51
|
Bulat N, Widmann C. Caspase substrates and neurodegenerative diseases. Brain Res Bull 2009; 80:251-67. [DOI: 10.1016/j.brainresbull.2009.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/08/2009] [Accepted: 07/08/2009] [Indexed: 02/08/2023]
|
52
|
Soehn AS, Franck T, Biskup S, Giaime E, Melle C, Rott R, Cebo D, Kalbacher H, Ott E, Pahnke J, Meitinger T, Krüger R, Gasser T, Berg D, von Eggeling F, Engelender S, da Costa CA, Riess O. Periphilin is a novel interactor of synphilin-1, a protein implicated in Parkinson's disease. Neurogenetics 2009; 11:203-15. [PMID: 19730898 DOI: 10.1007/s10048-009-0215-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 08/10/2009] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons and the presence of Lewy bodies. Alpha-synuclein and its interactor synphilin-1 are major components of these inclusions. Rare mutations in the alpha-synuclein and synphilin-1 genes have been implicated in the pathogenesis of PD; however, the normal function of these proteins is far from being completely elucidated. We, thus, searched for novel synphilin-1-interacting proteins and deciphered periphilin as new interactor. Periphilin isoforms are involved in multiple cellular functions in vivo, and the protein is broadly expressed during embryogenesis and in the adult brain. We show that periphilin displays an overlapping expression pattern with synphilin-1 in cellular and animal models and in Lewy bodies of PD patients. Functional studies demonstrate that periphilin, as previously shown for synphilin-1, displays an antiapoptotic function by reducing caspase-3 activity. Searching for mutations in the periphilin gene, we detected a K69E substitution in two patients of a PD family. Taken together, these findings support for the first time an involvement of periphilin in PD.
Collapse
Affiliation(s)
- Anne S Soehn
- Department of Medical Genetics, University of Tuebingen, Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Gottfried I, Ehrlich M, Ashery U. HIP1 exhibits an early recruitment and a late stage function in the maturation of coated pits. Cell Mol Life Sci 2009; 66:2897-911. [PMID: 19626275 PMCID: PMC11115706 DOI: 10.1007/s00018-009-0077-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 06/12/2009] [Indexed: 11/26/2022]
Abstract
Huntingtin interacting protein 1 (HIP1) is an accessory protein of the clathrin-mediated endocytosis (CME) pathway, yet its precise role and the step at which it becomes involved are unclear. We employed live-cell imaging techniques to focus on the early steps of CME and characterize HIP1 dynamics. We show that HIP1 is highly colocalized with clathrin at the plasma membrane and shares similar dynamics with a subpopulation of clathrin assemblies. Employing transferrin receptor fused to pHluorin, we distinguished between open pits to which HIP1 localizes and newly internalized vesicles that are devoid of HIP1. Moreover, shRNA knockdown of clathrin compromised HIP1 membranal localization, unlike the reported behavior of Sla2p. HIP1 fragment, lacking its ANTH and Talin-like domains, inhibits internalization of transferrin, but retains colocalization with membranal clathrin assemblies. These data demonstrate HIP1's role in pits maturation and formation of the coated vesicle, and its strong dependence on clathrin for membranal localization.
Collapse
Affiliation(s)
- Irit Gottfried
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Uri Ashery
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
| |
Collapse
|
54
|
Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders. Int J Mol Sci 2009; 10:2510-2557. [PMID: 19582217 PMCID: PMC2705504 DOI: 10.3390/ijms10062510] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 04/28/2009] [Accepted: 05/05/2009] [Indexed: 12/11/2022] Open
Abstract
The term neurodegenerative disorders, encompasses a variety of underlying conditions, sporadic and/or familial and are characterized by the persistent loss of neuronal subtypes. These disorders can disrupt molecular pathways, synapses, neuronal subpopulations and local circuits in specific brain regions, as well as higher-order neural networks. Abnormal network activities may result in a vicious cycle, further impairing the integrity and functions of neurons and synapses, for example, through aberrant excitation or inhibition. The most common neurodegenerative disorders are Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and Huntington’s disease. The molecular features of these disorders have been extensively researched and various unique neurotherapeutic interventions have been developed. However, there is an enormous coercion to integrate the existing knowledge in order to intensify the reliability with which neurodegenerative disorders can be diagnosed and treated. The objective of this review article is therefore to assimilate these disorders’ in terms of their neuropathology, neurogenetics, etiology, trends in pharmacological treatment, clinical management, and the use of innovative neurotherapeutic interventions.
Collapse
|
55
|
Zhang S, Feany MB, Saraswati S, Littleton JT, Perrimon N. Inactivation of Drosophila Huntingtin affects long-term adult functioning and the pathogenesis of a Huntington's disease model. Dis Model Mech 2009; 2:247-66. [PMID: 19380309 PMCID: PMC2675792 DOI: 10.1242/dmm.000653] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 01/14/2009] [Indexed: 11/20/2022] Open
Abstract
A polyglutamine expansion in the huntingtin (HTT) gene causes neurodegeneration in Huntington's disease (HD), but the in vivo function of the native protein (Htt) is largely unknown. Numerous biochemical and in vitro studies have suggested a role for Htt in neuronal development, synaptic function and axonal trafficking. To test these models, we generated a null mutant in the putative Drosophila HTT homolog (htt, hereafter referred to asdhtt) and, surprisingly, found that dhtt mutant animals are viable with no obvious developmental defects. Instead, dhtt is required for maintaining the mobility and long-term survival of adult animals, and for modulating axonal terminal complexity in the adult brain. Furthermore, removing endogenous dhtt significantly accelerates the neurodegenerative phenotype associated with a Drosophila model of polyglutamine Htt toxicity (HD-Q93), providing in vivo evidence that disrupting the normal function of Htt might contribute to HD pathogenesis.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Genetics
- Present address: Research Center for Neurodegenerative Diseases, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX 77030, USA
| | | | - Sudipta Saraswati
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Norbert Perrimon
- Department of Genetics
- Howard Hughes Medical Institute, Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
56
|
Diguet E, Petit F, Escartin C, Cambon K, Bizat N, Dufour N, Hantraye P, Déglon N, Brouillet E. Normal aging modulates the neurotoxicity of mutant huntingtin. PLoS One 2009; 4:e4637. [PMID: 19247483 PMCID: PMC2645678 DOI: 10.1371/journal.pone.0004637] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 01/26/2009] [Indexed: 11/20/2022] Open
Abstract
Aging likely plays a role in neurodegenerative disorders. In Huntington's disease (HD), a disorder caused by an abnormal expansion of a polyglutamine tract in the protein huntingtin (Htt), the role of aging is unclear. For a given tract length, the probability of disease onset increases with age. There are mainly two hypotheses that could explain adult onset in HD: Either mutant Htt progressively produces cumulative defects over time or "normal" aging renders neurons more vulnerable to mutant Htt toxicity. In the present study, we directly explored whether aging affected the toxicity of mutant Htt in vivo. We studied the impact of aging on the effects produced by overexpression of an N-terminal fragment of mutant Htt, of wild-type Htt or of a beta-Galactosidase (beta-Gal) reporter gene in the rat striatum. Stereotaxic injections of lentiviral vectors were performed simultaneously in young (3 week) and old (15 month) rats. Histological evaluation at different time points after infection demonstrated that the expression of mutant Htt led to pathological changes that were more severe in old rats, including an increase in the number of small Htt-containing aggregates in the neuropil, a greater loss of DARPP-32 immunoreactivity and striatal neurons as assessed by unbiased stereological counts.The present results support the hypothesis that "normal" aging is involved in HD pathogenesis, and suggest that age-related cellular defects might constitute potential therapeutic targets for HD.
Collapse
Affiliation(s)
- Elsa Diguet
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Fanny Petit
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Carole Escartin
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Karine Cambon
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Nicolas Bizat
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Noëlle Dufour
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Philippe Hantraye
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Nicole Déglon
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| | - Emmanuel Brouillet
- Commissariat à l'Energie Atomique (CEA), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Orsay, France
- Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée CEA-CNRS 2210, Orsay, France
| |
Collapse
|
57
|
Roze E, Betuing S, Deyts C, Vidailhet M, Caboche J. Physiopathologie de la maladie de Huntington : état des connaissances. Rev Neurol (Paris) 2008; 164:977-94. [DOI: 10.1016/j.neurol.2008.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/28/2008] [Accepted: 03/26/2008] [Indexed: 12/16/2022]
|
58
|
Nguyen HP, Metzger S, Holzmann C, Koczan D, Thiesen HJ, von Hörsten S, Riess O, Bonin M. Age-dependent gene expression profile and protein expression in a transgenic rat model of Huntington's disease. Proteomics Clin Appl 2008; 2:1638-50. [DOI: 10.1002/prca.200800018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Indexed: 12/11/2022]
|
59
|
Moores JN, Roy S, Nicholson DW, Staveley BE. Huntingtin interacting protein 1 can regulate neurogenesis in Drosophila. Eur J Neurosci 2008; 28:599-609. [PMID: 18702731 DOI: 10.1111/j.1460-9568.2008.06359.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Huntington's disease (HD) is associated with a range of cellular consequences including selective neuronal death and decreased levels of neurogenesis. Ultimately, these altered processes are dependent upon proteins that interact with Huntingtin (Htt) such as the Huntingtin-interacting protein 1 (Hip1) which has a reduced binding preference to expanded Htt. These effects are similar to those observed with modified Notch signal transduction. As Hip1 plays a key role in endocytosis and intracellular transport, and activation of the Notch signal requires both, we investigated putative links between Hip1 and Notch signaling in flies. We have identified two forms of Hip1 that may be produced through the use of alternative first exons: a version of Hip1 with a lipid-binding ANTH domain and Hip1DeltaANTH lacking this domain. The directed expression of Hip1 decreases, while expression of Hip1DeltaANTH increases, the density of sensory microchaetae on the dorsal notum, a classical model of neurogenesis. A reduction in microchaetae density associated with Notch(Microchaetae Deficient (MCD)) (N(MCD) ) alleles is sensitive to both Hip1 and Hip1DeltaANTH levels, as are the bristle phenotypes generated by misexpression of deltex, a key mediator of Notch signaling. Genetic studies further demonstrate that the observed effects of Hip1 and of Hip1DeltaANTH are sensitive to achaete gene dosage while insensitive to the levels of E(Spl), suggesting a non-canonical Notch neurogenic signal through a deltex-dependent pathway. The novel role we describe for Hip1 in Notch-mediated neurogenesis provides a functional link between Notch signaling and proteins related to HD.
