton of the Bay, which hints at the relevance of coastal circulation and meteorological dynamics to revitalize areas impacted by human activities.
Collapse
Affiliation(s)
| | - Cecilia Balestra
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Angela Buondonno
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Raffaella Casotti
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Isabella D'Ambra
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Iole Di Capua
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Roberto Gallia
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | | | - Louise Merquiol
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Milva Pepi
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Isabella Percopo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Maria Saggiomo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Diana Sarno
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Adriana Zingone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
72
|
Clerissi C, Guillou L, Escoubas JM, Toulza E. Unveiling protist diversity associated with the Pacific oyster Crassostrea gigas using blocking and excluding primers. BMC Microbiol 2020; 20:193. [PMID: 32620152 PMCID: PMC7333408 DOI: 10.1186/s12866-020-01860-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Microbiome of macroorganisms might directly or indirectly influence host development and homeostasis. Many studies focused on the diversity and distribution of prokaryotes within these assemblages, but the eukaryotic microbial compartment remains underexplored so far. RESULTS To tackle this issue, we compared blocking and excluding primers to analyze microeukaryotic communities associated with Crassostrea gigas oysters. High-throughput sequencing of 18S rRNA genes variable loops revealed that excluding primers performed better by not amplifying oyster DNA, whereas the blocking primer did not totally prevent host contaminations. However, blocking and excluding primers showed similar pattern of alpha and beta diversities when protist communities were sequenced using metabarcoding. Alveolata, Stramenopiles and Archaeplastida were the main protist phyla associated with oysters. In particular, Codonellopsis, Cyclotella, Gymnodinium, Polarella, Trichodina, and Woloszynskia were the dominant genera. The potential pathogen Alexandrium was also found in high abundances within some samples. CONCLUSIONS Our study revealed the main protist taxa within oysters as well as the occurrence of potential oyster pathogens. These new primer sets are promising tools to better understand oyster homeostasis and disease development, such as the Pacific Oyster Mortality Syndrome (POMS) targeting juveniles.
Collapse
Affiliation(s)
- Camille Clerissi
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France. .,PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.
| | - Laure Guillou
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, Roscoff, France
| | - Jean-Michel Escoubas
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Montpellier, France
| | - Eve Toulza
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
73
|
Reñé A, Auladell A, Reboul G, Moreira D, López-García P. Performance of the melting seawater-ice elution method on the metabarcoding characterization of benthic protist communities. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:314-323. [PMID: 32157805 DOI: 10.1111/1758-2229.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 02/18/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Massive amplicon sequencing approaches to characterize the diversity of microbial eukaryotes in sediments are scarce and controls about the effects introduced by different methods to recover DNA are lacking. In this study, we compare the performance of the melting seawater-ice elution method on the characterization of benthic protist communities by 18S rRNA gene metabarcoding with results obtained by direct cell lysis and DNA purification from sediments. Even though the most abundant operational taxonomic units were recovered by both methods, eluted samples yielded higher richness than samples undergoing direct lysis. Both treatments allowed recovering the same taxonomic groups, although we observed significant differences in terms of relative abundance for some of them. Dinoflagellata and Ciliophora strongly dominated the community in eluted samples (> 80% reads). In directly lysed samples, they only represented 37%, while groups like Fungi and Ochrophytes were highly represented (> 20% reads respectively). Our results show that the elution process yields a higher protist richness estimation, most likely as a result of the higher sample volume used to recover organisms as compared to commonly used volumes for direct benthic DNA purification. Motile groups, like dinoflagellates and ciliates, are logically more enriched during the elution process.
Collapse
Affiliation(s)
- Albert Reñé
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91400, Orsay, France
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Adrià Auladell
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Guillaume Reboul
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91400, Orsay, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91400, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91400, Orsay, France
| |
Collapse
|
74
|
Anderson SR, Harvey EL. Temporal Variability and Ecological Interactions of Parasitic Marine Syndiniales in Coastal Protist Communities. mSphere 2020; 5:e00209-20. [PMID: 32461270 PMCID: PMC7253595 DOI: 10.1128/msphere.00209-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
Syndiniales are a ubiquitous group of protist parasites that infect and kill a wide range of hosts, including harmful bloom-forming dinoflagellates. Despite the importance of parasitism as an agent of plankton mortality, parasite-host dynamics remain poorly understood, especially over time, hindering the inclusion of parasitism in food web and ecosystem models. For a full year in the Skidaway River Estuary (Georgia), we employed weekly 18S rRNA sampling and co-occurrence network analysis to characterize temporal parasite-host infection dynamics of Syndiniales. Over the year, Syndiniales exhibited strong temporal variability, with higher relative abundance from June to October (7 to 28%) than other months in the year (0.01% to 6%). Nonmetric dimensional scaling of Syndiniales composition revealed tight clustering in June to October that coincided with elevated temperatures (23 to 31°C), though in general, abiotic factors poorly explained composition (canonical correspondence analysis [CCA] and partial least-squares [PLS]) and were less important in the network than biotic relationships. Syndiniales amplicon sequence variants (ASVs) were well represented in the co-occurrence network (20% of edges) and had significant positive associations (Spearman r > 0.7), inferred to be putative parasite-host relationships, with known dinoflagellate hosts (e.g., Akashiwo and Gymnodinium) and other protist groups (e.g., ciliates, radiolarians, and diatoms). Positive associations rarely involved a single Syndiniales and dinoflagellate species, implying flexible parasite-host infection dynamics. These findings provide insight into the temporal dynamics of Syndiniales over a full year and reinforce the importance of single-celled parasites in driving plankton population dynamics. Further empirical work is needed to confirm network interactions and to incorporate parasitism within the context of ecosystem models.IMPORTANCE Protist parasites in the marine alveolate group, Syndiniales, have been observed within infected plankton host cells for decades, and recently, global-scale efforts (Tara Ocean exploration) have confirmed their importance within microbial communities. Yet, protist parasites remain enigmatic, particularly with respect to their temporal dynamics and parasite-host interactions. We employed weekly 18S amplicon surveys over a full year in a coastal estuary, revealing strong temporal shifts in Syndiniales parasites, with highest relative abundance during warmer summer to fall months. Though influenced by temperature, Syndiniales population dynamics were also driven by a high frequency of biological interactions with other protist groups, as determined through co-occurrence network analysis. Parasitic interactions implied by the network highlighted a range of confirmed (dinoflagellates) and putative (diatoms) interactions and suggests parasites may be less selective in their preferred hosts. Understanding parasite-host dynamics over space and time will improve our ability to include parasitism as a loss term in microbial food web models.
