51
|
Lee-Sayer SSM, Dong Y, Arif AA, Olsson M, Brown KL, Johnson P. The where, when, how, and why of hyaluronan binding by immune cells. Front Immunol 2015; 6:150. [PMID: 25926830 PMCID: PMC4396519 DOI: 10.3389/fimmu.2015.00150] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/20/2015] [Indexed: 01/04/2023] Open
Abstract
Hyaluronan is made and extruded from cells to form a pericellular or extracellular matrix (ECM) and is present in virtually all tissues in the body. The size and form of hyaluronan present in tissues are indicative of a healthy or inflamed tissue, and the interactions of hyaluronan with immune cells can influence their response. Thus, in order to understand how inflammation is regulated, it is necessary to understand these interactions and their consequences. Although there is a large turnover of hyaluronan in our bodies, the large molecular mass form of hyaluronan predominates in healthy tissues. Upon tissue damage and/or infection, the ECM and hyaluronan are broken down and an inflammatory response ensues. As inflammation is resolved, the ECM is restored, and high molecular mass hyaluronan predominates again. Immune cells encounter hyaluronan in the tissues and lymphoid organs and respond differently to high and low molecular mass forms. Immune cells differ in their ability to bind hyaluronan and this can vary with the cell type and their activation state. For example, peritoneal macrophages do not bind soluble hyaluronan but can be induced to bind after exposure to inflammatory stimuli. Likewise, naïve T cells, which typically express low levels of the hyaluronan receptor, CD44, do not bind hyaluronan until they undergo antigen-stimulated T cell proliferation and upregulate CD44. Despite substantial knowledge of where and when immune cells bind hyaluronan, why immune cells bind hyaluronan remains a major outstanding question. Here, we review what is currently known about the interactions of hyaluronan with immune cells in both healthy and inflamed tissues and discuss how hyaluronan binding by immune cells influences the inflammatory response.
Collapse
Affiliation(s)
- Sally S M Lee-Sayer
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Yifei Dong
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Arif A Arif
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Mia Olsson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Kelly L Brown
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia , Vancouver, BC , Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
52
|
Zhang L, Gao S, Zhang F, Yang K, Ma Q, Zhu L. Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy. ACS NANO 2014; 8:12250-8. [PMID: 25402600 DOI: 10.1021/nn506130t] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Photothermal therapy (PTT) is an emerging treatment modality that is under intensive preclinical investigations for the treatment of various medical conditions, including cancer. However, the lack of targeting function of PTT agents hampers its clinical application. An effective and nontoxic delivery vehicle that can carry PTT agents into tumor areas is still needed urgently. In this study, we developed a multifunctional nanocomposite by loading copper sulfide (CuS) into Cy5.5-conjugated hyaluronic acid nanoparticles (HANP), obtaining an activatable Cy5.5-HANP/CuS (HANPC) nanocomposite. In this system, Cy5.5 fluorescent signal is quenched by CuS inside the particle until the whole nanocomposite is degraded by hyaluronidase present in tumor, giving strong fluorescence signals delineating the tumor. Importantly, CuS with strong NIR absorbance appears to be an excellent contrast agent for photoacoustic (PA) imaging and an effective PTT agent. After intravenous administration of HANPC into SCC7 tumor-bearing mice, high fluorescence and PA signals were observed in the tumor area over time, which peaked at the 6 h time point (tumor-to-normal tissue ratio of 3.25±0.25 for optical imaging and 3.8±0.42 for PA imaging). The tumors were then irradiated with a laser, and a good tumor inhibition rate (89.74% on day 5) was observed. Our studies further encourage application of this HA-based multifunctional nanocomposite for image-guided PTT in biomedical applications, especially in cancer theranostics.
Collapse
Affiliation(s)
- Liwen Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen, Fujian, 361005, China
| | | | | | | | | | | |
Collapse
|
53
|
Bonafè F, Govoni M, Giordano E, Caldarera CM, Guarnieri C, Muscari C. Hyaluronan and cardiac regeneration. J Biomed Sci 2014; 21:100. [PMID: 25358954 PMCID: PMC4226915 DOI: 10.1186/s12929-014-0100-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
Hyaluronan (HA) is abundantly expressed in several human tissues and a variety of roles for HA has been highlighted. Particularly relevant for tissue repair, HA is actively produced during tissue injury, as widely evidenced in wound healing investigations. In the heart HA is involved in physiological functions, such as cardiac development during embryogenesis, and in pathological conditions including atherosclerosis and myocardial infarction. Moreover, owing to its relevant biological properties, HA has been widely used as a biomaterial for heart regeneration after a myocardial infarction. Indeed, HA and its derivatives are biodegradable and biocompatible, promote faster healing of injured tissues, and support cells in relevant processes including survival, proliferation, and differentiation. Injectable HA-based therapies for cardiovascular disease are gaining growing attention because of the benefits obtained in preclinical models of myocardial infarction. HA-based hydrogels, especially as a vehicle for stem cells, have been demonstrated to improve the process of cardiac repair by stimulating angiogenesis, reducing inflammation, and supporting local and grafted cells in their reparative functions. Solid-state HA-based scaffolds have been also investigated to produce constructs hosting mesenchymal stem cells or endothelial progenitor cells to be transplanted onto the infarcted surface of the heart. Finally, applying an ex-vivo mechanical stretching, stem cells grown in HA-based 3D scaffolds can further increase extracellular matrix production and proneness to differentiate into muscle phenotypes, thus suggesting a potential strategy to create a suitable engineered myocardial tissue for cardiac regeneration.
Collapse
Affiliation(s)
- Francesca Bonafè
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, Bologna, 40126, Italy. .,National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| | - Marco Govoni
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy.
| | - Emanuele Giordano
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy. .,Laboratory of Cellular and Molecular Engineering "Silvio Cavalcanti", DEI, University of Bologna, Cesena, Italy. .,National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| | - Claudio Marcello Caldarera
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, Bologna, 40126, Italy. .,National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| | - Carlo Guarnieri
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, Bologna, 40126, Italy. .,BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy. .,National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| | - Claudio Muscari
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, Bologna, 40126, Italy. .,BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy. .,National Institute for Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
54
|
Kalbáčová M, Verdánová M, Mravec F, Halasová T, Pekař M. Effect of CTAB and CTAB in the presence of hyaluronan on selected human cell types. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.12.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
55
|
Karbownik MS, Nowak JZ. Hyaluronan: towards novel anti-cancer therapeutics. Pharmacol Rep 2014; 65:1056-74. [PMID: 24399703 DOI: 10.1016/s1734-1140(13)71465-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/16/2013] [Indexed: 12/17/2022]
Abstract
The understanding of the role of hyaluronan in physiology and various pathological conditions has changed since the complex nature of its synthesis, degradation and interactions with diverse binding proteins was revealed. Initially perceived only as an inert component of connective tissue, it is now known to be involved in multiple signaling pathways, including those involved in cancer pathogenesis and progression. Hyaluronan presents a mixture of various length polymer molecules from finely fragmented oligosaccharides, polymers intermediate in size, to huge aggregates of high molecular weight hyaluronan. While large molecules promote tissue integrity and quiescence, the generation of breakdown products enhances signaling transduction, contributing to the pro-oncogenic behavior of cancer cells. Low molecular weight hyaluronan has well-established angiogenic properties, while the smallest hyaluronan oligomers may counteract tumor development. These equivocal properties make the role of hyaluronan in cancer biology very complex. This review surveys recent data on hyaluronan biosynthesis, metabolism, and interactions with its binding proteins called hyaladherins (CD44, RHAMM), providing themolecular background underlying its differentiated biological activity. In particular, the article critically presents current ideas on actual role of hyaluronan in cancer. The paper additionally maps a path towards promising novel anti-cancer therapeutics which target hyaluronan metabolic enzymes and hyaladherins, and constitute hyaluronan-based drug delivery systems.
