51
|
Wen L, Kong Y, Wang H, Xu Y, Lu Z, Zhang J, Wang M, Wang X, Han L, Zhou C. Interaction between the MtDELLA-MtGAF1 Complex and MtARF3 Mediates Transcriptional Control of MtGA3ox1 to Elaborate Leaf Margin Formation in Medicago truncatula. PLANT & CELL PHYSIOLOGY 2021; 62:321-333. [PMID: 33386852 DOI: 10.1093/pcp/pcaa163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The molecular mechanisms underlying the diversity of leaf shapes have been of great interest to researchers. Leaf shape depends on the pattern of serrations and the degree of indentation of leaf margins. Multiple transcription factors and hormone signaling pathways are involved in this process. In this study, we characterized the developmental roles of SMALL AND SERRATED LEAF (SSL) by analyzing a recessive mutant in the model legume Medicago truncatula. An ortholog of Arabidopsis thaliana GA3-oxidase 1 (GA3ox1), MtGA3ox1/SSL, is required for GA biosynthesis. Loss of function in MtGA3ox1 results in the small plant and lateral organs. The prominent phenotype of the mtga3ox1 mutant is a more pronounced leaf margin, indicating the critical role of GA level in leaf margin formation. Moreover, 35S:MtDELLA2ΔDELLA and 35S:MtARF3 transgenic plants display leaves with a deeply wavy margin, which resembles those of mtga3ox1. Further investigations show that MtGA3ox1 is under the control of MtDELLA1/2/3-MtGAF1 complex-dependent feedback regulation. Further, MtARF3 behaves as a competitive inhibitor of MtDELLA2/3-MtGAF1 complexes to repress the expression of MtGA3ox1 indirectly. These findings suggest that GA feedback regulatory circuits play a fundamental role in leaf margin formation, in which the posttranslational interaction between transcription factors functions as an additional feature.
Collapse
Affiliation(s)
- Lizhu Wen
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yiming Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Minmin Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
52
|
Ben-Targem M, Ripper D, Bayer M, Ragni L. Auxin and gibberellin signaling cross-talk promotes hypocotyl xylem expansion and cambium homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3647-3660. [PMID: 33619529 DOI: 10.1093/jxb/erab089] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 05/04/2023]
Abstract
During secondary growth, the thickening of plant organs, wood (xylem) and bast (phloem) is continuously produced by the vascular cambium. In Arabidopsis hypocotyl and root, we can distinguish two phases of secondary growth based on cell morphology and production rate. The first phase, in which xylem and phloem are equally produced, precedes the xylem expansion phase in which xylem formation is enhanced and xylem fibers differentiate. It is known that gibberellins (GA) trigger this developmental transition via degradation of DELLA proteins and that the cambium master regulator BREVIPEDICELLUS/KNAT1 (BP/KNAT1) and receptor like kinases ERECTA and ERL1 regulate this process downstream of GA. However, our understanding of the regulatory network underlying GA-mediated secondary growth is still limited. Here, we demonstrate that DELLA-mediated xylem expansion in Arabidopsis hypocotyl is mainly achieved through DELLA family members RGA and GAI, which promote cambium senescence. We further show that AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8, which physically interact with DELLAs, specifically repress phloem proliferation and induce cambium senescence during the xylem expansion phase. Moreover, the inactivation of BP in arf6 arf8 background revealed an essential role for ARF6 and ARF8 in cambium establishment and maintenance. Overall, our results shed light on a pivotal hormone cross-talk between GA and auxin in the context of plant secondary growth.
Collapse
Affiliation(s)
- Mehdi Ben-Targem
- ZMBP - Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Dagmar Ripper
- ZMBP - Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Martin Bayer
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Laura Ragni
- ZMBP - Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| |
Collapse
|
53
|
Ejaz M, Bencivenga S, Tavares R, Bush M, Sablowski R. ARABIDOPSIS THALIANA HOMEOBOX GENE 1 controls plant architecture by locally restricting environmental responses. Proc Natl Acad Sci U S A 2021; 118:e2018615118. [PMID: 33888582 PMCID: PMC8092594 DOI: 10.1073/pnas.2018615118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diversity and environmental plasticity of plant growth results from variations of repetitive modules, such as the basic shoot units made of a leaf, axillary bud, and internode. Internode elongation is regulated both developmentally and in response to environmental conditions, such as light quality, but the integration of internal and environmental signals is poorly understood. Here, we show that the compressed rosette growth habit of Arabidopsis is maintained by the convergent activities of the organ boundary gene ARABIDOPSIS THALIANA HOMEOBOX GENE 1 (ATH1) and of the gibberellin-signaling DELLA genes. Combined loss of ATH1 and DELLA function activated stem development during the vegetative phase and changed the growth habit from rosette to caulescent. Chromatin immunoprecipitation high-throughput sequencing and genetic analysis indicated that ATH1 and the DELLA gene REPRESSOR OF GA1-3 (RGA) converge on the regulation of light responses, including the PHYTOCHROME INTERACTING FACTORS (PIF) pathway, and showed that the ATH1 input is mediated in part by direct activation of BLADE ON PETIOLE (BOP1 and BOP2) genes, whose products destabilize PIF proteins. We conclude that an organ-patterning gene converges with hormone signaling to spatially restrict environmental responses and establish a widespread type of plant architecture.
Collapse
Affiliation(s)
- Mahwish Ejaz
- Cell and Developmental Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| | - Stefano Bencivenga
- Cell and Developmental Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| | - Rafael Tavares
- Cell and Developmental Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| | - Max Bush
- Cell and Developmental Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| | - Robert Sablowski
- Cell and Developmental Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| |
Collapse
|
54
|
Molecular switch architecture determines response properties of signaling pathways. Proc Natl Acad Sci U S A 2021; 118:2013401118. [PMID: 33688042 DOI: 10.1073/pnas.2013401118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many intracellular signaling pathways are composed of molecular switches, proteins that transition between two states-on and off Typically, signaling is initiated when an external stimulus activates its cognate receptor that, in turn, causes downstream switches to transition from off to on using one of the following mechanisms: activation, in which the transition rate from the off state to the on state increases; derepression, in which the transition rate from the on state to the off state decreases; and concerted, in which activation and derepression operate simultaneously. We use mathematical modeling to compare these signaling mechanisms in terms of their dose-response curves, response times, and abilities to process upstream fluctuations. Our analysis elucidates several operating principles for molecular switches. First, activation increases the sensitivity of the pathway, whereas derepression decreases sensitivity. Second, activation generates response times that decrease with signal strength, whereas derepression causes response times to increase with signal strength. These opposing features allow the concerted mechanism to not only show dose-response alignment, but also to decouple the response time from stimulus strength. However, these potentially beneficial properties come at the expense of increased susceptibility to upstream fluctuations. We demonstrate that these operating principles also hold when the models are extended to include additional features, such as receptor removal, kinetic proofreading, and cascades of switches. In total, we show how the architecture of molecular switches govern their response properties. We also discuss the biological implications of our findings.
Collapse
|
55
|
Ito T, Fukazawa J. SCARECROW-LIKE3 regulates the transcription of gibberellin-related genes by acting as a transcriptional co-repressor of GAI-ASSOCIATED FACTOR1. PLANT MOLECULAR BIOLOGY 2021; 105:463-482. [PMID: 33474657 DOI: 10.1007/s11103-020-01101-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
SCL3 inhibits transcriptional activity of IDD-DELLA complex by acting as a co-repressor and repression activity is enhanced in the presence of GAF1 in a TOPLESS-independent manner. GRAS [GIBBERELLIN-INSENSITIVE (GAI), REPRESSOR OF ga1-3 (RGA) and SCARECROW (SCR)] proteins are a family of plant-specific transcriptional regulators that play diverse roles in development and signaling. GRAS family DELLA proteins act as growth repressors by inhibiting gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also act as co-activators of transcription factor GAI-ASSOCIATED FACTOR1 (GAF1)/INDETERMINATE DOMAIN2 (IDD2), the GAF1-DELLA complex activating transcription of GAF1 target genes. GAF1 also interacts with TOPLESS (TPL), a transcriptional co-repressor, in the absence of DELLA, the GAF1-TPL complex repressing transcription of the target genes. SCARECROW-LIKE3 (SCL3), another member of the GRAS family, is thought to inhibit transcriptional activity of the IDD-DELLA complex through competitive interaction with IDD. Here, we also revealed that SCL3 inhibits transcriptional activation by the GAF1-DELLA complex via repression activity rather than via competitive inhibition of the GAF1-DELLA interaction. Moreover, the repression activity of SCL3 was enhanced by GAF1 in a TPL-independent manner. While the GRAS domain of DELLA has transcriptional activation activity, that of SCL3 has repression activity. SCL3 also inhibited transcriptional activity of GAF1-RGA fusion proteins. Results from the co-immunoprecipitation assays and the yeast three-hybrid assay suggested the possibility that SCL3 forms a ternary complex with GAF1 and DELLA. These findings provide important information on DELLA-regulated GA signaling and new insight into the transcriptional repression mechanism.
Collapse
Affiliation(s)
- Takeshi Ito
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Jutarou Fukazawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
56
|
Kosakivska IV. GIBBERELLINS IN REGULATION OF PLANT GROWTH AND DEVELOPMENT UNDER ABIOTIC STRESSES. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background. Gibberellins (GAs), a class of diterpenoid phytohormones, play an important role in regulation of plant growth and development. Among more than 130 different gibberellin molecules, only a few are bioactive. GA1, GA3, GA4, and GA7 regulate plant growth through promotion the degradation of the DELLA proteins, a family of nuclear growth repressors – negative regulator of GAs signaling. Recent studies on GAs biosynthesis, metabolism, transport, and signaling, as well as crosstalk with other phytohormones and environment have achieved great progress thanks to molecular genetics and functional genomics. Aim. In this review, we focused on the role of GAs in regulation of plant gtowth in abiotic stress conditions. Results. We represented a key information on GAs biosynthesis, signaling and functional activity; summarized current understanding of the crosstalk between GAs and auxin, cytokinin, abscisic acid and other hormones and what is the role of GAs in regulation of adaptation to drought, salinization, high and low temperature conditions, and heavy metal pollution. We emphasize that the effects of GAs depend primarily on the strength and duration of stress and the phase of ontogenesis and tolerance of the plant. By changing the intensity of biosynthesis, the pattern of the distribution and signaling of GAs, plants are able to regulate resistance to abiotic stress, increase viability and even avoid stress. The issues of using retardants – inhibitors of GAs biosynthesis to study the functional activity of hormones under abiotic stresses were discussed. Special attention was focused on the use of exogenous GAs for pre-sowing priming of seeds and foliar treatment of plants. Conclusion. Further study of the role of gibberellins in the acquisition of stress resistance would contribute to the development of biotechnology of exogenous use of the hormone to improve growth and increase plant yields under adverse environmental conditions.