Collapse
Affiliation(s)
- Sean R Anderson
- Skidaway Institute of Oceanography, University of Georgia, Savannah, Georgia, USA
| | | |
Collapse
|
75
|
Salmaso N, Boscaini A, Pindo M. Unraveling the Diversity of Eukaryotic Microplankton in a Large and Deep Perialpine Lake Using a High Throughput Sequencing Approach. Front Microbiol 2020; 11:789. [PMID: 32457713 PMCID: PMC7221148 DOI: 10.3389/fmicb.2020.00789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/02/2020] [Indexed: 11/28/2022] Open
Abstract
The structure of microbial communities, microalgae, heterotrophic protozoa and fungi contributes to characterize food webs and productivity and, from an anthropogenic point of view, the qualitative characteristics of water bodies. Traditionally, in freshwater environments many investigations have been directed to the study of pelagic microalgae (“phytoplankton”) and periphyton (i.e., photosynthetic and mixotrophic protists) through the use of light microscopy (LM). While the number of studies on bacterioplankton communities have shown a substantial increase after the advent of high-throughput sequencing (HTS) approaches, the study of the composition, structure, and spatio-temporal patterns of microbial eukaryotes in freshwater environments was much less widespread. Moreover, the understanding of the correspondence between the relative phytoplankton abundances estimated by HTS and LM is still incomplete. Taking into account these limitations, this study examined the biodiversity and seasonality of the community of eukaryotic microplankton in the epilimnetic layer of a large and deep perialpine lake (Lake Garda) using HTS. The analyses were carried out at monthly frequency during 2014 and 2015. The results highlighted the existence of a rich and well diversified community and the presence of numerous phytoplankton taxa that were never identified by LM in previous investigations. Furthermore, the relative abundances of phytoplankton estimated by HTS and LM showed a significant relationship at different taxonomic ranks. In the 2 years of investigation, the temporal development of the whole micro-eukaryotic community showed a clear non-random and comparable distribution pattern, with the main taxonomic groups coherently distributed in the individual seasons. In perspective, the results obtained in this study highlight the importance of HTS approaches in assessing biodiversity and the relative importance of the main protist groups along environmental gradients, including those caused by anthropogenic impacts (e.g., eutrophication and climate change).
Collapse
Affiliation(s)
- Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
76
|
Martínez A, Eckert EM, Artois T, Careddu G, Casu M, Curini-Galletti M, Gazale V, Gobert S, Ivanenko VN, Jondelius U, Marzano M, Pesole G, Zanello A, Todaro MA, Fontaneto D. Human access impacts biodiversity of microscopic animals in sandy beaches. Commun Biol 2020; 3:175. [PMID: 32313088 PMCID: PMC7170908 DOI: 10.1038/s42003-020-0912-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/23/2020] [Indexed: 01/25/2023] Open
Abstract
Whereas most work to understand impacts of humans on biodiversity on coastal areas has focused on large, conspicuous organisms, we highlight effects of tourist access on the diversity of microscopic marine animals (meiofauna). We used a DNA metabarcoding approach with an iterative and phylogeny-based approach for the taxonomic assignment of meiofauna and relate diversity patterns to the numbers of tourists accessing sandy beaches on an otherwise un-impacted island National Park. Tourist frequentation, independently of differences in sediment granulometry, beach length, and other potential confounding factors, affected meiofaunal diversity in the shallow “swash” zone right at the mean water mark; the impacts declined with water depth (up to 2 m). The indicated negative effect on meiofauna may have a consequence on all the biota including the higher trophic levels. Thus, we claim that it is important to consider restricting access to beaches in touristic areas, in order to preserve biodiversity. Martínez et al. use DNA metabarcoding and a phylogeny-based approach to demonstrate the effects of tourist access on meiofauna diversity of beaches in Asinara National Park. Their results show that tourist frequentation decreases meiofaunal diversity at the shallow “swash” zone, and can be used to inform tourist access and management of beaches.
Collapse
Affiliation(s)
- Alejandro Martínez
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), Verbania, Italy
| | - Ester M Eckert
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), Verbania, Italy
| | - Tom Artois
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Giovanni Careddu
- Parco Nazionale dell'Asinara, Area Marina Protetta, Porto Torres, Italy
| | - Marco Casu
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | | | - Vittorio Gazale
- Parco Nazionale dell'Asinara, Area Marina Protetta, Porto Torres, Italy
| | - Stefan Gobert
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Viatcheslav N Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ulf Jondelius
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Marinella Marzano
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy (CNR), Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy (CNR), Bari, Italy.,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "A. Moro", Bari, Italy
| | - Aldo Zanello
- Parco Nazionale dell'Asinara, Area Marina Protetta, Porto Torres, Italy
| | - M Antonio Todaro
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Modena, Italy
| | - Diego Fontaneto
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), Verbania, Italy.
| |
Collapse
|
77
|
Choi J, Park JS. Comparative analyses of the V4 and V9 regions of 18S rDNA for the extant eukaryotic community using the Illumina platform. Sci Rep 2020; 10:6519. [PMID: 32300168 PMCID: PMC7162856 DOI: 10.1038/s41598-020-63561-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Illumina sequencing is a representative tool for understanding the massive diversity of microbial eukaryotes in natural ecosystems. Here, we investigated the eukaryotic community in a pond (salinity of 2–4) on Dokdo (island) in the East Sea, Korea, using Illumina sequencing with primer sets for the V4 and V9 regions of 18S rDNA from 2016 to 2018 for the first time. Totally, 1,413 operational taxonomic units (OTUs) and 915 OTUs were detected using the V9 and V4 primer sets, respectively. Taxonomic analyses of these OTUs revealed that although the V4 primer set failed to describe the extant diversity for some major sub-division groups, the V9 primer set represented their diversity. Moreover, the rare taxa with <1% of total reads were exclusively detected using V9 primer set. Hence, the diversity of the eukaryotic community can vary depending on the choice of primers. The Illumina sequencing data of the V9 region of 18S rDNA may be advantageous for estimating the richness of the eukaryotic community including a rare biosphere, whereas the simultaneous application of two biomarkers may be suitable for understanding the molecular phylogenetic relationships. We strongly recommend both biomarkers be used to assess the diversity and phylogenetic relationship within the eukaryotic community in natural samples.
Collapse
Affiliation(s)
- Jaeho Choi
- Department of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong Soo Park
- Department of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea. .,Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, 41566, Republic of Korea. .,Kyungpook Institute of Oceanography, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
78
|
Gaonkar CC, Piredda R, Sarno D, Zingone A, Montresor M, Kooistra WHCF. Species detection and delineation in the marine planktonic diatoms Chaetoceros and Bacteriastrum through metabarcoding: making biological sense of haplotype diversity. Environ Microbiol 2020; 22:1917-1929. [PMID: 32157787 DOI: 10.1111/1462-2920.14984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
High-throughput sequencing (HTS) metabarcoding is commonly applied to assess phytoplankton diversity. Usually, haplotypes are grouped into operational taxonomic units (OTUs) through clustering, whereby the resulting number of OTUs depends on chosen similarity thresholds. We applied, instead, a phylogenetic approach to infer taxa among 18S rDNA V4-metabarcode haplotypes gathered from 48 time-series samples using the marine planktonic diatoms Chaetoceros and Bacteriastrum as test case. The 73 recovered taxa comprised both solitary haplotypes and polytomies, the latter composed each of a highly abundant, dominant haplotype and one to several minor, peripheral haplotypes. The solitary and dominant haplotypes usually matched reference sequences, enabling species assignation of taxa. We hypothesise that the super-abundance of reads in dominant haplotypes results from the homogenization effect of concerted evolution. Reads of populous peripheral haplotypes and dominant haplotypes show comparable distribution patterns over the sample dates, suggesting that they are part of the same population. Many taxa revealed marked seasonality, with closely related ones generally showing distinct periodicity, whereas others occur year-round. Phylogenies inferred from metabarcode haplotypes enable delineation of biologically meaningful taxa, whereas OTUs resulting from clustering algorithms often deviate markedly from such taxa.
