51
|
Ibrahim E, Dobeš P, Kunc M, Hyršl P, Kodrík D. Adipokinetic hormone and adenosine interfere with nematobacterial infection and locomotion in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:167-174. [PMID: 29627353 DOI: 10.1016/j.jinsphys.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
This study examined how adipokinetic hormone (AKH) and adenosine affect defense responses in Drosophila melanogaster larvae infected with entomopathogenic nematodes (EPN, Steinernema carpocapsae and Heterorhabditis bacteriophora). Three loss-of-function mutant larvae were tested: Akh1, AdoR1 (adenosine receptor), and Akh1 AdoR1. Mortality decreased in all mutants post-EPN infection compared with the control (w1118). Additionally, co-application of external AKH with EPN significantly increased mortality beyond rates observed in EPN-only treatment, while also elevating carbon dioxide production, a measure of metabolism. Furthermore trehalose levels increased in both w1118 and Akh1 larvae post-EPN infection, but the latter group exhibited a lower increase and total trehalose levels. Interestingly, baseline trehalose was relatively high in untreated AdoR1 and Akh1 AdoR1 mutants, with levels remaining unaffected by infection. Infection also elevated haemolymph lipid content overall, but the different mutations did not substantially influence this change. In contrast, haemolymph protein content dropped after EPN infection in all tested groups, but this decline was more intense among Akh1. In uninfected larvae mutations decreased antioxidative capacity in Akh1 and increased in AdoR1, however, its post-infection increases were similar in all mutants, suggesting that antioxidant response in Drosophila involves mechanisms also beyond AKH and adenosine. Furthermore, AKH application in w1118 larvae significantly increased movement distance and percentage of larval activity, but reduced velocity. Mutations of Akh and AdoR did not strongly affect locomotion.
Collapse
Affiliation(s)
- Emad Ibrahim
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Agriculture, University of Cairo, Giza, Egypt
| | - Pavel Dobeš
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Martin Kunc
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Pavel Hyršl
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
52
|
Marchal E, Schellens S, Monjon E, Bruyninckx E, Marco HG, Gäde G, Vanden Broeck J, Verlinden H. Analysis of Peptide Ligand Specificity of Different Insect Adipokinetic Hormone Receptors. Int J Mol Sci 2018; 19:ijms19020542. [PMID: 29439466 PMCID: PMC5855764 DOI: 10.3390/ijms19020542] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 02/02/2023] Open
Abstract
Adipokinetic hormone (AKH) is a highly researched insect neuropeptide that induces the mobilization of carbohydrates and lipids from the fat body at times of high physical activity, such as flight and locomotion. As a naturally occurring ligand, AKH has undergone quite a number of amino acid changes throughout evolution, and in some insect species multiple AKHs are present. AKH acts by binding to a rhodopsin-like G protein-coupled receptor, which is related to the vertebrate gonadotropin-releasing hormone receptors. In the current study, we have cloned AKH receptors (AKHRs) from seven different species, covering a wide phylogenetic range of insect orders: the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti (Diptera); the red flour beetle, Tribolium castaneum, and the large pine weevil, Hylobius abietis (Coleoptera); the honeybee, Apis mellifera (Hymenoptera); the pea aphid, Acyrthosiphon pisum (Hemiptera); and the desert locust, Schistocerca gregaria (Orthoptera). The agonistic activity of different insect AKHs, including the respective endogenous AKHs, at these receptors was tested with a bioluminescence-based assay in Chinese hamster ovary cells. All receptors were activated by their endogenous ligand in the nanomolar range. Based on our data, we can refute the previously formulated hypothesis that a functional AKH signaling system is absent in the beneficial species, Apis mellifera. Furthermore, our data also suggest that some of the investigated AKH receptors, such as the mosquito AKHR, are more selective for the endogenous (conspecific) ligand, while others, such as the locust AKHR, are more promiscuous and can be activated by AKHs from many other insects. This information will be of high importance when further analyzing the potential use of AKHRs as targets for developing novel pest control agents.
Collapse
Affiliation(s)
- Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Sam Schellens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Emilie Monjon
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Evert Bruyninckx
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch ZA-7700, South Africa.
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch ZA-7700, South Africa.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| |
Collapse
|
53
|
Oryan A, Wahedi A, Paluzzi JPV. Functional characterization and quantitative expression analysis of two GnRH-related peptide receptors in the mosquito, Aedes aegypti. Biochem Biophys Res Commun 2018; 497:550-557. [PMID: 29432729 DOI: 10.1016/j.bbrc.2018.02.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 12/12/2022]
Abstract
To cope with stressful events such as flight, organisms have evolved various regulatory mechanisms, often involving control by endocrine-derived factors. In insects, two stress-related factors include the gonadotropin-releasing hormone-related peptides adipokinetic hormone (AKH) and corazonin (CRZ). AKH is a pleiotropic hormone best known as a substrate liberator of proteins, lipids, and carbohydrates. Although a universal function has not yet been elucidated, CRZ has been shown to have roles in pigmentation, ecdysis or act as a cardiostimulatory factor. While both these neuropeptides and their respective receptors (AKHR and CRZR) have been characterized in several organisms, details on their specific roles within the disease vector, Aedes aegypti, remain largely unexplored. Here, we obtained three A. aegypti AKHR transcript variants and further identified the A. aegypti CRZR receptor. Receptor expression using a heterologous functional assay revealed that these receptors exhibit a highly specific response for their native ligands. Developmental quantitative expression analysis of CRZR revealed enrichment during the pupal and adult stages. In adults, quantitative spatial expression analysis revealed CRZR transcript in a variety of organs including head, thoracic ganglia, primary reproductive organs (ovary and testis), as well as male carcass. This suggest CRZ may play a role in ecdysis, and neuronal expression of CRZR indicates a possible role for CRZ within the nervous system. Quantitative developmental expression analysis of AKHR identified significant transcript enrichment in early adult stages. AKHR transcript was observed in the head, thoracic ganglia, accessory reproductive tissues and the carcass of adult females, while it was detected in the abdominal ganglia and enriched significantly in the carcass of adult males, which supports the known function of AKH in energy metabolism. Collectively, given the enrichment of CRZR and AKHR in the primary and secondary sex organs, respectively, of adult mosquitoes, these neuropeptides may play a role in regulating mosquito reproductive biology.
Collapse
Affiliation(s)
- Alireza Oryan
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Azizia Wahedi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Jean-Paul V Paluzzi
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada.
| |
Collapse
|
54
|
Molecular identification, transcript expression, and functional deorphanization of the adipokinetic hormone/corazonin-related peptide receptor in the disease vector, Aedes aegypti. Sci Rep 2018; 8:2146. [PMID: 29391531 PMCID: PMC5794978 DOI: 10.1038/s41598-018-20517-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/19/2018] [Indexed: 02/01/2023] Open
Abstract
The recently discovered adipokinetic hormone/corazonin-related peptide (ACP) is an insect neuropeptide structurally intermediate between corazonin (CRZ) and adipokinetic (AKH) hormones, which all demonstrate homology to the vertebrate gonadotropin-releasing hormone (GnRH). To date, the function of the ACP signaling system remains unclear. In the present study, we molecularly identified the complete open reading frame encoding the Aedes aegypti ACP receptor (ACPR), which spans nine exons and undergoes alternative splicing giving rise to three transcript variants. Only a single variant, AedaeACPR-I, yielding a deduced 577 residue protein, contains all seven transmembrane domains characteristic of rhodopsin-like G protein-coupled receptors. Functional deorphanization of AedaeACPR-I using a heterologous cell culture-based system revealed highly-selective and dose-dependent receptor activation by AedaeACP (EC50 = 10.25 nM). Analysis of the AedaeACPR-I and AedaeACP transcript levels in all post-embryonic developmental stages using quantitative RT-PCR identified enrichment of both transcripts after adult eclosion. Tissue-specific expression profiling in adult mosquitoes reveals expression of the AedaeACPR-I receptor transcript in the central nervous system, including significant enrichment within the abdominal ganglia. Further, the AedaeACP transcript is prominently detected within the brain and thoracic ganglia. Collectively, these results indicate a neuromodulator or neurotransmitter role for ACP and suggest this neuropeptide may function in regulation of post-ecdysis activities.