Collapse
Affiliation(s)
- Michał S Karbownik
- Department of Pharmacology, Medical University of Lodz, Żeligowskiego 7/9, PL 90-752 Łódź, Poland. ;
| | | |
Collapse
|
56
|
Vigetti D, Karousou E, Viola M, Deleonibus S, De Luca G, Passi A. Hyaluronan: Biosynthesis and signaling. Biochim Biophys Acta Gen Subj 2014; 1840:2452-9. [DOI: 10.1016/j.bbagen.2014.02.001] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 12/28/2022]
|
57
|
Hyaluronan-Based Nanocarriers with CD44-Overexpressed Cancer Cell Targeting. Pharm Res 2014; 31:2988-3005. [DOI: 10.1007/s11095-014-1393-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/15/2014] [Indexed: 01/15/2023]
|
58
|
All-trans retinoic acid is an effective inhibitor of hyaluronate synthesis in a human dermal equivalent. Arch Dermatol Res 2014; 306:619-33. [DOI: 10.1007/s00403-014-1460-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/03/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
|
59
|
Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach-Carson MC, Jia X. Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater 2014; 10:1558-70. [PMID: 24361428 PMCID: PMC3960342 DOI: 10.1016/j.actbio.2013.12.019] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 01/24/2023]
Abstract
Hyaluronan (HA) is a linear polysaccharide with disaccharide repeats of d-glucuronic acid and N-acetyl-d-glucosamine. It is evolutionarily conserved and abundantly expressed in the extracellular matrix (ECM), on the cell surface and even inside cells. Being a simple polysaccharide, HA exhibits an astonishing array of biological functions. HA interacts with various proteins or proteoglycans to organize the ECM and to maintain tissue homeostasis. The unique physical and mechanical properties of HA contribute to the maintenance of tissue hydration, the mediation of solute diffusion through the extracellular space and the lubrication of certain tissues. The diverse biological functions of HA are manifested through its complex interactions with matrix components and resident cells. Binding of HA with cell surface receptors activates various signaling pathways, which regulate cell function, tissue development, inflammation, wound healing and tumor progression and metastasis. Taking advantage of the inherent biocompatibility and biodegradability of HA, as well as its susceptibility to chemical modification, researchers have developed various HA-based biomaterials and tissue constructs with promising and broad clinical potential. This paper illustrates the properties of HA from a matrix biology perspective by first introducing the principles underlying the biosynthesis and biodegradation of HA, as well as the interactions of HA with various proteins and proteoglycans. It next highlights the roles of HA in physiological and pathological states, including morphogenesis, wound healing and tumor metastasis. A deeper understanding of the mechanisms underlying the roles of HA in various physiological processes can provide new insights and tools for the engineering of complex tissues and tissue models.
Collapse
Affiliation(s)
- Kevin T Dicker
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA
| | - Lisa A Gurski
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Swati Pradhan-Bhatt
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Helen F. Graham Cancer Center, Christiana Care Health Systems (CCHS), Newark, DE 19713, USA
| | - Robert L Witt
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Helen F. Graham Cancer Center, Christiana Care Health Systems (CCHS), Newark, DE 19713, USA; Otolaryngology - Head & Neck Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA; Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA; Biomedical Engineering Program, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
60
|
Higman VA, Briggs DC, Mahoney DJ, Blundell CD, Sattelle BM, Dyer DP, Green DE, DeAngelis PL, Almond A, Milner CM, Day AJ. A refined model for the TSG-6 link module in complex with hyaluronan: use of defined oligosaccharides to probe structure and function. J Biol Chem 2014; 289:5619-34. [PMID: 24403066 PMCID: PMC3937638 DOI: 10.1074/jbc.m113.542357] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 11/25/2022] Open
Abstract
Tumor necrosis factor-stimulated gene-6 (TSG-6) is an inflammation-associated hyaluronan (HA)-binding protein that contributes to remodeling of HA-rich extracellular matrices during inflammatory processes and ovulation. The HA-binding domain of TSG-6 consists solely of a Link module, making it a prototypical member of the superfamily of proteins that interacts with this high molecular weight polysaccharide composed of repeating disaccharides of D-glucuronic acid and N-acetyl-D-glucosamine (GlcNAc). Previously we modeled a complex of the TSG-6 Link module in association with an HA octasaccharide based on the structure of the domain in its HA-bound conformation. Here we have generated a refined model for a HA/Link module complex using novel restraints identified from NMR spectroscopy of the protein in the presence of 10 distinct HA oligosaccharides (from 4- to 8-mers); the model was then tested using unique sugar reagents, i.e. chondroitin/HA hybrid oligomers and an octasaccharide in which a single sugar ring was (13)C-labeled. The HA chain was found to make more extensive contacts with the TSG-6 surface than thought previously, such that a D-glucuronic acid ring makes stacking and ionic interactions with a histidine and lysine, respectively. Importantly, this causes the HA to bend around two faces of the Link module (resembling the way that HA binds to CD44), potentially providing a mechanism for how TSG-6 can reorganize HA during inflammation. However, the HA-binding site defined here may not play a role in TSG-6-mediated transfer of heavy chains from inter-α-inhibitor onto HA, a process known to be essential for ovulation.
Collapse
Affiliation(s)
- Victoria A. Higman
- From the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - David C. Briggs
- Wellcome Trust Centre for Cell Matrix Research
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - David J. Mahoney
- From the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Charles D. Blundell
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Benedict M. Sattelle
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Douglas P. Dyer
- Wellcome Trust Centre for Cell Matrix Research
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Dixy E. Green
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Paul L. DeAngelis
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Andrew Almond
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Caroline M. Milner
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Anthony J. Day
- Wellcome Trust Centre for Cell Matrix Research
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| |
Collapse
|
61
|
Takahashi N, Tarumi W, Ishizuka B. Involvement of hyaluronan synthesis in ovarian follicle growth in rats. Reproduction 2014; 147:189-97. [DOI: 10.1530/rep-13-0464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most of the previous studies on ovarian hyaluronan (HA) have focused on mature antral follicles or corpora lutea, but scarcely on small preantral follicles. Moreover, the origin of follicular HA is unknown. To clarify the localization of HA and its synthases in small growing follicles, involvement of HA in follicle growth, and gonadotropin regulation of HA synthase (Has) gene expression, in this study, perinatal, immature, and adult ovaries of Wistar-Imamichi rats were examined histologically and biochemically and byin vitrofollicle culture. HA was detected in the extracellular matrix of granulosa and theca cell layers of primary follicles and more advanced follicles. Ovarian HA accumulation ontogenetically started in the sex cords of perinatal rats, and its primary site shifted to the intrafollicular region of primary follicles within 5 days of birth. TheHas1–3mRNAs were expressed in the ovaries of perinatal, prepubertal, and adult rats, and the expression levels ofHas1andHas2genes were modulated during the estrous cycle in adult rats and following administration of exogenous gonadotropins in immature acyclic rats. TheHas1andHas2mRNAs were predominantly localized in the theca and granulosa cell layers of growing follicles respectively. Treatments with chemicals known to reduce ovarian HA synthesis induced follicular atresia. More directly, the addition ofStreptomyceshyaluronidase, which specifically degrades HA, induced the arrest of follicle growth in anin vitroculture system. These results indicate that gonadotropin-regulated HA synthesis is involved in normal follicle growth.