Collapse
|
57
|
Bertolotti G, Unterholzner SJ, Scintu D, Salvi E, Svolacchia N, Di Mambro R, Ruta V, Linhares Scaglia F, Vittorioso P, Sabatini S, Costantino P, Dello Ioio R. A PHABULOSA-Controlled Genetic Pathway Regulates Ground Tissue Patterning in the Arabidopsis Root. Curr Biol 2021; 31:420-426.e6. [PMID: 33176130 PMCID: PMC7846283 DOI: 10.1016/j.cub.2020.10.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/07/2020] [Accepted: 10/13/2020] [Indexed: 12/03/2022]
Abstract
In both animals and plants, development involves anatomical modifications. In the root of Arabidopsis thaliana, maturation of the ground tissue (GT)—a tissue comprising all cells between epidermal and vascular ones—is a paradigmatic example of these modifications, as it generates an additional tissue layer, the middle cortex (MC).1, 2, 3, 4 In early post-embryonic phases, the Arabidopsis root GT is composed of one layer of endodermis and one of cortex. A second cortex layer, the MC, is generated by asymmetric cell divisions in about 80% of Arabidopsis primary roots, in a time window spanning from 7 to 14 days post-germination (dpg). The cell cycle regulator CYCLIN D6;1 (CYCD6;1) plays a central role in this process, as its accumulation in the endodermis triggers the formation of MC.5 The phytohormone gibberellin (GA) is a key regulator of the timing of MC formation, as alterations in its signaling and homeostasis result in precocious endodermal asymmetric cell divisions.3,6,7 However, little is known on how GAs are regulated during GT maturation. Here, we show that the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) transcription factor PHABULOSA (PHB) is a master regulator of MC formation, controlling the accumulation of CYCD6;1 in the endodermis in a cell non-autonomous manner. We show that PHB activates the GA catabolic gene GIBBERELLIN 2 OXIDASE 2 (GA2ox2) in the vascular tissue, thus regulating the stability of the DELLA protein GIBBERELLIN INSENSITIVE (GAI)—a GA signaling repressor—in the root and, hence, CYCD6;1 expression in the endodermis. PHB regulates cell non-autonomously the timing of MC formation A time-dependent rise of PHB expression controls the CYCD6;1 switch in the GT PHB regulates GAI stability modulating GA levels PHB regulates root GA levels activating GA2ox2 expression in the vasculature
Collapse
Affiliation(s)
- Gaia Bertolotti
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70, 00185 Rome, Italy
| | - Simon Josef Unterholzner
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazzale Università, 5, 39100 Bolzano, Italy
| | - Daria Scintu
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70, 00185 Rome, Italy
| | - Elena Salvi
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70, 00185 Rome, Italy
| | - Noemi Svolacchia
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70, 00185 Rome, Italy
| | - Riccardo Di Mambro
- Department of Biology, University of Pisa, via L. Ghini, 13, 56126 Pisa, Italy
| | - Veronica Ruta
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70, 00185 Rome, Italy
| | | | - Paola Vittorioso
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70, 00185 Rome, Italy
| | - Sabrina Sabatini
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70, 00185 Rome, Italy
| | - Paolo Costantino
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70, 00185 Rome, Italy
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza - via dei Sardi, 70, 00185 Rome, Italy.
| |
Collapse
|
58
|
Phokas A, Coates JC. Evolution of DELLA function and signaling in land plants. Evol Dev 2021; 23:137-154. [PMID: 33428269 PMCID: PMC9285615 DOI: 10.1111/ede.12365] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 01/08/2023]
Abstract
DELLA proteins are master growth regulators that repress responses to a group of plant growth hormones called gibberellins (GAs). Manipulation of DELLA function and signaling was instrumental in the development of high‐yielding crop varieties that saved millions from starvation during the “Green Revolution.” Despite decades of extensive research, it is still unclear how DELLA function and signaling mechanisms evolved within the land plant lineage. Here, we review current knowledge on DELLA protein function with reference to structure, posttranslational modifications, downstream transcriptional targets, and protein–protein interactions. Furthermore, we discuss older and recent findings regarding the evolution of DELLA signaling within the land plant lineage, with an emphasis on bryophytes, and identify future avenues of research that would enable us to shed more light on the evolution of DELLA signaling. Unraveling how DELLA function and signaling mechanisms have evolved could enable us to engineer better crops in an attempt to contribute to mitigating the effects of global warming and achieving global food security. DELLA genes first appeared in the common ancestor of land plants and underwent two major duplications during land plant evolution. DELLAs repress gibberellin responses in vascular plants but their function in nonvascular plants remains elusive.
Collapse
Affiliation(s)
- Alexandros Phokas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
59
|
Blanco-Touri��n N, Serrano-Mislata A, Alabad� D. Regulation of DELLA Proteins by Post-translational Modifications. PLANT & CELL PHYSIOLOGY 2020; 61:1891-1901. [PMID: 32886774 PMCID: PMC7758031 DOI: 10.1093/pcp/pcaa113] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/15/2020] [Indexed: 05/02/2023]
Abstract
DELLA proteins are the negative regulators of the gibberellin (GA) signaling pathway. GAs have a pervasive effect on plant physiology, influencing processes that span the entire life cycle of the plant. All the information encoded by GAs, either environmental or developmental in origin, is canalized through DELLAs, which modulate the activity of many transcription factors and transcriptional regulators. GAs unlock the signaling pathway by triggering DELLA polyubiquitination and degradation by the 26S proteasome. Recent reports indicate, however, that there are other pathways that trigger DELLA polyubiquitination and degradation independently of GAs. Moreover, results gathered during recent years indicate that other post-translational modifications (PTMs), namely phosphorylation, SUMOylation and glycosylation, modulate DELLA function. The convergence of several PTMs in DELLA therefore highlights the strict regulation to which these proteins are subject. In this review, we summarize these discoveries and discuss DELLA PTMs from an evolutionary perspective and examine the possibilities these and other post-translational regulations offer to improve DELLA-dependent agronomic traits.
Collapse
Affiliation(s)
- Noel Blanco-Touri��n
- Instituto de Biolog�a Molecular y Celular de Plantas (CSIC-Universitat Polit�cnica de Val�ncia), Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - Antonio Serrano-Mislata
- Instituto de Biolog�a Molecular y Celular de Plantas (CSIC-Universitat Polit�cnica de Val�ncia), Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| | - David Alabad�
- Instituto de Biolog�a Molecular y Celular de Plantas (CSIC-Universitat Polit�cnica de Val�ncia), Ingeniero Fausto Elio s/n, Valencia 46022, Spain
| |
Collapse
|
60
|
Kinoshita A, Vayssières A, Richter R, Sang Q, Roggen A, van Driel AD, Smith RS, Coupland G. Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis. eLife 2020; 9:60661. [PMID: 33315012 PMCID: PMC7771970 DOI: 10.7554/elife.60661] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/12/2020] [Indexed: 11/23/2022] Open
Abstract
Floral transition, the onset of plant reproduction, involves changes in shape and identity of the shoot apical meristem (SAM). The change in shape, termed doming, occurs early during floral transition when it is induced by environmental cues such as changes in day-length, but how it is regulated at the cellular level is unknown. We defined the morphological and cellular features of the SAM during floral transition of Arabidopsis thaliana. Both cell number and size increased during doming, and these changes were partially controlled by the gene regulatory network (GRN) that triggers flowering. Furthermore, dynamic modulation of expression of gibberellin (GA) biosynthesis and catabolism enzymes at the SAM contributed to doming. Expression of these enzymes was regulated by two MADS-domain transcription factors implicated in flowering. We provide a temporal and spatial framework for integrating the flowering GRN with cellular changes at the SAM and highlight the role of local regulation of GA.
Collapse
Affiliation(s)
- Atsuko Kinoshita
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Alice Vayssières
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - René Richter
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.,School of Agriculture and Food, University of Melbourne, Melbourne, Australia
| | - Qing Sang
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Adrian Roggen
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Richard S Smith
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
61
|
Yan J, Li X, Zeng B, Zhong M, Yang J, Yang P, Li X, He C, Lin J, Liu X, Zhao X. FKF1 F-box protein promotes flowering in part by negatively regulating DELLA protein stability under long-day photoperiod in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1717-1740. [PMID: 32427421 DOI: 10.1111/jipb.12971] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/18/2020] [Indexed: 05/23/2023]
Abstract
FLAVIN-BINDING KELCH REPEAT F-BOX 1 (FKF1) encodes an F-box protein that regulates photoperiod flowering in Arabidopsis under long-day conditions (LDs). Gibberellin (GA) is also important for regulating flowering under LDs. However, how FKF1 and the GA pathway work in concert in regulating flowering is not fully understood. Here, we showed that the mutation of FKF1 could cause accumulation of DELLA proteins, which are crucial repressors in GA signaling pathway, thereby reducing plant sensitivity to GA in flowering. Both in vitro and in vivo biochemical analyses demonstrated that FKF1 directly interacted with DELLA proteins. Furthermore, we showed that FKF1 promoted ubiquitination and degradation of DELLA proteins. Analysis of genetic data revealed that FKF1 acted partially through DELLAs to regulate flowering under LDs. In addition, DELLAs exerted a negative feedback on FKF1 expression. Collectively, these findings demonstrate that FKF1 promotes flowering partially by negatively regulating DELLA protein stability under LDs, and suggesting a potential mechanism linking the FKF1 to the GA signaling DELLA proteins.
Collapse
Affiliation(s)
- Jindong Yan
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Xinmei Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Bingjie Zeng
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Ming Zhong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Jiaxin Yang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Piao Yang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Xin Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Chongsheng He
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Jianzhong Lin
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Xiaoying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| |
Collapse
|
62
|
Guo Y, Cheng L, Long W, Gao J, Zhang J, Chen S, Pu H, Hu M. Synergistic mutations of two rapeseed AHAS genes confer high resistance to sulfonylurea herbicides for weed control. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2811-2824. [PMID: 32556395 DOI: 10.1007/s00122-020-03633-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
A double mutant 5N of rapeseed was obtained with a synergistic effect of high resistance to sulfonylurea herbicide. Excellent weed control was observed in Ning R201 created by 5N resources. Sulfonylurea herbicides, which inhibit acetohydroxyacid synthase (AHAS), have become the most widely used herbicides worldwide. However, weed control in rapeseed crop production remains challenging in China due to the shortage of available herbicide-resistant cultivars. In this study, we developed a rapeseed line (PN19) with sulfonylurea herbicide resistance through seed mutagenesis. Molecular analysis revealed a Trp-574-Leu mutation in BnAHAS1-2R of PN19 according to the sequence of Arabidopsis thaliana, and an allele-specific cleaved amplified polymorphic sequence marker was developed to target the point mutation. A double mutant (5N) with very high sulfonylurea resistance was then created through pyramiding two mutant genes of PN19 and M342 by molecular marker-assisted selection. Herbicide resistance identification, toxicology testing, and an in vitro enzyme activity assay of AHAS in 5N indicated that each mutant was four and eight times more resistant to sulfonylurea than M342 and PN19, respectively. Protein structure analysis of AHAS1 demonstrated that the leucine of mutant Trp-574-Leu destroyed the original π-plane stacking effect of the local region for tribenuron-methyl binding, leading to herbicide tolerance. Isobole graph analysis showed a significant synergistic effect of the combination of two mutant genes in 5N for improved tolerance to sulfonylurea herbicides. Finally, we bred rapeseed variety Ning R201 using 5N herbicide resistance resources, and observed excellent weed control performance. Together, these results demonstrate the practical value of 5N application for optimizing and simplifying rapeseed cultivation in China.