Collapse
|
55
|
Alexander JL, Oliphant A, Wilcockson DC, Audsley N, Down RE, Lafont R, Webster SG. Functional Characterization and Signaling Systems of Corazonin and Red Pigment Concentrating Hormone in the Green Shore Crab, Carcinus maenas. Front Neurosci 2018; 11:752. [PMID: 29379412 PMCID: PMC5775280 DOI: 10.3389/fnins.2017.00752] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/26/2017] [Indexed: 12/27/2022] Open
Abstract
Neuropeptides play a central role as neurotransmitters, neuromodulators and hormones in orchestrating arthropod physiology. The post-genomic surge in identified neuropeptides and their putative receptors has not been matched by functional characterization of ligand-receptor pairs. Indeed, until very recently no G protein-coupled receptors (GPCRs) had been functionally defined in any crustacean. Here we explore the structurally-related, functionally-diverse gonadotropin-releasing hormone paralogs, corazonin (CRZ) and red-pigment concentrating hormone (RPCH) and their G-protein coupled receptors (GPCRs) in the crab, Carcinus maenas. Using aequorin luminescence to measure in vitro Ca2+ mobilization we demonstrated receptor-ligand pairings of CRZ and RPCH. CRZR-activated cell signaling in a dose-dependent manner (EC50 0.75 nM) and comparative studies with insect CRZ peptides suggest that the C-terminus of this peptide is important in receptor-ligand interaction. RPCH interacted with RPCHR with extremely high sensitivity (EC50 20 pM). Neither receptor bound GnRH, nor the AKH/CRZ-related peptide. Transcript distributions of both receptors indicate that CRZR expression was, unexpectedly, restricted to the Y-organs (YO). Application of CRZ peptide to YO had no effect on ecdysteroid biosynthesis, excepting a modest stimulation in early post-molt. CRZ had no effect on heart activity, blood glucose levels, lipid mobilization or pigment distribution in chromatophores, a scenario that reflected the distribution of its mRNA. Apart from the well-known activity of RPCH as a chromatophorotropin, it also indirectly elicited hyperglycemia (which was eyestalk-dependent). RPCHR mRNA was also expressed in the ovary, indicating possible roles in reproduction. The anatomy of CRZ and RPCH neurons in the nervous system is described in detail by immunohistochemistry and in situ hybridization. Each peptide has extensive but non-overlapping distribution in the CNS, and neuroanatomy suggests that both are possibly released from the post-commissural organs. This study is one of the first to deorphanize a GPCR in a crustacean and to provide evidence for hitherto unknown and diverse functions of these evolutionarily-related neuropeptides.
Collapse
Affiliation(s)
- Jodi L. Alexander
- School of Biological Sciences, Brambell Laboratories, Bangor University, Bangor, United Kingdom
| | - Andrew Oliphant
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - David C. Wilcockson
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | | | | | - Rene Lafont
- IBPS-BIOSIPE, Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Simon G. Webster
- School of Biological Sciences, Brambell Laboratories, Bangor University, Bangor, United Kingdom
| |
Collapse
|
56
|
The African froghopper Ptyelus flavescens (suborder: Cicadomorpha) contains two novel and one known peptides of the adipokinetic hormone (AKH) family: structure, function and comparison with aphid AKH (suborder: Sternorrhyncha). Amino Acids 2017; 49:1679-1690. [DOI: 10.1007/s00726-017-2461-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
|
57
|
Adamo SA. The stress response and immune system share, borrow, and reconfigure their physiological network elements: Evidence from the insects. Horm Behav 2017; 88:25-30. [PMID: 27746212 DOI: 10.1016/j.yhbeh.2016.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 01/16/2023]
Abstract
The classic biomedical view is that stress hormone effects on the immune system are largely pathological, especially if the stress is chronic. However, more recent interpretations have focused on the potential adaptive function of these effects. This paper examines stress response-immune system interactions from a physiological network perspective, using insects because of their simpler physiology. For example, stress hormones can reduce disease resistance, yet activating an immune response results in the release of stress hormones in both vertebrates and invertebrates. From a network perspective, this phenomenon is consistent with the 'sharing' of the energy-releasing ability of stress hormones by both the stress response and the immune system. Stress-induced immunosuppression is consistent with the stress response 'borrowing' molecular components from the immune system to increase the capacity of stress-relevant physiological processes (i.e. a trade off). The insect stress hormones octopamine and adipokinetic hormone can also 'reconfigure' the immune system to help compensate for the loss of some of the immune system's molecular resources (e.g. apolipophorin III). This view helps explain seemingly maladaptive interactions between the stress response and immune system. The adaptiveness of stress hormone effects on individual immune components may be apparent only from the perspective of the whole organism. These broad principles will apply to both vertebrates and invertebrates.
Collapse
Affiliation(s)
- Shelley A Adamo
- Dept. Psychology and Neuroscience, Dalhousie University, Halifax, NS,Canada, B3H4R2.
| |
Collapse
|
58
|
Sakai T, Shiraishi A, Kawada T, Matsubara S, Aoyama M, Satake H. Invertebrate Gonadotropin-Releasing Hormone-Related Peptides and Their Receptors: An Update. Front Endocrinol (Lausanne) 2017; 8:217. [PMID: 28932208 PMCID: PMC5592718 DOI: 10.3389/fendo.2017.00217] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022] Open
Abstract
Gonadotropin-releasing hormones (GnRHs) play pivotal roles in reproductive functions via the hypothalamus, pituitary, and gonad axis, namely, HPG axis in vertebrates. GnRHs and their receptors (GnRHRs) are likely to be conserved in invertebrate deuterostomes and lophotrochozoans. All vertebrate and urochordate GnRHs are composed of 10 amino acids, whereas protostome, echinoderm, and amphioxus GnRH-like peptides are 11- or 12-residue peptide containing two amino acids after an N-terminal pyro-Glu. In urochordates, Halocynthia roretzi GnRH gene encodes two GnRH peptide sequences, whereas two GnRH genes encode three different GnRH peptides in Ciona intestinalis. These findings indicate the species-specific diversification of GnRHs. Intriguingly, the major signaling pathway for GnRHRs is intracellular Ca2+ mobilization in chordates, echinoderms, and protostomes, whereas Ciona GnRHRs (Ci-GnRHRs) are endowed with multiple GnRHergic cAMP production pathways in a ligand-selective manner. Moreover, the ligand-specific modulation of signal transduction via heterodimerization among Ci-GnRHR paralogs suggests the species-specific development of fine-tuning of gonadal functions in ascidians. Echinoderm GnRH-like peptides show high sequence differences compared to those of protostome counterparts, leading to the difficulty in classification of peptides and receptors. These findings also show both the diversity and conservation of GnRH signaling systems in invertebrates. The lack of the HPG axis in invertebrates indicates that biological functions of GnRHs are not release of gonadotropins in current invertebrates and common ancestors of vertebrates and invertebrates. To date, authentic or putative GnRHRs have been characterized from various echinoderms and protostomes as well as chordates and the mRNAs have been found to be distributed not only reproductive organs but also other tissues. Collectively, these findings further support the notion that invertebrate GnRHs have biological roles other than the regulation of reproductive functions. Moreover, recent molecular phylogenetic analysis suggests that adipokinetic hormone (AKH), corazonin (CRZ), and AKH/CRZ-related peptide (ACP) belong to the GnRH superfamily but has led to the different classifications of these peptides and receptors using different datasets including the number of sequences and structural domains. In this review, we provide current knowledge of, and perspectives in, molecular basis and evolutionary aspects of the GnRH, AKH, CRZ, and ACP.