Collapse
Affiliation(s)
- Chetan C Gaonkar
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Roberta Piredda
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Diana Sarno
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Adriana Zingone
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Marina Montresor
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Wiebe H C F Kooistra
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| |
Collapse
|
79
|
Variability and Community Composition of Marine Unicellular Eukaryote Assemblages in a Eutrophic Mediterranean Urban Coastal Area with Marked Plankton Blooms and Red Tides. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12030114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Thessaloniki Bay is a eutrophic coastal area which has been characterized in recent years by frequent and intense phytoplankton blooms and red tides. The aim of the study was to investigate the underexplored diversity of marine unicellular eukaryotes in four different sampling sites in Thessaloniki Bay during a year of plankton blooms, red tides, and mucilage aggregates. High-Throughput Sequencing (HTS) was applied in extracted DNA from weekly water samples targeting the 18S rRNA gene. In almost all samples, phytoplankton blooms and/or red tides and mucilage aggregates were observed. The metabarcoding analysis has detected the known unicellular eukaryotic groups frequently observed in the Bay, dominated by Bacillariophyta and Dinoflagellata, and revealed taxonomic groups previously undetected in the study area (MALVs, MAST, and Cercozoa). The dominant OTUs were closely related to species known to participate in red tides, harmful blooms, and mucilage aggregates. Other OTUs, present also during the blooms in low abundance (number of reads), were closely related to known harmful species, suggesting the occurrence of rare taxa with potential negative impacts on human health not detectable with classical microscopy. Overall, the unicellular eukaryote assemblages showed temporal patterns rather than small-scale spatial separation responding to the variability of physical and chemical factors.
Collapse
|
80
|
Obiol A, Giner CR, Sánchez P, Duarte CM, Acinas SG, Massana R. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol Ecol Resour 2020; 20. [PMID: 32065492 DOI: 10.1111/1755-0998.13147] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 01/23/2023]
Abstract
Surveying microbial diversity and function is accomplished by combining complementary molecular tools. Among them, metagenomics is a PCR free approach that contains all genetic information from microbial assemblages and is today performed at a relatively large scale and reasonable cost, mostly based on very short reads. Here, we investigated the potential of metagenomics to provide taxonomic reports of marine microbial eukaryotes. We prepared a curated database with reference sequences of the V4 region of 18S rDNA clustered at 97% similarity and used this database to extract and classify metagenomic reads. More than half of them were unambiguously affiliated to a unique reference whilst the rest could be assigned to a given taxonomic group. The overall diversity reported by metagenomics was similar to that obtained by amplicon sequencing of the V4 and V9 regions of the 18S rRNA gene, although either one or both of these amplicon surveys performed poorly for groups like Excavata, Amoebozoa, Fungi and Haptophyta. We then studied the diversity of picoeukaryotes and nanoeukaryotes using 91 metagenomes from surface down to bathypelagic layers in different oceans, unveiling a clear taxonomic separation between size fractions and depth layers. Finally, we retrieved long rDNA sequences from assembled metagenomes that improved phylogenetic reconstructions of particular groups. Overall, this study shows metagenomics as an excellent resource for taxonomic exploration of marine microbial eukaryotes.
Collapse
Affiliation(s)
- Aleix Obiol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Caterina R Giner
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| |
Collapse
|
81
|
Cai R, Kayal E, Alves-de-Souza C, Bigeard E, Corre E, Jeanthon C, Marie D, Porcel BM, Siano R, Szymczak J, Wolf M, Guillou L. Cryptic species in the parasitic Amoebophrya species complex revealed by a polyphasic approach. Sci Rep 2020; 10:2531. [PMID: 32054950 PMCID: PMC7018713 DOI: 10.1038/s41598-020-59524-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/27/2020] [Indexed: 12/02/2022] Open
Abstract
As critical primary producers and recyclers of organic matter, the diversity of marine protists has been extensively explored by high-throughput barcode sequencing. However, classification of short metabarcoding sequences into traditional taxonomic units is not trivial, especially for lineages mainly known by their genetic fingerprints. This is the case for the widespread Amoebophrya ceratii species complex, parasites of their dinoflagellate congeners. We used genetic and phenotypic characters, applied to 119 Amoebophrya individuals sampled from the same geographic area, to construct practical guidelines for species delineation that could be applied in DNA/RNA based diversity analyses. Based on the internal transcribed spacer (ITS) regions, ITS2 compensatory base changes (CBC) and genome k-mer comparisons, we unambiguously defined eight cryptic species among closely related ribotypes that differed by less than 97% sequence identity in their SSU rDNA. We then followed the genetic signatures of these parasitic species during a three-year survey of Alexandrium minutum blooms. We showed that these cryptic Amoebophrya species co-occurred and shared the same ecological niche. We also observed a maximal ecological fitness for parasites having narrow to intermediate host ranges, reflecting a high cost for infecting a broader host range. This study suggests that a complete taxonomic revision of these parasitic dinoflagellates is long overdue to understand their diversity and ecological role in the marine plankton.
Collapse
Affiliation(s)
- Ruibo Cai
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Ehsan Kayal
- Sorbonne Université, CNRS, FR2424 ABIMS, Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Catharina Alves-de-Souza
- Algal Resources Collection, MARBIONC, Center for Marine Sciences, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, US
| | - Estelle Bigeard
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Erwan Corre
- Sorbonne Université, CNRS, FR2424 ABIMS, Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Christian Jeanthon
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Dominique Marie
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Betina M Porcel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University Evry, Université Paris-Saclay, 91057, Evry, France
| | - Raffaele Siano
- Ifremer-Centre de Bretagne, Département/Unité/Laboratoire ODE/DYNECO/Pelagos, Z.I. Technopôle Brest-Iroise, Pointe du Diable BP70, 29280, Plouzané, France
| | - Jeremy Szymczak
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - Matthias Wolf
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Laure Guillou
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France.