Collapse
Affiliation(s)
- Yue Guo
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Li Cheng
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
| | - Weihua Long
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jianqin Gao
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jiefu Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Song Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Huiming Pu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China.
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Maolong Hu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Sub-center, National Center of Oil Crops Improvement, Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China.
- Institute of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
63
|
Systematic Analysis of Gibberellin Pathway Components in Medicago truncatula Reveals the Potential Application of Gibberellin in Biomass Improvement. Int J Mol Sci 2020; 21:ijms21197180. [PMID: 33003317 PMCID: PMC7582545 DOI: 10.3390/ijms21197180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/02/2022] Open
Abstract
Gibberellins (GAs), a class of phytohormones, act as an essential natural regulator of plant growth and development. Many studies have shown that GA is related to rhizobial infection and nodule organogenesis in legume species. However, thus far, GA metabolism and signaling components are largely unknown in the model legume Medicago truncatula. In this study, a genome-wide analysis of GA metabolism and signaling genes was carried out. In total 29 components, including 8 MtGA20ox genes, 2 MtGA3ox genes, 13 MtGA2ox genes, 3 MtGID1 genes, and 3 MtDELLA genes were identified in M. truncatula genome. Expression profiles revealed that most members of MtGAox, MtGID1, and MtDELLA showed tissue-specific expression patterns. In addition, the GA biosynthesis and deactivation genes displayed a feedback regulation on GA treatment, respectively. Yeast two-hybrid assays showed that all the three MtGID1s interacted with MtDELLA1 and MtDELLA2, suggesting that the MtGID1s are functional GA receptors. More importantly, M. truncatula exhibited increased plant height and biomass by ectopic expression of the MtGA20ox1, suggesting that enhanced GA response has the potential for forage improvement.
Collapse
|
64
|
Wang P, Zhang Q, Chen Y, Zhao Y, Ren F, Shi H, Wu X. Comprehensive identification and analysis of DELLA genes throughout the plant kingdom. BMC PLANT BIOLOGY 2020; 20:372. [PMID: 32762652 PMCID: PMC7409643 DOI: 10.1186/s12870-020-02574-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/23/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND DELLAs play key roles in plant gibberellin signaling pathways and are generally important in plant development and growth. However, DELLAs in many plant taxa have not yet been systematically analyzed. RESULTS In our study, we searched for DELLA genes across 58 green plant genomes and found 181 DELLAs. Structure analysis showed some DELLA domains do not contain "D-E-L-L-A" sequences and instead contain similar domains, including DGLLA and DSLLH domains. "VHYNP" motifs in plant DELLAs comprise 23 types of sequences, while some DELLAs did not contain GRAS domains. In grape, we found that the DELLA protein GSVIVT01015465001 contains an F-box domain, while apple DELLA proteins MDP0000220512 and MDP0000403162 contain a WW domain and a BCIP domain, respectively. These DELLAs can be divided into 22 homologous groups and 17 orthologous groups, and 35 paralogous genes were identified. In total, 35 positively selected genes (PSGs) and 121 negatively selected genes (NSGs) were found among DELLAs based on selective pressure analysis, with an average Ks of NSGs that was significantly higher than that of PSGs (P < 0.05). Among the paralogous groups, CBI and Fop were significantly positively correlated with GC, GC1, GC2, GC12, and GC3, while CAI was significantly positively correlated with GC, GC1, GC12, and GC. The paralogous groups with ω values exceeding 1 had significantly higher Ka values. We also found some paralogous groups with ω values exceeding 1 that differed in their motifs. CONCLUSIONS This study provides helpful insights into the evolution of DELLA genes and offers exciting opportunities for the investigation of DELLA functions in different plants.
Collapse
Affiliation(s)
- Pengfei Wang
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China.
- Key Laboratory of Urban Agriculture (East China), Ministry of Agriculture, Jinan, 250100, China.
| | - Qianqian Zhang
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China
| | - Yingchun Chen
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China
| | - Yanxia Zhao
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China
| | - Fengshan Ren
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China
- Key Laboratory of Urban Agriculture (East China), Ministry of Agriculture, Jinan, 250100, China
| | - Hongmei Shi
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China.
| | - Xinying Wu
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China.
- Key Laboratory of Urban Agriculture (East China), Ministry of Agriculture, Jinan, 250100, China.
| |
Collapse
|
65
|
Sukiran NA, Steel PG, Knight MR. Basal stomatal aperture is regulated by GA-DELLAs in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2020; 250:153182. [PMID: 32428693 DOI: 10.1016/j.jplph.2020.153182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Stomatal aperture is tightly regulated in order to achieve the best compromise between gas exchange and water conservation. Steady-state (basal) stomatal aperture is therefore understandably a key component in plant fitness. It has been shown previously in tomato that DELLA proteins act as positive regulators of closure of stomata, and their action is enhanced by the hormone ABA, which is itself important in mediating drought stress tolerance. DELLAs are regulated by a variety of signals which promote plant growth, most notably the hormones gibberellins, which have been shown to promote stomatal opening. We have found that DELLA proteins are also used in Arabidopsis for regulating basal stomatal aperture. We also discovered that the perception of endogenous gibberellins via the GID1 receptors is necessary for optimal basal stomatal aperture.
Collapse
Affiliation(s)
- Nur Afiqah Sukiran
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
| | - Patrick G Steel
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
| | - Marc R Knight
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
66
|
Chen Y, Su D, Li J, Ying S, Deng H, He X, Zhu Y, Li Y, Chen Y, Pirrello J, Bouzayen M, Liu Y, Liu M. Overexpression of bHLH95, a basic helix-loop-helix transcription factor family member, impacts trichome formation via regulating gibberellin biosynthesis in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3450-3462. [PMID: 32133496 PMCID: PMC7475245 DOI: 10.1093/jxb/eraa114] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/28/2020] [Indexed: 05/20/2023]
Abstract
Trichomes are epidermal protuberances on aerial parts of plants known to play an important role in biotic and abiotic stresses. To date, our knowledge of the regulation of trichome formation in crop species is very limited. Through phenotyping of the Solanum pennellii×S. lycopersicum (cv. M82) introgression population, we identified the SlbHLH95 transcription factor as a negative regulator of trichome formation in tomato. In line with this negative role, SlbHLH95 displayed a very low expression in stems where trichomes are present at high density. Overexpression of SlbHLH95 resulted in a dramatically reduced trichome density in stems and a significant down-regulation of a set of trichome-related genes. In addition to the lower trichome density, overexpressing lines also showed pleiotropic alterations affecting both vegetative and reproductive development. While most of these phenotypes were reminiscent of gibberellin (GA)-deficient phenotypes, expression studies showed that two GA biosynthesis genes, SlGA20ox2 and SlKS5, are significantly down-regulated in SlbHLH95-OE plants. Moreover, in line with a decrease in active GA content, the glabrous and dwarf phenotypes were rescued by exogenous GA treatment. In addition, yeast one-hybrid and transactivation assays revealed that SlbHLH95 represses the expression of SlGA20ox2 and SlKS5 via direct binding to their promoters. Taken together, our study established a link between SlbHLH95, GA, and trichome formation, and uncovered the role of this gene in modulating GA biosynthesis in tomato.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Dan Su
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Jie Li
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Shiyu Ying
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Xiaoqing He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Yunqi Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Ying Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Ya Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Julien Pirrello
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, France
| | - Mondher Bouzayen
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, France
| | - Yongsheng Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
67
|
Kim S, Nie H, Jun B, Kim J, Lee J, Kim S, Kim E, Kim S. Functional genomics by integrated analysis of transcriptome of sweet potato (Ipomoea batatas (L.) Lam.) during root formation. Genes Genomics 2020; 42:581-596. [PMID: 32240514 DOI: 10.1007/s13258-020-00927-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Sweet potato is easily propagated by cuttings. But the molecular biological mechanism of adventitious root formation are not yet clear. OBJECTIVE To understand the molecular mechanisms of adventitious root formation from stem cuttings in sweet potato. METHODS RNA-seq analysis was performed using un-rooted stem (0 day) and rooted stem (3 days). Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, comparison with Arabidopsis transcription factors (TFs) of DEGs were conducted to investigate the characteristics of genes and TFs involved in root formation. In addition, qRT-PCR analysis using roots at 0, 3, 6, 9, and 12 days after planting was performed to confirm RNA-seq reliability and related genes expression. RESULTS 42,459 representative transcripts and 2092 DEGs were obtained through the RNA-seq analysis. The DEGs indicated the GO terms related to the single-organism metabolic process and cell periphery, and involved in the biosynthesis of secondary metabolites, and phenylpropanoid biosynthesis in KEGG pathways. The comparison with Arabidopsis thaliana TF database showed that 3 TFs (WRKY, NAC, bHLH) involved in root formation of sweet potato. qRT-PCR analysis, which was conducted to confirm the reliability of RNA-seq analysis, indicated that some metabolisms including oxidative stress and wounding, transport, hormone may be involved in adventitious root formation. CONCLUSIONS The detected genes related to secondary metabolism, some hormone (auxin, gibberellin), transports, etc. and 3 TFs (WRKY, NAC, bHLH) may have functions in adventitious roots formation. This results provide valuable resources for future research on the adventitious root formation of sweet potato.
Collapse
Affiliation(s)
- Sujung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Hualin Nie
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Byungki Jun
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea.,NH Seed Research Development Center, Nonghyup Agribusiness Group Incorporation, Anseong, 17558, Korea
| | - Jiseong Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Jeongeun Lee
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Ekyune Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Gyeongbuk, 38430, Korea
| | - Sunhyung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea.
| |
Collapse
|
68
|
Sun H, Hao P, Gu L, Cheng S, Wang H, Wu A, Ma L, Wei H, Yu S. Pectate lyase-like Gene GhPEL76 regulates organ elongation in Arabidopsis and fiber elongation in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110395. [PMID: 32081256 DOI: 10.1016/j.plantsci.2019.110395] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/02/2019] [Accepted: 12/27/2019] [Indexed: 05/08/2023]
Abstract
Pectate lyases (PELs) play important roles in plant growth and development, mainly by degrading the pectin in primary cell walls. However, the role of PELs in cotton fiber elongation, which also involves changes in cellular structure and components, is poorly understood. Therefore, we aimed to isolate and characterize GhPEL76, as we suspected it to contribute to the regulation of fiber elongation. Expression analysis (qRT-PCR) revealed that GhPEL76 is predominately expressed in cotton fiber, with significantly different expression levels in long- and short-fiber cultivars, and that GhPEL76 expression is responsive to gibberellic acid and indoleacetic acid treatment. Furthermore, GhPEL76 promoter-driven β-glucuronidase activity was detected in the roots, hypocotyls, and leaves of transgenic Arabidopsis plants, and the overexpression of GhPEL76 in transgenic Arabidopsis promoted the elongation of several organs, including petioles, hypocotyls, primary roots, and trichomes. Additionally, the virus-induced silencing of GhPEL76 in cotton reduced fiber length, and both yeast one-hybrid and transient dual-luciferase assays suggested that GhbHLH13, a bHLH transcription factor that is up-regulated during fiber elongation, activates GhPEL76 expression by binding to the G-box of the GhPEL76 promoter region. Therefore, these results suggest GhPEL76 positively regulates fiber elongation and provide a basis for future studies of cotton fiber development.