Collapse
Affiliation(s)
- Tsubasa Sakai
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Masato Aoyama
- Faculty of Science, Department of Biological Sciences, Nara Women’s University, Nara, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
- *Correspondence: Honoo Satake,
| |
Collapse
|
59
|
Slocinska M, Antos-Krzeminska N, Rosinski G, Jarmuszkiewicz W. NONSULFATED SULFAKININ CHANGES METABOLIC PARAMETERS OF INSECT FAT BODY MITOCHONDRIA. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 93:177-189. [PMID: 27501306 DOI: 10.1002/arch.21350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigated the effect of neuropeptide, the nonsulfated sulfakinin (SK) Zopat-SK-1 (pETSDDYGHLRFa) on the mitochondrial oxidative metabolism in the Zophobas atratus larval fat body. Mitochondria were isolated from beetle fat bodies 2 and 24 h after hormone injection. The administration of 20 pmol of Zopat-SK-1 to feeding larvae led to decreased mitochondrial oxidative activities in larval fat body. Diminished activities of citrate synthase and the cytochrome pathway, that is, nonphosphorylating and phosphorylating respiration during succinate oxidation, were observed. However, the effect of Zopat-SK-1 was more pronounced in fat body of insects after 24 h since hormone application. In hormone-treated larval fat bodies, mitochondrial respiration was decreased at the level of respiratory chain and the TCA cycle as well as at the level of mitochondrial biogenesis, as indicated by decreased activities of mitochondrial marker enzymes in fat body homogenates. The inhibition of succinate oxidation may indicate the role of Zopat-SK-1 in the regulation of mitochondrial complex II activity. Moreover, decreased respiratory chain activity was accompanied by the reduced activity of mitochondrial energy-dissipating pathway, uncoupling protein 4. The observed decrease in mitochondrial oxidative metabolism may reflect the Zopat-SK-1-induced reduction in the metabolic rate of larval fat body linked to actual energetic demands of animal.
Collapse
Affiliation(s)
- Malgorzata Slocinska
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznan, Poland
| | | | - Grzegorz Rosinski
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznan, Poland
| | | |
Collapse
|
60
|
Eanes WF. New views on the selection acting on genetic polymorphism in central metabolic genes. Ann N Y Acad Sci 2016; 1389:108-123. [PMID: 27859384 DOI: 10.1111/nyas.13285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
Abstract
Studies of the polymorphism of central metabolic genes as a source of fitness variation in natural populations date back to the discovery of allozymes in the 1960s. The unique features of these genes and their enzymes and our knowledge base greatly facilitates the systems-level study of this group. The expectation that pathway flux control is central to understanding the molecular evolution of genes is discussed, as well as studies that attempt to place gene-specific molecular evolution and polymorphism into a context of pathway and network architecture. There is an increasingly complex picture of the metabolic genes assuming additional roles beyond their textbook anabolic and catabolic reactions. In particular, this review emphasizes the potential role of these genes as part of the energy-sensing machinery. It is underscored that the concentrations of key cellular metabolites are the reflections of cellular energy status and nutritional input. These metabolites are the top-down signaling messengers that set signaling through signaling pathways that are involved in energy economy. I propose that the polymorphisms in central metabolic genes shift metabolite concentrations and in that fashion act as genetic modifiers of the energy-state coupling to the transcriptional networks that affect physiological trade-offs with significant fitness consequences.
Collapse
Affiliation(s)
- Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York
| |
Collapse
|
61
|
Reduced geomagnetic field may affect positive phototaxis and flight capacity of a migratory rice planthopper. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
62
|
Uncoupling proteins of invertebrates: A review. IUBMB Life 2016; 68:691-9. [DOI: 10.1002/iub.1535] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/18/2016] [Indexed: 01/05/2023]
|
63
|
Gáliková M, Klepsatel P, Xu Y, Kühnlein RP. The obesity-related Adipokinetic hormone controls feeding and expression of neuropeptide regulators ofDrosophilametabolism. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600138] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Martina Gáliková
- Max Planck Institute for Biophysical Chemistry; Research Group Molecular Physiology; Göttingen Germany
| | - Peter Klepsatel
- Max Planck Institute for Biophysical Chemistry; Research Group Molecular Physiology; Göttingen Germany
| | - Yanjun Xu
- Max Planck Institute for Biophysical Chemistry; Research Group Molecular Physiology; Göttingen Germany
| | - Ronald P. Kühnlein
- Max Planck Institute for Biophysical Chemistry; Research Group Molecular Physiology; Göttingen Germany
| |
Collapse
|
64
|
Fritzsche McKay A, Ezenwa VO, Altizer S. Unravelling the Costs of Flight for Immune Defenses in the Migratory Monarch Butterfly. Integr Comp Biol 2016; 56:278-89. [PMID: 27260859 DOI: 10.1093/icb/icw056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Migratory animals undergo extreme physiological changes to prepare for and sustain energetically costly movements; one potential change is reduced investment in immune defenses. However, because some migrants have evolved to minimize the energetic demands of movement (for example, through the temporary atrophy of non-essential organs such as those involved in reproduction), migratory animals could potentially avoid immunosuppression during long-distance journeys. In this study, we used a tethered flight mill to examine immune consequences of experimentally induced powered flight in eastern North American monarch butterflies. These butterflies undergo an annual two-way long-distance migration each year from as far north as Canada to wintering sites in Central Mexico. We quantified immune measures as a function of categorical flight treatment (flown versus control groups) and continuous measures of flight effort (e.g., flight distance, duration, and measures of efficiency). We also examined whether relationships between flight and immune measures depended on reproductive investment by experimentally controlling whether monarchs were reproductive or in state of reproductive diapause (having atrophied reproductive organs) prior to flight. Of the three immune responses we measured, hemocyte concentration (the number of immune cells) was lower in flown monarchs relative to controls but increased with flight distance among flown monarchs; the other two immune measures showed no relationship to monarch flight. We also found that monarchs that were reproductively active were less efficient fliers, as they exerted more power during flight than monarchs in reproductive diapause. However, reproductive status did not modify relationships between flight and immune measures. Results of this study add to a growing body of work suggesting that migratory monarchs-like some other animals that travel vast distances-can complete their journeys with efficient use of resources and minimal costs.
Collapse
Affiliation(s)
| | - Vanessa O Ezenwa
- *Odum School of Ecology, University of Georgia, Athens, GA 30602, USA Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Sonia Altizer
- *Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
65
|
Caers J, Janssen T, Van Rompay L, Broeckx V, Van Den Abbeele J, Gäde G, Schoofs L, Beets I. Characterization and pharmacological analysis of two adipokinetic hormone receptor variants of the tsetse fly, Glossina morsitans morsitans. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:73-84. [PMID: 26690928 DOI: 10.1016/j.ibmb.2015.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/05/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Adipokinetic hormones (AKH) are well known regulators of energy metabolism in insects. These neuropeptides are produced in the corpora cardiaca and perform their hormonal function by interacting with specific G protein-coupled receptors (GPCRs) at the cell membranes of target tissues, mainly the fat body. Here, we investigated the sequences, spatial and temporal distributions, and pharmacology of AKH neuropeptides and receptors in the tsetse fly, Glossina morsitans morsitans. The open reading frames of two splice variants of the Glomo-akh receptor (Glomo-akhr) gene and of the AKH neuropeptide encoding genes, gmmhrth and gmmakh, were cloned. Both tsetse AKHR isoforms show strong sequence conservation when compared to other insect AKHRs. Glomo-AKH prepropeptides also have the typical architecture of AKH precursors. In an in vitro Ca(2+) mobilization assay, Glomo-AKH neuropeptides activated each receptor isoform up to nanomolar concentrations. We identified structural features of tsetse AKH neuropeptides essential for receptor activation in vitro. Gene expression profiles suggest a function for AKH signaling in regulating Glossina energy metabolism, where AKH peptides are released from the corpora cardiaca and activate receptors mainly expressed in the fat body. This analysis of the ligand-receptor coupling, expression, and pharmacology of the two Glomo-AKHR variants facilitates further elucidation of the function of AKH in G. m. morsitans.
Collapse
Affiliation(s)
- Jelle Caers
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Tom Janssen
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Liesbeth Van Rompay
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Valérie Broeckx
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerpen, Belgium; Laboratory of Zoophysiology, Department of Physiology, University of Ghent, Krijgslaan 281, 9000, Ghent, Belgium.
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Private Bag, 7701, Rondebosch, South Africa.