| |
Collapse
|
82
|
Armeli Minicante S, Piredda R, Quero GM, Finotto S, Bernardi Aubry F, Bastianini M, Pugnetti A, Zingone A. Habitat Heterogeneity and Connectivity: Effects on the Planktonic Protist Community Structure at Two Adjacent Coastal Sites (the Lagoon and the Gulf of Venice, Northern Adriatic Sea, Italy) Revealed by Metabarcoding. Front Microbiol 2019; 10:2736. [PMID: 32038505 PMCID: PMC6988810 DOI: 10.3389/fmicb.2019.02736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/11/2019] [Indexed: 11/28/2022] Open
Abstract
The Lagoon of Venice (LoV) and the Gulf of Venice (GoV), two adjacent coastal Long Term Ecological Research (LTER) sites in the northern Adriatic Sea, represent a transitional/marine coupled ecosystem under the influence of regional and local factors. In this study, these sites were sampled on four dates from April 2016 to February 2017 for environmental DNA and relevant abiotic variables, aiming to assess the relative importance of habitat heterogeneity and connectivity in structuring the protist community. High Throughput Sequencing of V4-18S rRNA gene from 56 samples collected at seven stations produced ca 6 million reads, grouped into 7,336 Operational Taxonomic Units (OTUs) at 97% similarity, which were affiliated to protists belonging to 34 taxonomic groups. The whole community was dominated by Bacillariophyta, especially in spring-summer in the LoV, and by Dinophyta, mainly in the GoV. Ciliophora, Syndiniales, and Cryptophyceae were the next more abundant groups. The community structure varied across the seasons and was different in the two ecosystems, which shared 96% of the reads but showed a high proportion of OTUs distributed preferentially in one of the two sites (specialists) and a different partitioning of trophic categories. GoV specialists were mainly Dinophyceae (>56%), followed by Syndiniales and Bacillariophyta, while the LoV specialists were distributed among several groups, including Bacillariophyta, Syndiniales, Ciliophora, Cryptophyceae, and Trebouxiophyceae. The main abiotic drivers of the differences between protist communities were salinity and temperature, which however explained a minor part of the variance (17%), pointing at a higher relevance of biotic factors and inter-taxa relationships. This was more evident in the LoV, where the network analysis highlighted a higher number of OTUs' connections than in the GoV. Overall, the metabarcoding approach allowed to depict the composition of the whole protist community in the lagoon and adjacent coastal waters with high resolution, revealing many taxa so far not reported in the area. In addition, despite no clear barrier to dispersal processes, differences in the relative abundance and temporal variability of local protist communities indicate that environmental heterogeneity, in these adjacent and connected ecosystems, can be strong enough to allow for ecological segregation.
Collapse
Affiliation(s)
| | - Roberta Piredda
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Grazia Marina Quero
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Stefania Finotto
- Institute of Marine Sciences, National Research Council, Venice, Italy
| | | | - Mauro Bastianini
- Institute of Marine Sciences, National Research Council, Venice, Italy
| | | | - Adriana Zingone
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
83
|
Chénard C, Wijaya W, Vaulot D, Lopes Dos Santos A, Martin P, Kaur A, Lauro FM. Temporal and spatial dynamics of Bacteria, Archaea and protists in equatorial coastal waters. Sci Rep 2019; 9:16390. [PMID: 31704973 PMCID: PMC6841670 DOI: 10.1038/s41598-019-52648-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/21/2019] [Indexed: 11/09/2022] Open
Abstract
Singapore, an equatorial island in South East Asia, is influenced by a bi-annual reversal of wind directions which defines two monsoon seasons. We characterized the dynamics of the microbial communities of Singapore coastal waters by collecting monthly samples between February 2017 and July 2018 at four sites located across two straits with different trophic status, and sequencing the V6-V8 region of the small sub-unit ribosomal RNA gene (rRNA gene) of Bacteria, Archaea, and Eukaryota. Johor Strait, which is subjected to wider environmental fluctuations from anthropogenic activities, presented a higher abundance of copiotrophic microbes, including Cellvibrionales and Rhodobacterales. The mesotrophic Singapore Strait, where the seasonal variability is caused by changes in the oceanographic conditions, harboured a higher proportion of typically marine microbe groups such as Synechococcales, Nitrosupumilales, SAR11, SAR86, Marine Group II Archaea and Radiolaria. In addition, we observed seasonal variability of the microbial communities in the Singapore Strait, which was possibly influenced by the alternating monsoon regime, while no seasonal pattern was detected in the Johor Strait.
Collapse
Affiliation(s)
- Caroline Chénard
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Winona Wijaya
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Daniel Vaulot
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Sorbonne Université, CNRS, UMR7144, Ecology of Marine Plankton team, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Adriana Lopes Dos Santos
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago, Chile
| | - Patrick Martin
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Avneet Kaur
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Federico M Lauro
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551, Singapore.
| |
Collapse
|
84
|
Salonen IS, Chronopoulou PM, Leskinen E, Koho KA. Metabarcoding successfully tracks temporal changes in eukaryotic communities in coastal sediments. FEMS Microbiol Ecol 2019; 95:5188675. [PMID: 30452623 DOI: 10.1093/femsec/fiy226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/16/2018] [Indexed: 01/19/2023] Open
Abstract
Metabarcoding is a method that combines high-throughput DNA sequencing and DNA-based identification. Previously, this method has been successfully used to target spatial variation of eukaryote communities in marine sediments, however, the temporal changes in these communities remain understudied. Here, we follow the temporal changes of the eukaryote communities in Baltic Sea surface sediments collected from two coastal localities during three seasons of two consecutive years. Our study reveals that the structure of the sediment eukaryotic ecosystem was primarily driven by annual and seasonal changes in prevailing environmental conditions, whereas spatial variation was a less significant factor in explaining the variance in eukaryotic communities over time. Therefore, our data suggests that shifts in regional climate regime or large-scale changes in the environment are the overdriving factors in shaping the coastal eukaryotic sediment ecosystems rather than small-scale changes in local environmental conditions or heterogeneity in ecosystem structure. More studies targeting temporal changes are needed to further understand the long-term trends in ecosystem stability and response to climate change. Furthermore, this work contributes to the recent efforts in developing metabarcoding applications for environmental biomonitoring, proving a comprehensive option for traditional monitoring approaches.