Collapse
Affiliation(s)
- Justin N Moores
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland, Labrador, Canada
| | | | | | | |
Collapse
|
60
|
Wilbur JD, Chen CY, Manalo V, Hwang PK, Fletterick RJ, Brodsky FM. Actin binding by Hip1 (huntingtin-interacting protein 1) and Hip1R (Hip1-related protein) is regulated by clathrin light chain. J Biol Chem 2008; 283:32870-9. [PMID: 18790740 DOI: 10.1074/jbc.m802863200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The huntingtin-interacting protein family members (Hip1 and Hip1R in mammals and Sla2p in yeast) link clathrin-mediated membrane traffic to actin cytoskeleton dynamics. Genetic data in yeast have implicated the light chain subunit of clathrin in regulating this link. To test this hypothesis, the biophysical properties of mammalian Hip1 and Hip1R and their interaction with clathrin light chain and actin were analyzed. The coiled-coil domains (clathrin light chain-binding) of Hip1 and Hip1R were found to be stable homodimers with no propensity to heterodimerize in vitro. Homodimers were also predominant in vivo, accounting for cellular segregation of Hip1 and Hip1R functions. Coiled-coil domains of Hip1 and Hip1R differed in their stability and flexibility, correlating with slightly different affinities for clathrin light chain and more markedly with effects of clathrin light chain binding on Hip protein-actin interactions. Clathrin light chain binding induced a compact conformation of both Hip1 and Hip1R and significantly reduced actin binding by their THATCH domains. Thus, clathrin is a negative regulator of Hip-actin interactions. These observations necessarily change models proposed for Hip protein function.
Collapse
Affiliation(s)
- Jeremy D Wilbur
- Graduate Program in Biophysics, University of California, San Francisco, California 94143-0552, USA
| | | | | | | | | | | |
Collapse
|
61
|
Bhattacharyya NP, Banerjee M, Majumder P. Huntington’s disease: roles of huntingtin-interacting protein 1 (HIP-1) and its molecular partner HIPPI in the regulation of apoptosis and transcription. FEBS J 2008; 275:4271-9. [DOI: 10.1111/j.1742-4658.2008.06563.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
62
|
Abstract
Huntington's disease (HD) is a devastating autosomal dominant neurodegenerative disease caused by a CAG trinucleotide repeat expansion encoding an abnormally long polyglutamine tract in the huntingtin protein. Much has been learnt since the mutation was identified in 1993. We review the functions of wild-type huntingtin. Mutant huntingtin may cause toxicity via a range of different mechanisms. The primary consequence of the mutation is to confer a toxic gain of function on the mutant protein and this may be modified by certain normal activities that are impaired by the mutation. It is likely that the toxicity of mutant huntingtin is revealed after a series of cleavage events leading to the production of N-terminal huntingtin fragment(s) containing the expanded polyglutamine tract. Although aggregation of the mutant protein is a hallmark of the disease, the role of aggregation is complex and the arguments for protective roles of inclusions are discussed. Mutant huntingtin may mediate some of its toxicity in the nucleus by perturbing specific transcriptional pathways. HD may also inhibit mitochondrial function and proteasome activity. Importantly, not all of the effects of mutant huntingtin may be cell-autonomous, and it is possible that abnormalities in neighbouring neurons and glia may also have an impact on connected cells. It is likely that there is still much to learn about mutant huntingtin toxicity, and important insights have already come and may still come from chemical and genetic screens. Importantly, basic biological studies in HD have led to numerous potential therapeutic strategies.
Collapse
|
63
|
Graves CW, Philips ST, Bradley SV, Oravecz-Wilson KI, Li L, Gauvin A, Ross TS. Use of a cryptic splice site for the expression of huntingtin interacting protein 1 in select normal and neoplastic tissues. Cancer Res 2008; 68:1064-73. [PMID: 18281481 DOI: 10.1158/0008-5472.can-07-5892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Huntingtin interacting protein 1 (HIP1) is a 116-kDa endocytic protein, which is necessary for the maintenance of several tissues in vivo as its deficiency leads to degenerative adult phenotypes. HIP1 deficiency also inhibits prostate tumor progression in mice. To better understand how deficiency of HIP1 leads to such phenotypes, we analyzed tumorigenic potential in mice homozygous for a Hip1 mutant allele, designated Hip1(Delta 3-5), which is predicted to result in a frame-shifted, nonsense mutation in the NH(2) terminus of HIP1. In contrast to our previous studies using the Hip1 null allele, an inhibition of tumorigenesis was not observed as a result of the homozygosity of the nonsense Delta 3-5 allele. To further examine the contrasting results from the prior Hip1 mutant mice, we cultured tumor cells from homozygous Delta 3-5 allele-bearing mice and discovered the presence of a 110-kDa form of HIP1 in tumor cells. Upon sequencing of Hip1 DNA and message from these tumors, we determined that this 110-kDa form of HIP1 is the product of splicing of a cryptic U12-type AT-AC intron. This event results in the insertion of an AG dinucleotide between exons 2 and 6 and restoration of the reading frame. Remarkably, this mutant protein retains its capacity to bind lipids, clathrin, AP2, and epidermal growth factor receptor providing a possible explanation for why tumorigenesis was not altered after this knockout mutation. Our data show how knowledge of the transcript that is produced by a knockout allele can lead to discovery of novel types of molecular compensation at the level of splicing.
Collapse
Affiliation(s)
- Chiron W Graves
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-0942, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Burnett BG, Andrews J, Ranganathan S, Fischbeck KH, Di Prospero NA. Expression of expanded polyglutamine targets profilin for degradation and alters actin dynamics. Neurobiol Dis 2008; 30:365-374. [PMID: 18417352 DOI: 10.1016/j.nbd.2008.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 01/31/2008] [Accepted: 02/22/2008] [Indexed: 11/25/2022] Open
Abstract
Huntington's disease is caused by polyglutamine expansion in the huntingtin protein. Huntingtin directly interacts with profilin, a major actin monomer sequestering protein and a key integrator of signals leading to actin polymerization. We observed a progressive loss of profilin in the cerebral cortex of Huntington's disease patients, and in cell culture and Drosophila models of polyglutamine disease. This loss of profilin is likely due to increased degradation through the ubiquitin proteasome system. Profilin loss reduces the F/G actin ratio, indicating a shift in actin polymerization. Overexpression of profilin abolishes mutant huntingtin toxicity in cells and partially ameliorates the morphological and functional eye phenotype and extends lifespan in a transgenic polyglutamine Drosophila model. These results indicate a link between huntingtin and profilin and implicate profilin in Huntington's disease pathogenesis.
Collapse
Affiliation(s)
- Barrington G Burnett
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA.
| | - Jaime Andrews
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Srikanth Ranganathan
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Nicholas A Di Prospero
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| |
Collapse
|
65
|
Ross CA, Becher MW, Colomer V, Engelender S, Wood JD, Sharp AH. Huntington's disease and dentatorubral-pallidoluysian atrophy: proteins, pathogenesis and pathology. Brain Pathol 2008; 7:1003-16. [PMID: 9217980 PMCID: PMC8098431 DOI: 10.1111/j.1750-3639.1997.tb00898.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Each of the glutamine repeat neurodegenerative diseases has a particular pattern of pathology largely restricted to the CNS. However, there is considerable overlap among the regions affected, suggesting that the diseases share pathogenic mechanisms, presumably involving the glutamine repeats. We focus on Huntington's disease (HD) and Dentatorubral-pallidoluysian atrophy (DRPLA) as models for this family of diseases, since they have striking similarities and also notable differences in their clinical features and pathology. We review the pattern of pathology in adult and juvenile onset cases. Despite selective pathology, the disease genes and their protein products (huntingtin and atrophin-1) are widely expressed. This presents a central problem for all the glutamine repeat diseases-how do widely expressed gene products give rise to restricted pathology? The pathogenic effects are believed to occur via a "gain of function" mechanism at the protein level. Mechanisms of cell death may include excitotoxicity, metabolic toxicity, apoptosis, and free radical stress. Emerging data indicate that huntingtin and atrophin-1 may have distinct protein interactions. The specific interaction partners may help explain the selective pathology of these diseases.