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| | - Isabel Beets
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
| |
Collapse
|
66
|
|
67
|
Weidlich S, Hoffmann KH, Woodring J. SECRETION OF LIPASES IN THE DIGESTIVE TRACT OF THE CRICKET Gryllus bimaculatus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 90:209-217. [PMID: 26446311 DOI: 10.1002/arch.21303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Little is known concerning the sites and the ratios of the lipase secretions in insects, therefore we undertook an examination of the lipase secretion of fed and unfed adult female Gryllus bimaculatus. The ratio of triacylglyceride lipase, diacylglyceride lipase, and phosphatidylcholine lipase secreted by fed females in the caecum and ventriculus is 1:1.4:0.4. These activities decrease in the caecum by 30-40% in unfed females. The total lipase activity (TLA) in the caecum is about 10 times that in the ventriculus. Minimal lipase secretion occurs before and during the final moult, and remains at this level in unfed crickets, indicating a basal secretion rate. In 2-day-old fed females, about 10% of the TLA in the entire gut is found in the crop, about 70% in the caecum, 20% in the ventriculus, and 3% in the ileum. Lipases in the ventriculus are recycled back to the caecum and little is lost in the feces. Oleic acid stimulated in vitro lipase secretion, but lipids did not. Feeding stimulated lipase secretion, starvation reduced lipase secretion, but this does not prove a direct prandal regulation of secretion, because feeding also induced a size and volume increase of the caecum.
Collapse
Affiliation(s)
- Sandy Weidlich
- Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | - Klaus H Hoffmann
- Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | - Joseph Woodring
- Department of Animal Ecology II, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
68
|
Energy Homeostasis Control in Drosophila Adipokinetic Hormone Mutants. Genetics 2015; 201:665-83. [PMID: 26275422 DOI: 10.1534/genetics.115.178897] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
Maintenance of biological functions under negative energy balance depends on mobilization of storage lipids and carbohydrates in animals. In mammals, glucagon and glucocorticoid signaling mobilizes energy reserves, whereas adipokinetic hormones (AKHs) play a homologous role in insects. Numerous studies based on AKH injections and correlative studies in a broad range of insect species established the view that AKH acts as master regulator of energy mobilization during development, reproduction, and stress. In contrast to AKH, the second peptide, which is processed from the Akh encoded prohormone [termed "adipokinetic hormone precursor-related peptide" (APRP)] is functionally orphan. APRP is discussed as ecdysiotropic hormone or as scaffold peptide during AKH prohormone processing. However, as in the case of AKH, final evidence for APRP functions requires genetic mutant analysis. Here we employed CRISPR/Cas9-mediated genome engineering to create AKH and AKH plus APRP-specific mutants in the model insect Drosophila melanogaster. Lack of APRP did not affect any of the tested steroid-dependent processes. Similarly, Drosophila AKH signaling is dispensable for ontogenesis, locomotion, oogenesis, and homeostasis of lipid or carbohydrate storage until up to the end of metamorphosis. During adulthood, however, AKH regulates body fat content and the hemolymph sugar level as well as nutritional and oxidative stress responses. Finally, we provide evidence for a negative autoregulatory loop in Akh gene regulation.
Collapse
|
69
|
Slocinska M, Czubak T, Marciniak P, Jarmuszkiewicz W, Rosinski G. The activity of the nonsulfated sulfakinin Zopat-SK-1 in the neck-ligated larvae of the beetle Zophobas atratus. Peptides 2015; 69:127-32. [PMID: 25959538 DOI: 10.1016/j.peptides.2015.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 11/17/2022]
Abstract
Insect sulfakinins (SKs) are multifunctional neuropeptides structurally and functionally homologous to the mammalian gastrin/cholecystokinin (CCK). It has been proposed that SKs play a role in modulating energy management in insects by interacting with adipokinetic hormone (AKH), the principle hormone controlling insect intermediary metabolism. To exclude head factors (including AKH) that influence the activity of the nonsulfated sulfakinin Zopat-SK-1 in the larvae of the beetle Zophobas atratus, ligature and in vitro bioassays were used. Our study showed that in the neck-ligated larvae, Zopat-SK-1 evoked a much more pronounced glycogenolytic effect in fat body tissue and a significantly higher hypertrahelosemic effect in hemolymph than in larvae without ligation. We found that the concentration of the sugar trehalose increased under hormonal treatment but no changes in glucose levels were observed. Under in vitro conditions, the maximal glycogenolytic effect of Zopat-SK-1 in fat body was observed at 10 pmol of hormone. Ligature and in vitro bioassays indicated that Zopat-SK-1 activity in the Z. atratus larvae is modulated by head signals and/or factors from the gastrointestinal tract. Our data indicate the existence of a brain-gastrointestinal axis that has a role in controlling of energy (carbohydrate) metabolism in the insect body. Moreover, these results, together with immunological evidence of a cholecystokinin-like (sulfakinin) receptor in the Z. atratus fat body, help us to better understand the SK signaling pathways and its physiological role in insect biology.
Collapse
Affiliation(s)
- M Slocinska
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznan, Poland.
| | - T Czubak
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznan, Poland
| | - P Marciniak
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznan, Poland
| | - W Jarmuszkiewicz
- Department of Bioenergetics, Adam Mickiewicz University, Poznan, Poland
| | - G Rosinski
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
70
|
Lailvaux SP, Husak JF. The life history of whole-organism performance. QUARTERLY REVIEW OF BIOLOGY 2015; 89:285-318. [PMID: 25510077 DOI: 10.1086/678567] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For almost 40 years, studies of whole-organism performance have formed a cornerstone of evolutionary physiology. Although its utility as a heuristic guide is beyond question, and we have learned much about morphological evolution from its application, the ecomorphological paradigm has frequently been applied to performance evolution in ways that range from unsatisfactory to inappropriate. More importantly, the standard ecomorphological paradigm does not account for tradeoffs among performance and other traits, nor between performance traits that are mediated by resource allocation. A revised paradigm that includes such tradeoffs, and the possible ways that performance and fitness-enhancing traits might affect each other, could potentially revivify the study of phenotypic evolution and make important inroads into understanding the relationships between morphology and performance and between performance and Darwinian fitness. We describe such a paradigm, and discuss the various ways that performance and key life-history traits might interact with and affect each other. We emphasize both the proximate mechanisms potentially linking such traits, and the likely ultimate factors driving those linkages, as well as the evolutionary implications for the overall, multivariate phenotype. Finally, we highlight several research directions that will shed light on the evolution and ecology of whole-organism performance and related life-history traits.
Collapse
|
71
|
Localization and functional characterization of a novel adipokinetic hormone in the mollusk, Aplysia californica. PLoS One 2014; 9:e106014. [PMID: 25162698 PMCID: PMC4146582 DOI: 10.1371/journal.pone.0106014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/28/2014] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence suggests that gonadotropin-releasing hormone (GnRH), corazonin, adipokinetic hormone (AKH), and red pigment-concentrating hormone all share common ancestry to form a GnRH superfamily. Despite the wide presence of these peptides in protostomes, their biological effects remain poorly characterized in many taxa. This study had three goals. First, we cloned the full-length sequence of a novel AKH, termed Aplysia-AKH, and examined its distribution in an opisthobranch mollusk, Aplysia californica. Second, we investigated in vivo biological effects of Aplysia-AKH. Lastly, we compared the effects of Aplysia-AKH to a related A. californica peptide, Aplysia-GnRH. Results suggest that Aplysia-AKH mRNA and peptide are localized exclusively in central tissues, with abdominal, cerebral, and pleural ganglia being the primary sites of Aplysia-AKH production. However, Aplysia-AKH-positive fibers were found in all central ganglia, suggesting diverse neuromodulatory roles. Injections of A. californica with Aplysia-AKH significantly inhibited feeding, reduced body mass, increased excretion of feces, and reduced gonadal mass and oocyte diameter. The in vivo effects of Aplysia-AKH differed substantially from Aplysia-GnRH. Overall, the distribution and biological effects of Aplysia-AKH suggest it has diverged functionally from Aplysia-GnRH over the course of evolution. Further, that both Aplysia-AKH and Aplysia-GnRH failed to activate reproduction suggest the critical role of GnRH as a reproductive activator may be a phenomenon unique to vertebrates.
Collapse
|
72
|
Gołębiowski M, Cerkowniak M, Urbanek A, Słocińska M, Rosiński G, Stepnowski P. Adipokinetic hormone induces changes in the fat body lipid composition of the beetle Zophobas atratus. Peptides 2014; 58:65-73. [PMID: 24905623 DOI: 10.1016/j.peptides.2014.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/24/2014] [Accepted: 05/26/2014] [Indexed: 12/17/2022]
Abstract
In insects, neuropeptide adipokinetic hormone (AKH) released from the corpora cardiaca mobilizes lipids and carbohydrates in the fat body. We examined the developmental differences in the action of Tenmo-AKH, a bioanalogue belonging to the adipokinetic/hypertrahelosemic family (AKH/HrTH), on the lipid composition of larval and pupal fat bodies in the beetle Zophobas atratus. Tenmo-AKH was administered to the beetle larvae and pupae either as a single dose or as two doses of 20 pmol during a 24h interval. Extracts of fat bodies were used to analyse the lipid composition by gas chromatography (GC) combined with mass spectrometry (GC-MS). Control extracts were analyzed using the same method. Fatty acids (FA) and fatty acid methyl esters (FAME) were the most abundant compounds in the fat bodies from both developmental stages. We observed significant differences in their concentrations following hormonal treatment. Tenmo-AKH also induced a distinct increase in larval sterols, fatty alcohols and benzoic acid.