Collapse
Affiliation(s)
- I S Salonen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Program, University of Helsinki, Viikinkaari 1, Helsinki FI-00790, Finland.,Faculty of Biological and Environmental Sciences, Helsinki Institute of Sustainability Science (HELSUS), Ylopistonkatu 3, Helsinki FI-00014, Finland
| | - P-M Chronopoulou
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Program, University of Helsinki, Viikinkaari 1, Helsinki FI-00790, Finland.,Faculty of Biological and Environmental Sciences, Helsinki Institute of Sustainability Science (HELSUS), Ylopistonkatu 3, Helsinki FI-00014, Finland
| | - E Leskinen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Program, University of Helsinki, Viikinkaari 1, Helsinki FI-00790, Finland.,Faculty of Biological and Environmental Sciences, Tvärminne Zoological Station, University of Helsinki, J. A. Palménin tie 260, Hanko FI-10900, Finland
| | - K A Koho
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Program, University of Helsinki, Viikinkaari 1, Helsinki FI-00790, Finland.,Faculty of Biological and Environmental Sciences, Helsinki Institute of Sustainability Science (HELSUS), Ylopistonkatu 3, Helsinki FI-00014, Finland
| |
Collapse
|
85
|
Obertegger U, Pindo M, Flaim G. Multifaceted aspects of synchrony between freshwater prokaryotes and protists. Mol Ecol 2019; 28:4500-4512. [DOI: 10.1111/mec.15228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Ulrike Obertegger
- Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige Italy
| | - Massimo Pindo
- Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige Italy
| | - Giovanna Flaim
- Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige Italy
| |
Collapse
|
86
|
de Sousa AGG, Tomasino MP, Duarte P, Fernández-Méndez M, Assmy P, Ribeiro H, Surkont J, Leite RB, Pereira-Leal JB, Torgo L, Magalhães C. Diversity and Composition of Pelagic Prokaryotic and Protist Communities in a Thin Arctic Sea-Ice Regime. MICROBIAL ECOLOGY 2019; 78:388-408. [PMID: 30623212 DOI: 10.1007/s00248-018-01314-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
One of the most prominent manifestations of climate change is the changing Arctic sea-ice regime with a reduction in the summer sea-ice extent and a shift from thicker, perennial multiyear ice towards thinner, first-year ice. These changes in the physical environment are likely to impact microbial communities, a key component of Arctic marine food webs and biogeochemical cycles. During the Norwegian young sea ICE expedition (N-ICE2015) north of Svalbard, seawater samples were collected at the surface (5 m), subsurface (20 or 50 m), and mesopelagic (250 m) depths on 9 March, 27 April, and 16 June 2015. In addition, several physical and biogeochemical data were recorded to contextualize the collected microbial communities. Through the massively parallel sequencing of the small subunit ribosomal RNA amplicon and metagenomic data, this work allows studying the Arctic's microbial community structure during the late winter to early summer transition. Results showed that, at compositional level, Alpha- (30.7%) and Gammaproteobacteria (28.6%) are the most frequent taxa across the prokaryotic N-ICE2015 collection, and also the most phylogenetically diverse. Winter to early summer trends were quite evident since there was a high relative abundance of thaumarchaeotes in the under-ice water column in late winter while this group was nearly absent during early summer. Moreover, the emergence of Flavobacteria and the SAR92 clade in early summer might be associated with the degradation of a spring bloom of Phaeocystis. High relative abundance of hydrocarbonoclastic bacteria, particularly Alcanivorax (54.3%) and Marinobacter (6.3%), was also found. Richness showed different patterns along the depth gradient for prokaryotic (highest at mesopelagic depth) and protistan communities (higher at subsurface depths). The microbial N-ICE2015 collection analyzed in the present study provides comprehensive new knowledge about the pelagic microbiota below drifting Arctic sea-ice. The higher microbial diversity found in late winter/early spring communities reinforces the need to continue with further studies to properly characterize the winter microbial communities under the pack-ice.
Collapse
Affiliation(s)
- António Gaspar G de Sousa
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Maria Paola Tomasino
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - Pedro Duarte
- Norwegian Polar Institute, Fram Centre, N-9296, Tromsø, Norway
| | | | - Philipp Assmy
- Norwegian Polar Institute, Fram Centre, N-9296, Tromsø, Norway
| | - Hugo Ribeiro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - Jaroslaw Surkont
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Ricardo B Leite
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - José B Pereira-Leal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Luís Torgo
- LIAAD - Laboratory of Artificial Intelligence and Decision Support, INESC Tec, Porto, Portugal
- Faculty of Computer Science, Dalhousie University, Halifax, Canada, USA
| | - Catarina Magalhães
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
87
|
Ribeiro H, Martins A, Gonçalves M, Guedes M, Tomasino MP, Dias N, Dias A, Mucha AP, Carvalho MF, Almeida CMR, Ramos S, Almeida JM, Silva E, Magalhães C. Development of an autonomous biosampler to capture in situ aquatic microbiomes. PLoS One 2019; 14:e0216882. [PMID: 31091277 PMCID: PMC6519839 DOI: 10.1371/journal.pone.0216882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/30/2019] [Indexed: 11/18/2022] Open
Abstract
The importance of planktonic microbial communities is well acknowledged, since they are fundamental for several natural processes of aquatic ecosystems. Microorganisms naturally control the flux of nutrients, and also degrade and recycle anthropogenic organic and inorganic contaminants. Nevertheless, climate change effects and/or the runoff of nutrients/pollutants can affect the equilibrium of natural microbial communities influencing the occurrence of microbial pathogens and/or microbial toxin producers, which can compromise ecosystem environmental status. Therefore, improved microbial plankton monitoring is essential to better understand how these communities respond to environmental shifts. The study of marine microbial communities typically involves highly cost and time-consuming sampling procedures, which can limit the frequency of sampling and data availability. In this context, we developed and validated an in situ autonomous biosampler (IS-ABS) able to collect/concentrate in situ planktonic communities of different size fractions (targeting prokaryotes and unicellular eukaryotes) for posterior genomic, metagenomic, and/or transcriptomic analysis at a home laboratory. The IS-ABS field prototype is a small size and compact system able to operate up to 150 m depth. Water is pumped by a micropump (TCS MG2000) through a hydraulic circuit that allows in situ filtration of environmental water in one or more Sterivex filters placed in a filter cartridge. The IS-ABS also includes an application to program sampling definitions, allowing pre-setting configuration of the sampling. The efficiency of the IS-ABS was tested against traditional laboratory filtration standardized protocols. Results showed a good performance in terms of DNA recovery, as well as prokaryotic (16S rDNA) and eukaryotic (18S rDNA) community diversity analysis, using either methodologies. The IS-ABS automates the process of collecting environmental DNA, and is suitable for integration in water observation systems, what will contribute to substantially increase biological surveillances. Also, the use of highly sensitive genomic approaches allows a further study of the diversity and functions of whole or specific microbial communities.