Collapse
Affiliation(s)
- Huiru Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; College of Life Science, Yan'an University, Yan'an, 716000, China; College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Shuaishuai Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China; College of Life Science, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
69
|
Groszmann M, Chandler PM, Ross JJ, Swain SM. Manipulating Gibberellin Control Over Growth and Fertility as a Possible Target for Managing Wild Radish Weed Populations in Cropping Systems. FRONTIERS IN PLANT SCIENCE 2020; 11:190. [PMID: 32265944 PMCID: PMC7096587 DOI: 10.3389/fpls.2020.00190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/07/2020] [Indexed: 05/22/2023]
Abstract
Wild radish is a major weed of Australian cereal crops. A rapid establishment, fast growth, and abundant seed production are fundamental to its success as an invasive species. Wild radish has developed resistance to a number of commonly used herbicides increasing the problem. New innovative approaches are needed to control wild radish populations. Here we explore the possibility of pursuing gibberellin (GA) biosynthesis as a novel molecular target for controlling wild radish, and in doing so contribute new insights into GA biology. By characterizing ga 3-oxidase (ga3ox) mutants in Arabidopsis, a close taxonomic relative to wild radish, we showed that even mild GA deficiencies cause considerable reductions in growth and fecundity. This includes an explicit requirement for GA biosynthesis in successful female fertility. Similar defects were reproducible in wild radish via chemical inhibition of GA biosynthesis, confirming GA action as a possible new target for controlling wild radish populations. Two possible targeting approaches are considered; the first would involve developing a species-specific inhibitor that selectively inhibits GA production in wild radish over cereal crops. The second, involves making crop species insensitive to GA repression, allowing the use of existing broad spectrum GA inhibitors to control wild radish populations. Toward the first concept, we cloned and characterized two wild radish GA3OX genes, identifying protein differences that appear sufficient for selective inhibition of dicot over monocot GA3OX activity. We developed a novel yeast-based approach to assay GA3OX activity as part of the molecular characterization, which could be useful for future screening of inhibitory compounds. For the second approach, we demonstrated that a subset of GA associated sln1/Rht-1 overgrowth mutants, recently generated in cereals, are insensitive to GA reductions brought on by the general GA biosynthesis inhibitor, paclobutrazol. The location of these mutations within sln1/Rht-1, offers additional insight into the functional domains of these important GA signaling proteins. Our early assessment suggests that targeting the GA pathway could be a viable inclusion into wild radish management programs that warrants further investigation. In drawing this conclusion, we provided new insights into GA regulated reproductive development and molecular characteristics of GA metabolic and signaling proteins.
Collapse
Affiliation(s)
- Michael Groszmann
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Peter M. Chandler
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - John J. Ross
- School of Biological Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Steve M. Swain
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
70
|
Gibberellin Signaling Repressor LlDELLA1 Controls the Flower and Pod Development of Yellow Lupine ( Lupinus luteus L.). Int J Mol Sci 2020; 21:ijms21051815. [PMID: 32155757 PMCID: PMC7084671 DOI: 10.3390/ijms21051815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 01/02/2023] Open
Abstract
Precise control of generative organ development is of great importance for the productivity of crop plants, including legumes. Gibberellins (GAs) play a key role in the regulation of flowering, and fruit setting and development. The major repressors of GA signaling are DELLA proteins. In this paper, the full-length cDNA of LlDELLA1 gene in yellow lupine (Lupinus luteus L.) was identified. Nuclear-located LlDELLA1 was clustered in a second phylogenetic group. Further analyses revealed the presence of all conserved motifs and domains required for the GA-dependent interaction with Gibberellin Insensitive Dwarf1 (GID1) receptor, and involved in the repression function of LlDELLA1. Studies on expression profiles have shown that fluctuating LlDELLA1 transcript level favors proper flower and pod development. Accumulation of LlDELLA1 mRNA slightly decreases from the flower bud stage to anther opening (dehiscence), while there is rapid increase during pollination, fertilization, as well as pod setting and early development. LlDELLA1 expression is downregulated during late pod development. The linkage of LlDELLA1 activity with cellular and tissue localization of gibberellic acid (GA3) offers a broader insight into the functioning of the GA pathway, dependent on the organ and developmental stage. Our analyses provide information that may be valuable in improving the agronomic properties of yellow lupine.
Collapse
|
71
|
The DOF Transcription Factors in Seed and Seedling Development. PLANTS 2020; 9:plants9020218. [PMID: 32046332 PMCID: PMC7076670 DOI: 10.3390/plants9020218] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/28/2023]
Abstract
The DOF (DNA binding with one finger) family of plant-specific transcription factors (TF) was first identified in maize in 1995. Since then, DOF proteins have been shown to be present in the whole plant kingdom, including the unicellular alga Chlamydomonas reinhardtii. The DOF TF family is characterised by a highly conserved DNA binding domain (DOF domain), consisting of a CX2C-X21-CX2C motif, which is able to form a zinc finger structure. Early in the study of DOF proteins, their relevance for seed biology became clear. Indeed, the PROLAMIN BINDING FACTOR (PBF), one of the first DOF proteins characterised, controls the endosperm-specific expression of the zein genes in maize. Subsequently, several DOF proteins from both monocots and dicots have been shown to be primarily involved in seed development, dormancy and germination, as well as in seedling development and other light-mediated processes. In the last two decades, the molecular network underlying these processes have been outlined, and the main molecular players and their interactions have been identified. In this review, we will focus on the DOF TFs involved in these molecular networks, and on their interaction with other proteins.
Collapse
|
72
|
Yang L, Jiang Z, Liu S, Lin R. Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis. THE NEW PHYTOLOGIST 2020; 225:1593-1605. [PMID: 31580487 DOI: 10.1111/nph.16236] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/26/2019] [Indexed: 05/22/2023]
Abstract
Environmental light signal and GAs synergistically regulate seed dormancy and germination. The phytochrome B (phyB) photoreceptor regulates expression of the REVEILLE1 (RVE1) transcription factor, which directly inhibits GIBBERELLIN 3-OXIDASE2 transcription, suppressing GA biosynthesis. However, whether phyB-RVE1 coordinates with GA signaling in controlling seed dormancy and germination remains unknown. Here, we demonstrate that RVE1 regulation of seed dormancy and germination requires a DELLA repressor, REPRESSOR OF GA-LIKE2 (RGL2), in Arabidopsis thaliana. RVE1 interacts with both RGL2 and its E3 ubiquitin ligase SLEEPY1 (SLY1) and promotes RGL2 stability by restraining the RGL2-SLY1 interaction. Furthermore, RVE1 and RGL2 synergistically regulate global transcriptome changes; RGL2 enhances the DNA-binding capacity and transcriptional activity of RVE1 in regulating downstream gene expression. Moreover, RGL2 expression is repressed by phyB. Our study reveals a novel regulatory mechanism in which the RVE1-RGL2 module coordinately controls seed dormancy and germination by integrating light perception, GA metabolism and GA signaling pathways.
Collapse
Affiliation(s)
- Liwen Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhimin Jiang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shuangrong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
73
|
Crosstalk with Jasmonic Acid Integrates Multiple Responses in Plant Development. Int J Mol Sci 2020; 21:ijms21010305. [PMID: 31906415 PMCID: PMC6981462 DOI: 10.3390/ijms21010305] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
To date, extensive studies have identified many classes of hormones in plants and revealed the specific, nonredundant signaling pathways for each hormone. However, plant hormone functions largely overlap in many aspects of plant development and environmental responses, suggesting that studying the crosstalk among plant hormones is key to understanding hormonal responses in plants. The phytohormone jasmonic acid (JA) is deeply involved in the regulation of plant responses to biotic and abiotic stresses. In addition, a growing number of studies suggest that JA plays an essential role in the modulation of plant growth and development under stress conditions, and crosstalk between JA and other phytohormones involved in growth and development, such as gibberellic acid (GA), cytokinin, and auxin modulate various developmental processes. This review summarizes recent findings of JA crosstalk in the modulation of plant growth and development, focusing on JA–GA, JA–cytokinin, and JA–auxin crosstalk. The molecular mechanisms underlying this crosstalk are also discussed.
Collapse
|
74
|
Li Y, Yang Y, Hu Y, Liu H, He M, Yang Z, Kong F, Liu X, Hou X. DELLA and EDS1 Form a Feedback Regulatory Module to Fine-Tune Plant Growth-Defense Tradeoff in Arabidopsis. MOLECULAR PLANT 2019; 12:1485-1498. [PMID: 31382023 DOI: 10.1016/j.molp.2019.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/04/2019] [Accepted: 07/27/2019] [Indexed: 05/03/2023]
Abstract
Plants maintain a dynamic balance between growth and defense , and optimize allocation of resources for survival under constant pathogen infections. However, the underlying molecular regulatory mechanisms, especially in response to biotrophic bacterial infection, remain elusive. Here, we demonstrate that DELLA proteins and EDS1, an essential resistance regulator, form a central module modulating plant growth-defense tradeoffs via direct interaction. When infected by Pst DC3000, EDS1 rapidly promotes salicylic acid (SA) biosynthesis and resistance-related gene expression to prime defense response, while pathogen infection stabilizes DELLA proteins RGA and RGL3 to restrict growth in a partially EDS1-dependent manner, which facilitates plants to develop resistance to pathogens. However, the increasingly accumulated DELLAs interact with EDS1 to suppress SA overproduction and excessive resistance response. Taken together, our findings reveal a DELLA-EDS1-mediated feedback regulatory loop by which plants maintain the subtle balance between growth and defense to avoid excessive growth or defense in response to constant biotrophic pathogen attack.
Collapse
Affiliation(s)
- Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuhua Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yilong Hu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hailun Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ming He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ziyin Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xu Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
75
|
Hark A, McCain E. The histone acetyltransferase GCN5 and the transcriptional coactivator ADA2b affect trichome initiation in Arabidopsis thaliana. MICROPUBLICATION BIOLOGY 2019; 2019. [PMID: 32550439 PMCID: PMC7252315 DOI: 10.17912/micropub.biology.000176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amy Hark
- Biology Department, Muhlenberg College, Allentown, PA 18104
| | | |
Collapse
|
76
|
Marciniak K, Przedniczek K. Comprehensive Insight into Gibberellin- and Jasmonate-Mediated Stamen Development. Genes (Basel) 2019; 10:genes10100811. [PMID: 31618967 PMCID: PMC6827089 DOI: 10.3390/genes10100811] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
In flowering plants, proper development of male generative organs is required for successful sexual reproduction. Stamen primordia arise in the third whorl of floral organs and subsequently differentiate into filaments and anthers. The early phase of stamen development, in which meiosis occurs, is followed by a late developmental phase, which consists of filament elongation coordinated with pollen maturation, anther dehiscence and finally viable pollen grain release. Stamen development and function are modulated by phytohormones, with a key role of gibberellins (GAs) and jasmonates (JAs). Long-term, extensive investigations, mainly involving GA/JA-deficient and GA/JA-response mutants, have led to a better understanding of the hormone-dependent molecular mechanisms of stamen development. In several species, the principal functions of GAs are to stimulate filament elongation through increased cell elongation and to promote anther locule opening. In the GA-dependent regulation of early stamen development, both the tapetum and developing pollen were identified as major targets. JAs mainly control the late stages of stamen development, such as filament elongation, viable pollen formation and anther dehiscence. A hierarchical relationship between GAs and JAs was recognized mainly in the control of late stamen development. By repressing DELLA proteins, GAs modulate the transcriptional activity of JA biosynthesis genes to promote JA production. A high level of JAs induces a complex of transcription factors crucial for normal stamen development.