Collapse
Affiliation(s)
- Marek Gołębiowski
- Laboratory of Natural Products Analysis, Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308, Poland.
| | - Magdalena Cerkowniak
- Laboratory of Natural Products Analysis, Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308, Poland
| | - Aleksandra Urbanek
- Department of Invertebrate Zoology and Parasitology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Development, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Piotr Stepnowski
- Laboratory of Natural Products Analysis, Department of Environmental Analysis, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308, Poland
| |
Collapse
|
73
|
Patel H, Orchard I, Veenstra JA, Lange AB. Reprint of "The distribution and physiological effects of three evolutionarily and sequence-related neuropeptides in Rhodnius prolixus: Adipokinetic hormone, corazonin and adipokinetic hormone/corazonin-related peptide". Gen Comp Endocrinol 2014; 203:307-14. [PMID: 25016049 DOI: 10.1016/j.ygcen.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have examined the distribution and physiological effects of three evolutionarily and sequence-related neuropeptides in Rhodnius prolixus. These neuropeptides, adipokinetic hormone (RhoprAKH), corazonin (CRZ) and adipokinetic hormone/corazonin-related peptide (RhoprACP) are present in distinct, non-overlapping neuronal subsets in the central nervous system (CNS), as determined by immunohistochemistry. Corazonin-like immunoreactive cell bodies are present in the brain and ventral nerve cord, whereas ACP-like immunoreactive cell bodies are only present in the brain, and AKH-like immunoreactive cell bodies only present in the corpus cardiacum (CC). The immunoreactivity to ACP, CRZ and AKH in R. prolixus suggests that ACP and CRZ are released within the CNS, and that CRZ and AKH are released as neurohormones from the CC. Injection of RhoprAKH into adult males elevated haemolymph lipid levels, but injection of CRZ or RhoprACP failed to have any effect on haemolymph lipid levels. Corazonin stimulated an increase in heart-beat frequency in vitro, but RhoprAKH and RhoprACP failed to do so. Thus, although all three neuropeptides share sequence similarity, the AKH and CRZ receptors only respond to their own ligand.
Collapse
Affiliation(s)
- H Patel
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| | - I Orchard
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| | - J A Veenstra
- Université de Bordeaux, INCIA UMR 5287 CNRS, 33400 Talence, France.
| | - A B Lange
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
74
|
Boes KE, Ribeiro JMC, Wong A, Harrington LC, Wolfner MF, Sirot LK. Identification and characterization of seminal fluid proteins in the Asian tiger mosquito, Aedes albopictus. PLoS Negl Trop Dis 2014; 8:e2946. [PMID: 24945155 PMCID: PMC4063707 DOI: 10.1371/journal.pntd.0002946] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/02/2014] [Indexed: 12/20/2022] Open
Abstract
The Asian tiger mosquito (Aedes albopictus) is an important vector for pathogens that affect human health, including the viruses that cause dengue and Chikungunya fevers. It is also one of the world's fastest-spreading invasive species. For these reasons, it is crucial to identify strategies for controlling the reproduction and spread of this mosquito. During mating, seminal fluid proteins (Sfps) are transferred from male mosquitoes to females, and these Sfps modulate female behavior and physiology in ways that influence reproduction. Despite the importance of Sfps on female reproductive behavior in mosquitoes and other insects, the identity of Sfps in Ae. albopictus has not previously been reported. We used transcriptomics and proteomics to identify 198 Sfps in Ae. albopictus. We discuss possible functions of these Sfps in relation to Ae. albopictus reproduction-related biology. We additionally compare the sequences of these Sfps with proteins (including reported Sfps) in several other species, including Ae. aegypti. While only 72 (36.4%) of Ae. albopictus Sfps have putative orthologs in Ae. aegypti, suggesting low conservation of the complement of Sfps in these species, we find no evidence for an elevated rate of evolution or positive selection in the Sfps that are shared between the two Aedes species, suggesting high sequence conservation of those shared Sfps. Our results provide a foundation for future studies to investigate the roles of individual Sfps on feeding and reproduction in this mosquito. Functional analysis of these Sfps could inform strategies for managing the rate of pathogen transmission by Ae. albopictus.
Collapse
Affiliation(s)
- Kathryn E. Boes
- Department of Biology, College of Wooster, Wooster, Ohio, United States of America
| | - José M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, United States of America
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Laura C. Harrington
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Laura K. Sirot
- Department of Biology, College of Wooster, Wooster, Ohio, United States of America
| |
Collapse
|
75
|
Kerekes É, Kókai E, Páldy FS, Dombrádi V. Functional analysis of the glycogen binding subunit CG9238/Gbs-70E of protein phosphatase 1 in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 49:70-79. [PMID: 24727027 DOI: 10.1016/j.ibmb.2014.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/07/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
The product of the CG9238 gene that we termed glycogen binding subunit 70E (Gbs-70E) was characterized by biochemical and molecular genetics methods. The interaction between Gbs-70E and all catalytic subunits of protein phosphatase 1 (Pp1-87B, Pp1-9C, Pp1-96A and Pp1-13C) of Drosophila melanogaster was confirmed by pairwise yeast two-hybrid tests, co-immunoprecipitation and pull down experiments. The binding of Gbs-70E to glycogen was demonstrated by sedimentation analysis. With RT-PCR we found that the mRNAs coding for the longer Gbs-70E PB/PC protein were expressed in all developmental stages of the fruit flies while the mRNA for the shorter Gbs-70E PA was restricted to the eggs and the ovaries of the adult females. The development specific expression of the shorter splice variant was not conserved in different Drosophila species. The expression level of the gene was manipulated by P-element insertions and gene deletion to analyze the functions of the gene product. A small or moderate reduction in the gene expression resulted in no significant changes, however, a deletion mutant expressing very low level of the transcript lived shorter and exhibited reduced glycogen content in the imagos. In addition, the gene deletion decreased the fertility of the fruit flies. Our results prove that Gbs-70E functions as the glycogen binding subunit of protein phosphatase 1 that regulates glycogen content and plays a role in the development of eggs in D. melanogaster.
Collapse
Affiliation(s)
- Éva Kerekes
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Endre Kókai
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Ferenc Sándor Páldy
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Viktor Dombrádi
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|
76
|
Baumbach J, Xu Y, Hehlert P, Kühnlein RP. Gαq, Gγ1 and Plc21C control Drosophila body fat storage. J Genet Genomics 2014; 41:283-92. [PMID: 24894355 DOI: 10.1016/j.jgg.2014.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/26/2014] [Accepted: 03/09/2014] [Indexed: 01/27/2023]
Abstract
Adaptive mobilization of body fat is essential for energy homeostasis in animals. In insects, the adipokinetic hormone (Akh) systemically controls body fat mobilization. Biochemical evidence supports that Akh signals via a G protein-coupled receptor (GPCR) called Akh receptor (AkhR) using cyclic-AMP (cAMP) and Ca(2+) second messengers to induce storage lipid release from fat body cells. Recently, we provided genetic evidence that the intracellular calcium (iCa(2+)) level in fat storage cells controls adiposity in the fruit fly Drosophila melanogaster. However, little is known about the genes, which mediate Akh signalling downstream of the AkhR to regulate changes in iCa(2+). Here, we used thermogenetics to provide in vivo evidence that the GPCR signal transducers G protein α q subunit (Gαq), G protein γ1 (Gγ1) and Phospholipase C at 21C (Plc21C) control cellular and organismal fat storage in Drosophila. Transgenic modulation of Gαq, Gγ1 and Plc21C affected the iCa(2+) of fat body cells and the expression profile of the lipid metabolism effector genes midway and brummer, which results in severely obese or lean flies. Moreover, functional impairment of Gαq, Gγ1 and Plc21C antagonised Akh-induced fat depletion. This study characterizes Gαq, Gγ1 and Plc21C as anti-obesity genes and supports the model that Akh employs the Gαq/Gγ1/Plc21C module of iCa(2+) control to regulate lipid mobilization in adult Drosophila.