Collapse
Affiliation(s)
- C A Ross
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | | | | | | | | | |
Collapse
|
66
|
Saudou F, Humbert S. The biology of Huntington's disease. HANDBOOK OF CLINICAL NEUROLOGY 2008; 89:619-29. [DOI: 10.1016/s0072-9752(07)01257-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
67
|
Clathrin light chains function in mannose phosphate receptor trafficking via regulation of actin assembly. Proc Natl Acad Sci U S A 2007; 105:168-73. [PMID: 18165318 DOI: 10.1073/pnas.0707269105] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clathrin-coated vesicles (CCVs) are major carriers for endocytic cargo and mediate important intracellular trafficking events at the trans-Golgi network (TGN) and endosomes. Whereas clathrin heavy chain provides the structural backbone of the clathrin coat, the role of clathrin light chains (CLCs) is poorly understood. We now demonstrate that CLCs are not required for clathrin-mediated endocytosis but are critical for clathrin-mediated trafficking between the TGN and the endosomal system. Specifically, CLC knockdown (KD) causes the cation-independent mannose-6 phosphate receptor (CI-MPR) to cluster near the TGN leading to a delay in processing of the lysosomal hydrolase cathepsin D. A recently identified binding partner for CLCs is huntingtin-interacting protein 1-related (HIP1R), which is required for productive interactions of CCVs with the actin cytoskeleton. CLC KD causes mislocalization of HIP1R and overassembly of actin, which accumulates in patches around the clustered CI-MPR. A dominant-negative CLC construct that disrupts HIP1R/CLC interactions causes similar alterations in CI-MPR trafficking and actin assembly. Thus, in mammalian cells CLCs function in intracellular membrane trafficking by acting as recruitment proteins for HIP1R, enabling HIP1R to regulate actin assembly on clathrin-coated structures.
Collapse
|
68
|
Bradley SV, Smith MR, Hyun TS, Lucas PC, Li L, Antonuk D, Joshi I, Jin F, Ross TS. Aberrant Huntingtin interacting protein 1 in lymphoid malignancies. Cancer Res 2007; 67:8923-31. [PMID: 17875735 DOI: 10.1158/0008-5472.can-07-2153] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Huntingtin interacting protein 1 (HIP1) is an inositol lipid, clathrin, and actin binding protein that is overexpressed in a variety of epithelial malignancies. Here, we report for the first time that HIP1 is elevated in non-Hodgkin's and Hodgkin's lymphomas and that patients with lymphoid malignancies frequently had anti-HIP1 antibodies in their serum. Moreover, p53-deficient mice with B-cell lymphomas were 13 times more likely to have anti-HIP1 antibodies in their serum than control mice. Furthermore, transgenic overexpression of HIP1 was associated with the development of lymphoid neoplasms. The HIP1 protein was induced by activation of the nuclear factor-kappaB pathway, which is frequently activated in lymphoid malignancies. These data identify HIP1 as a new marker of lymphoid malignancies that contributes to the transformation of lymphoid cells in vivo.
Collapse
MESH Headings
- Animals
- Antibodies, Neoplasm/blood
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Disease Models, Animal
- Hodgkin Disease/genetics
- Hodgkin Disease/metabolism
- Humans
- Lymphoma/genetics
- Lymphoma/metabolism
- Lymphoma/pathology
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/metabolism
- Lymphoma, Mantle-Cell/pathology
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/immunology
- Lymphoma, Non-Hodgkin/metabolism
- Lymphoma, Non-Hodgkin/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- NF-kappa B/metabolism
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Sarah V Bradley
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Kurshakova MM, Krasnov AN, Kopytova DV, Shidlovskii YV, Nikolenko JV, Nabirochkina EN, Spehner D, Schultz P, Tora L, Georgieva SG. SAGA and a novel Drosophila export complex anchor efficient transcription and mRNA export to NPC. EMBO J 2007; 26:4956-65. [PMID: 18034162 DOI: 10.1038/sj.emboj.7601901] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 10/01/2007] [Indexed: 02/03/2023] Open
Abstract
SAGA/TFTC-type multiprotein complexes play important roles in the regulation of transcription. We have investigated the importance of the nuclear positioning of a gene, its transcription and the consequent export of the nascent mRNA. We show that E(y)2 is a subunit of the SAGA/TFTC-type histone acetyl transferase complex in Drosophila and that E(y)2 concentrates at the nuclear periphery. We demonstrate an interaction between E(y)2 and the nuclear pore complex (NPC) and show that SAGA/TFTC also contacts the NPC at the nuclear periphery. E(y)2 forms also a complex with X-linked male sterile 2 (Xmas-2) to regulate mRNA transport both in normal conditions and after heat shock. Importantly, E(y)2 and Xmas-2 knockdown decreases the contact between the heat-shock protein 70 (hsp70) gene loci and the nuclear envelope before and after activation and interferes with transcription. Thus, E(y)2 and Xmas-2 together with SAGA/TFTC function in the anchoring of a subset of transcription sites to the NPCs to achieve efficient transcription and mRNA export.
Collapse
Affiliation(s)
- Maria M Kurshakova
- Department of Regulation of Gene Expression, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Niu Q, Ybe JA. Crystal structure at 2.8 A of Huntingtin-interacting protein 1 (HIP1) coiled-coil domain reveals a charged surface suitable for HIP1 protein interactor (HIPPI). J Mol Biol 2007; 375:1197-205. [PMID: 18155047 DOI: 10.1016/j.jmb.2007.11.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 10/17/2007] [Accepted: 11/14/2007] [Indexed: 02/08/2023]
Abstract
Huntington's disease is a genetic neurological disorder that is triggered by the dissociation of the huntingtin protein (htt) from its obligate interaction partner Huntingtin-interacting protein 1 (HIP1). The release of the huntingtin protein permits HIP1 protein interactor (HIPPI) to bind to its recognition site on HIP1 to form a HIPPI/HIP1 complex that recruits procaspase-8 to begin the process of apoptosis. The interaction module between HIPPI and HIP1 was predicted to resemble a death-effector domain. Our 2.8-A crystal structure of the HIP1 371-481 subfragment that includes F432 and K474, which is important for HIPPI binding, is not a death-effector domain but is a partially opened coiled coil. The HIP1 371-481 model reveals a basic surface that we hypothesize to be suitable for binding HIPPI. There is an opened region next to the putative HIPPI site that is highly negatively charged. The acidic residues in this region are highly conserved in HIP1 and a related protein, HIP1R, from different organisms but are not conserved in the yeast homologue of HIP1, sla2p. We have modeled approximately 85% of the coiled-coil domain by joining our new HIP1 371-481 structure to the HIP1 482-586 model (Protein Data Bank code: 2NO2). Finally, the middle of this coiled-coil domain may be intrinsically flexible and suggests a new interaction model where HIPPI binds to a U-shaped HIP1 molecule.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Amino Acid Substitution
- Aspartic Acid/metabolism
- Bayes Theorem
- Binding Sites
- Codon, Terminator
- Crystallography, X-Ray
- DNA, Complementary
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Dimerization
- Disulfides/chemistry
- Escherichia coli/genetics
- Glutathione Transferase/metabolism
- Humans
- Hydrophobic and Hydrophilic Interactions
- Leucine/metabolism
- Models, Chemical
- Models, Molecular
- Molecular Sequence Data
- Plasmids
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Analysis, DNA
- Surface Properties
Collapse
Affiliation(s)
- Qian Niu
- Department of Biology, Indiana University, Simon Hall 405B, 212 S. Hawthorne Drive, Bloomington, IN 47405, USA
| | | |
Collapse
|
71
|
Zuchner T, Brundin P. Mutant huntingtin can paradoxically protect neurons from death. Cell Death Differ 2007; 15:435-42. [PMID: 17975550 DOI: 10.1038/sj.cdd.4402261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a mutation in the gene huntingtin and characterized by motor, cognitive and psychiatric symptoms. Huntingtin contains a CAG repeat in exon 1. An expansion of this CAG repeat above 35 results in misfolding of Huntingtin, giving rise to protein aggregates and neuronal cell death. There are several transgenic HD mouse models that reproduce most of the features of the human disorder, for example protein inclusions, some neurodegeneration as well as motor and cognitive symptoms. At the same time, a subgroup of the HD transgenic mouse models exhibit dramatically reduced susceptibility to excitotoxicity. The mechanism behind this is unknown. Here, we review the literature regarding this phenomenon, attempt to explain what protein domains are crucial for this phenomenon and point toward a putative mechanism. We suggest, that the C-terminal domain of exon 1 Huntingtin, namely the proline rich domain, is responsible for mediating a neuroprotective effect against excitotoxicity. Furthermore, we point out the possible importance of this mechanism for future therapies in neurological disorders that have been suggested to be associated with excitotoxicity, for example Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- T Zuchner
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, BMC A10, Lund 22184, Sweden.
| | | |
Collapse
|
72
|
Truant R, Atwal RS, Burtnik A. Nucleocytoplasmic trafficking and transcription effects of huntingtin in Huntington's disease. Prog Neurobiol 2007; 83:211-27. [PMID: 17240517 DOI: 10.1016/j.pneurobio.2006.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 11/29/2006] [Accepted: 11/30/2006] [Indexed: 01/08/2023]
Abstract
There are nine genetic neurodegenerative diseases caused by a similar genetic defect, a CAG DNA triplet-repeat expansion in the disease gene's open reading frame resulting in a polyglutamine expansion in the disease proteins. Despite the commonality of polyglutamine expansion, each of the polyglutamine diseases manifest as unique diseases, with some similarities, but important differences. These differences suggest that the context of the polyglutamine expansion is important to the mechanism of pathology of the disease proteins. Therefore, it is becoming increasingly paramount to understand the normal functions of these polyglutamine disease proteins, which include huntingtin, the polyglutamine-expanded protein in Huntington's disease (HD). Transcriptional dysregulation is seen in HD. Here we discuss the role of normal huntingtin in transcriptional regulation and misregulation in Huntington's disease in relation to potentially analogous model systems, and to other polyglutamine disease proteins. Huntingtin has functional roles in both the cytoplasm and the nucleus. One commonality of activity of polyglutamine disease proteins is at the level of protein dynamics and ability to import and export to and from the nucleus. Knowing the temporal location of huntingtin protein in response to signaling and neuronal communication could lead to valuable insights into an important trigger of HD pathology.