Collapse
Affiliation(s)
- Hugo Ribeiro
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS-UP), University of Porto, Porto, Portugal
- * E-mail:
| | - Alfredo Martins
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | | | | | - Maria Paola Tomasino
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Nuno Dias
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - André Dias
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Ana Paula Mucha
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Maria F. Carvalho
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - C. Marisa R. Almeida
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Sandra Ramos
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
- Institute of Estuarine and Coastal Studies, University of Hull, Hull, United Kingdom
| | - José Miguel Almeida
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Eduardo Silva
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Catarina Magalhães
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
- FCUP–Faculty of Sciences of University of Porto, Porto, Portugal
| |
Collapse
|
88
|
Zingone A, D'Alelio D, Mazzocchi MG, Montresor M, Sarno D, team LTERMC. Time series and beyond: multifaceted plankton research at a marine Mediterranean LTER site. NATURE CONSERVATION 2019. [DOI: 10.3897/natureconservation.34.30789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plankton are a pivotal component of the diversity and functioning of coastal marine ecosystems. A long time-series of observations is the best tool to trace their patterns and variability over multiple scales, ultimately providing a sound foundation for assessing, modelling and predicting the effects of anthropogenic and natural environmental changes on pelagic communities. At the same time, a long time-series constitutes a formidable asset for different kinds of research on specific questions that emerge from the observations, whereby the results of these complementary studies provide precious interpretative tools that augment the informative value of the data collected. In this paper, we review more than 140 studies that have been developed around a Mediterranean plankton time series gathered in the Gulf of Naples at the station LTER-MC since 1984. These studies have addressed different topics concerning marine plankton, which have included: i) seasonal patterns and trends; ii) taxonomic diversity, with a focus on key or harmful algal species and the discovery of many new taxa; iii) molecular diversity of selected species, groups of species or the whole planktonic community; iv) life cycles of several phyto- and zooplankton species; and v) interactions among species through trophic relationships, parasites and viruses. Overall, the products of this research demonstrate the great value of time series besides the record of fluctuations and trends, and highlight their primary role in the development of the scientific knowledge of plankton much beyond the local scale.
Collapse
|
89
|
Gran‐Stadniczeñko S, Egge E, Hostyeva V, Logares R, Eikrem W, Edvardsen B. Protist Diversity and Seasonal Dynamics in Skagerrak Plankton Communities as Revealed by Metabarcoding and Microscopy. J Eukaryot Microbiol 2019; 66:494-513. [PMID: 30414334 PMCID: PMC6587730 DOI: 10.1111/jeu.12700] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 02/03/2023]
Abstract
Protist community composition and seasonal dynamics are of major importance for the production of higher trophic levels, such as zooplankton and fish. Our aim was to reveal how the protist community in the Skagerrak changes through the seasons by combining high-throughput sequencing and microscopy of plankton collected monthly over two years. The V4 region of the 18S rRNA gene was amplified by eukaryote universal primers from the total RNA/cDNA. We found a strong seasonal variation in protist composition and proportional abundances, and a difference between two depths within the euphotic zone. Highest protist richness was found in late summer-early autumn, and lowest in winter. Temperature was the abiotic factor explaining most of the variation in diversity. Dinoflagellates was the most abundant and diverse group followed by ciliates and diatoms. We found about 70 new taxa recorded for the first time in the Skagerrak. The seasonal pattern in relative read abundance of major phytoplankton groups was well in accordance with microscopical biovolumes. This is the first metabarcoding study of the protist plankton community of all taxonomic groups and through seasons in the Skagerrak, which may serve as a baseline for future surveys to reveal effects of climate and environmental changes.
Collapse
Affiliation(s)
| | - Elianne Egge
- Department of BiosciencesUniversity of OsloP. O. Box 1066 Blindern0316OsloNorway
| | | | - Ramiro Logares
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (CSIC)08003BarcelonaCataloniaSpain
| | - Wenche Eikrem
- Department of BiosciencesUniversity of OsloP. O. Box 1066 Blindern0316OsloNorway
- Norwegian Institute for Water ResearchGaustadalléen 210349OsloNorway
| | - Bente Edvardsen
- Department of BiosciencesUniversity of OsloP. O. Box 1066 Blindern0316OsloNorway
| |
Collapse
|
90
|
Gutierrez-Rodriguez A, Stukel MR, Lopes Dos Santos A, Biard T, Scharek R, Vaulot D, Landry MR, Not F. High contribution of Rhizaria (Radiolaria) to vertical export in the California Current Ecosystem revealed by DNA metabarcoding. THE ISME JOURNAL 2019; 13:964-976. [PMID: 30538274 PMCID: PMC6461850 DOI: 10.1038/s41396-018-0322-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 10/18/2018] [Accepted: 11/17/2018] [Indexed: 11/08/2022]
Abstract
Passive sinking of particulate organic matter (POM) is the main mechanism through which the biological pump transports surface primary production to the ocean interior. However, the contribution and variability of different biological sources to vertical export is not fully understood. Here, we use DNA metabarcoding of the 18S rRNA gene and particle interceptor traps (PITs) to characterize the taxonomic composition of particles sinking out of the photic layer in the California Current Ecosystem (CCE), a productive system with high export potential. The PITs included formalin-fixed and 'live' traps to investigate eukaryotic communities involved in the export and remineralization of sinking particles. Sequences affiliated with Radiolaria dominated the eukaryotic assemblage in fixed traps (90%), with Dinophyta and Metazoa making minor contributions. The prominence of Radiolaria decreased drastically in live traps, possibly due to selective consumption by copepods, heterotrophic nanoflagellates, and phaeodarians that were heavily enriched in these traps. These patterns were consistent across the water masses surveyed extending from the coast to offshore, despite major differences in productivity and trophic structure of the epipelagic plankton community. Our findings identify Radiolaria as major actors in export fluxes in the CCE.
Collapse
Affiliation(s)
- Andres Gutierrez-Rodriguez
- Sorbonne Université, CNRS, UMR7144, Adaptation and Diversity in Marine Environment (AD2M) laboratory, Ecology of Marine Plankton team, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France.
- National Institute of Water and Atmospheric Research, 301 Evans Bay Parade, Wellington, 6021, New Zealand.
| | - Michael R Stukel
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, 32304, USA
| | - Adriana Lopes Dos Santos
- Sorbonne Université, CNRS, UMR7144, Adaptation and Diversity in Marine Environment (AD2M) laboratory, Ecology of Marine Plankton team, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
- GEMA Center for Genomics, Ecology & Environment, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, Huechuraba, 5750, Santiago, Chile
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798A, Singapore
| | - Tristan Biard
- Sorbonne Université, CNRS, UMR7144, Adaptation and Diversity in Marine Environment (AD2M) laboratory, Ecology of Marine Plankton team, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Renate Scharek
- Instituto Español de Oceanografía, Centro Oceanográfico de Gijón, Avda Príncipe de Asturias 70 bis, Gijón, 33212, Spain
| | - Daniel Vaulot
- Sorbonne Université, CNRS, UMR7144, Adaptation and Diversity in Marine Environment (AD2M) laboratory, Ecology of Marine Plankton team, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
| | - Michael R Landry
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Fabrice Not
- Sorbonne Université, CNRS, UMR7144, Adaptation and Diversity in Marine Environment (AD2M) laboratory, Ecology of Marine Plankton team, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, 29680, France
| |
Collapse
|
91
|
Tragin M, Vaulot D. Novel diversity within marine Mamiellophyceae (Chlorophyta) unveiled by metabarcoding. Sci Rep 2019; 9:5190. [PMID: 30914730 PMCID: PMC6435750 DOI: 10.1038/s41598-019-41680-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/13/2019] [Indexed: 11/21/2022] Open
Abstract
Mamiellophyceae (unicellular green algae) are a key phytoplankton group in coastal waters. Although extensively studied over the last 20 years, the overall oceanic distribution of the major species/clades is still poorly known. To address this problem, we analyzed the 2014 Ocean Sampling Day (OSD) metabarcoding dataset providing sequences from the V4 hypervariable region of the 18S rRNA gene for 157 samples collected at 143 mostly coastal stations. Mamiellophyceae were found at nearly all OSD stations and represented 55% of the green microalgae (Chlorophyta) reads. We performed phylogenetic analyses of unique OSD metabarcodes (amplicon single variants, ASVs) and GenBank reference sequences from cultures and from the environment, focusing on the four most represented genera: Ostreococcus (45% of the Mamiellophyceae reads), Micromonas (34%), Bathycoccus (10%) and Mantoniella (8.7%). These analyses uncovered novel diversity within each genus except Bathycoccus. In Ostreococcus, a new clade (E) was the second most represented clade after Ostreococcus "lucimarinus". Micromonas could be separated into nine clades, exceeding the six species and candidate species already described. Finally, we found two new environmental clades within Mantoniella. Each Mamiellophyceae clade had a specific distribution in the OSD dataset suggesting that they are adapted to different ecological niches.