Collapse
|
62
|
Bohrer LR, Chuntova P, Bade LK, Beadnell TC, Leon RP, Brady NJ, Ryu Y, Goldberg JE, Schmechel SC, Koopmeiners JS, McCarthy JB, Schwertfeger KL. Activation of the FGFR-STAT3 pathway in breast cancer cells induces a hyaluronan-rich microenvironment that licenses tumor formation. Cancer Res 2013; 74:374-86. [PMID: 24197137 DOI: 10.1158/0008-5472.can-13-2469] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aberrant activation of fibroblast growth factor receptors (FGFR) contributes to breast cancer growth, progression, and therapeutic resistance. Because of the complex nature of the FGF/FGFR axis, and the numerous effects of FGFR activation on tumor cells and the surrounding microenvironment, the specific mechanisms through which aberrant FGFR activity contributes to breast cancer are not completely understood. We show here that FGFR activation induces accumulation of hyaluronan within the extracellular matrix and that blocking hyaluronan synthesis decreases proliferation, migration, and therapeutic resistance. Furthermore, FGFR-mediated hyaluronan accumulation requires activation of the STAT3 pathway, which regulates expression of hyaluronan synthase 2 (HAS2) and subsequent hyaluronan synthesis. Using a novel in vivo model of FGFR-dependent tumor growth, we demonstrate that STAT3 inhibition decreases both FGFR-driven tumor growth and hyaluronan levels within the tumor. Finally, our results suggest that combinatorial therapies inhibiting both FGFR activity and hyaluronan synthesis is more effective than targeting either pathway alone and may be a relevant therapeutic approach for breast cancers associated with high levels of FGFR activity. In conclusion, these studies indicate a novel targetable mechanism through which FGFR activation in breast cancer cells induces a protumorigenic microenvironment.
Collapse
Affiliation(s)
- Laura R Bohrer
- Authors' Affiliations: Department of Lab Medicine and Pathology; Masonic Cancer Center; Biostatistics and Bioinformatics Core, Masonic Cancer Center; Microbiology, Immunology and Cancer Biology Graduate Program; Graduate Program in Molecular, Cellular, Developmental Biology, and Genetics; BioNet, Academic Health Center, University of Minnesota, Minneapolis; Hamline University, Biology Department, Saint Paul, Minnesota; and Department of Pathology, University of Washington, Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Deshpande M, Papp S, Schaffer L, Pouyani T. Hydrocortisone effect on hyaluronate synthesis in a self-assembled human dermal equivalent. J Tissue Eng Regen Med 2013; 10:E316-E326. [PMID: 23955878 DOI: 10.1002/term.1809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/26/2013] [Accepted: 07/19/2013] [Indexed: 11/08/2022]
Abstract
Human dermal matrix is a 'self-assembled' dermal equivalent containing large amounts of the glycosaminoglycan hyaluronic acid (hyaluronate, hyaluronan, HA). We sought to investigate the actions of the hormone hydrocortisone on hyaluronate synthesis in the human dermal matrix. To this end, human dermal fibroblasts were cultured under serum-free conditions, and in the absence of a three-dimensional matrix, in the presence of varying amounts of hydrocortisone. The resultant human dermal matrices were characterized. We report that low concentrations of hydrocortisone enhance hyaluronate synthesis in the human dermal equivalent and higher concentrations cause inhibition of hyaluronate synthesis. Other glycosaminoglycan (chondroitin sulphate) synthesis is not affected by changing hydrocortisone concentrations up to 500× (200 µg/ml) of the base value. In order to gain preliminary insight into the molecular mechanism of hyaluronate inhibition, a differential gene array analysis was conducted of human dermal matrix grown in the presence of 200 µg/ml hydrocortisone and in a physiological concentration (0.4 µg/ml, normal conditions). The results of these experiments demonstrate the differential expression of 43 genes in the 500× (200 µg/ml) hydrocortisone construct as compared to the construct grown under normal conditions (0.4 µg/ml hydrocortisone). These preliminary experiments suggest that hydrocortisone at higher concentrations may exert its inhibitory effect on hyaluronate synthesis early in the glycolytic pathway, leading to HA biosynthesis by downregulation of phosphoglucomutase and glucose phosphate isomerase, possibly leading to depletion of the cellular pool of UDP-sugar precursors necessary for HA synthesis. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Madhura Deshpande
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Suzanne Papp
- DNA Array Core Facility, Scripps Research Institute, La Jolla, CA, USA
| | - Lana Schaffer
- DNA Array Core Facility, Scripps Research Institute, La Jolla, CA, USA
| | - Tara Pouyani
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA.
| |
Collapse
|
64
|
Yuan H, Tank M, Alsofyani A, Shah N, Talati N, LoBello JC, Kim JR, Oonuki Y, de la Motte CA, Cowman MK. Molecular mass dependence of hyaluronan detection by sandwich ELISA-like assay and membrane blotting using biotinylated hyaluronan binding protein. Glycobiology 2013; 23:1270-80. [PMID: 23964097 DOI: 10.1093/glycob/cwt064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hyaluronan (HA) is widely detected in biological samples and its concentration is most commonly determined by the use of a labeled specific HA binding protein (aggrecan G1-IGD-G2, HABP), employing membrane blotting and sandwich enzyme-linked immunosorbent assay (ELISA)-like methods. However, the detected signal intensity or the quantified value obtained by using these surface-based methods is related to the molecular mass (M) of HA, especially for HA in the low M range below ~150 kDa. At the same mass or mass concentration, higher M HA gives a higher signal than lower M HA. We have experimentally determined the quantitative relationship between the M of HA (in the range 20-150 kDa) and the relative signal intensity in comparison with a standard HA, in a sandwich ELISA-like assay. An M-dependent signal correction factor (SCF) was calculated and used to correct the signal intensity, so that the corrected concentration value would more accurately reflect the true HA concentration in solution. The SCF for polydisperse low M HA was also calculated and compared with experimental results. When the molecular mass distribution of an HA sample is determined by a method such as gel electrophoresis, then its appropriately averaged SCF can be calculated and used to correct the signal in sandwich ELISA to obtain a more accurate concentration estimation. The correction method works for HA with M between ~150 and 20 kDa, but lower M HA is too poorly detected for useful analysis. The physical basis of the M-dependent detection is proposed to be the increase in detector-accessible fraction of each surface-bound molecule as M increases.