Collapse
Affiliation(s)
- Ray Truant
- McMaster University, Department of Biochemistry and Biomedical Sciences, HSC4H24A, 1200 Main Street West, Hamilton, Ontario, Canada L8N3Z5.
| | | | | |
Collapse
|
73
|
Wu J, Lin F, Qin Z. Sequestration of glyceraldehyde-3-phosphate dehydrogenase to aggregates formed by mutant huntingtin. Acta Biochim Biophys Sin (Shanghai) 2007; 39:885-90. [PMID: 17989880 DOI: 10.1111/j.1745-7270.2007.00352.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported to interact with proteins containing the polyglutamine (polyQ) domain. The present study was undertaken to evaluate the potential contributions of the polyQ and polyproline (polyP) domains to the co-localization of mutant huntingtin (htt) and GAPDH. Overexpression of N-terminal htt (1-969 amino acids) with 100Q and 46Q (htt1-969-100Q and httl-969-46Q, mutant htt) in human mammary gland carcinoma MCF-7 cells formed more htt aggregates than that of htt1-969-18Q (wild-type htt). The co-localization of GAPDH with htt aggregates was found in the cells expressing mutant but not wild-type htt. Deletion of the polyP region in the N-terminal htt had no effect on the co-localization of GAPDH and mutant htt aggregates. These results suggest that the polyQ domain, but not the polyP domain, plays a role in the sequestration of GAPDH to aggregates by mutant htt. This effect might contribute to the dysfunction of neurons caused by mutant htt in Huntington's disease.
Collapse
Affiliation(s)
- Junchao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou 215123, China
| | | | | |
Collapse
|
74
|
Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. J Neurosci 2007; 27:11056-64. [PMID: 17928447 DOI: 10.1523/jneurosci.1941-07.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Huntingtin-interacting protein 1 (HIP1) was identified through its interaction with htt (huntingtin), the Huntington's disease (HD) protein. HIP1 is an endocytic protein that influences transport and function of AMPA and NMDA receptors in the brain. However, little is known about its contribution to neuronal dysfunction in HD. We report that the Caenorhabditis elegans HIP1 homolog hipr-1 modulates presynaptic activity and the abundance of synaptobrevin, a protein involved in synaptic vesicle fusion. Presynaptic function was also altered in hippocampal brain slices of HIP1-/- mice demonstrating delayed recovery from synaptic depression and a reduction in paired-pulse facilitation, a form of presynaptic plasticity. Interestingly, neuronal dysfunction in transgenic nematodes expressing mutant N-terminal huntingtin was specifically enhanced by hipr-1 loss of function. A similar effect was observed with several other mutant proteins that are expressed at the synapse and involved in endocytosis, such as unc-11/AP180, unc-26/synaptojanin, and unc-57/endophilin. Thus, HIP1 is involved in presynaptic nerve terminal activity and modulation of mutant polyglutamine-induced neuronal dysfunction. Moreover, synaptic proteins involved in endocytosis may protect neurons against amino acid homopolymer expansion.
Collapse
|
75
|
Milnerwood AJ, Raymond LA. Corticostriatal synaptic function in mouse models of Huntington's disease: early effects of huntingtin repeat length and protein load. J Physiol 2007; 585:817-31. [PMID: 17947312 DOI: 10.1113/jphysiol.2007.142448] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant, late onset, neurodegenerative disease characterized by motor deficits and dementia that is caused by expansion of a CAG repeat in the HD gene. Clinical manifestations result from selective neuronal degeneration of predominantly GABAergic striatal medium-sized spiny neurons (MSNs). A growing number of studies demonstrate that personality, mood and cognitive disturbances are some of the earliest signs of HD and may reflect synaptic dysfunction prior to neuronal loss. Previous studies in striatal MSNs demonstrated early alterations in NMDA-type glutamate receptor currents in several HD mouse models, as well as evidence for presynaptic dysfunction prior to disease manifestations in the R6/2 HD fragment mouse model. We have compared corticostriatal synaptic function in full-length, human HD gene-carrying YAC transgenic mice expressing a non-pathogenic CAG repeat (YAC18; control) with three increasingly severe variants of pathogenic HD gene-expressing mice (YAC72 and two different lines of YAC128), at ages that precede any detectable disease phenotype. We report presynaptic dysfunction and a propensity towards synaptic depression in YAC72 and YAC128 compared to YAC18 mice, and, in the most severe model, we also observed altered AMPA receptor function. When normalized to evoked AMPAR currents, postsynaptic NMDAR currents are augmented in all three pathogenic HD YAC variants. These findings demonstrate multiple perturbations to corticostriatal synaptic function in HD mice, furthering our understanding of the early effects of the HD mutation that may contribute to cognitive dysfunction, mood disorders and later development of more serious dysfunction. Furthermore, this study provides a set of neurophysiological sequelae against which to test and compare other mouse models and potential therapies in HD.
Collapse
Affiliation(s)
- Austen J Milnerwood
- Deptartment of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, Canada.
| | | |
Collapse
|
76
|
Kurshakova M, Maksimenko O, Golovnin A, Pulina M, Georgieva S, Georgiev P, Krasnov A. Evolutionarily conserved E(y)2/Sus1 protein is essential for the barrier activity of Su(Hw)-dependent insulators in Drosophila. Mol Cell 2007; 27:332-338. [PMID: 17643381 DOI: 10.1016/j.molcel.2007.05.035] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 04/12/2007] [Accepted: 05/25/2007] [Indexed: 11/28/2022]
Abstract
Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers for spreading of repressive chromatin. The Su(Hw) protein is responsible for activity of the best-studied Drosophila insulators. Here we demonstrate that an evolutionarily conserved protein, E(y)2/Sus1, is recruited to the Su(Hw) insulators via binding to the zinc-finger domain of Su(Hw). Partial inactivation of E(y)2 in a weak mutation, e(y)2(u1), impairs only the barrier, but not the enhancer-blocking, activity of the Su(Hw) insulators. Whereas neither su(Hw)(-) nor e(y)2(u1) affects fly viability, their combination proves lethal, testifying to functional interaction between Su(Hw) and E(y)2 in vivo. Apparently, different domains of Su(Hw) recruit proteins responsible for enhancer-blocking and for the barrier activity.
Collapse
Affiliation(s)
- Maria Kurshakova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Oksana Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anton Golovnin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia; University of Oslo, Centre for Medical Studies in Russia, Moscow 119334, Russia
| | - Maria Pulina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Sofia Georgieva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia; University of Oslo, Centre for Medical Studies in Russia, Moscow 119334, Russia; Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Pavel Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Aleksey Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia; University of Oslo, Centre for Medical Studies in Russia, Moscow 119334, Russia.
| |
Collapse
|
77
|
Majumder P, Choudhury A, Banerjee M, Lahiri A, Bhattacharyya NP. Interactions of HIPPI, a molecular partner of Huntingtin interacting protein HIP1, with the specific motif present at the putative promoter sequence of the caspase-1, caspase-8 and caspase-10 genes. FEBS J 2007; 274:3886-99. [PMID: 17623017 DOI: 10.1111/j.1742-4658.2007.05922.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To investigate the mechanism of increased expression of caspase-1 caused by exogenous Hippi, observed earlier in HeLa and Neuro2A cells, in this work we identified a specific motif AAAGACATG (- 101 to - 93) at the caspase-1 gene upstream sequence where HIPPI could bind. Various mutations in this specific sequence compromised the interaction, showing the specificity of the interactions. In the luciferase reporter assay, when the reporter gene was driven by caspase-1 gene upstream sequences (- 151 to - 92) with the mutation G to T at position - 98, luciferase activity was decreased significantly in green fluorescent protein-Hippi-expressing HeLa cells in comparison to that obtained with the wild-type caspase-1 gene 60 bp upstream sequence, indicating the biological significance of such binding. It was observed that the C-terminal 'pseudo' death effector domain of HIPPI interacted with the 60 bp (- 151 to - 92) upstream sequence of the caspase-1 gene containing the motif. We further observed that expression of caspase-8 and caspase-10 was increased in green fluorescent protein-Hippi-expressing HeLa cells. In addition, HIPPI interacted in vitro with putative promoter sequences of these genes, containing a similar motif. In summary, we identified a novel function of HIPPI; it binds to specific upstream sequences of the caspase-1, caspase-8 and caspase-10 genes and alters the expression of the genes. This result showed the motif-specific interaction of HIPPI with DNA, and indicates that it could act as transcription regulator.
Collapse
Affiliation(s)
- P Majumder
- Structural Genomics Section, Saha Institute of Nuclear Physics, Bidhan Nagar, Kolkata, India
| | | | | | | | | |
Collapse
|
78
|
Bradley SV, Hyun TS, Oravecz-Wilson KI, Li L, Waldorff EI, Ermilov AN, Goldstein SA, Zhang CX, Drubin DG, Varela K, Parlow A, Dlugosz AA, Ross TS. Degenerative phenotypes caused by the combined deficiency of murine HIP1 and HIP1r are rescued by human HIP1. Hum Mol Genet 2007; 16:1279-92. [PMID: 17452370 DOI: 10.1093/hmg/ddm076] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The members of the huntingtin-interacting protein-1 (HIP1) family, HIP1 and HIP1-related (HIP1r), are multi-domain proteins that interact with inositol lipids, clathrin and actin. HIP1 is over-expressed in a variety of cancers and both HIP1 and HIP1r prolong the half-life of multiple growth factor receptors. To better understand the physiological importance of the HIP1 family in vivo, we have analyzed a large cohort of double Hip1/Hip1r knockout (DKO) mice. All DKO mice were dwarfed, afflicted with severe vertebral defects and died in early adulthood. These phenotypes were not observed during early adulthood in the single Hip1 or Hip1r knockouts, indicating that HIP1 and HIP1r compensate for one another. Despite the ability of HIP1 and HIP1r to modulate growth factor receptor levels when over-expressed, studies herein using DKO fibroblasts indicate that the HIP1 family is not necessary for endocytosis but is necessary for the maintenance of diverse adult tissues in vivo. To test if human HIP1 can function similar to mouse HIP1, transgenic mice with 'ubiquitous' expression of the human HIP1 cDNA were generated and crossed with DKO mice. Strikingly, the compound human HIP1 transgenic DKO mice were completely free from dwarfism and spinal defects. This successful rescue demonstrates that the human HIP1 protein shares some interchangeable functions with both HIP1 and HIP1r in vivo. In addition, we conclude that the degenerative phenotypes seen in the DKO mice are due mainly to HIP1 and HIP1r protein deficiency rather than altered expression of neighboring genes or disrupted intronic elements.