Collapse
Affiliation(s)
- Katarzyna Marciniak
- Chair of Plant Physiology and Biotechnology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1 St, 87-100 Toruń, Poland.
| | - Krzysztof Przedniczek
- Chair of Plant Physiology and Biotechnology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1 St, 87-100 Toruń, Poland.
| |
Collapse
|
77
|
Zhu Z, Liang H, Chen G, Li F, Wang Y, Liao C, Hu Z. The bHLH transcription factor SlPRE2 regulates tomato fruit development and modulates plant response to gibberellin. PLANT CELL REPORTS 2019; 38:1053-1064. [PMID: 31123809 DOI: 10.1007/s00299-019-02425-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/07/2019] [Indexed: 05/22/2023]
Abstract
SlPRE2 is gibberellin inducible and mediates plant response to gibberellin. Silencing of SlPRE2 decreases tomato fruit size, pericarp thickness, placenta size and seed size by regulating cell expansion. Gibberellin is one of the crucial hormones essential for plant growth and developmental processes, including seed germination, stem elongation, and sex expression. Previous studies indicated gibberellin could control fruit development by regulation of genes downstream gibberellin pathway. In the present study, we found that the SlPRE2, a bHLH family transcription factor gene, is highly expressed in immature green fruit. Silencing of SlPRE2 caused reduction of fruits size, pericarp thickness, and placenta size. Meanwhile, smaller seeds were observed in SlPRE2 silenced lines. In addition, the SlPRE2-silenced fruit mesocarp had reduced cell size and expression of SlXTH2 and SlXTH5 which are involved in cell enlargement. Further research showed that SlPRE2 is gibberellic acid-inducible and the expression of gibberellin metabolism-related genes in immature green fruit was affected by the downregulation of SlPRE2. Moreover, the SlPRE2-silenced plants had changed responses to application of exogenous gibberellic acid and paclobutrazol, an inhibitor of gibberellin biosynthesis. These findings indicated that SlPRE2 is a regulator of fruit development and affects plant response to gibberellic acid via the gibberellin pathway.
Collapse
Affiliation(s)
- Zhiguo Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Honglian Liang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Guoping Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
| | - Fenfen Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yunshu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Changguang Liao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Zongli Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
78
|
Bao S, Hua C, Huang G, Cheng P, Gong X, Shen L, Yu H. Molecular Basis of Natural Variation in Photoperiodic Flowering Responses. Dev Cell 2019; 50:90-101.e3. [PMID: 31178399 DOI: 10.1016/j.devcel.2019.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/11/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022]
Abstract
Plants exhibit different flowering behaviors in response to variable photoperiods across a wide geographical range. Here, we identify MYC3, a bHLH transcription factor, and its cis-element form the long-sought regulatory module responsible for cis-regulatory changes at the florigen gene FLOWERING LOCUS T (FT) that mediate natural variation in photoperiodic flowering responses in Arabidopsis. MYC3 is stabilized by DELLAs in the gibberellin pathway to suppress FT through binding the ACGGAT motif and antagonizing CONSTANS (CO) activation. Changing photoperiods modulate the relative abundance of MYC3 and CO, thus determining either of them as the predominant regulator for FT expression under different day lengths. Cis-regulatory changes in the MYC3 binding site at FT are associated with natural variation in day-length requirement for flowering in Arabidopsis accessions. Our findings reveal that environmental and developmental signals converge at MYC3 suppression of FT, an elementary event underlying natural variation in photoperiodic flowering responses.
Collapse
Affiliation(s)
- Shengjie Bao
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Changmei Hua
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Gengqing Huang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Peng Cheng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Ximing Gong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
79
|
Yu X, Liu H, Sang N, Li Y, Zhang T, Sun J, Huang X. Identification of cotton MOTHER OF FT AND TFL1 homologs, GhMFT1 and GhMFT2, involved in seed germination. PLoS One 2019; 14:e0215771. [PMID: 31002698 PMCID: PMC6474632 DOI: 10.1371/journal.pone.0215771] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 12/02/2022] Open
Abstract
Plant phosphatidylethanolamine-binding protein (PEBP) is comprised of three clades: FLOWERING LOCUS T (FT), TERMINAL FLOWER1 (TFL1) and MOTHER OF FT AND TFL1 (MFT). FT/TFL1-like clades regulate identities of the determinate and indeterminate meristems, and ultimately affect flowering time and plant architecture. MFT is generally considered to be the ancestor of FT/TFL1, but its function is not well understood. Here, two MFT homoeologous gene pairs in Gossypium hirsutum, GhMFT1-A/D and GhMFT2-A/D, were identified by genome-wide identification of MFT-like genes. Detailed expression analysis revealed that GhMFT1 and GhMFT2 homoeologous genes were predominately expressed in ovules, and their expression increased remarkably during ovule development but decreased quickly during seed germination. Expressions of GhMFT1 and GhMFT2 homoeologous genes in germinating seeds were upregulated in response to abscisic acid (ABA), and their expressions also responded to gibberellin (GA). In addition, ectopic overexpression of GhMFT1 and GhMFT2 in Arabidopsis inhibited seed germination at the early stage. Gene transcription analysis showed that ABA metabolism genes ABA-INSENSITIVE3 (ABI3) and ABI5, GA signal transduction pathway genes REPRESSOR OF ga1-3 (RGA) and RGA-LIKE2 (RGL2) were all upregulated in the 35S:GhMFT1 and 35S:GhMFT2 transgenic Arabidopsis seeds. GhMFT1 and GhMFT2 localize in the cytoplasm and nucleus, and both interact with a cotton bZIP transcription factor GhFD, suggesting that both of GhMFT1, 2 have similar intracellular regulation mechanisms. Taken together, the results suggest that GhMFT1 and GhMFT2 may act redundantly and differentially in the regulation of seed germination.
Collapse
Affiliation(s)
- Xiuli Yu
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Hui Liu
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Na Sang
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Yunfei Li
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Tingting Zhang
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Jie Sun
- The Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Xianzhong Huang
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
80
|
Wang S, Zhang N, Zhu X, Yang J, Li S, Che Y, Liu W, Si H. Identification and expression analysis of StGRAS gene family in potato (Solanum tuberosum L.). Comput Biol Chem 2019; 80:195-205. [PMID: 30978571 DOI: 10.1016/j.compbiolchem.2019.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 12/25/2022]
Abstract
The GRAS gene family is a class of plant-specific transcription factors which play pivotal roles in the regulation of plant growth and development. At present, the GRAS gene family has been completely identified in Arabidopsis thaliana, however, there are no systematic research reports in potato. In the present study, we obtained an overview of the GRAS gene family including gene structure, gene expression, chromosome mapping and phylogenetic analysis, and 52 StGRASs were identified in the potato by bioinformatics analysis, which could be divided into eight subfamilies based on phylogeny. More than 90% of genes do not contain introns and the StGRAS family major function is protein binding according to gene ontology analysis (GO).The tissue specific expression analysis showed that StGRAS3, StGRAS35 and StGRAS50 gene had the higher expression in roots, stems and leaves compared with other StGRAS, StGRAS9 and StGRAS28 genes were responded to plant hormones IAA, ABA and GA3 treatment. The result could provide a basis for further studying the function of GRAS genes and GRAS-mediated signal transduction pathways in potato.
Collapse
Affiliation(s)
- Shulin Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xi Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangwei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Shigui Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhang Che
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Weigang Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
81
|
Gómez MD, Fuster-Almunia C, Ocaña-Cuesta J, Alonso JM, Pérez-Amador MA. RGL2 controls flower development, ovule number and fertility in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:82-92. [PMID: 30824064 DOI: 10.1016/j.plantsci.2019.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/16/2018] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
DELLA proteins are a group of plant specific GRAS proteins of transcriptional regulators that have a key role in gibberellin (GA) signaling. In Arabidopsis, the DELLA family is formed by five members. The complexity of this gene family raises the question on whether single DELLA proteins have specific or overlapping functions in the control of several GA-dependent developmental processes. To better understand the roles played by RGL2, one of the DELLA proteins in Arabidopsis, two transgenic lines that express fusion proteins of Venus-RGL2 and a dominant version of RGL2, YPet-rgl2Δ17, were generated by recombineering strategy using a genomic clone that contained the RGL2 gene. The dominant YPet-rgl2Δ17 protein is not degraded by GAs, and therefore it blocks the RGL2-dependent GA signaling and hence RGL2-dependent development. The RGL2 role in seed germination was further confirmed using these genetic tools, while new functions of RGL2 in plant development were uncovered. RGL2 has a clear function in the regulation of flower development, particularly stamen growth and anther dehiscence, which has a great impact in fertility. Moreover, the increased ovule number in the YPet-rgl2Δ17 line points out the role of RGL2 in the determination of ovule number.
Collapse
Affiliation(s)
- María Dolores Gómez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación, Ed. 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Clara Fuster-Almunia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación, Ed. 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Javier Ocaña-Cuesta
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación, Ed. 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Miguel A Pérez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación, Ed. 8E, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain.
| |
Collapse
|
82
|
Um TY, Lee HY, Lee S, Chang SH, Chung PJ, Oh KB, Kim JK, Jang G, Choi YD. Jasmonate Zim-Domain Protein 9 Interacts With Slender Rice 1 to Mediate the Antagonistic Interaction Between Jasmonic and Gibberellic Acid Signals in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:1866. [PMID: 30619427 PMCID: PMC6305323 DOI: 10.3389/fpls.2018.01866] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/04/2018] [Indexed: 05/26/2023]
Abstract
The jasmonic acid (JA) and gibberellic acid (GA) signaling pathways interact to coordinate stress responses and developmental processes. This coordination affects plant growth and yield, and is mediated by interactions between the repressors of each pathway, the JASMONATE ZIM-DOMAIN PROTEIN (JAZ) and DELLA proteins. In this study we attempted to identify rice (Oryza sativa) JAZs that interact with rice DELLAs such as SLENDER RICE 1 (SLR1). Analysis of protein-protein interactions showed that OsJAZ8 and OsJAZ9 interact with SLR1; OsJAZ9 also interacted with the SLR1-LIKE (SLRL) protein SLRL2. Based on this broader interaction, we explored the function of OsJAZ9 in JA and GA responses by analyzing transcript levels of the JA-responsive gene OsbHLH148 and the GA-responsive gene OsPIL14 in OsJAZ9-overexpressing (OsJAZ9-Ox) and osjaz9 mutant plants. OsbHLH148 and OsPIL14 encode key transcription factors controlling JA and GA responses, respectively, and JA and GA antagonistically regulate their expression. In OsJAZ9-Ox, the expression of OsbHLH148 was downregulated and the expression of OsPIL14 was upregulated. By contrast, in osjaz9 mutants, the expression of OsbHLH148 was upregulated and the expression of OsPIL14 was downregulated. These observations indicated that OsJAZ9 regulates both JA and GA responses in rice, and this finding was supported by the opposite expression patterns of OsDREB1s, downstream targets of OsbHLH148 and OsPIL14, in the OsJAZ9-Ox and osjaz9 plants. Together, these findings indicate that OsJAZ9 suppresses JA responses and promotes GA responses in rice, and the protein-protein interaction between OsJAZ9 and SLR1 is involved in the antagonistic interplay between JA and GA.