Collapse
Affiliation(s)
- Jens Baumbach
- Abteilung Molekulare Entwicklungsbiologie, Forschungsgruppe Molekulare Physiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen 37077, Germany
| | - Yanjun Xu
- Abteilung Molekulare Entwicklungsbiologie, Forschungsgruppe Molekulare Physiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen 37077, Germany
| | - Philip Hehlert
- Abteilung Molekulare Entwicklungsbiologie, Forschungsgruppe Molekulare Physiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen 37077, Germany
| | - Ronald P Kühnlein
- Abteilung Molekulare Entwicklungsbiologie, Forschungsgruppe Molekulare Physiologie, Max-Planck-Institut für biophysikalische Chemie, Göttingen 37077, Germany.
| |
Collapse
|
77
|
Patel H, Orchard I, Veenstra JA, Lange AB. The distribution and physiological effects of three evolutionarily and sequence-related neuropeptides in Rhodnius prolixus: Adipokinetic hormone, corazonin and adipokinetic hormone/corazonin-related peptide. Gen Comp Endocrinol 2014; 195:1-8. [PMID: 24184870 DOI: 10.1016/j.ygcen.2013.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/10/2013] [Accepted: 10/21/2013] [Indexed: 12/15/2022]
Abstract
We have examined the distribution and physiological effects of three evolutionarily and sequence-related neuropeptides in Rhodnius prolixus. These neuropeptides, adipokinetic hormone (RhoprAKH), corazonin (CRZ) and adipokinetic hormone/corazonin-related peptide (RhoprACP) are present in distinct, non-overlapping neuronal subsets in the central nervous system (CNS), as determined by immunohistochemistry. Corazonin-like immunoreactive cell bodies are present in the brain and ventral nerve cord, whereas ACP-like immunoreactive cell bodies are only present in the brain, and AKH-like immunoreactive cell bodies only present in the corpus cardiacum (CC). The immunoreactivity to ACP, CRZ and AKH in R. prolixus suggests that ACP and CRZ are released within the CNS, and that CRZ and AKH are released as neurohormones from the CC. Injection of RhoprAKH into adult males elevated haemolymph lipid levels, but injection of CRZ or RhoprACP failed to have any effect on haemolymph lipid levels. Corazonin stimulated an increase in heart-beat frequency in vitro, but RhoprAKH and RhoprACP failed to do so. Thus, although all three neuropeptides share sequence similarity, the AKH and CRZ receptors only respond to their own ligand.
Collapse
Affiliation(s)
- H Patel
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| | - I Orchard
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| | - J A Veenstra
- Université de Bordeaux, INCIA UMR 5287 CNRS, 33400 Talence, France.
| | - A B Lange
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
78
|
Süren-Castillo S, Abrisqueta M, Maestro JL. FoxO is required for the activation of hypertrehalosemic hormone expression in cockroaches. Biochim Biophys Acta Gen Subj 2014; 1840:86-94. [DOI: 10.1016/j.bbagen.2013.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/09/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
|
79
|
Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. Appl Environ Microbiol 2013; 80:788-96. [PMID: 24242251 DOI: 10.1128/aem.02742-13] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The animal gut is perpetually exposed to microorganisms, and this microbiota affects development, nutrient allocation, and immune homeostasis. A major challenge is to understand the contribution of individual microbial species and interactions among species in shaping these microbe-dependent traits. Using the Drosophila melanogaster gut microbiota, we tested whether microbe-dependent performance and nutritional traits of Drosophila are functionally modular, i.e., whether the impact of each microbial taxon on host traits is independent of the presence of other microbial taxa. Gnotobiotic flies were constructed with one or a set of five of the Acetobacter and Lactobacillus species which dominate the gut microbiota of conventional flies (Drosophila with untreated microbiota). Axenic (microbiota-free) flies exhibited prolonged development time and elevated glucose and triglyceride contents. The low glucose content of conventional flies was recapitulated in gnotobiotic Drosophila flies colonized with any of the 5 bacterial taxa tested. In contrast, the development rates and triglyceride levels in monocolonized flies varied depending on the taxon present: Acetobacter species supported the largest reductions, while most Lactobacillus species had no effect. Only flies with both Acetobacter and Lactobacillus had triglyceride contents restored to the level in conventional flies. This could be attributed to two processes: Lactobacillus-mediated promotion of Acetobacter abundance in the fly and a significant negative correlation between fly triglyceride content and Acetobacter abundance. We conclude that the microbial basis of host traits varies in both specificity and modularity; microbe-mediated reduction in glucose is relatively nonspecific and modular, while triglyceride content is influenced by interactions among microbes.
Collapse
|
80
|
Bednářová A, Kodrík D, Krishnan N. Adipokinetic hormone exerts its anti-oxidative effects using a conserved signal-transduction mechanism involving both PKC and cAMP by mobilizing extra- and intracellular Ca2+ stores. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:142-9. [PMID: 23845878 DOI: 10.1016/j.cbpc.2013.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 01/10/2023]
Abstract
The involvement of members of the adipokinetic hormone (AKH) family in regulation of response to oxidative stress (OS) has been reported recently. However, despite these neuropeptides being the best studied family of insect hormones, their precise signaling pathways in their OS responsive role remain to be elucidated. In this study, we have used an in vitro assay to determine the importance of extra and intra-cellular Ca(2+) stores as well as the involvement of protein kinase C (PKC) and cyclic adenosine 3',5'-monophosphate (cAMP) pathways by which AKH exerts its anti-oxidative effects. Lipid peroxidation product (4-HNE) was significantly enhanced and membrane fluidity reduced in microsomal fractions of isolated brains (CNS) of Pyrrhocoris apterus when treated with hydrogen peroxide (H2O2), whereas these biomarkers of OS were reduced to control levels when H2O2 was co-treated with Pyrap-AKH. The effects of mitigation of OS in isolated CNS by AKH were negated when these treatments were conducted in the presence of Ca(2+) channel inhibitors (CdCl2 and thapsigargin). Presence of either bisindolylmaliemide or chelyrythrine chloride (inhibitors of PKC) in the incubating medium also compromised the anti-oxidative function of AKH. However, supplementing the medium with either phorbol myristate acetate (PMA, an activator of PKC) or forskolin (an activator of cAMP) restored the protective effects of exogenous AKH treatment by reducing 4-HNE levels and increasing membrane fluidity to control levels. Taken together, our results strongly implicate the importance of both PKC and cAMP pathways in AKHs' anti-oxidative action by mobilizing both extra and intra-cellular stores of Ca(2+).
Collapse
Affiliation(s)
- Andrea Bednářová
- Institute of Entomology, Biology Centre, Academy of Science, Branišovská 31, České Budějovice, 370 05-CZ, Czech Republic; Faculty of Science, South Bohemian University, Branišovská 31, České Budějovice, 370 05-CZ, Czech Republic; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, MS 39762, USA
| | | | | |
Collapse
|
81
|
Slocinska M, Antos-Krzeminska N, Golebiowski M, Kuczer M, Stepnowski P, Rosinski G, Jarmuszkiewicz W. UCP4 expression changes in larval and pupal fat bodies of the beetle Zophobas atratus under adipokinetic hormone treatment. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:52-9. [DOI: 10.1016/j.cbpa.2013.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 05/02/2013] [Accepted: 05/09/2013] [Indexed: 12/13/2022]
|
82
|
Mugumbate G, Jackson GE, van der Spoel D, Kövér KE, Szilágyi L. Anopheles gambiae, Anoga-HrTH hormone, free and bound structure--a nuclear magnetic resonance experiment. Peptides 2013; 41:94-100. [PMID: 23439319 DOI: 10.1016/j.peptides.2013.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 01/31/2023]
Abstract
The spread of malaria by the female mosquito, Anopheles gambiae, is dependent, amongst other things, on its ability to fly. This in turn, is dependent on the adipokinetic hormone, Anoga-HrTH (pGlu-Leu-Thr-Phe-Thr-Pro-Ala-Trp-NH2). No crystal structure of this important neuropeptide is available and hence NMR restrained molecular dynamics was used to investigate its conformational space in aqueous solution and when bound to a membrane surface. The results showed that Anoga-HrTH has an almost cyclic conformation that is stabilized by a hydrogen bond between the C-terminus and Thr3. Upon docking of the agonist to its receptor, this H-bond is broken and the molecule adopts a more extended structure. Preliminary AKHR docking calculations give the free energy of binding to be -47.30 kJ/mol. There is a close correspondence between the structure of the docked ligand and literature structure-activity studies. Information about the 3D structure and binding mode of Anoga-HrTH to its receptor is vital for the design of suitable mimetics which can act as insecticides.