Collapse
Affiliation(s)
- Sarah V Bradley
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0942, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Bradley SV, Holland EC, Liu GY, Thomas D, Hyun TS, Ross TS. Huntingtin Interacting Protein 1 Is a Novel Brain Tumor Marker that Associates with Epidermal Growth Factor Receptor. Cancer Res 2007; 67:3609-15. [PMID: 17440072 DOI: 10.1158/0008-5472.can-06-4803] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Huntingtin interacting protein 1 (HIP1) is a multidomain oncoprotein whose expression correlates with increased epidermal growth factor receptor (EGFR) levels in certain tumors. For example, HIP1-transformed fibroblasts and HIP1-positive breast cancers have elevated EGFR protein levels. The combined association of HIP1 with huntingtin, the protein that is mutated in Huntington's disease, and the known overexpression of EGFR in glial brain tumors prompted us to explore HIP1 expression in a group of patients with different types of brain cancer. We report here that HIP1 is overexpressed with high frequency in brain cancers and that this overexpression correlates with EGFR and platelet-derived growth factor beta receptor expression. Furthermore, serum samples from patients with brain cancer contained anti-HIP1 antibodies more frequently than age-matched brain cancer-free controls. Finally, we report that HIP1 physically associates with EGFR and that this association is independent of the lipid, clathrin, and actin interacting domains of HIP1. These findings suggest that HIP1 may up-regulate or maintain EGFR overexpression in primary brain tumors by directly interacting with the receptor. This novel HIP1-EGFR interaction may work with or independent of HIP1 modulation of EGFR degradation via clathrin-mediated membrane trafficking pathways. Further investigation of HIP1 function in brain cancer biology and validation of its use as a prognostic or predictive brain tumor marker are now warranted.
Collapse
Affiliation(s)
- Sarah V Bradley
- Department of Internal Medicine, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
80
|
Meriin AB, Zhang X, Alexandrov IM, Salnikova AB, Ter-Avanesian MD, Chernoff YO, Sherman MY. Endocytosis machinery is involved in aggregation of proteins with expanded polyglutamine domains. FASEB J 2007; 21:1915-25. [PMID: 17341688 DOI: 10.1096/fj.06-6878com] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cell's failure to refold or break down abnormal polypeptides often leads to their aggregation, which could cause toxicity and various pathologies. Here we investigated cellular factors involved in protein aggregation in yeast and mammalian cells using model polypeptides containing polyglutamine domains. In yeast, a number of mutations affecting the complex responsible for formation of the endocytic vesicle reduced the aggregation. Components of the endocytic complex (EC) Sla1, Sla2, and Pan1 were seen as clusters in the polyglutamine aggregates. These proteins associate with EC at the later stages of its maturation. In contrast, Ede1 and Ent1, the elements of EC at the earlier stages, were not found in the aggregates, suggesting that late ECs are involved in polyglutamine aggregation. Indeed, stabilization of the late complexes by inhibition of actin polymerization enhanced aggregation of polypeptides with polyglutamine domains. Similarly, in mammalian cells, inhibitors of actin polymerization, as well as depletion of a mediator of actin polymerization, Arp2, strongly enhanced the aggregation. In contrast, destabilization of EC by depletion or inhibition of a scaffolding protein N-WASP effectively suppressed the aggregation. Therefore, EC appears to play a pivotal role in aggregation of cytosolic polypeptides with polyglutamine domains in both yeast and mammalian cells.
Collapse
Affiliation(s)
- Anatoli B Meriin
- Department of Biochemistry, Boston University Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Witt SH, Labeit D, Granzier H, Labeit S, Witt CC. Dimerization of the cardiac ankyrin protein CARP: implications for MARP titin-based signaling. J Muscle Res Cell Motil 2007; 26:401-8. [PMID: 16450059 DOI: 10.1007/s10974-005-9022-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cardiac ankyrin repeat protein (CARP) and its two close homologs ankrd2 (Arpp) and DARP correspond to a conserved gene family of muscle ankyrin repeat proteins (MARPs). All three genes respond to a variety of stress/strain injury signals with their cytokine-like induction and can associate with the elastic region of titin/connectin. Recently, both CARP and ankrd2 were observed to be elevated in cardiac diseases as well as muscular dystrophies, implicating their joined signaling in muscle diseases. Here we show that CARP in the yeast two-hybrid system (YTH) interacts with itself and desmin. To further verify the YTH data and to investigate possible CARP subunit structure(s), we expressed CARP in E. coli. Expressed CARP has an apparent mobility of about 70 kDa on gel filtration, corresponding to a dimeric species. Yeast two-hybrid experiments using amino- and carboxyterminal deletion clones suggest that CARP, ankrd2, and DARP contain potential coiled-coil dimerization motifs within their unique aminoterminal domains that mediate the formation of homo-dimers. In contrast, we could not detect the formation of hetero-dimers between CARP, ankrd2, and DARP. Therefore, when CARP, ankrd2 and DARP are upregulated in disease/stress states, they are likely to be sorted into distinct structural protein complexes since CARP within the MARP family contains a unique aminoterminal dimerization motif.
Collapse
Affiliation(s)
- Stephanie H Witt
- Institut für Anaesthesiologie und Operative Intensivmedizin, Universitätsklinikum Mannheim, 68167, Mannheim, Germany
| | | | | | | | | |
Collapse
|
82
|
Strehlow ANT, Li JZ, Myers RM. Wild-type huntingtin participates in protein trafficking between the Golgi and the extracellular space. Hum Mol Genet 2006; 16:391-409. [PMID: 17189290 DOI: 10.1093/hmg/ddl467] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disease caused by an expanded CAG trinucleotide repeat in the first exon of the HD gene, which results in a toxic polyglutamine stretch within huntingtin, the protein it encodes. Understanding the normal function of this essential protein is vital to understanding the root of the disease, yet despite more than a decade of investigation, its role in the cell remains elusive. Identifying the subcellular localization of huntingtin and understanding its effects on global gene expression are critical to this endeavor. While most reports agree that huntingtin is predominantly a cytoplasmic protein, conflicting distribution patterns have been demonstrated at the subcellular level. Here, we examine wild-type huntingtin's localization in cultured cells by expressing the full-length human protein tagged with enhanced green fluorescent protein (EGFP) within its unspliced genomic context. In fibrosarcoma and neuroblastoma cells, huntingtin shows discrete punctate, perinuclear localization overlapping largely with the trans-Golgi and cytoplasmic clathrin-coated vesicles, implicating huntingtin in vesicle trafficking. To determine whether huntingtin is involved in trafficking a specific subset of proteins, we measured changes in global transcription levels in embryonic stem cells and neurons lacking huntingtin. Huntingtin null neurons exhibit a significant reduction in transcripts encoding proteins destined for the extracellular space, many of which are components of the extracellular matrix or involved in cellular adhesion, receptor binding and hormone activity. Together, these findings support a role for huntingtin in the intracellular trafficking of proteins required for the construction of the extracellular matrix.
Collapse
Affiliation(s)
- Anne N T Strehlow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120, USA
| | | | | |
Collapse
|
83
|
Trushina E, Singh RD, Dyer RB, Cao S, Shah VH, Parton RG, Pagano RE, McMurray CT. Mutant huntingtin inhibits clathrin-independent endocytosis and causes accumulation of cholesterol in vitro and in vivo. Hum Mol Genet 2006; 15:3578-91. [PMID: 17142251 DOI: 10.1093/hmg/ddl434] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that the mutant Huntington's disease (HD) protein (mhtt) specifically inhibits endocytosis in primary striatal neurons. Unexpectedly, mhtt does not inhibit clathrin-dependent endocytosis as was anticipated based on known interacting partners. Instead, inhibition occurs through a non-clathrin, caveolar-related pathway. Expression of mhtt inhibited internalization of BODIPY-lactosylceramide (LacCer), which is internalized by a caveolar-related mechanism. In contrast, endocytosis of Alexa Fluor 594-transferrin (Tfn) and epidermal growth factor, internalized through clathrin pathway, was unaffected by mhtt expression. Caveolin-1 (cav1), the major structural protein of caveolae binds cholesterol and is responsible for its trafficking inside cells. Mhtt interacts with cav-1 and caused a striking accumulation of intracellular cholesterol. Cholesterol accumulated in cultured neurons expressing mhtt in vitro and in brains of mhtt-expressing animals in vivo, and was observed after induction of mhtt expression in PC-12 cell lines. The accumulation occurred only when mhtt and cav1 were simultaneously expressed in cells. Knockdown of cav1 in mhtt-expressing neurons blocked cholesterol accumulation and restored LacCer endocytosis. Thus, mhtt and cav1 functionally interact to cause both cellular defects. These data provide the first direct link between mhtt and caveolar-related endocytosis and also suggest a possible mechanism for HD neurotoxicity where cholesterol homeostasis is perturbed.