Collapse
Affiliation(s)
- Han Yuan
- Department of Chemical and Biomolecular Engineering, Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, NY 11201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Foster RR, Armstrong L, Baker S, Wong DWL, Wylie EC, Ramnath R, Jenkins R, Singh A, Steadman R, Welsh GI, Mathieson PW, Satchell SC. Glycosaminoglycan regulation by VEGFA and VEGFC of the glomerular microvascular endothelial cell glycocalyx in vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:604-16. [PMID: 23770346 DOI: 10.1016/j.ajpath.2013.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/18/2013] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
Abstract
Damage to endothelial glycocalyx impairs vascular barrier function and may contribute to progression of chronic vascular disease. An early indicator is microalbuminuria resulting from glomerular filtration barrier damage. We investigated the contributions of hyaluronic acid (HA) and chondroitin sulfate (CS) to glomerular microvascular endothelial cell (GEnC) glycocalyx and examined whether these are modified by vascular endothelial growth factors A and C (VEGFA and VEGFC). HA and CS were imaged on GEnCs and their resynthesis was examined. The effect of HA and CS on transendothelial electrical resistance (TEER) and labeled albumin flux across monolayers was assessed. Effects of VEGFA and VEGFC on production and charge characteristics of glycosaminoglycan (GAG) were examined via metabolic labeling and liquid chromatography. GAG shedding was quantified using Alcian Blue. NDST2 expression was examined using real-time PCR. GEnCs expressed HA and CS in the glycocalyx. CS contributed to the barrier to both ion (TEER) and protein flux across the monolayer; HA had only a limited effect. VEGFC promoted HA synthesis and increased the charge density of synthesized GAGs. In contrast, VEGFA induced shedding of charged GAGs. CS plays a role in restriction of macromolecular flux across GEnC monolayers, and VEGFA and VEGFC differentially regulate synthesis, charge, and shedding of GAGs in GEnCs. These observations have important implications for endothelial barrier regulation in glomerular and other microvascular beds.
Collapse
Affiliation(s)
- Rebecca R Foster
- Academic Renal Unit, School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Loss of the hyaluronan receptor RHAMM prevents constrictive artery wall remodeling. J Vasc Surg 2013; 59:804-13. [PMID: 23768790 DOI: 10.1016/j.jvs.2013.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/20/2013] [Accepted: 03/27/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Constrictive extracellular matrix (ECM) remodeling contributes significantly to restenosis after arterial reconstruction, but its molecular regulation is poorly defined. Hyaluronan (HA) accumulates within ECM at sites of injury where it is thought to facilitate smooth muscle cell (SMC) trafficking and collagen remodeling analogous to its role in cutaneous wound healing. SMC receptors for HA include receptor for hyaluronan-mediated motility (RHAMM), which mediates HA-induced migration. We hypothesized RHAMM would also mediate SMC-matrix interactions to alter the extent of constrictive remodeling. METHODS We studied the role of RHAMM in SMC attachment to collagen, migration, and contraction of collagen gels using blocking antibodies and SMC from RHAMM -/- knockout mice. We then determined the role of RHAMM in constrictive artery wall remodeling by comparing changes in wall geometry in RHAMM -/- vs wild-type (WT) RHAMM +/+ controls 1 month after carotid ligation. RESULTS HA increased SMC attachment to collagen-coated plates, but blocking RHAMM reduced adhesion (P = .025). RHAMM -/- SMC also demonstrated reduced adhesion (% adherent: 36.1 ± 2.2 vs 76.3 ± 1.9; P < .05). SMC contraction of collagen gels was enhanced by HA and further increased by RHAMM blockade (P < .01) or knockout (gel diameter, mm: RHAMM -/-, 6.7 ± 0.1 vs WT 9.8 ± 0.1; P < .01). RHAMM promoted constrictive remodeling in vivo as carotid artery size was significantly larger in knockout mice 1 month after ligation. Neointimal thickening, however, was not affected in RHAMM -/- (P = NS vs WT), but lumen size was significantly larger (lumen area, μm(2): 52.4 ± 1.4 × 10(3) vs 10.4 ± 1.8 × 10(3); P = .01) because artery size constricted less (external elastic lamina area, μm(2): RHAMM -/-, 92.4 ± 4.7 × 10(3) vs WT, 51.3 ± 5.9 × 10(3); P = .015). Adventitial thickening and collagen deposition were also more extensive in ligated RHAMM -/- carotids (adventitial thickness, μm: 218 ± 12.2 vs 109 ± 7.9; P = .01). CONCLUSIONS HA activation of RHAMM significantly impacts SMC-ECM adhesive interactions and contributes to constrictive artery wall remodeling in mice. Strategies to block RHAMM at sites of vessel injury may prove useful in the prevention of clinical restenosis.
Collapse
|
67
|
Frey H, Schroeder N, Manon-Jensen T, Iozzo RV, Schaefer L. Biological interplay between proteoglycans and their innate immune receptors in inflammation. FEBS J 2013; 280:2165-79. [PMID: 23350913 DOI: 10.1111/febs.12145] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/12/2013] [Accepted: 01/18/2013] [Indexed: 02/07/2023]
Abstract
An emerging body of evidence indicates that secreted proteoglycans act as signaling molecules, in addition to their canonical function in maintaining and regulating the architecture of various extracellular matrices. Proteoglycans interact with a number of receptors that regulate growth, motility and immune response. In part, as a consequence of their complex structure, proteoglycans can induce crosstalk among various families of receptors and can also interact with natural receptor ligands, often blocking and sequestering their bioactivity. In their soluble form, originating from either partial proteolytic processing or through de novo synthesis by activated cells, some proteoglycans can become potent danger signals, denoting tissue stress and injury. Recently, it has been shown that proteoglycans, especially those belonging to the small leucine-rich and hyaluronan-binding gene families as well as the glycosaminoglycan hyaluronan, act as endogenous ligands of the toll-like receptors, a group of central receptors regulating innate immunity. Furthermore, proteoglycans can activate intracellular inflammasomes and trigger sterile inflammation. In this review, we critically assess the signaling events induced by the proteoglycans biglycan, decorin, lumican and versican as well as hyaluronan during inflammation. We discuss the intriguing emerging notion that, in spite of structural diversity of biglycan, decorin, versican and hyaluronan, all of them signal through the same toll-like receptors, albeit triggering differential responses and biological outcomes. Finally, we review the modes of action of these endogenous ligands of toll-like receptors and their ability to specifically modify the final signaling events and the inflammatory response.
Collapse
Affiliation(s)
- Helena Frey
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie/ZAFES, Klinikum der JW Goethe-Universität Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
68
|
Chen Z, Li Z, Lin Y, Yin M, Ren J, Qu X. Bioresponsive Hyaluronic Acid-Capped Mesoporous Silica Nanoparticles for Targeted Drug Delivery. Chemistry 2013; 19:1778-83. [DOI: 10.1002/chem.201202038] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 11/08/2012] [Indexed: 01/26/2023]
|
69
|
Keller KE, Sun YY, Vranka JA, Hayashi L, Acott TS. Inhibition of hyaluronan synthesis reduces versican and fibronectin levels in trabecular meshwork cells. PLoS One 2012; 7:e48523. [PMID: 23139787 PMCID: PMC3489675 DOI: 10.1371/journal.pone.0048523] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/26/2012] [Indexed: 01/08/2023] Open
Abstract
Hyaluronan (HA) is a major component of the extracellular matrix (ECM) and is synthesized by three HA synthases (HAS). Similarities between the HAS2 knockout mouse and the hdf mutant mouse, which has a mutation in the versican gene, suggest that HA and versican expression may be linked. In this study, the relationship between HA synthesis and levels of versican, fibronectin and several other ECM components in trabecular meshwork cells from the anterior segment of the eye was investigated. HA synthesis was inhibited using 4-methylumbelliferone (4MU), or reduced by RNAi silencing of each individual HAS gene. Quantitative RT-PCR and immunoblotting demonstrated a reduction in mRNA and protein levels of versican and fibronectin. Hyaluronidase treatment also reduced versican and fibronectin levels. These effects could not be reversed by addition of excess glucose or glucosamine or exogenous HA to the culture medium. CD44, tenascin C and fibrillin-1 mRNA levels were reduced by 4MU treatment, but SPARC and CSPG6 mRNA levels were unaffected. Immunostaining of trabecular meshwork tissue after exposure to 4MU showed an altered localization pattern of HA-binding protein, versican and fibronectin. Reduction of versican by RNAi silencing did not affect HA concentration as assessed by ELISA. Together, these data imply that HA concentration affects synthesis of certain ECM components. Since precise regulation of the trabecular meshwork ECM composition and organization is required to maintain the aqueous humor outflow resistance and intraocular pressure homeostasis in the eye, coordinated coupling of HA levels and several of its ECM binding partners should facilitate this process.