Collapse
Affiliation(s)
- Grace Mugumbate
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa
| | | | | | | | | |
Collapse
|
83
|
Caers J, Peeters L, Janssen T, De Haes W, Gäde G, Schoofs L. Structure-activity studies of Drosophila adipokinetic hormone (AKH) by a cellular expression system of dipteran AKH receptors. Gen Comp Endocrinol 2012; 177:332-7. [PMID: 22569168 DOI: 10.1016/j.ygcen.2012.04.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 11/19/2022]
Abstract
Structure-activity studies for the adipokinetic hormone receptor of insects were for the first time performed in a cellular expression system. A series of single amino acid replacement analogues for the endogenous adipokinetic hormone of Drosophila melanogaster (pGlu-Leu-Thr-Phe-Ser-Pro-Asp-Trp-NH(2)) were screened for activity with a bioluminescence cellular assay, expressing the G-protein coupled receptor. For this series of peptide analogues, one amino acid of the N-terminal tetrapeptide was successively replaced by alanine, while those of the C-terminal tetrapeptide were successively substituted by glycine; other modifications included the blocked N- and C-termini that were replaced by an acetylated alanine and a hydroxyl group, respectively. The analogue series was tested on the AKH receptors of two dipteran species, D. melanogaster and Anopheles gambiae. The blocked termini of the AKH peptide probably play a minor role in receptor interaction and activation, but are considered functionally important elements to protect the peptide against exopeptidases. In contrast, the amino acids at positions 2, 3, 4 and 5 from the N-terminus all seem to be crucial for receptor activation. This can be explained by the potential presence of a β-strand in this part of the peptide that interacts with the receptor. The inferred β-strand is probably followed by a β-turn in which the amino acids at positions 5-8 are involved. In this β-turn, the residues at positions 6 and 8 seem to be essential, as their substitutions induce only a very low degree of receptor activation. Replacement of Asp(7), by contrast, does not influence receptor activation at all. This implies that its side chain is folded inside the β-turn so that no interaction with the receptor occurs.
Collapse
Affiliation(s)
- Jelle Caers
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
84
|
Attardo GM, Benoit JB, Michalkova V, Yang G, Roller L, Bohova J, Takáč P, Aksoy S. Analysis of lipolysis underlying lactation in the tsetse fly, Glossina morsitans. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:360-70. [PMID: 22509523 PMCID: PMC3561780 DOI: 10.1016/j.ibmb.2012.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Female tsetse flies undergo viviparous reproduction, generating one larva each gonotrophic cycle. Larval nourishment is provided by the mother in the form of milk secretions. The milk consists mostly of lipids during early larval development and shifts to a balanced combination of protein and lipids in the late larval instars. Provisioning of adequate lipids to the accessory gland is an indispensable process for tsetse fecundity. This work investigates the roles of Brummer lipase (Bmm) and the adipokinetic hormone (AKH)/adipokinetic hormone receptor (AKHR) systems on lipid metabolism and mobilization during lactation in tsetse. The contributions of each system were investigated by a knockdown approach utilizing siRNA injections. Starvation experiments revealed that silencing of either system results in prolonged female lifespan. Simultaneous suppression of bmm and akhr prolonged survival further than either individual knockdown. Knockdown of akhr and bmm transcript levels resulted in high levels of whole body lipids at death, indicating an inability to utilize lipid reserves during starvation. Silencing of bmm resulted in delayed oocyte development. Respective reductions in fecundity of 20 and 50% were observed upon knockdown of akhr and bmm, while simultaneous knockdown of both genes resulted in 80% reduction of larval production. Omission of one bloodmeal during larvigenesis (nutritional stress) after simultaneous knockdown led to almost complete suppression of larval production. This phenotype likely results from tsetse's inability to utilize lipid reserves as loss of both lipolysis systems leads to accumulation and retention of stored lipids during pregnancy. This shows that both Bmm lipolysis and AKH/AKHR signaling are critical for lipolysis required for milk production during tsetse pregnancy, and identifies the underlying mechanisms of lipid metabolism critical to tsetse lactation. The similarities in the lipid metabolic pathways and other aspects of milk production between tsetse and mammals indicate that this fly could be used as a novel model for lactation research.
Collapse
Affiliation(s)
- Geoffrey M Attardo
- Yale School of Public Health, Yale University, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Maity S, Jannasch A, Adamec J, Nalepa T, Höök TO, Sepúlveda MS. Starvation causes disturbance in amino acid and fatty acid metabolism in Diporeia. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:348-55. [DOI: 10.1016/j.cbpb.2011.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/22/2011] [Accepted: 12/29/2011] [Indexed: 11/26/2022]
|
86
|
Malik A, Gäde G, Lange AB. Sequencing and biological effects of an adipokinetic/hypertrehalosemic peptide in the stick insect, Baculum extradentatum. Peptides 2012; 34:51-6. [PMID: 21864604 DOI: 10.1016/j.peptides.2011.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 01/20/2023]
Abstract
The corpora cardiaca of the Vietnamese stick insect, Baculum extradentatum, contain a member of the adipokinetic hormone/red pigment-concentrating hormone/hypertrehalosemic hormone (AKH/RPCH/HrTH) family of peptides whose sequence is identical to that originally described for the Indian stick insect, Carausius morosus. This decapeptide, Carmo-HrTH-II (pELTFTPNWGTa), has both hypertrehalosemic and cardioacceleratory activity in B. extradentatum, and hyperlipaemic activity in locusts. Reversed-phase high performance liquid chromatography (RP-HPLC) of corpora cardiaca extract followed by MALDI-TOF MS/MS also revealed a novel modification of a second peptide in B. extradentatum: the tryptophan residue at position 8 is post-translationally modified to kynurenine.
Collapse
Affiliation(s)
- Ayesha Malik
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | | |
Collapse
|
87
|
Sarate P, Tamhane V, Kotkar H, Ratnakaran N, Susan N, Gupta V, Giri A. Developmental and digestive flexibilities in the midgut of a polyphagous pest, the cotton bollworm, Helicoverpa armigera. JOURNAL OF INSECT SCIENCE (ONLINE) 2012; 12:42. [PMID: 22954360 PMCID: PMC3476687 DOI: 10.1673/031.012.4201] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 01/09/2012] [Indexed: 05/31/2023]
Abstract
Developmental patterns and survival of the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), a polyphagous insect pest, have been studied with reference to the effect of diet on major gut digestive enzymes (amylases, proteases, and lipases). Significant correlations between nutritional quality of the diet and larval and pupal mass were observed when H. armigera larvae were fed on various host plants viz. legumes (chickpea and pigeonpea), vegetables (tomato and okra), flowers (rose and marigold), and cereals (sorghum and maize). Larvae fed on diets rich in proteins and/or carbohydrates (pigeonpea, chickpea, maize, and sorghum) showed higher larval mass and developed more rapidly than larvae fed on diets with low protein and carbohydrate content (rose, marigold, okra, and tomato). Low calorific value diets like rose and marigold resulted in higher mortality (25-35%) of H. armigera. Even with highly varying development efficiency and larval/pupal survival rates, H. armigera populations feeding on different diets completed their life cycles. Digestive enzymes of H. armigera displayed variable expression levels and were found to be regulated on the basis of macromolecular composition of the diet. Post-ingestive adaptations operating at the gut level, in the form of controlled release of digestive enzymes, might be a key factor contributing to the physiological plasticity in H. armigera.