Collapse
Affiliation(s)
- Eugenia Trushina
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Truant R, Atwal R, Burtnik A. Hypothesis: huntingtin may function in membrane association and vesicular traffickingThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease. Biochem Cell Biol 2006; 84:912-7. [PMID: 17215878 DOI: 10.1139/o06-181] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Huntington’s disease is a progressive neurodegenerative genetic disorder that is caused by a CAG triplet-repeat expansion in the first exon of the IT15 gene. This CAG expansion results in polyglutamine expansion in the 350 kDa huntingtin protein. The exact function of huntingtin is unknown. Understanding the pathological triggers of mutant huntingtin, and distinguishing the cause of disease from downstream effects, is critical to designing therapeutic strategies and defining long- and short-term goals of therapy. Many studies that have sought to determine the functions of huntingtin by determining huntingtin’s protein–protein interactions have been published. Through these studies, huntingtin has been seen to interact with a large number of proteins, and is likely a scaffolding protein for protein–protein interactions. Recently, using imaging, integrative proteomics, and cell biology, huntingtin has been defined as a membrane-associated protein, with activities related to axonal trafficking of vesicles and mitochondria. These functions have also been attributed to some huntingtin-interacting proteins. Additionally, discoveries of a membrane association domain and a palmitoylation site in huntingtin reinforce the fact that huntingtin is membrane associated. In Huntington’s disease mouse and fly models, axonal vesicle trafficking is inhibited, and lack of proper uptake of neurotrophic factors may be an important pathological trigger leading to striatal cell death in Huntington’s disease. Here we discuss recent advances from many independent groups and methodologies that are starting to resolve the elusive function of huntingtin in vesicle transport, and evidence that suggests that huntingtin may be directly involved in membrane interactions.
Collapse
Affiliation(s)
- Ray Truant
- McMaster University. Department of Biochemistry and Biomedical Sciences. HSC4H24A, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada.
| | | | | |
Collapse
|
85
|
Choi SA, Kim SJ, Chung KC. Huntingtin-interacting protein 1-mediated neuronal cell death occurs through intrinsic apoptotic pathways and mitochondrial alterations. FEBS Lett 2006; 580:5275-82. [PMID: 16979168 DOI: 10.1016/j.febslet.2006.08.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 08/30/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
Huntingtin interacting protein-1 (Hip1) is known to be associated with the N-terminal domain of huntingtin. Although Hip1 can induce apoptosis, the exact upstream signal transduction pathways have not been clarified yet. In the present study, we examined whether activation of intrinsic and/or extrinsic apoptotic pathways occurs during Hip1-mediated neuronal cell death. Overexpression of Hip1 induced cell death through caspase-3 activation in immortalized hippocampal neuroprogenitor cells. Interestingly, proteolytic processing of Hip1 into partial fragments was observed in response to Hip1 transfection and apoptosis-inducing drugs. Moreover, Hip1 was found to directly bind to and activate caspase-9. This promoted cytosolic release of cytochrome c and apoptosis-inducing factor via mitochondrial membrane perturbation. Furthermore, Hip1 could directly bind to Apaf-1, suggesting that the neurotoxic signals of Hip1 transmit through the intrinsic mitochondrial apoptotic pathways and the formation of apoptosome complex.
Collapse
Affiliation(s)
- Shin Ae Choi
- Department of Biology, College of Science, Yonsei University, Shinchon-dong 134, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | | | | |
Collapse
|
86
|
Houde C, Dickinson RJ, Houtzager VM, Cullum R, Montpetit R, Metzler M, Simpson EM, Roy S, Hayden MR, Hoodless PA, Nicholson DW. Hippi is essential for node cilia assembly and Sonic hedgehog signaling. Dev Biol 2006; 300:523-33. [PMID: 17027958 PMCID: PMC5053816 DOI: 10.1016/j.ydbio.2006.09.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 08/30/2006] [Accepted: 09/05/2006] [Indexed: 11/28/2022]
Abstract
Hippi functions as an adapter protein that mediates pro-apoptotic signaling from poly-glutamine-expanded huntingtin, an established cause of Huntington disease, to the extrinsic cell death pathway. To explore other functions of Hippi we generated Hippi knock-out mice. This deletion causes randomization of the embryo turning process and heart looping, which are hallmarks of defective left-right (LR) axis patterning. We report that motile monocilia normally present at the surface of the embryonic node, and proposed to initiate the break in LR symmetry, are absent on Hippi-/- embryos. Furthermore, defects in central nervous system development are observed. The Sonic hedgehog (Shh) pathway is downregulated in the neural tube in the absence of Hippi, which results in failure to establish ventral neural cell fate. Together, these findings demonstrate a dual role for Hippi in cilia assembly and Shh signaling during development, in addition to its proposed role in apoptosis signal transduction in the adult brain under pathogenically stressful conditions.
Collapse
Affiliation(s)
- Caroline Houde
- Biochemistry Department, McGill University, Montreal, Canada H3G 1Y6
| | - Robin J. Dickinson
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada V5Z 1L3
| | | | - Rebecca Cullum
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada V5Z 1L3
| | - Rachel Montpetit
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada V5Z 1L3
| | - Martina Metzler
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, Canada V5Z 4H4
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, Canada V5Z 4H4
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada V5Z 4H4
| | - Sophie Roy
- Biochemistry Department, McGill University, Montreal, Canada H3G 1Y6
- Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | - Michael R. Hayden
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, Canada V5Z 4H4
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada V5Z 4H4
| | - Pamela A. Hoodless
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada V5Z 1L3
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada V5Z 4H4
| | - Donald W. Nicholson
- Biochemistry Department, McGill University, Montreal, Canada H3G 1Y6
- Merck Research Laboratories, Rahway, New Jersey 07065, USA
- Corresponding author. D.N. Merck Research Laboratories, Merck and Co. Inc., RY80Y-370, 126 East Lincoln Avenue, P.O. Box 2000, Rahway, NJ 07065-0900, USA. Fax: +1 732 594 3910. (D.W. Nicholson)
| |
Collapse
|
87
|
Metzger S, Bauer P, Tomiuk J, Laccone F, Didonato S, Gellera C, Mariotti C, Lange HW, Weirich-Schwaiger H, Wenning GK, Seppi K, Melegh B, Havasi V, Balikó L, Wieczorek S, Zaremba J, Hoffman-Zacharska D, Sulek A, Basak AN, Soydan E, Zidovska J, Kebrdlova V, Pandolfo M, Ribaï P, Kadasi L, Kvasnicova M, Weber BHF, Kreuz F, Dose M, Stuhrmann M, Riess O. Genetic analysis of candidate genes modifying the age-at-onset in Huntington's disease. Hum Genet 2006; 120:285-92. [PMID: 16847693 DOI: 10.1007/s00439-006-0221-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 06/08/2006] [Indexed: 01/19/2023]
Abstract
The expansion of a polymorphic CAG repeat in the HD gene encoding huntingtin has been identified as the major cause of Huntington's disease (HD) and determines 42-73% of the variance in the age-at-onset of the disease. Polymorphisms in huntingtin interacting or associated genes are thought to modify the course of the disease. To identify genetic modifiers influencing the age at disease onset, we searched for polymorphic markers in the GRIK2, TBP, BDNF, HIP1 and ZDHHC17 genes and analysed seven of them by association studies in 980 independent European HD patients. Screening for unknown sequence variations we found besides several silent variations three polymorphisms in the ZDHHC17 gene. These and polymorphisms in the GRIK2, TBP and BDNF genes were analysed with respect to their association with the HD age-at-onset. Although some of the factors have been defined as genetic modifier factors in previous studies, none of the genes encoding GRIK2, TBP, BDNF and ZDHHC17 could be identified as a genetic modifier for HD.
Collapse
Affiliation(s)
- Silke Metzger
- Department of Medical Genetics, University of Tübingen, Calwerstrasse 7, 72076, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Tarditi A, Camurri A, Varani K, Borea PA, Woodman B, Bates G, Cattaneo E, Abbracchio MP. Early and transient alteration of adenosine A2A receptor signaling in a mouse model of Huntington disease. Neurobiol Dis 2006; 23:44-53. [PMID: 16651003 DOI: 10.1016/j.nbd.2006.01.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 01/03/2006] [Accepted: 01/27/2006] [Indexed: 01/30/2023] Open
Abstract
Huntington Disease (HD) is characterized by choreic involuntary movements and striatal vulnerability. A2A receptors expressed on GABAergic striatal neurons have been suggested to play a pathogenetic role. Previous data demonstrated the presence of an aberrant alteration of A2A receptor-dependent adenylyl cyclase in an in vitro model of the disease (striatal cells expressing mutant huntingtin) and in peripheral circulating cells of HD patients. Here, we investigated whether this dysfunction is present in the R6/2 HD transgenic mouse model, by analyzing striatal A2A receptor-binding and adenylyl cyclase activity at different developmental stages in comparison with age-matched wild type animals. A transient increase in A2A receptor density (Bmax) and A2A receptor-dependent cAMP production at early presymptomatic ages (7-14 postnatal days) was found. Both alterations normalized to control values starting from postnatal day 21. In contrast, A2A receptor mRNA, as detected by real time PCR, dramatically decreased starting from PND21 until late symptomatic stages (12 weeks of age). The discrepancy between A2A receptor expression and density suggests compensatory mechanisms. These data, reproducing ex vivo the previous observations in vitro, support the hypothesis that an alteration of A2A receptor signaling is present in HD and might represent an interesting target for neuroprotective therapies.