Collapse
Affiliation(s)
- Tae Young Um
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Han Yong Lee
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Sangyool Lee
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Sun Hyun Chang
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Pil Joong Chung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Yang Do Choi
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
83
|
Wang X, Yesbergenova-Cuny Z, Biniek C, Bailly C, El-Maarouf-Bouteau H, Corbineau F. Revisiting the Role of Ethylene and N-End Rule Pathway on Chilling-Induced Dormancy Release in Arabidopsis Seeds. Int J Mol Sci 2018; 19:ijms19113577. [PMID: 30428533 PMCID: PMC6275081 DOI: 10.3390/ijms19113577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 01/17/2023] Open
Abstract
Dormant Arabidopsis (Arabidopsis thaliana) seeds do not germinate easily at temperatures higher than 10–15 °C. Using mutants affected in ethylene signaling (etr1, ein2 and ein4) and in the N-end-rule pathway of the proteolysis (prt6 and ate1-ate2) we have investigated the effects of cold and ethylene on dormancy alleviation. Ethylene (10–100 ppm) and 2–4 days chilling (4 °C) strongly stimulate the germination of wild type (Col-0) seeds at 25 °C. Two to four days of chilling promote the germination at 25 °C of all the mutants suggesting that release of dormancy by cold did not require ethylene and did not require the N-end-rule pathway. One mutant (etr1) that did not respond to ethylene did not respond to GA3 either. Mutants affected in the N-end rule (prt6 and ate1-ate2) did not respond to ethylene indicating that also this pathway is required for dormancy alleviation by ethylene; they germinated after chilling and in the presence of GA3. Cold can activate the ethylene signaling pathway since it induced an accumulation of ETR1, EINI4, and EIN2 transcripts, the expression of which was not affected by ethylene and GA3. Both cold followed by 10 h at 25 °C and ethylene downregulated the expression of PRT6, ATE1, ATE2, and of ABI5 involved in ABA signaling as compared to dormant seeds incubated at 25 °C. In opposite, the expression of RGA, GAI, and RGL2 encoding three DELLAs was induced at 4 °C but downregulated in the presence of ethylene.
Collapse
Affiliation(s)
- Xu Wang
- CNRS, Laboratoire de Biologie du Développement, Sorbonne Université, Boîte 24, 4 Place Jussieu, 75005 Paris, France.
| | - Zhazira Yesbergenova-Cuny
- CNRS, Laboratoire de Biologie du Développement, Sorbonne Université, Boîte 24, 4 Place Jussieu, 75005 Paris, France.
| | - Catherine Biniek
- CNRS, Laboratoire de Biologie du Développement, Sorbonne Université, Boîte 24, 4 Place Jussieu, 75005 Paris, France.
| | - Christophe Bailly
- CNRS, Laboratoire de Biologie du Développement, Sorbonne Université, Boîte 24, 4 Place Jussieu, 75005 Paris, France.
| | - Hayat El-Maarouf-Bouteau
- CNRS, Laboratoire de Biologie du Développement, Sorbonne Université, Boîte 24, 4 Place Jussieu, 75005 Paris, France.
| | - Françoise Corbineau
- CNRS, Laboratoire de Biologie du Développement, Sorbonne Université, Boîte 24, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
84
|
Xue J, Li T, Wang S, Xue Y, Hu F, Zhang X. Elucidation of the mechanism of reflowering in tree peony (Paeonia suffruticosa) 'Zi Luo Lan' by defoliation and gibberellic acid application. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:571-578. [PMID: 30326436 DOI: 10.1016/j.plaphy.2018.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/03/2018] [Accepted: 10/06/2018] [Indexed: 05/06/2023]
Abstract
In this study, the reflowering mechanism of tree peony (Paeonia suffruticosa 'Zi Luo Lan') after defoliation and gibberellic acid (GA) application (autumn-flowering treatment) was investigated by monitoring the morphological changes, measuring the endogenous GA3 and abscisic acid (ABA) contents, and determining the expression patterns of six GA- and two ABA-related genes. The results show that autumn-flowering treatment induced tree peony reflowering in autumn, which was accompanied by nutrient absorption in buds. The application of exogenous GA3 induced a simultaneous increase in GA3 and decrease in ABA levels, suggesting that the high ratios of GA3/ABA may play a key role in inducing tree peony reflowering. RT-qPCR analysis shows that PsCPS and PsGA2ox were significantly induced and inhibited by GA3 application, respectively, which supports the hypothesis that GA3 treatment induces endogenous GA3 production. In addition, GA3 treatment inhibited the expression of the PsGID1c, but its effect on PsGAI1 was limited, whereas the expression of PsGAMYB could be GA- or ABA-related. Furthermore, autumn-flowering treatment significantly inhibited the expression of PsNCED and PsbZIP, which coincides with the observed changes in ABA levels. Therefore, we postulate that autumn-flowering treatment induces tree peony reflowering by inhibiting the function of ABA accumulation and signaling.
Collapse
Affiliation(s)
- Jingqi Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, China; Department of Peony, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Tingting Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, China; Department of Peony, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China; Institute of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China
| | - Shunli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, China; Department of Peony, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yuqian Xue
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, China; Department of Peony, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Fengrong Hu
- Institute of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiuxin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, China; Department of Peony, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
85
|
Plackett ARG, Powers SJ, Phillips AL, Wilson ZA, Hedden P, Thomas SG. The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning. PLANT REPRODUCTION 2018; 31:171-191. [PMID: 29264708 PMCID: PMC5940708 DOI: 10.1007/s00497-017-0320-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/11/2017] [Indexed: 05/04/2023]
Abstract
Linear modelling approaches detected significant gradients in organ growth and patterning across early flowers of the Arabidopsis inflorescence and uncovered evidence of new roles for gibberellin in floral development. Most flowering plants, including the genetic model Arabidopsis thaliana, produce multiple flowers in sequence from a reproductive shoot apex to form a flower spike (inflorescence). The development of individual flowers on an Arabidopsis inflorescence has typically been considered as highly stereotypical and uniform, but this assumption is contradicted by the existence of mutants with phenotypes visible in early flowers only. This phenomenon is demonstrated by mutants partially impaired in the biosynthesis of the phytohormone gibberellin (GA), in which floral organ growth is retarded in the first flowers to be produced but has recovered spontaneously by the 10th flower. We presently lack systematic data from multiple flowers across the Arabidopsis inflorescence to explain such changes. Using mutants of the GA 20-OXIDASE (GA20ox) GA biosynthesis gene family to manipulate endogenous GA levels, we investigated the dynamics of changing floral organ growth across the early Arabidopsis inflorescence (flowers 1-10). Modelling of floral organ lengths identified a significant, GA-independent gradient of increasing stamen length relative to the pistil in the wild-type inflorescence that was separable from other, GA-dependent effects. It was also found that the first flowers exhibited unstable organ patterning in contrast to later flowers and that this instability was prolonged by exogenous GA treatment. These findings indicate that the development of individual flowers is influenced by hitherto unknown factors acting across the inflorescence and also suggest novel functions for GA in floral patterning.
Collapse
Affiliation(s)
- Andrew R G Plackett
- Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | - Stephen J Powers
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Andy L Phillips
- Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, LE12 5RD, UK
| | - Peter Hedden
- Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Stephen G Thomas
- Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
86
|
Zheng C, Kwame Acheampong A, Shi Z, Halaly T, Kamiya Y, Ophir R, Galbraith DW, Or E. Distinct gibberellin functions during and after grapevine bud dormancy release. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1635-1648. [PMID: 29385616 PMCID: PMC5888973 DOI: 10.1093/jxb/ery022] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/16/2018] [Indexed: 05/20/2023]
Abstract
The molecular mechanism regulating dormancy release in grapevine buds is as yet unclear. It has been hypothesized that (i) abscisic acid (ABA) represses bud-meristem activity; (ii) perturbation of respiration induces an interplay between ethylene and ABA metabolism, which leads to removal of repression; and (iii) gibberellin (GA)-mediated growth is resumed. The first two hypothesis have been formally supported. The current study examines the third hypothesis regarding the potential involvement of GA in dormancy release. We found that during natural dormancy induction, levels of VvGA3ox, VvGA20ox, and VvGASA2 transcripts and of GA1 were decreased. However, during dormancy release, expression of these genes was enhanced, accompanied by decreased expression of the bud-expressed GA-deactivating VvGA2ox. Despite indications for its positive role during natural dormancy release, GA application had inhibitory effects on bud break. Hydrogen cyanamide up-regulated VvGA2ox and down-regulated VvGA3ox and VvGA20ox expression, reduced GA1 levels, and partially rescued the negative effect of GA. GA had an inhibitory effect only when applied simultaneously with bud-forcing initiation. Given these results, we hypothesize that during initial activation of the dormant bud meristem, the level of GA must be restricted, but after meristem activation an increase in its level serves to enhance primordia regrowth.
Collapse
Affiliation(s)
- Chuanlin Zheng
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Atiako Kwame Acheampong
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Zhaowan Shi
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Tamar Halaly
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yuji Kamiya
- RIKEN Plant Science Center, Yokohama, Kanagawa, Japan
| | - Ron Ophir
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - David W Galbraith
- School of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, AZ, USA
| | - Etti Or
- Institute of Plant Sciences, Department of Fruit Tree Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
87
|
Ito T, Okada K, Fukazawa J, Takahashi Y. DELLA-dependent and -independent gibberellin signaling. PLANT SIGNALING & BEHAVIOR 2018; 13:e1445933. [PMID: 29485381 PMCID: PMC5927702 DOI: 10.1080/15592324.2018.1445933] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
DELLA proteins act as negative regulators in gibberellin (GA) signal transduction. GA-induced DELLA degradation is a central regulatory system in GA signaling pathway. Intensive studies have revealed the degradation mechanism of DELLA and the functions of DELLA as a transcriptional regulator. Meanwhile, recent studies suggest the existence of a DELLA-independent GA signaling pathway. In this review, we summarized the DELLA-independent GA signaling pathway together with the well-analyzed DELLA-dependent pathway.