Collapse
Affiliation(s)
- Kate E Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA.
| | | | | | | | | |
Collapse
|
70
|
Tolg C, Hamilton SR, Zalinska E, McCulloch L, Amin R, Akentieva N, Winnik F, Savani R, Bagli DJ, Luyt LG, Cowman MK, McCarthy JB, Turley EA. A RHAMM mimetic peptide blocks hyaluronan signaling and reduces inflammation and fibrogenesis in excisional skin wounds. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1250-70. [PMID: 22889846 DOI: 10.1016/j.ajpath.2012.06.036] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 06/14/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
Abstract
Hyaluronan is activated by fragmentation and controls inflammation and fibroplasia during wound repair and diseases (eg, cancer). Hyaluronan-binding peptides were identified that modify fibrogenesis during skin wound repair. Peptides were selected from 7- to 15mer phage display libraries by panning with hyaluronan-Sepharose beads and assayed for their ability to block fibroblast migration in response to hyaluronan oligosaccharides (10 kDa). A 15mer peptide (P15-1), with homology to receptor for hyaluronan mediated motility (RHAMM) hyaluronan binding sequences, was the most effective inhibitor. P15-1 bound to 10-kDa hyaluronan with an affinity of K(d) = 10(-7) and appeared to specifically mimic RHAMM since it significantly reduced binding of hyaluronan oligosaccharides to recombinant RHAMM but not to recombinant CD44 or TLR2,4, and altered wound repair in wild-type but not RHAMM(-/-) mice. One topical application of P15-1 to full-thickness excisional rat wounds significantly reduced wound macrophage number, fibroblast number, and blood vessel density compared to scrambled, negative control peptides. Wound collagen 1, transforming growth factor β-1, and α-smooth muscle actin were reduced, whereas tenascin C was increased, suggesting that P15-1 promoted a form of scarless healing. Signaling/microarray analyses showed that P15-1 blocks RHAMM-regulated focal adhesion kinase pathways in fibroblasts. These results identify a new class of reagents that attenuate proinflammatory, fibrotic repair by blocking hyaluronan oligosaccharide signaling.
Collapse
Affiliation(s)
- Cornelia Tolg
- Cancer Research Laboratory Program, Lawson Health Research Institute and London Regional Cancer Program, London Health Sciences Center, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Keller KE, Sun YY, Yang YF, Bradley JM, Acott TS. Perturbation of hyaluronan synthesis in the trabecular meshwork and the effects on outflow facility. Invest Ophthalmol Vis Sci 2012; 53:4616-25. [PMID: 22695958 DOI: 10.1167/iovs.12-9500] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Hyaluronan (HA) is a major component of the aqueous outflow pathway. However, the contribution of HA to human outflow resistance remains unclear. Three HA synthase genes (HAS1-3) have been identified. Here, we evaluate the contribution of each of the HAS proteins to outflow facility in anterior segment perfusion culture. METHODS Two methods were used to reduce HA synthesis: 1 mM 4-methylumbelliferone (4MU) was used to inhibit all HAS synthases and shRNA silencing lentivirus was generated to knock down expression of each HAS individually. Quantitative RT-PCR, Western immunoblotting and an HA ELISA assay were used to assess HAS mRNA and protein levels and HA concentration, respectively. The effects of 4MU treatment and HAS gene silencing on outflow facility were assessed in human and porcine perfusion culture. RESULTS Quantitative RT-PCR and Western immunoblotting showed a reduction of each HAS in response to their respective silencing and 4MU treatment. HA concentration was concomitantly reduced. Treatment with 4MU decreased outflow facility in human anterior segments but increased outflow facility in porcine eyes. Lentiviral delivery of HAS1 and HAS2 silencing vectors caused similar opposite effects on outflow facility. Silencing of HAS3 did not significantly affect outflow resistance in either species. CONCLUSIONS This is the first conclusive evidence for a significant role of HA in the human outflow pathway. HA chains synthesized by HAS1 and HAS2 contribute to outflow resistance, while hyaluronan produced by HAS3 does not appear to play a significant role.
Collapse
Affiliation(s)
- Kate E Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, 97239, USA.
| | | | | | | | | |
Collapse
|
72
|
Furukawa T, Arai M, Garcia-Martin F, Amano M, Hinou H, Nishimura SI. Glycoblotting-based high throughput protocol for the structural characterization of hyaluronan degradation products during enzymatic fragmentation. Glycoconj J 2012; 30:171-82. [DOI: 10.1007/s10719-012-9395-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 12/30/2022]
|
73
|
Yoon HY, Koo H, Choi KY, Lee SJ, Kim K, Kwon IC, Leary JF, Park K, Yuk SH, Park JH, Choi K. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials 2012; 33:3980-9. [PMID: 22364699 DOI: 10.1016/j.biomaterials.2012.02.016] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/06/2012] [Indexed: 12/21/2022]
Abstract
Tumor-targeted imaging and therapy have been the challenging issue in the clinical field. Herein, we report tumor-targeting hyaluronic acid nanoparticles (HANPs) as the carrier of the hydrophobic photosensitizer, chlorin e6 (Ce6) for simultaneous photodynamic imaging and therapy. First, self-assembled HANPs were synthesized by chemical conjugation of aminated 5β-cholanic acid, polyethylene glycol (PEG), and black hole quencher3 (BHQ3) to the HA polymers. Second, Ce6 was readily loaded into the HANPs by a simple dialysis method resulting in Ce6-loaded hyaluronic acid nanoparticles (Ce6-HANPs), wherein in the loading efficiency of Ce6 was higher than 80%. The resulting Ce6-HANPs showed stable nano-structure in aqueous condition and rapid uptake into tumor cells. In particular Ce6-HANPs were rapidly degraded by hyaluronidases abundant in cytosol of tumor cells, which may enable intracellular release of Ce6 at the tumor tissue. After an intravenous injection into the tumor-bearing mice, Ce6-HANPs could efficiently reach the tumor tissue via the passive targeting mechanism and specifically enter tumor cells through the receptor-mediated endocytosis based on the interactions between HA of nanoparticles and CD44, the HA receptor on the surface of tumor cells. Upon laser irradiation, Ce6 which was released from the nanoparticles could generate fluorescence and singlet oxygen inside tumor cells, resulting in effective suppression of tumor growth. Overall, it was demonstrated that Ce6-HANPs could be successfully applied to in vivo photodynamic tumor imaging and therapy simultaneously.