Collapse
Affiliation(s)
- Margot Tragin
- Sorbonne Université, CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680, Roscoff, France
| | - Daniel Vaulot
- Sorbonne Université, CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680, Roscoff, France.
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
92
|
Metz S, Lopes dos Santos A, Berman MC, Bigeard E, Licursi M, Not F, Lara E, Unrein F. Diversity of photosynthetic picoeukaryotes in eutrophic shallow lakes as assessed by combining flow cytometry cell-sorting and high throughput sequencing. FEMS Microbiol Ecol 2019; 95:5393366. [DOI: 10.1093/femsec/fiz038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/18/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sebastián Metz
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8.200, Chascomús (7130), Buenos Aires, Argentina
| | - Adriana Lopes dos Santos
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Manuel Castro Berman
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8.200, Chascomús (7130), Buenos Aires, Argentina
| | - Estelle Bigeard
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Magdalena Licursi
- Instituto Nacional de Limnología (INALI), CONICET-UNL. Ciudad Universitaria - Paraje el Pozo s/n (3000), Santa Fé, Argentina
| | - Fabrice Not
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Enrique Lara
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Fernando Unrein
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET. Av. Intendente Marino Km 8.200, Chascomús (7130), Buenos Aires, Argentina
| |
Collapse
|
93
|
Giner CR, Balagué V, Krabberød AK, Ferrera I, Reñé A, Garcés E, Gasol JM, Logares R, Massana R. Quantifying long‐term recurrence in planktonic microbial eukaryotes. Mol Ecol 2019; 28:923-935. [DOI: 10.1111/mec.14929] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/08/2018] [Accepted: 10/30/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Caterina R. Giner
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC) Barcelona Spain
| | - Vanessa Balagué
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC) Barcelona Spain
| | - Anders K. Krabberød
- Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene) University of Oslo Oslo Norway
| | - Isabel Ferrera
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC) Barcelona Spain
| | - Albert Reñé
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC) Barcelona Spain
| | - Esther Garcés
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC) Barcelona Spain
| | - Josep M. Gasol
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC) Barcelona Spain
| | - Ramiro Logares
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC) Barcelona Spain
- Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene) University of Oslo Oslo Norway
| | - Ramon Massana
- Department of Marine Biology and OceanographyInstitut de Ciències del Mar (ICM‐CSIC) Barcelona Spain
| |
Collapse
|
94
|
Modelling the complexity of plankton communities exploiting omics potential: From present challenges to an integrative pipeline. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
95
|
Gaonkar CC, Piredda R, Minucci C, Mann DG, Montresor M, Sarno D, Kooistra WHCF. Annotated 18S and 28S rDNA reference sequences of taxa in the planktonic diatom family Chaetocerotaceae. PLoS One 2018; 13:e0208929. [PMID: 30586452 PMCID: PMC6306197 DOI: 10.1371/journal.pone.0208929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
The species-rich diatom family Chaetocerotaceae is common in the coastal marine phytoplankton worldwide where it is responsible for a substantial part of the primary production. Despite its relevance for the global cycling of carbon and silica, many species are still described only morphologically, and numerous specimens do not fit any described taxa. Nowadays, studies to assess plankton biodiversity deploy high throughput sequencing metabarcoding of the 18S rDNA V4 region, but to translate the gathered metabarcodes into biologically meaningful taxa, there is a need for reference barcodes. However, 18S reference barcodes for this important family are still relatively scarce. We provide 18S rDNA and partial 28S rDNA reference sequences of 443 morphologically characterized chaetocerotacean strains. We gathered 164 of the 216 18S sequences and 244 of the 413 28S sequences of strains from the Gulf of Naples, Atlantic France, and Chile. Inferred phylogenies showed 84 terminal taxa in seven principal clades. Two of these clades included terminal taxa whose rDNA sequences contained spliceosomal and Group IC1 introns. Regarding the commonly used metabarcode markers in planktonic diversity studies, all terminal taxa can be discriminated with the 18S V4 hypervariable region; its primers fit their targets in all but two species, and the V4-tree topology is similar to that of the 18S. Hence V4-metabarcodes of unknown Chaetocerotaceae are assignable to the family. Regarding the V9 hypervariable region, most terminal taxa can be discriminated, but several contain introns in their primer targets. Moreover, poor phylogenetic resolution of the V9 region affects placement of metabarcodes of putative but unknown chaetocerotacean taxa, and hence, uncertainty in taxonomic assignment, even of higher taxa.
Collapse
Affiliation(s)
- Chetan C. Gaonkar
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Roberta Piredda
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Carmen Minucci
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - David G. Mann
- Royal Botanic Garden Edinburgh, Edinburgh, Scotland, United Kingdom, and Institut de Recerca i Tecnologia Agroalimentaries, Sant Carles de La Ràpita, Catalonia, Spain
| | - Marina Montresor
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Diana Sarno
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | |
Collapse
|
96
|
Diatom diversity through HTS-metabarcoding in coastal European seas. Sci Rep 2018; 8:18059. [PMID: 30584235 PMCID: PMC6305388 DOI: 10.1038/s41598-018-36345-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022] Open
Abstract
Diatoms constitute a diverse lineage of unicellular organisms abundant and ecologically important in aquatic ecosystems. Compared to other protists, their biology and taxonomy are well-studied, offering the opportunity to combine traditional approaches and new technologies. We examined a dataset of diatom 18S rRNA- and rDNA- (V4 region) reads from different plankton size-fractions and sediments from six European coastal marine sites, with the aim of identifying peculiarities and commonalities with respect to the whole protistan community. Almost all metabarcodes (99.6%) were assigned to known genera (121) and species (236), the most abundant of which were those already known from classic studies and coincided with those seen in light microscopy. rDNA and rRNA showed comparable patterns for the dominant taxa, but rRNA revealed a much higher diversity particularly in the sediment communities. Peculiar to diatoms is a tight bentho-pelagic coupling, with many benthic or planktonic species colonizing both water column and sediments and the dominance of planktonic species in both habitats. Overall metabarcoding results reflected the marked specificity of diatoms compared to other protistan groups in terms of morphological and ecological characteristics, at the same time confirming their great potential in the description of protist communities.