Collapse
Affiliation(s)
- Takeshi Ito
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- CONTACT Takeshi Ito Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima City, 739-8526, Japan
| | - Kanako Okada
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Jutarou Fukazawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Yohsuke Takahashi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| |
Collapse
|
88
|
Wang YX, Liu ZW, Wu ZJ, Li H, Wang WL, Cui X, Zhuang J. Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis). Sci Rep 2018; 8:3949. [PMID: 29500448 PMCID: PMC5834537 DOI: 10.1038/s41598-018-22275-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 02/20/2018] [Indexed: 12/16/2022] Open
Abstract
GRAS proteins are important transcription factors that play multifarious roles in regulating the growth and development as well as stress responses of plants. Tea plant is an economically important leaf -type beverage crop. Information concerning GRAS family transcription factors in tea plant is insufficient. In this study, 52 CsGRAS genes encoding GRAS proteins were identified from tea plant genome database. Phylogenetic analysis of the identified GRAS proteins from tea plant, Arabidopsis, and rice divided these proteins into at least 13 subgroups. Conserved motif analysis revealed that the gene structure and motif compositions of the proteins were considerably conserved among the same subgroup. Functional divergence analysis indicated that the shifted evolutionary rate might act as a major evolutionary force driving subfamily-specific functional diversification. Transcriptome analysis showed that the transcriptional levels of CsGRAS genes under non-stress conditions varied among different tea plant cultivars. qRT-PCR analysis revealed tissue and development stage-specific expression patterns of CsGRAS genes in tea plant. The expression patterns of CsGRAS genes in response to abiotic stresses and gibberellin treatment suggested the possible multiple functions of these genes. This study provides insights into the potential functions of GRAS genes.
Collapse
Affiliation(s)
- Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Wei Liu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Jun Wu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen-Li Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Cui
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
89
|
Salazar-Cerezo S, Martínez-Montiel N, García-Sánchez J, Pérez-Y-Terrón R, Martínez-Contreras RD. Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria. Microbiol Res 2018; 208:85-98. [PMID: 29551215 DOI: 10.1016/j.micres.2018.01.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 11/26/2022]
Abstract
Gibberellins (GAs) are natural complex biomolecules initially identified as secondary metabolites in the fungus Gibberella fujikuroi with strong implications in plant physiology. GAs have been identified in different fungal and bacterial species, in some cases related to virulence, but the full understanding of the role of these metabolites in the different organisms would need additional investigation. In this review, we summarize the current evidence regarding a common pathway for GA synthesis in fungi, bacteria and plant from the genes depicted as part of the GA production cluster to the enzymes responsible for the catalytic transformations and the biosynthetical routes involved. Moreover, we present the relationship between these observations and the biotechnological applications of GAs in plants, which has shown an enormous commercial impact.
Collapse
Affiliation(s)
- Sonia Salazar-Cerezo
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico
| | - Nancy Martínez-Montiel
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico
| | - Jenny García-Sánchez
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico
| | | | - Rebeca D Martínez-Contreras
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico.
| |
Collapse
|
90
|
Zheng H, Ding Y. MLK1 and MLK2 integrate gibberellins and circadian clock signaling to modulate plant growth. PLANT SIGNALING & BEHAVIOR 2018; 13:e1439654. [PMID: 29431572 PMCID: PMC5846553 DOI: 10.1080/15592324.2018.1439654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 05/26/2023]
Abstract
The covalent histone modifications were associated with plant development. However, the function of histone modification factors involved in gibberellins (GAs) signaling pathway remains unclear. In recent study, we reported that histone modification factors MUT9p-LIKE KINASE1 (MLK1) and MLK2 coordinate GA and circadian clock signaling in hypocotyl elongation. MLK1 and MLK2 interact with the DELLA protein REPRESSOR OF ga1-3 (RGA), and antagonize the function of RGA to interact with CIRCADIAN CLOCK ASSOCIATED1 (CCA1), resulting in promoting hypocotyl elongation. In this addendum to the report, we presented and discussed the results related to the function of MLK1 and MLK2 in GA pathway. MLK1 and MLK2 interact with RGA, which is independent on 17-amino acid DELLA, TVHYNP, or Poly S/T/V motif, suggesting that MLK1 and MLK2 might have novel functions beyond the protein degradation.
Collapse
Affiliation(s)
- Han Zheng
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science & Technology of China, Anhui, China
| | - Yong Ding
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science & Technology of China, Anhui, China
| |
Collapse
|
91
|
Kim SY, Hyoung S, So WM, Shin JS. The novel transcription factor TRP interacts with ZFP5, a trichome initiation-related transcription factor, and negatively regulates trichome initiation through gibberellic acid signaling. PLANT MOLECULAR BIOLOGY 2018; 96:315-326. [PMID: 29335898 DOI: 10.1007/s11103-018-0697-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
The trichome-related protein (TRP) is a novel transcription factor (TF) that negatively regulates trichome initiation-related TFs through gibberellin (GA) signaling. Trichomes, which are outgrowths of leaf epidermal cells, provide the plant with a first line of defense against damage from herbivores and reduce transpiration. The initiation and development of trichomes are regulated by a network of positively or negatively regulating transcription factors (TFs). However, little information is currently available on transcriptional regulation related to trichome formation. Here, we report a novel TF Trichome-Related Protein (TRP) that was observed to negatively regulate the trichome initiation-related TFs through gibberellic acid (GA) signaling. ProTRP:GUS revealed that TRP was only expressed in the trichome. The TRP loss-of-function mutant (trp) had an increased number of trichomes on the flower, cauline leaves, and main inflorescence stems compared to the wild-type. In contrast, TRP overexpression lines (TRP-Ox) exhibited a decreased number of trichomes on cauline leaves and main inflorescence stem following treatment with exogenous GA. Moreover, the expressions of trichome initiation regulators (GIS, GIS2, ZFP8, GL1, and GL3) increased in trp plants but decreased in TRP-Ox lines after GA treatment. TRP was observed to physically interact with ZFP5, a C2H2 TF that controls trichome cell development through GA signaling, both in vivo and in vitro. Based on these results, we suggest that TRP functions upstream of the trichome initiation regulators and represses the binding of ZFP5 to the ZFP8 promoter.
Collapse
Affiliation(s)
- Soo Youn Kim
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sujin Hyoung
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Won Mi So
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
92
|
Heyman J, Canher B, Bisht A, Christiaens F, De Veylder L. Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. J Cell Sci 2018; 131:jcs.208215. [PMID: 29242229 DOI: 10.1242/jcs.208215] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
Plants react to wounding through the activation of both defense and repair pathways, but how these two responses are coordinated is unclear. Here, we put forward the hypothesis that diverse members of the subfamily X of the plant-specific ethylene response factor (ERF) transcription factors coordinate stress signaling with the activation of wound repair mechanisms. Moreover, we highlight the observation that tissue repair is strongly boosted through the formation of a heterodimeric protein complex that comprises ERF and transcription factors of the GRAS domain type. This interaction turns ERFs into highly potent and stress-responsive activators of cell proliferation. The potency to induce stem cell identity suggests that these heterodimeric transcription factor complexes could become valuable tools to increase crop regeneration and transformation efficiency.
Collapse
Affiliation(s)
- Jefri Heyman
- Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Balkan Canher
- Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Anchal Bisht
- Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Fien Christiaens
- Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Lieven De Veylder
- Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| |
Collapse
|
93
|
Zheng H, Zhang F, Wang S, Su Y, Ji X, Jiang P, Chen R, Hou S, Ding Y. MLK1 and MLK2 Coordinate RGA and CCA1 Activity to Regulate Hypocotyl Elongation in Arabidopsis thaliana. THE PLANT CELL 2018; 30:67-82. [PMID: 29255112 PMCID: PMC5810577 DOI: 10.1105/tpc.17.00830] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/28/2017] [Accepted: 12/15/2017] [Indexed: 05/03/2023]
Abstract
Gibberellins (GAs) modulate diverse developmental processes throughout the plant life cycle. However, the interaction between GAs and the circadian rhythm remains unclear. Here, we report that MUT9p-LIKE KINASE1 (MLK1) and MLK2 mediate the interaction between GAs and the circadian clock to regulate hypocotyl elongation in Arabidopsis thaliana DELLA proteins function as master growth repressors that integrate phytohormone signaling and environmental pathways in plant development. MLK1 and MLK2 interact with the DELLA protein REPRESSOR OF ga1-3 (RGA). Loss of MLK1 and MLK2 function results in plants with short hypocotyls and hyposensitivity to GAs. MLK1/2 and RGA directly interact with CIRCADIAN CLOCK ASSOCIATED1 (CCA1), which targets the promoter of DWARF4 (DWF4) to regulate its roles in cell expansion. MLK1/2 antagonize the ability of RGA to bind CCA1, and these factors coordinately regulate the expression of DWF4 RGA suppressed the ability of CCA1 to activate expression from the DWF4 promoter, but MLK1/2 reversed this suppression. Genetically, MLK1/2 act in the same pathway as RGA and CCA1 in hypocotyl elongation. Together, our results provide insight into the mechanism by which MLK1 and MLK2 antagonize the function of RGA in hypocotyl elongation and suggest that MLK1/2 coordinately mediate the regulation of plant development by GAs and the circadian rhythm in Arabidopsis.
Collapse
Affiliation(s)
- Han Zheng
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Fei Zhang
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Shiliang Wang
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
- School of Life Sciences, Anhui Agricultural University, Anhui 230036, China
| | - Yanhua Su
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Xiaoru Ji
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Pengfei Jiang
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
- School of Life Sciences, Anhui Agricultural University, Anhui 230036, China
| | - Rihong Chen
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Suiwen Hou
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yong Ding
- CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| |
Collapse
|
94
|
Zhang L, Chen L, Yu D. Transcription Factor WRKY75 Interacts with DELLA Proteins to Affect Flowering. PLANT PHYSIOLOGY 2018; 176:790-803. [PMID: 29133369 PMCID: PMC5761768 DOI: 10.1104/pp.17.00657] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/09/2017] [Indexed: 05/04/2023]
Abstract
Flowering time is tightly controlled by both endogenous and exogenous signals. Although several lines of evidence have suggested the involvement of WRKY transcription factors in floral initiation, the underlying mechanisms and signaling pathways involved remain elusive. Here, we newly identified Arabidopsis (Arabidopsis thaliana) WRKY DNA binding protein75 (WRKY75) as a positive regulator of flowering initiation. Mutation of WRKY75 resulted in a delay in flowering, whereas overexpression of WRKY75 significantly accelerated flowering in Arabidopsis. Gene expression analysis showed that the transcript abundance of the flowering time integrator gene FLOWERING LOCUS T (FT) was lower in wrky75 mutants than in the wild type, but greater in WRKY75-overexpressing plants. Chromatin immunoprecipitation assays revealed that WRKY75 directly binds to the promoter of FT Both in vivo and in vitro biochemical analyses demonstrated that WRKY75 interacts with DELLA proteins. We found that both REPRESSOR OF ga1-3 (RGA) RGA-LIKE1 (RGL1) and GA INSENSITIVE (GAI) can repress the activation ability of WRKY75, thereby attenuating expression of its regulon. Genetic analyses indicated that WRKY75 positively regulates flowering in a FT-dependent manner and overexpression of RGL1 or gain-of-function of GAI could partially rescue the early flowering phenotype of WRKY75-overexpressing plants. Taken together, our results demonstrate that WRKY75 may function as a new component of the GA-mediated signaling pathway to positively regulate flowering in Arabidopsis.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ligang Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
95
|
Liu B, De Storme N, Geelen D. Cold-Induced Male Meiotic Restitution in Arabidopsis thaliana Is Not Mediated by GA-DELLA Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:91. [PMID: 29459879 PMCID: PMC5807348 DOI: 10.3389/fpls.2018.00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/17/2018] [Indexed: 05/20/2023]
Abstract
Short periods of cold stress induce male meiotic restitution and diploid pollen formation in Arabidopsis thaliana by specifically interfering with male meiotic cytokinesis. Similar alterations in male meiotic cell division and gametophytic ploidy stability occur when gibberellic acid (GA) signaling is perturbed in developing anthers. In this study, we found that exogenous application of GA primarily induces second division restitution (SDR)-type pollen in Arabidopsis, similar to what cold does. Driven by the close similarity in cellular defects, we tested the hypothesis that cold-induced meiotic restitution is mediated by GA-DELLA signaling. Using a combination of chemical, genetic and cytological approaches, however, we found that both exogenously and endogenously altered GA signaling do not affect the cold sensitivity of male meiotic cytokinesis. Moreover, in vivo localization study using a GFP-tagged version of RGA protein revealed that cold does not affect the expression pattern and abundance of DELLA in Arabidopsis anthers at tetrad stage. Expression study found that transcript of RGA appears enhanced in cold-stressed young flower buds. Since our previous work demonstrated that loss of function of DELLA causes irregular male meiotic cytokinesis, we here conclude that cold-induced meiotic restitution is not mediated by DELLA-dependent GA signaling.