Collapse
Affiliation(s)
- Hong Yeol Yoon
- Department of Polymer Science and Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X. Hyaluronic Acid-Based Hydrogels: from a Natural Polysaccharide to Complex Networks. SOFT MATTER 2012; 8:3280-3294. [PMID: 22419946 PMCID: PMC3299088 DOI: 10.1039/c2sm06463d] [Citation(s) in RCA: 371] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hyaluronic acid (HA) is one of nature's most versatile and fascinating macromolecules. Being an essential component of the natural extracellular matrix (ECM), HA plays an important role in a variety of biological processes. Inherently biocompatible, biodegradable and non-immunogenic, HA is an attractive starting material for the construction of hydrogels with desired morphology, stiffness and bioactivity. While the interconnected network extends to the macroscopic level in HA bulk gels, HA hydrogel particles (HGPs, microgels or nanogels) confine the network to microscopic dimensions. Taking advantage of various scaffold fabrication techniques, HA hydrogels with complex architecture, unique anisotropy, tunable viscoelasticity and desired biologic outcomes have been synthesized and characterized. Physical entrapment and covalent integration of hydrogel particles in a secondary HA network give rise to hybrid networks that are hierarchically structured and mechanically robust, capable of mediating cellular activities through the spatial and temporal presentation of biological cues. This review highlights recent efforts in converting a naturally occurring polysaccharide to drug releasing hydrogel particles, and finally, complex and instructive macroscopic networks. HA-based hydrogels are promising materials for tissue repair and regeneration.
Collapse
Affiliation(s)
- Xian Xu
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716
| | - Amit K. Jha
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716
| | | | | | - Xinqiao Jia
- Department of Materials Science and Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716
| |
Collapse
|
75
|
Mack JA, Feldman RJ, Itano N, Kimata K, Lauer M, Hascall VC, Maytin EV. Enhanced inflammation and accelerated wound closure following tetraphorbol ester application or full-thickness wounding in mice lacking hyaluronan synthases Has1 and Has3. J Invest Dermatol 2012; 132:198-207. [PMID: 21850020 PMCID: PMC3360468 DOI: 10.1038/jid.2011.248] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyaluronan (HA) is an abundant matrix molecule, the function of which in the skin remains to be fully defined. To explore the roles of HA in cutaneous injury responses, double-knockout mice (abbreviated as Has1/3 null) that lack two HA synthase enzymes (Has1 and Has3), but still express functional Has2, were used in two types of experiments: (i) application of 12-O-tetradecanoylphorbol-13-acetate (TPA) and (ii) full-thickness wounding of the skin. Uninjured Has1/3-null mice were phenotypically normal. However, after TPA, the accumulation of HA that normally occurs in wild-type epidermis was blunted in Has1/3-null epidermis. In excisional wound-healing experiments, wound closure was significantly faster in Has1/3 null than in wild-type mice. Coincident with this abnormal wound healing, a marked decrease in epidermal and dermal HA and a marked increase in neutrophil efflux from cutaneous blood vessels were observed in Has1/3-null skin relative to wild-type skin. Has1/3-null wounds displayed an earlier onset of myofibroblast differentiation. In summary, selective loss of Has1 and Has3 leads to a proinflammatory milieu that favors recruitment of neutrophils and other inflammation-related changes in the dermis.
Collapse
Affiliation(s)
- Judith A. Mack
- Dept of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Dept of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, OH
| | - Ron J. Feldman
- Dept of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Dept of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, OH
| | - Naoki Itano
- Dept of Molecular Biosciences, Kyoto Sangyo University, Japan
| | - Koji Kimata
- Research Complex for Medicine Frontiers, Aichi Medical University, Aichi, Japan
| | - Mark Lauer
- Dept of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vincent C. Hascall
- Dept of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Edward V. Maytin
- Dept of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Dept of Dermatology, Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
76
|
|
77
|
Choi KY, Yoon HY, Kim JH, Bae SM, Park RW, Kang YM, Kim IS, Kwon IC, Choi K, Jeong SY, Kim K, Park JH. Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS NANO 2011; 5:8591-9. [PMID: 21967065 DOI: 10.1021/nn202070n] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Tumor targetability and site-specific drug release of therapeutic nanoparticles are key factors for effective cancer therapy. In this study, poly(ethylene glycol) (PEG)-conjugated hyaluronic acid nanoparticles (P-HA-NPs) were investigated as carriers for anticancer drugs including doxorubicin and camptothecin (CPT). P-HA-NPs were internalized into cancer cells (SCC7 and MDA-MB-231) via receptor-mediated endocytosis, but were rarely taken up by normal fibroblasts (NIH-3T3). During in vitro drug release tests, P-HA-NPs rapidly released drugs when incubated with cancer cells, extracts of tumor tissues, or the enzyme Hyal-1, which is abundant in the intracellular compartments of cancer cells. CPT-loaded P-HA-NPs (CPT-P-HA-NPs) showed dose-dependent cytotoxicity to cancer cells (MDA-MB-231, SCC7, and HCT 116) and significantly lower cytotoxicity against normal fibroblasts (NIH-3T3) than free CPT. Unexpectedly, high concentrations of CPT-P-HA-NPs demonstrated greater cytotoxicity to cancer cells than free CPT. An in vivo biodistribution study indicated that P-HA-NPs selectively accumulated into tumor sites after systemic administration into tumor-bearing mice, primarily due to prolonged circulation in the blood and binding to a receptor (CD44) that was overexpressed on the cancer cells. In addition, when CPT-P-HA-NPs were systemically administrated into tumor-bearing mice, we saw no significant increases in tumor size for at least 35 days, implying high antitumor activity. Overall, P-HA-NPs showed promising potential as a drug carrier for cancer therapy.
Collapse
Affiliation(s)
- Ki Young Choi
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Hyaluronan-surfactant interactions in physiological solution studied by tensiometry and fluorescence probe techniques. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2011.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
79
|
Evaluation of the physical and biological properties of hyaluronan and hyaluronan fragments. Int J Pharm 2011; 420:84-92. [DOI: 10.1016/j.ijpharm.2011.08.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/10/2011] [Accepted: 08/15/2011] [Indexed: 01/10/2023]
|
80
|
Choi KY, Saravanakumar G, Park JH, Park K. Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer. Colloids Surf B Biointerfaces 2011; 99:82-94. [PMID: 22079699 DOI: 10.1016/j.colsurfb.2011.10.029] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/13/2011] [Accepted: 10/15/2011] [Indexed: 01/01/2023]
Abstract
The therapeutic efficacy of most drugs is greatly depends on their ability to cross the cellular barrier and reach their intracellular target sites. To transport the drugs effectively through the cellular membrane and to deliver them into the intracellular environment, several interesting smart carrier systems based on both synthetic or natural polymers have been designed and developed. In recent years, hyaluronic acid (HA) has emerged as a promising candidate for intracellular delivery of various therapeutic and imaging agents because of its innate ability to recognize specific cellular receptors that overexpressed on diseased cells. The aim of this review is to highlight the significance of HA in cancer, and to explore the recent advances of HA-based drug carriers towards cancer imaging and therapeutics.
Collapse
Affiliation(s)
- Ki Young Choi
- Purdue University, Department of Biomedical Engineering, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
81
|
Iijima J, Konno K, Itano N. Inflammatory alterations of the extracellular matrix in the tumor microenvironment. Cancers (Basel) 2011; 3:3189-205. [PMID: 24212952 PMCID: PMC3759193 DOI: 10.3390/cancers3033189] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 07/28/2011] [Accepted: 08/04/2011] [Indexed: 01/08/2023] Open
Abstract
Complex interactions between cancer cells and host stromal cells result in the formation of the "tumor microenvironment", where inflammatory alterations involve the infiltration of tumor-associated fibroblasts and inflammatory leukocytes that contribute to the acquisition of malignant characteristics, such as increased cancer cell proliferation, invasiveness, metastasis, angiogenesis, and avoidance of adaptive immunity. The microenvironment of a solid tumor is comprised not only of cellular compartments, but also of bioactive substances, including cytokines, growth factors, and extracellular matrix (ECM). ECM can act as a scaffold for cell migration, a reservoir for cytokines and growth factors, and a signal through receptor binding. During inflammation, ECM components and their degraded fragments act directly and indirectly as inflammatory stimuli in certain cases and regulate the functions of inflammatory and immune cells. One such ECM component, hyaluronan, has recently been implicated to modulate innate immune cell function through pattern recognition toll-like receptors and accelerate the recruitment and activation of tumor-associated macrophages in inflamed cancers. Here, we will summarize the molecular mechanism linking inflammation with ECM remodeling in the tumor microenvironment, with a particular emphasis on the role of hyaluronan in controlling the inflammatory response.