Collapse
Affiliation(s)
- Alessia Tarditi
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
The response of a cell to the myriad of signals that it receives is varied, and it is dependent on many different factors. The most-studied responses involve growth-factor signalling and these signalling cascades have become key targets for cancer therapy. Recent reports have indicated that growth-factor receptors and associated adaptors can accumulate in the nucleus. Are there novel functions for these proteins that might affect our understanding of their role in cancer and have implications for drug resistance?
Collapse
Affiliation(s)
- Charles Massie
- CRUK Uro-Oncology Group, Department of Oncology, University of Cambridge, c/o Hutchison/MRC Cancer Research Centre, Addenbrookes Hospital, Hills Road, Cambridge, CB2 2XZ, UK
| | | |
Collapse
|
90
|
Bates GP, Mangiarini L, Davies SW. Transgenic mice in the study of polyglutamine repeat expansion diseases. Brain Pathol 2006; 8:699-714. [PMID: 9804379 PMCID: PMC8098430 DOI: 10.1111/j.1750-3639.1998.tb00196.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
An increasing number of neurodegenerative diseases, including Huntington's disease (HD), have been found to be caused by a CAG/polyglutamine expansion. We have generated a mouse model of HD by the introduction of exon 1 of the human HD gene carrying highly expanded CAG repeats into the mouse germ line. These mice develop a progressive neurological phenotype. Neuronal intranuclear inclusions (NII) that are immunoreactive for huntingtin and ubiquitin have been found in the brains of symptomatic mice. In vitro analysis indicates that the inclusions are formed through self aggregation via the polyglutamine repeat into amyloid-like fibrils composed of a cross beta-sheet structure that has been termed a polar zipper. Analysis of patient material and other transgenic lines has now shown NII to be a common feature of all of these diseases. In the transgenic models, inclusions are present prior to the onset of symptoms suggesting a causal relationship. In contrast, neurodegeneration occurs after the onset of the phenotype indicating that the symptoms are caused by a neuronal dysfunction rather than a primary cell death.
Collapse
Affiliation(s)
- G P Bates
- Division of Medical and Molecular Genetics, UMDS, Guy's Hospital, London, UK.
| | | | | |
Collapse
|
91
|
Grelle G, Kostka S, Otto A, Kersten B, Genser KF, Müller EC, Wälter S, Böddrich A, Stelzl U, Hänig C, Volkmer-Engert R, Landgraf C, Alberti S, Höhfeld J, Strödicke M, Wanker EE. Identification of VCP/p97, Carboxyl Terminus of Hsp70-interacting Protein (CHIP), and Amphiphysin II Interaction Partners Using Membrane-based Human Proteome Arrays. Mol Cell Proteomics 2006; 5:234-44. [PMID: 16275660 DOI: 10.1074/mcp.m500198-mcp200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins mediate their biological function through interactions with other proteins. Therefore, the systematic identification and characterization of protein-protein interactions have become a powerful proteomic strategy to understand protein function and comprehensive cellular regulatory networks. For the screening of valosin-containing protein, carboxyl terminus of Hsp70-interacting protein (CHIP), and amphiphysin II interaction partners, we utilized a membrane-based array technology that allows the identification of human protein-protein interactions with crude bacterial cell extracts. Many novel interaction pairs such as valosin-containing protein/autocrine motility factor receptor, CHIP/caytaxin, or amphiphysin II/DLP4 were identified and subsequently confirmed by pull-down, two-hybrid and co-immunoprecipitation experiments. In addition, assays were performed to validate the interactions functionally. CHIP e.g. was found to efficiently polyubiquitinate caytaxin in vitro, suggesting that it might influence caytaxin degradation in vivo. Using peptide arrays, we also identified the binding motifs in the proteins DLP4, XRCC4, and fructose-1,6-bisphosphatase, which are crucial for the association with the Src homology 3 domain of amphiphysin II. Together these studies indicate that our human proteome array technology permits the identification of protein-protein interactions that are functionally involved in neurodegenerative disease processes, the degradation of protein substrates, and the transport of membrane vesicles.
Collapse
Affiliation(s)
- Gerlinde Grelle
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, D-13125 Berlin-Buch, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Khatchadourian K, Smith CE, Metzler M, Gregory M, Hayden MR, Cyr DG, Hermo L. Structural abnormalities in spermatids together with reduced sperm counts and motility underlie the reproductive defect in HIP1−/− mice. Mol Reprod Dev 2006; 74:341-59. [PMID: 16967501 DOI: 10.1002/mrd.20564] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Huntingtin interacting protein 1 (HIP1) is an endocytic adaptor protein with clathrin assembly activity that binds to cytoplasmic proteins, such as F-actin, tubulin, and huntingtin (htt). To gain insight into diverse functions of HIP1, we characterized the male reproductive defect of HIP1(-/-) mice from 7 to 30 weeks of age. High levels of HIP1 protein were expressed in the testis of wild-type mice as seen by Western blots and as a reaction over Sertoli cells and elongating spermatids as visualized by immunocytochemistry. Accordingly, major structural abnormalities were evident in HIP1(-/-) mice with vacuolation of seminiferous tubules caused by an apparent loss of postmeiotic spermatids and a significant reduction in mean profile area. Remaining spermatids revealed deformations of their heads, flagella, and/or acrosomes. In some Sertoli cells, ectoplasmic specializations (ES) were absent or altered in appearance accounting for the presence of spherical germ cells in the epididymal lumen. Quantitative analyses of sperm counts from the cauda epididymidis demonstrated a significant decrease in HIP1(-/-) mice compared to wild-type littermates. In addition, computer-assisted sperm analyses indicated that velocities, amplitude of lateral head displacements (ALH), and numbers and percentages of sperm in the motile, rapid, and progressive categories were all significantly reduced in HIP1(-/-) mice, while the numbers and percentages of sperm in the static category were greatly increased. Taken together, these various abnormalities corroborate reduced fertility levels in HIP1(-/-) mice and suggest a role for HIP1 in stabilizing actin and microtubules, which are important cytoskeletal elements enabling normal spermatid and Sertoli cell morphology and function.
Collapse
|
93
|
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that generally begins in middle age with abnormalities of movement, cognition, personality, and mood. Neuronal loss is most marked among the medium-sized projection neurons of the dorsal striatum. HD is an autosomal dominant genetic disorder caused by a CAG expansion in exon 1 of the HD gene, encoding an expanded polyglutamine (polyQ) tract near the N-terminus of the protein huntingtin. Despite identification of the gene mutation more than a decade ago, the normal function of this ubiquitously expressed protein is still under investigation and the mechanisms underlying selective neurodegeneration in HD remain poorly understood. Detailed postmortem analyses of brains of HD patients have provided important clues, and HD transgenic and knock-in mouse models have facilitated investigations into potential pathogenic mechanisms. Subcellular fractionation and immunolocalization studies suggest a role for huntingtin in organelle transport, protein trafficking, and regulation of energy metabolism. Consistent with this, evidence from vertebrate and invertebrate models of HD indicates that expression of the polyQ-expanded form of huntingtin results in early impairment of axonal transport and mitochondrial function. As well, alteration in activity of the N-methyl-d-aspartate (NMDA) type glutamate receptor, which has been implicated as a main mediator of excitotoxic neuronal death, especially in the striatum, is an early effect of mutant huntingtin. Proteolysis and nuclear localization of huntingtin also occur relatively early, while formation of ubiquitinated aggregates of huntingtin and transcriptional dysregulation occur as late effects of the gene mutation. Although each of these processes may contribute to neuronal loss in HD, here we review the data to support a strong role for NMDA receptor (NMDAR)-mediated excitotoxicity and mitochondrial dysfunction in conferring selective neuronal vulnerability in HD.
Collapse
Affiliation(s)
- Catherine M Cowan
- Department of Psychiatry, Division of Neuroscience, Brain Research Centre University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | | |
Collapse
|
94
|
Jin K, LaFevre-Bernt M, Sun Y, Chen S, Gafni J, Crippen D, Logvinova A, Ross CA, Greenberg DA, Ellerby LM. FGF-2 promotes neurogenesis and neuroprotection and prolongs survival in a transgenic mouse model of Huntington's disease. Proc Natl Acad Sci U S A 2005; 102:18189-94. [PMID: 16326808 PMCID: PMC1312383 DOI: 10.1073/pnas.0506375102] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is no satisfactory treatment for Huntington's disease (HD), a hereditary neurodegenerative disorder that produces chorea, dementia, and death. One potential treatment strategy involves the replacement of dead neurons by stimulating the proliferation of endogenous neuronal precursors (neurogenesis) and their migration into damaged regions of the brain. Because growth factors are neuroprotective in some settings and can also stimulate neurogenesis, we treated HD transgenic R6/2 mice from 8 weeks of age until death by s.c. administration of FGF-2. FGF-2 increased the number of proliferating cells in the subventricular zone by approximately 30% in wild-type mice, and by approximately 150% in HD transgenic R6/2 mice. FGF-2 also induced the recruitment of new neurons from the subventricular zone into the neostriatum and cerebral cortex of HD transgenic R6/2 mice. In the striatum, these neurons were DARPP-32-expressing medium spiny neurons, consistent with the phenotype of neurons lost in HD. FGF-2 was neuroprotective as well, because it blocked cell death induced by mutant expanded Htt in primary striatal cultures. FGF-2 also reduced polyglutamine aggregates, improved motor performance, and extended lifespan by approximately 20%. We conclude that FGF-2 improves neurological deficits and longevity in a transgenic mouse model of HD, and that its neuroprotective and neuroproliferative effects may contribute to this improvement.