Collapse
Affiliation(s)
- Bing Liu
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
- *Correspondence: Danny Geelen,
| |
Collapse
|
96
|
Lv L, Huo X, Wen L, Gao Z, Khalil-ur-Rehman M. Isolation and Role of PmRGL2 in GA-mediated Floral Bud Dormancy Release in Japanese Apricot ( Prunus mume Siebold et Zucc.). FRONTIERS IN PLANT SCIENCE 2018; 9:27. [PMID: 29434610 PMCID: PMC5790987 DOI: 10.3389/fpls.2018.00027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/08/2018] [Indexed: 05/13/2023]
Abstract
Bud dormancy release is regulated by gibberellins (GAs). DELLA proteins are highly conserved and act as negative regulators in GA signaling pathway. The present study established a relationship between PmRGL2 in Japanese apricot and GA4 levels during dormancy release of floral buds. Overexpression of PmRGL2 in poplar delayed the onset of bud dormancy and resulted in dwarf plants, relative to wild-type trees. PmRGL2 exhibited higher expression during ecodormancy and relatively lower expression during endodormancy. The relative level of GA4 exhibited an increasing trend at the transition from endodormancy to ecodormancy and displayed a similar expression pattern of genes related to GA metabolism, PmGA20ox2, PmGA3ox1, PmGID1b, in both Japanese apricot and transgenic poplar. These results suggests that PmRGL2 acts as an integrator and negative regulator of dormancy via a GA-signaling pathway. Moreover, an interaction between RGL2 and SLY1 in a yeast two hybrid (Y2H) system further suggests that SCF E3 ubiquitin ligases, such as SLY1, may be a critical factor in the regulation of RGL2 through an SCF SLY1 -proteasome pathway. Our study demonstrated that PmRGL2 plays a negative role in bud dormancy release by regulating the GA biosynthetic enzymes, GA20ox and GA3ox1 and the GA receptor, GID1b.
Collapse
|
97
|
Huang X, Lei Y, Guan H, Hao Y, Liu H, Sun G, Chen R, Song S. Transcriptomic analysis of the regulation of stalk development in flowering Chinese cabbage (Brassica campestris) by RNA sequencing. Sci Rep 2017; 7:15517. [PMID: 29138433 PMCID: PMC5686075 DOI: 10.1038/s41598-017-15699-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/31/2017] [Indexed: 11/09/2022] Open
Abstract
Flowering Chinese cabbage is a stalk vegetable whose quality and yield are directly related to stalk development. However, no comprehensive investigations on stalk development have been performed. To address this issue, the present study used RNA sequencing to investigate transcriptional regulation at three key stages (seedling, bolting, and flowering) of stalk development in flowering Chinese cabbage. Anatomical analysis revealed that cell division was the main mode of stalk thickening and elongation at all key stages. Among the 35,327 genes expressed in shoot apices, 34,448 were annotated and 879 were identified as novel transcripts. We identified 11,514 differentially expressed genes (DEGs) among the three stages of stalk development. Functional analysis revealed that these DEGs were significantly enriched in ‘ribosome’ and ‘plant hormone signal transduction’ pathways and were involved in hormone signal transduction, cell cycle progression, and the regulation of flowering time. The roles of these genes in stalk development were explored, and a putative gene-regulation network for the stalk flowering time was established. These findings provide insight into the molecular mechanisms of stalk development in flowering Chinese cabbage that provides a new theoretical basis for stalk vegetable breeding.
Collapse
Affiliation(s)
- Xinmin Huang
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yuling Lei
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hongling Guan
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yanwei Hao
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Houcheng Liu
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Guangwen Sun
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Riyuan Chen
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Shiwei Song
- Guangdong Provincial Engineering Technology Research Center for Protected Horticulture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
98
|
Fukazawa J, Mori M, Watanabe S, Miyamoto C, Ito T, Takahashi Y. DELLA-GAF1 Complex Is a Main Component in Gibberellin Feedback Regulation of GA20 Oxidase 2. PLANT PHYSIOLOGY 2017; 175:1395-1406. [PMID: 28916594 PMCID: PMC5664458 DOI: 10.1104/pp.17.00282] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/14/2017] [Indexed: 05/05/2023]
Abstract
Gibberellins (GAs) are phytohormones that regulate many aspects of plant growth and development, including germination, elongation, flowering, and floral development. Negative feedback regulation contributes to homeostasis of the GA level. DELLAs are negative regulators of GA signaling and are rapidly degraded in the presence of GAs. DELLAs regulate many target genes, including AtGA20ox2 in Arabidopsis (Arabidopsis thaliana), encoding the GA-biosynthetic enzyme GA 20-oxidase. As DELLAs do not have an apparent DNA-binding motif, transcription factors that act in association with DELLA are necessary for regulating the target genes. Previous studies have identified GAI-ASSOCIATED FACTOR1 (GAF1) as such a DELLA interactor, with which DELLAs act as coactivators, and AtGA20ox2 was identified as a target gene of the DELLA-GAF1 complex. In this study, electrophoretic mobility shift and chromatin immunoprecipitation assays showed that four GAF1-binding sites exist in the AtGA20ox2 promoter. Using transgenic plants, we further evaluated the contribution of the DELLA-GAF1 complex to GA feedback regulation. Mutations in four GAF1-binding sites abolished the negative feedback of AtGA20ox2 in transgenic plants. Our results showed that GAF1-binding sites are necessary for GA feedback regulation of AtGA20ox2, suggesting that the DELLA-GAF1 complex is a main component of the GA feedback regulation of AtGA20ox2.
Collapse
Affiliation(s)
- Jutarou Fukazawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Masahiko Mori
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Satoshi Watanabe
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Chika Miyamoto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Takeshi Ito
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Yohsuke Takahashi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
99
|
Ravindran P, Verma V, Stamm P, Kumar PP. A Novel RGL2-DOF6 Complex Contributes to Primary Seed Dormancy in Arabidopsis thaliana by Regulating a GATA Transcription Factor. MOLECULAR PLANT 2017; 10:1307-1320. [PMID: 28917589 DOI: 10.1016/j.molp.2017.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 05/17/2023]
Abstract
The DELLA protein RGA-LIKE2 (RGL2) is a key transcriptional repressor of gibberellic acid (GA) signaling that regulates seed germination. We identified GATA12, a gene encoding a GATA-type zinc finger transcription factor, as one of the downstream targets of RGL2 in Arabidopsis thaliana. Our data show that freshly harvested (unstratified) seeds of GATA12 antisense suppression lines have reduced dormancy compared with the wild-type, while ectopic expression lines show enhanced seed dormancy. We show that GATA12 expression is negatively regulated by GA, and its transcript levels decline dramatically under dormancy-breaking conditions such as dry storage and cold stratification of seeds. GATA12 promoter has several GAMYB- and DOF-associated motifs that are known to be GA- and RGL2-responsive, respectively. Chromatin immunoprecipitation assay showed that a protein complex containing RGL2 can bind to GATA12 promoter and thereby regulate its expression. RGL2 lacks a DNA binding domain and requires a transcription factor to induce GATA12 expression. Our data show that this RGL2-containing protein complex includes DNA BINDING1 ZINC FINGER6 (DOF6), which is a known negative regulator of germination in freshly harvested seeds. We further show that this novel RGL2-DOF6 complex is required for activating GATA12 expression, thus revealing a molecular mechanism to enforce primary seed dormancy.
Collapse
Affiliation(s)
- Pratibha Ravindran
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Vivek Verma
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Petra Stamm
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
100
|
Oliferuk S, Ródenas R, Pérez A, Martinez V, Rubio F, Santa María GE. How DELLAs contribute to control potassium uptake under conditions of potassium scarcity? Hypotheses and uncertainties. PLANT SIGNALING & BEHAVIOR 2017; 12:e1366396. [PMID: 28816584 PMCID: PMC5647977 DOI: 10.1080/15592324.2017.1366396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 05/29/2023]
Abstract
Maintenance of the inward transport of potassium (K) by roots is a critical step to ensure K-nutrition for all plant tissues. When plants are grown at low external K concentrations a strong enhancement of the activity of the AtHAK5 transporter takes place. In a recent work, we observed that the gai-1 mutant of Arabidopsis thaliana, which bears an altered function version of a DELLA regulatory protein, displays reduced accumulation of AtHAK5 transcripts and reduced uptake of Rubidium, an analog for K. In this Addendum we discuss some hypotheses and uncertainties regarding how DELLAs could contribute to the control of K uptake under those conditions. We advance the idea that, following K-restriction, there is a zone and tissue specific regulation of DELLAs by gibberellins through a pathway that likely involves ethylene. According to this model in the epidermis of non-apical zones, DELLAs repress transcription factors that promote AtHAK5 accumulation.
Collapse
Affiliation(s)
- Sonia Oliferuk
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM). Avenida Intendente Marino, Chascomús, Buenos Aires, Argentina
| | - Reyes Ródenas
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC). Campus Universitario de Espinardo. Espinardo. Murcia, España
| | - Adriana Pérez
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM). Avenida Intendente Marino, Chascomús, Buenos Aires, Argentina
| | - Vicente Martinez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC). Campus Universitario de Espinardo. Espinardo. Murcia, España
| | - Francisco Rubio
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC). Campus Universitario de Espinardo. Espinardo. Murcia, España
| | - Guillermo E. Santa María
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín (CONICET-UNSAM). Avenida Intendente Marino, Chascomús, Buenos Aires, Argentina
| |
Collapse
|