Collapse
Affiliation(s)
- P.J. Sarate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (M.S.), India
- these authors contributed equally to the work
| | - V.A. Tamhane
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (M.S.), India
| | - H.M. Kotkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (M.S.), India
- these authors contributed equally to the work
| | - N. Ratnakaran
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (M.S.), India
| | - N. Susan
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (M.S.), India
| | - V.S. Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (M.S.), India
| | - A.P. Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (M.S.), India
| |
Collapse
|
88
|
Caers J, Verlinden H, Zels S, Vandersmissen HP, Vuerinckx K, Schoofs L. More than two decades of research on insect neuropeptide GPCRs: an overview. Front Endocrinol (Lausanne) 2012; 3:151. [PMID: 23226142 PMCID: PMC3510462 DOI: 10.3389/fendo.2012.00151] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/14/2012] [Indexed: 11/30/2022] Open
Abstract
This review focuses on the state of the art on neuropeptide receptors in insects. Most of these receptors are G protein-coupled receptors (GPCRs) and are involved in the regulation of virtually all physiological processes during an insect's life. More than 20 years ago a milestone in invertebrate endocrinology was achieved with the characterization of the first insect neuropeptide receptor, i.e., the Drosophila tachykinin-like receptor. However, it took until the release of the Drosophila genome in 2000 that research on neuropeptide receptors boosted. In the last decade a plethora of genomic information of other insect species also became available, leading to a better insight in the functions and evolution of the neuropeptide signaling systems and their intracellular pathways. It became clear that some of these systems are conserved among all insect species, indicating that they fulfill crucial roles in their physiological processes. Meanwhile, other signaling systems seem to be lost in several insect orders or species, suggesting that their actions were superfluous in those insects, or that other neuropeptides have taken over their functions. It is striking that the deorphanization of neuropeptide GPCRs gets much attention, but the subsequent unraveling of the intracellular pathways they elicit, or their physiological functions are often hardly examined. Especially in insects besides Drosophila this information is scarce if not absent. And although great progress made in characterizing neuropeptide signaling systems, even in Drosophila several predicted neuropeptide receptors remain orphan, awaiting for their endogenous ligand to be determined. The present review gives a précis of the insect neuropeptide receptor research of the last two decades. But it has to be emphasized that the work done so far is only the tip of the iceberg and our comprehensive understanding of these important signaling systems will still increase substantially in the coming years.
Collapse
Affiliation(s)
| | | | | | | | | | - Liliane Schoofs
- *Correspondence: Liliane Schoofs, Department of Biology, Research Group of Functional Genomics and Proteomics, Naamsestraat 59, KU Leuven, 3000 Leuven, Belgium. e-mail:
| |
Collapse
|
89
|
Zhang BC, Jiang CJ, An CJ, Zhang QW, Zhao ZW. Variations in fuel use in the flight muscles of wing-dimorphic Gryllus firmus and implications for morph-specific dispersal. ENVIRONMENTAL ENTOMOLOGY 2011; 40:1566-1571. [PMID: 22217774 DOI: 10.1603/en11070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Although a considerable amount of information is available on tradeoffs in wing-polymorphic insects, only limited data are available on the relationship between flight and biochemical variation within species. In the current study, we compared the biochemical basis in the dorsolongitudinal flight muscle of the wing-dimorphic sand cricket, Gryllus firmus Scudder, with respect to tradeoffs in energy resources related to morph-specific flight, including glycogen, trehalose, and triglycerides. Our results show that levels of glycogen and trehalose in long-winged adults (LW[f]) were significantly higher before dispersal, on days 5 and 7. Considering that this is the period during which long-winged adults are flight-capable, these results suggest that both glycogen and trehalose are important to flight. However, levels of triglycerides in short-winged crickets (SW) were higher than in long-winged crickets, suggesting that triglycerides are not directly related to initial flight. In SW adults, triglyceride content on days 5 and 7 was significantly higher just before lights off than at the same time on day 1 or at any other time after lights on all other days. This suggests that triglycerides are probably related to reproductive behaviors, such as mating and oviposition, in the SW morph. In addition, flight muscle water content was significantly lower in the LW(f) morph than in the SW morph.
Collapse
Affiliation(s)
- Bao-Chang Zhang
- Department of Entomology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
90
|
Huang JH, Lee HJ. RNA interference unveils functions of the hypertrehalosemic hormone on cyclic fluctuation of hemolymph trehalose and oviposition in the virgin female Blattella germanica. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:858-864. [PMID: 21439292 DOI: 10.1016/j.jinsphys.2011.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
Hypertrehalosemic hormone (HTH) is a neuropeptide within the adipokinetic hormone (AKH) family that induces a release of trehalose from fat body into hemolymph in a number of insects. In this study, we first showed that female adult German cockroach, Blattella germanica, displayed a cyclic fluctuation of hemolymph trehalose levels correlated to the maturation of oocytes in the reproductive cycle. After cloning the HTH cDNA from the German cockroach (Blage-HTH), expression studies indicated that Blage-HTH mRNA showed the cyclic changes during the first reproductive cycle, where peak values occurred in 8-day-old virgin female cockroaches, which were going to produce oothecae. The functions of Blage-HTH were studied using RNA interference (RNAi) to knockdown its expression. Adult virgin females of B. germanica injected with Blage-HTH dsRNA increased hemolymph trehalose levels in the late period of vitellogenesis more slowly than control. Furthermore, RNAi of Blage-HTH delayed oviposition time and some (10%) individuals did not produce the first ootheca until 15 days after eclosion, whereas the control group produced ootheca before 9 days in all cases.
Collapse
Affiliation(s)
- Jia-Hsin Huang
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| | | |
Collapse
|
91
|
Marco HG, Simek P, Gäde G. The first decapeptide adipokinetic hormone (AKH) in Heteroptera: a novel AKH from a South African saucer bug, Laccocoris spurcus (Naucoridae, Laccocorinae). Peptides 2011; 32:454-60. [PMID: 20969908 DOI: 10.1016/j.peptides.2010.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/07/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
Abstract
A novel peptide of the adipokinetic hormone (AKH)/red pigment-concentrating hormone (RPCH) family has been elucidated by mass spectrometry from the corpora cardiaca of an African saucer bug species, Laccocoris spurcus. It is the first decapeptide member found in the species-rich taxon Heteroptera, has the primary sequence pGlu-Val-Asn-Phe-Ser-Pro-Ser-Trp-Gly-Gly amide and is denoted as Lacsp-AKH. The first eight amino acids are identical to the octapeptide Anaim-AKH of the European saucer bug, Ilyocoris cimicoides. The synthetic peptide Lacsp-AKH elevates lipids upon injection into the hemolymph of L. spurcus at a low dose of 3 pmol. Swimming activity in this saucer bug also causes a significant increase in the lipid concentration in the hemolymph. Thus, both results point to an apparent function of the endogenous new decapeptide Lacsp-AKH in L. spurcus, namely, to regulate lipid mobilization. Isolation of an AKH peptide from the corpora cardiaca of the water bug Aphelocheirus aestivalis (Aphelocheiridae) resulted in the assignment of the octapeptide Anaim-AKH, supporting current phylogenies on the infraorder Nepomorpha.
Collapse
Affiliation(s)
- Heather G Marco
- Zoology Department, University of Cape Town, Private Bag, ZA-7701, Rondebosch, South Africa
| | | | | |
Collapse
|
92
|
Abstract
Managing metabolic resources is critical for insects during diapause when food sources are limited or unavailable. Insects accumulate reserves prior to diapause, and metabolic depression during diapause promotes reserve conservation. Sufficient reserves must be sequestered to both survive the diapause period and enable postdiapause development that may involve metabolically expensive functions such as metamorphosis or long-distance flight. Nutrient utilization during diapause is a dynamic process, and insects appear capable of sensing their energy reserves and using this information to regulate whether to enter diapause and how long to remain in diapause. Overwintering insects on a tight energy budget are likely to be especially vulnerable to increased temperatures associated with climate change. Molecular mechanisms involved in diapause nutrient regulation remain poorly known, but insulin signaling is likely a major player. We also discuss other possible candidates for diapause-associated nutrient regulation including adipokinetic hormone, neuropeptide F, the cGMP-kinase For, and AMPK.
Collapse
Affiliation(s)
- Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
93
|
Age-dependent cyclic locomotor activity in the cricket, Gryllus bimaculatus, and the effect of adipokinetic hormone on locomotion and excitability. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:271-83. [DOI: 10.1007/s00359-010-0513-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/13/2010] [Accepted: 02/18/2010] [Indexed: 02/02/2023]
|