Collapse
Affiliation(s)
- Junko Iijima
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; E-Mail:
| | - Kenjiro Konno
- Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; E-Mail:
| | - Naoki Itano
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan; E-Mail:
| |
Collapse
|
82
|
Wattenberg LW, Patterson S, Antonides JD. Chitin or chitin-like glycans as targets for late-term cancer chemoprevention. Cancer Prev Res (Phila) 2011; 3:1519-22. [PMID: 21149328 DOI: 10.1158/1940-6207.capr-09-0230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A consistent observation in studies of carcinogenesis is that some glycans are expressed differently in cancer cells than in normal cells. A well-known example is the aberrant β1-6 N-acetyl-d-glucosamine branching associated with metastasis and poor prognosis in many cancers. This commentary proposes that, although not found in normal mammalian cells, a chitin (β-1,4-linked N-acetyl-d-glucosamine) or a chitin-like polysaccharide (e.g., hyaluronan) may exist as a cancer-associated glycan, which can be targeted by the novel pyrimidine nucleotide derivative SP-1015 (designed as a chitin synthase inhibitor). Preliminary chemoprevention data of our group showed SP-1015 in the diet can inhibit benzo(a)pyrene-induced neoplasia in the forestomach of female A/J mice, and, of importance, this activity occurred at late stages in carcinogenesis. While no effect was seen in the murine lung, this may be due to the low bioavailability of the compound. A different route of administration (e.g. inhalation of an aerosol) may have potential to inhibit pulmonary carcinogenesis. We hypothesize that inhibitors of chitin or chitin-like glycan formation may be effective chemopreventive agents and suggest that further work is needed to study these novel targets for cancer prevention.
Collapse
Affiliation(s)
- Lee W Wattenberg
- University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
83
|
Aldobiouronic acid domains in Helicobacter pylori. Carbohydr Res 2011; 346:638-43. [DOI: 10.1016/j.carres.2011.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/04/2011] [Accepted: 01/10/2011] [Indexed: 11/20/2022]
|
84
|
Veiseh M, Turley EA. Hyaluronan metabolism in remodeling extracellular matrix: probes for imaging and therapy of breast cancer. Integr Biol (Camb) 2011; 3:304-15. [PMID: 21264398 DOI: 10.1039/c0ib00096e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clinical and experimental evidence increasingly support the concept of cancer as a disease that emulates a component of wound healing, in particular abnormal stromal extracellular matrix remodeling. Here we review the biology and function of one remodeling process, hyaluronan (HA) metabolism, which is essential for wound resolution but closely linked to breast cancer (BCA) progression. Components of the HA metabolic cycle (HAS2, SPAM1 and HA receptors CD44, RHAMM/HMMR and TLR2) are discussed in terms of their known functions in wound healing and in breast cancer progression. Finally, we discuss recent advances in the use of HA-based platforms for developing nanoprobes to image areas of active HA metabolism and for therapeutics in breast cancer.
Collapse
Affiliation(s)
- M Veiseh
- Life Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, CA, USA.
| | | |
Collapse
|
85
|
|
86
|
|
87
|
|
88
|
Bouga H, Tsouros I, Bounias D, Kyriakopoulou D, Stavropoulos MS, Papageorgakopoulou N, Theocharis DA, Vynios DH. Involvement of hyaluronidases in colorectal cancer. BMC Cancer 2010; 10:499. [PMID: 20849597 PMCID: PMC2949809 DOI: 10.1186/1471-2407-10-499] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 09/17/2010] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Hyaluronidases belong to a class of enzymes that degrade, predominantly, hyaluronan. These enzymes are known to be involved in physiological and pathological processes, such as tumor growth, infiltration and angiogenesis, but their exact role in tumor promotion or suppression is not clear yet. Advanced colorectal cancer is associated with elevated amounts of hyaluronan of varying size. The aim of the present study was therefore to illuminate the importance of hyaluronidases in colon carcinoma progression. METHODS The patients' samples (macroscopically normal and cancerous) were subjected to sequential extraction with PBS, 4 M GdnHCl and 4 M GdnHCl --1% Triton X-100. The presence of the various hyaluronidases in the extracts was examined by zymography and western blotting. Their expression was also examined by RT-PCR. RESULTS Among hyaluronidases examined, Hyal-1, -2, -3 and PH-20 were detected. Their activity was higher in cancerous samples. Hyal-1 and Hyal-2 were overexpressed in cancerous samples, especially in advanced stages of cancer. Both isoforms were mainly extracted with PBS. Hyal-3 was observed only in the third extract of advanced stages of cancer. PH-20 was abundant in all three extracts of all stages of cancer. The expression of only Hyal-1 and PH-20 was verified by RT-PCR. CONCLUSION A high association of hyaluronidases in colorectal cancer was observed. Each hyaluronidase presented different tissue distribution, which indicated the implication of certain isoforms in certain cancer stages. The results provided new evidence on the mechanisms involved in the progression of colorectal cancer.
Collapse
Affiliation(s)
- Helen Bouga
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Nusgens BV. [Hyaluronic acid and extracellular matrix: a primitive molecule?]. Ann Dermatol Venereol 2010; 137 Suppl 1:S3-8. [PMID: 20435253 DOI: 10.1016/s0151-9638(10)70002-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyaluronic acid, or hyaluronan, is a polymer made of the repetition of a unique disaccharidic unit, D-glucuronic acid and D-N-acetylglucosamine, that can reach a molecular mass of 10(7) daltons. This primitive polymer has emerged as a remarkable extracellular matrix component by its viscoelastic properties, its hygroscopic capacities and the diversity of cell processes it controls. Identified in all vertebrate tissues, more than 50% of acid hyaluronic of the organism is present in skin. Having no protein core, its synthesis is performed through a unique process, depending on enzymatic activity of hyaluronan synthases acting at the internal face of the plasmatic membrane and extruding the nascent polymer to the extracellular medium. This polymer constitutes a scaffold on which a large number of sulfated proteoglycans, up to one hundred, can be linked. These supramolecular structures of considerable size are able to entrap large amounts of water and ions to provide tissues with hydration and turgescence. Hyaluronic acid is recognized by cell membrane receptors, notably CD44 which is the best known. Interaction of hyaluronic acid with its receptors triggers several intracellular signaling pathways regulating proliferation, migration and differentiation. Cell response is largely influenced by the size of the polymer and by that of the fragments generated upon degradation by hyaluronidases or free radicals. Hyaluronic acid is metabolically very active, as, for example, its half-life in skin is less than one day. Detected in epidermis where it could play a role in the control of proliferation and differentiation of basal cells, it is however prominent in dermis in association with versican. The remarkable physicochemical properties of hyaluronic acid as well as the diversity of biological processes it controls largely surpass the primitive character of this polymer.