Collapse
|
97
|
Obertegger U, Bertilsson S, Pindo M, Larger S, Flaim G. Temporal variability of bacterioplankton is habitat driven. Mol Ecol 2018; 27:4322-4335. [PMID: 30176079 DOI: 10.1111/mec.14855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 11/27/2022]
Abstract
Temporal dynamics of bacterioplankton are rarely investigated for multiple habitats and years within individual lakes, limiting our understanding of the variability of bacterioplankton community (BC) composition with respect to environmental factors. We assessed the BC composition of a littoral and two pelagic habitats (euphotic zone and hypolimnion) of Lake Tovel monthly from April 2014 to May 2017 by high-throughput sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. The three habitats differed in temperature, light, oxygen and hydrology. In particular, the littoral was the most hydrologically unstable because it receives most of the lake inflow, the hypolimnion was the most stable because of its hydrologically sheltered position, and the pelagic euphotic habitat was intermediate. Consequently, we hypothesized different temporal patterns of BC composition for all three habitats according to their environmental differences. We applied PERMANOVA, nonmetric multidimensional scaling and source-sink analysis to characterize BC composition. Overall, BCs were different among habitats with the littoral showing the highest variability and the hypolimnion the highest stability. The BC of rainy 2014 was distinct from the BCs of other years irrespective of the habitats considered. Seasonal differences in BCs were limited to spring, probably linked to meltwater inflow and mixing. Thus, temporal effects related to year and season were linked to the hydrological gradient of habitats. We suggest that despite potential within-lake dispersal of bacterioplankton by water flow and mixing, local environmental conditions played a major role in Lake Tovel, fostering distinct BCs in the three habitats.
Collapse
Affiliation(s)
- Ulrike Obertegger
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Stefan Bertilsson
- Limnology and Science for Life Laboratory, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Simone Larger
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Giovanna Flaim
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|
98
|
Hernández-Ruiz M, Barber-Lluch E, Prieto A, Álvarez-Salgado XA, Logares R, Teira E. Seasonal succession of small planktonic eukaryotes inhabiting surface waters of a coastal upwelling system. Environ Microbiol 2018; 20:2955-2973. [DOI: 10.1111/1462-2920.14313] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/12/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Marta Hernández-Ruiz
- Biological Oceanography Group, Department of Ecology and Animal Biology; University of Vigo; Vigo, 36310 Spain
- Oceanography, Marine Science Station of Toralla (ECIMAT); University of Vigo; Vigo, 36331 Spain
| | - Esther Barber-Lluch
- Biological Oceanography Group, Department of Ecology and Animal Biology; University of Vigo; Vigo, 36310 Spain
- Oceanography, Marine Science Station of Toralla (ECIMAT); University of Vigo; Vigo, 36331 Spain
| | - Antero Prieto
- Biological Oceanography Group, Department of Ecology and Animal Biology; University of Vigo; Vigo, 36310 Spain
- Oceanography, Marine Science Station of Toralla (ECIMAT); University of Vigo; Vigo, 36331 Spain
| | | | - Ramiro Logares
- Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC); Barcelona, 08003 Spain
| | - Eva Teira
- Biological Oceanography Group, Department of Ecology and Animal Biology; University of Vigo; Vigo, 36310 Spain
- Oceanography, Marine Science Station of Toralla (ECIMAT); University of Vigo; Vigo, 36331 Spain
| |
Collapse
|
99
|
Tragin M, Vaulot D. Green microalgae in marine coastal waters: The Ocean Sampling Day (OSD) dataset. Sci Rep 2018; 8:14020. [PMID: 30232358 PMCID: PMC6145878 DOI: 10.1038/s41598-018-32338-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022] Open
Abstract
The ecology and distribution of green phytoplankton (Chlorophyta) in the ocean is poorly known because most studies have focused on groups with large cell size such as diatoms or dinoflagellates that are easily recognized by traditional techniques such as microscopy. The Ocean Sampling Day (OSD) project sampled surface waters quasi-simultaneously at 141 marine locations, mostly in coastal waters. The analysis of the 18S V4 region OSD metabarcoding dataset reveals that Chlorophyta are ubiquitous and can be locally dominant in coastal waters. Chlorophyta represented 29% of the global photosynthetic reads (Dinoflagellates excluded) and their contribution was especially high at oligotrophic stations (up to 94%) and along the European Atlantic coast. Mamiellophyceae dominated most coastal stations. At some coastal stations, they were replaced by Chlorodendrophyceae, Ulvophyceae, Trebouxiophyceae or Chlorophyceae as the dominating group, while oligotrophic stations were dominated either by Chloropicophyceae or the uncultured prasinophytes clade IX. Several Chlorophyta classes showed preferences in terms of nitrate concentration, distance to the coast, temperature and salinity. For example, Chlorophyceae preferred cold and low salinity coastal waters, and prasinophytes clade IX warm, high salinity, oligotrophic oceanic waters.
Collapse
Affiliation(s)
- Margot Tragin
- Sorbonne Université, CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680, Roscoff, France
| | - Daniel Vaulot
- Sorbonne Université, CNRS, UMR 7144, Station Biologique, Place Georges Teissier, 29680, Roscoff, France.
| |
Collapse
|
100
|
Systematic, continental scale temporal monitoring of marine pelagic microbiota by the Australian Marine Microbial Biodiversity Initiative. Sci Data 2018; 5:180130. [PMID: 30015804 PMCID: PMC6049030 DOI: 10.1038/sdata.2018.130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/26/2018] [Indexed: 11/24/2022] Open
Abstract
Sustained observations of microbial dynamics are rare, especially in southern hemisphere waters. The Australian Marine Microbial Biodiversity Initiative (AMMBI) provides methodologically standardized, continental scale, temporal phylogenetic amplicon sequencing data describing Bacteria, Archaea and microbial Eukarya assemblages. Sequence data is linked to extensive physical, biological and chemical oceanographic contextual information. Samples are collected monthly to seasonally from multiple depths at seven sites: Darwin Harbour (Northern Territory), Yongala (Queensland), North Stradbroke Island (Queensland), Port Hacking (New South Wales), Maria Island (Tasmania), Kangaroo Island (South Australia), Rottnest Island (Western Australia). These sites span ~30° of latitude and ~38° longitude, range from tropical to cold temperate zones, and are influenced by both local and globally significant oceanographic and climatic features. All sequence datasets are provided in both raw and processed fashion. Currently 952 samples are publically available for bacteria and archaea which include 88,951,761 bacterial (72,435 unique) and 70,463,079 archaeal (24,205 unique) 16 S rRNA v1-3 gene sequences, and 388 samples are available for eukaryotes which include 39,801,050 (78,463 unique) 18 S rRNA v4 gene sequences.
Collapse
|