Collapse
Affiliation(s)
- Kunlin Jin
- The Buck Institute for Age Research, Novato, CA 94945, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Liao M, Shen J, Zhang Y, Li SH, Li XJ, Li H. Immunohistochemical localization of huntingtin-associated protein 1 in endocrine system of the rat. J Histochem Cytochem 2005; 53:1517-24. [PMID: 16087704 PMCID: PMC3957544 DOI: 10.1369/jhc.5a6662.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 07/19/2006] [Indexed: 12/23/2022] Open
Abstract
Huntingtin-associated protein 1 (HAP1) was originally found to be localized in neurons and is thought to play an important role in neuronal vesicular trafficking and/or organelle transport. Based on functional similarity between neuron and endocrine cell in vesicular trafficking, we examined the expression and localization of HAP1 in the rat endocrine system using immunohistochemistry. HAP1-immunoreactive cells are widely distributed in the anterior lobe of the pituitary, scattered in the wall of the thyroid follicles, or clustered in the interfollicular space of the thyroid gland, exclusively but diffusely distributed in the medullae of adrenal glands, and selectively located in the pancreas islets. HAP1-containing cells were also found in the mucosa of stomach and small intestine with a distributive pattern similar to that of gastrointestinal endocrine cells. However, no HAP1-immunoreactive cell was found in the cortex of the adrenal gland, the testis, and the ovary. In the posterior lobe of the pituitary, HAP1-immunoreactive products were not detected in the cell bodies but in many stigmoid bodies, one kind of non-membrane-bound cytoplasmic organelle with a central or eccentric electron-lucent core. HAP1-immunoreactive stigmoid bodies were also found in the cytoplasm of endocrine cells in the thyroid gland, the medullae of adrenal gland, the pancreas islets, the stomach, and small intestine. The present study demonstrates that HAP1 is selectively expressed in part of the small peptide-, protein-, and amino-acid analog and derivative-secreting endocrine cells but not in steroid hormone-secreting cells, suggesting that HAP1 is also involved in intracellular trafficking in certain types of endocrine cells.
Collapse
Affiliation(s)
- Min Liao
- Division of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China (ML, JS, YZ, HL)
| | - Jianying Shen
- Division of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China (ML, JS, YZ, HL)
| | - Yinong Zhang
- Division of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China (ML, JS, YZ, HL)
| | - Shi-Hua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia (S-HL, X-JL)
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia (S-HL, X-JL)
| | - He Li
- Division of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China (ML, JS, YZ, HL)
| |
Collapse
|
96
|
Smith R, Petersén A, Bates GP, Brundin P, Li JY. Depletion of rabphilin 3A in a transgenic mouse model (R6/1) of Huntington's disease, a possible culprit in synaptic dysfunction. Neurobiol Dis 2005; 20:673-84. [PMID: 15967669 DOI: 10.1016/j.nbd.2005.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 04/08/2005] [Accepted: 05/02/2005] [Indexed: 01/15/2023] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by progressive psychiatric, cognitive, and motor disturbances. We studied the expression of synaptic vesicle proteins in the R6/1 transgenic mouse model of HD. We observed that the levels of rabphilin 3A, a protein involved in exocytosis, is substantially decreased in synapses of most brain regions in R6/1 mice. The appearance of the reduction coincides with the onset of motor deficits and behavioral disturbances. Double immunohistochemistry did not show colocalization between rabphilin 3A and huntingtin aggregates in the HD mice. Using in situ hybridization, we demonstrated that rabphilin 3A mRNA expression was substantially reduced in the R6/1 mouse cortex compared to wild-type mice. Our results indicate that a decrease in mRNA levels underlie the depletion of protein levels of rabphilin 3A, and we suggest that this reduction may be involved in causing impaired synaptic transmission in R6/1 mice.
Collapse
Affiliation(s)
- Ruben Smith
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
97
|
Mills IG, Gaughan L, Robson C, Ross T, McCracken S, Kelly J, Neal DE. Huntingtin interacting protein 1 modulates the transcriptional activity of nuclear hormone receptors. ACTA ACUST UNITED AC 2005; 170:191-200. [PMID: 16027218 PMCID: PMC2171420 DOI: 10.1083/jcb.200503106] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Internalization of activated receptors regulates signaling, and endocytic adaptor proteins are well-characterized in clathrin-mediated uptake. One of these adaptor proteins, huntingtin interacting protein 1 (HIP1), induces cellular transformation and is overexpressed in some prostate cancers. We have discovered that HIP1 associates with the androgen receptor through a central coiled coil domain and is recruited to DNA response elements upon androgen stimulation. HIP1 is a novel androgen receptor regulator, significantly repressing transcription when knocked down using a silencing RNA approach and activating transcription when overexpressed. We have also identified a functional nuclear localization signal at the COOH terminus of HIP1, which contributes to the nuclear translocation of the protein. In conclusion, we have discovered that HIP1 is a nucleocytoplasmic protein capable of associating with membranes and DNA response elements and regulating transcription.
Collapse
Affiliation(s)
- Ian G Mills
- Cancer Research UK Uro-Oncology Research Group, Department of Oncology, University of Cambridge, Hutchison/Medical Research Council Cancer Research Centre, Cambridge CB2 2XZ, England, UK.
| | | | | | | | | | | | | |
Collapse
|
98
|
Delalle I, Pfleger CM, Buff E, Lueras P, Hariharan IK. Mutations in the Drosophila orthologs of the F-actin capping protein alpha- and beta-subunits cause actin accumulation and subsequent retinal degeneration. Genetics 2005; 171:1757-65. [PMID: 16143599 PMCID: PMC1456101 DOI: 10.1534/genetics.105.049213] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The progression of several human neurodegenerative diseases is characterized by the appearance of intracellular inclusions or cytoskeletal abnormalities. An important question is whether these abnormalities actually contribute to the degenerative process or whether they are merely manifestations of cells that are already destined for degeneration. We have conducted a large screen in Drosophila for mutations that alter the growth or differentiation of cells during eye development. We have used mitotic recombination to generate patches of homozygous mutant cells. In our entire screen, mutations in only two different loci, burned (bnd) and scorched (scrd), resulted in eyes in which the mutant patches appeared black and the mutant tissue appeared to have undergone degeneration. In larval imaginal discs, growth and cell fate specification occur normally in mutant cells, but there is an accumulation of F-actin. Mutant cells degenerate much later during the pupal phase of development. burned mutations are allelic to mutations in the previously described cpb locus that encodes the beta-subunit of the F-actin capping protein, while scorched mutations disrupt the gene encoding its alpha-subunit (cpa). The alpha/beta-heterodimer caps the barbed ends of an actin filament and restricts its growth. In its absence, cells progressively accumulate actin filaments and eventually die. A possible role for their human orthologs in neurodegenerative disease merits further investigation.
Collapse
Affiliation(s)
- Ivana Delalle
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
99
|
DiProspero NA, Chen EY, Charles V, Plomann M, Kordower JH, Tagle DA. Early changes in Huntington's disease patient brains involve alterations in cytoskeletal and synaptic elements. ACTA ACUST UNITED AC 2005; 33:517-33. [PMID: 15906159 DOI: 10.1007/s11068-004-0514-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 11/08/2004] [Accepted: 11/15/2004] [Indexed: 10/25/2022]
Abstract
Huntington's disease (HD) is caused by a polyglutamine repeat expansion in the N-terminus of the huntingtin protein. Huntingtin is normally present in the cytoplasm where it may interact with structural and synaptic elements. The mechanism of HD pathogenesis remains unknown but studies indicate a toxic gain-of-function possibly through aberrant protein interactions. To investigate whether early degenerative changes in HD involve alterations of cytoskeletal and vesicular components, we examined early cellular changes in the frontal cortex of HD presymptomatic (PS), early pathological grade (grade 1) and late-stage (grade 3 and 4) patients as compared to age-matched controls. Morphologic analysis using silver impregnation revealed a progressive decrease in neuronal fiber density and organization in pyramidal cell layers beginning in presymptomatic HD cases. Immunocytochemical analyses for the cytoskeletal markers alpha -tubulin, microtubule-associated protein 2, and phosphorylated neurofilament demonstrated a concomitant loss of staining in early grade cases. Immunoblotting for synaptic proteins revealed a reduction in complexin 2, which was marked in some grade 1 HD cases and significantly reduced in all late stage cases. Interestingly, we demonstrate that two synaptic proteins, dynamin and PACSIN 1, which were unchanged by immunoblotting, showed a striking loss by immunocytochemistry beginning in early stage HD tissue suggesting abnormal distribution of these proteins. We propose that mutant huntingtin affects proteins involved in synaptic function and cytoskeletal integrity before symptoms develop which may influence early disease onset and/or progression.
Collapse
Affiliation(s)
- Nicholas A DiProspero
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
100
|
Kegel KB, Sapp E, Yoder J, Cuiffo B, Sobin L, Kim YJ, Qin ZH, Hayden MR, Aronin N, Scott DL, Isenberg G, Goldmann WH, DiFiglia M. Huntingtin associates with acidic phospholipids at the plasma membrane. J Biol Chem 2005; 280:36464-73. [PMID: 16085648 DOI: 10.1074/jbc.m503672200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a domain in the N terminus of huntingtin that binds to membranes. A three-dimensional homology model of the structure of the binding domain predicts helical HEAT repeats, which emanate a positive electrostatic potential, consistent with a charge-based mechanism for membrane association. An amphipathic helix capable of inserting into pure lipid bilayers may serve to anchor huntingtin to the membrane. In cells, N-terminal huntingtin fragments targeted to regions of plasma membrane enriched in phosphatidylinositol 4,5-bisphosphate, receptor bound-transferrin, and endogenous huntingtin. N-terminal huntingtin fragments with an expanded polyglutamine tract aberrantly localized to intracellular regions instead of plasma membrane. Our data support a new model in which huntingtin directly binds membranes through electrostatic interactions with acidic phospholipids.
Collapse
Affiliation(s)
- Kimberly B Kegel
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|