Collapse
Affiliation(s)
- B-V Nusgens
- Laboratoire de Biologie des Tissus Conjonctifs, GIGA-Recherche, Université de Liège, Belgique.
| |
Collapse
|
90
|
Rada JAS, Wiechmann AF, Hollaway LR, Baggenstoss BA, Weigel PH. Increased hyaluronan synthase-2 mRNA expression and hyaluronan accumulation with choroidal thickening: response during recovery from induced myopia. Invest Ophthalmol Vis Sci 2010; 51:6172-9. [PMID: 20574026 DOI: 10.1167/iovs.10-5522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Several studies have convincingly shown that in chicks, compensation for imposed focus involves immediate changes in choroid thickness. The molecular events associated with choroidal thickening and the regulation of the choroidal response are largely unknown. METHODS Form-deprivation myopia was induced in the right eyes of 2-day-old chicks by the application of translucent occluders for 10 days and was followed by unrestricted vision for an additional 1 to 20 days (recovery). Individual choroids were isolated from treated and control eyes and used for reverse transcription-quantitative PCR, hyaluronan (HA) localization with biotinylated hyaluronic acid binding protein (b-HABP), and analyses of HA size and concentration by size exclusion chromatography-multiangle laser light scattering (SEC-MALLS). RESULTS HAS2 gene expression increased significantly after 6 hours of unrestricted vision (>7-fold) and peaked at 24 hours (>9-fold). In untreated eyes, HA was localized to perivascular sheaths of larger choroidal blood vessels; however, after 4 to 15 days of recovery, intense labeling for HA was detected throughout the thickened choroidal stroma. Analyses of choroidal HA by SEC-MALLS indicated that HA concentration was significantly increased in recovering choroids compared with controls after 4 to 8 days of recovery (≈3.5-fold). CONCLUSIONS Newly synthesized HA accumulates in the choroidal stroma of recovering eyes and is most likely responsible for the stromal swelling observed during recovery from myopia. This HA accumulation is initiated by a rapid increase in choroidal expression of the HAS2 gene in response to myopic defocus.
Collapse
Affiliation(s)
- Jody A Summers Rada
- Departments of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
91
|
Fucoidan film safely inhibits surgical adhesions in a rat model. J Surg Res 2010; 171:495-503. [PMID: 20638689 DOI: 10.1016/j.jss.2010.04.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/20/2010] [Accepted: 04/21/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND The purpose of this study was to evaluate the in vivo efficacy of 13 compounds and to further characterize the load limiting and potential toxicity of the most efficacious compound. The cascade of biochemical and molecular events that results in the formation of postsurgical adhesions provides numerous theoretical opportunities for prophylactic intervention. METHODS Candidate agents were loaded into sodium hyaluronate (HA) films and administered to male Sprague-Dawley rats using a cecal-sidewall model of surgical adhesions. An adhesion score was obtained for each rat based on the strength and extent of the adhesions. The most efficacious agent, fucoidan, was further evaluated in a load-limiting study with a concentration range of 0.0033 to 33% w/w per film. The potential toxicity of fucoidan was evaluated in a separate study by comparison of hematology findings, blood chemistry, urinalysis, and incision thickness from rats administered control films or 33% w/w fucoidan films 1 to 4 d prior to sacrifice. RESULTS Fucoidan loaded films reduced adhesion scores by approximately 90% compared with control films (P<0.05). A total of 50% to 100% of animals were adhesion free at fucoidan film loadings of 0.33% to 33% w/w compared with all control film animals having adhesions. No adverse effects were observed from 33% w/w fucoidan films equivalent to approximately 30 mg fucoidan/kg body weight. CONCLUSIONS Local administration of fucoidan film during rat cecal-sidewall surgery safely reduced adhesion scores by approximately 90% and resulted in 50% to 100% of animals being adhesion free.
Collapse
|
92
|
Dreyfuss JL, Veiga SS, Coulson-Thomas VJ, Santos IA, Toma L, Coletta RD, Nader HB. Differences in the expression of glycosaminoglycans in human fibroblasts derived from gingival overgrowths is related to TGF-beta up-regulation. Growth Factors 2010; 28:24-33. [PMID: 19886734 DOI: 10.3109/08977190903321819] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycosaminoglycans (GAGs) play important roles in cell behavior and have the ability to bind and modulate cytokines. Using primary cultured fibroblasts from hereditary gingival fibromatosis (HGF), normal gingiva (NG), and NG treated with cyclosporin-A (NGc) we show changes in the expression and structural characteristics of GAGs as well as in the expression of enzymes involved in their biosynthesis and degradation. In addition, we show the over-expression of TGF-beta1 and TGF-beta type II receptor in HGF and NGc. There is an increase in the GAGs retained in the cellular fraction, and the fine structure of galactosaminoglycans show a decrease in alpha-l-iduronic acid content in HGF and NGc. Elevated extracellular levels of low molecular weight hyaluronan (HA) are found in HGF due to increase in the expression of HA synthase 3 and hyaluronidases 1 and 2. The results bring new insights to the accumulation of extracellular matrix related to TGF-beta over-expression.
Collapse
Affiliation(s)
- Juliana L Dreyfuss
- Disciplina de Biologia Molecular, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
93
|
Gjorevski N, Nelson CM. Bidirectional extracellular matrix signaling during tissue morphogenesis. Cytokine Growth Factor Rev 2009; 20:459-65. [PMID: 19896886 DOI: 10.1016/j.cytogfr.2009.10.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Normal tissue development and function are regulated by the interplay between cells and their surrounding extracellular matrix (ECM). The ECM provides biochemical and mechanical contextual information that is conveyed from the cell membrane through the cytoskeleton to the nucleus to direct cell phenotype. Cells, in turn, remodel the ECM and thereby sculpt their local microenvironment. Here we review the mechanisms by which cells interact with, respond to, and influence the ECM, with particular emphasis placed on the role of this bidirectional communication during tissue morphogenesis. We also discuss the implications for successful engineering of functional tissues ex vivo.
Collapse
Affiliation(s)
- Nikolce Gjorevski
- Departments of Chemical Engineering & Molecular Biology, Princeton University, A321 Engineering Quadrangle, Princeton, NJ 08544, United States
| | | |
Collapse
|
94
|
|
95
|
Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res 2009; 339:237-46. [PMID: 19513755 DOI: 10.1007/s00441-009-0821-y] [Citation(s) in RCA: 345] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/08/2009] [Indexed: 12/12/2022]
Abstract
Our knowledge of proteoglycan biology has significantly expanded over the past decade with the discovery of a host of new members of this multifunctional family leading to their present classification into three major categories: (1) small leucine-rich proteoglycans, 2) modular proteoglycans, and 3) cell-surface proteoglycans. In addition to being structural proteins, proteoglycans play a major role in signal transduction with regulatory functions in various cellular processes. Being mostly extracellular, they are upstream of many signaling cascades and are capable of affecting intracellular phosphorylation events and modulating distinct pathways, including those driven by bone morphogenetic protein/transforming growth factor superfamily members, receptor tyrosine kinases, the insulin-like growth factor-I receptor, and Toll-like receptors. Mechanistic insights into the molecular and cellular functions of proteoglycans have revealed both the sophistication of these regulatory proteins and the challenges that remain in uncovering the entirety of their biological functions. This review aims to summarize the multiple functions of proteoglycans with special emphasis on their intricate composition and the newly described signaling events in which these molecules play a key role.
Collapse
|
96
|
Gandhi NS, Mancera RL. The Structure of Glycosaminoglycans and their Interactions with Proteins. Chem Biol Drug Des 2008; 72:455-82. [DOI: 10.1111/j.1747-0285.2008.00741.x] [Citation(s) in RCA: 703] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|