51
|
Zhu Q, Wang J, Gao M, Lu L, Liu X. Neuropeptide F from endocrine cells in Plutella xylostella midgut modulates feeding and synergizes Cry1Ac action. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21845. [PMID: 34605064 DOI: 10.1002/arch.21845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
With the wide cultivation of transgenic plants throughout the world and the rising risk of resistance to Bacillus thuringiensis crystal (Cry) toxins, it is essential to design an adaptive resistance management strategy for continued use. Neuropeptide F (NPF) of insects has proven to be valuable for the production of novel-type transgenic plants via its important role in the control of feeding behavior. In this study, the gene encoding NPF was cloned from the diamondback moth, Plutella xylostella, an important agricultural pest. Real-time quantitative reverse transcription-polymerase chain reaction and in situ hybridization showed a relatively high expression of P. xylostella-npf (P. x-npf) in endocrine cells of the midgut of fourth instar larvae, and it was found to participate in P. xylostella feeding behavior and Cry1Ac-induced feeding inhibition. Prokaryotic expression and purification provided structure unfolded P. x-npf from inclusion bodies for diet surface overlay bioassays and the results demonstrated a significant synergistic effect of P. x-npf on Cry1Ac toxicity by increasing intake of noxious food which contains Cry toxins, especially quick death at an early stage of feeding. Our findings provided a potential new way to efficiently control pests by increasing intake of lower dose Cry toxins and a novel hint for the complex Cry toxin mechanism.
Collapse
Affiliation(s)
- Qing Zhu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingxuan Wang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Meijing Gao
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lina Lu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xianjin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
52
|
Fang G, Zhang Q, Chen X, Cao Y, Wang Y, Qi M, Wu N, Qian L, Zhu C, Huang Y, Zhan S. The draft genome of the Asian corn borer yields insights into ecological adaptation of a devastating maize pest. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 138:103638. [PMID: 34428581 DOI: 10.1016/j.ibmb.2021.103638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The Asian corn borer (ACB) is the most devastating pest on maize in the western Pacific region of Asia. Despite broad interests in insecticide resistance, seasonal adaptation, and larval color mimicry regarding the ACB system, lacking of reference genomic information and a powerful gene editing approach have hindered the in-depth studies of these aspects. Here we present a 455.7 Mb draft genome of ACB with 98.4% completeness. Comparative genomics analysis showed an evident expansion in gene families of gustatory receptors (105), which is related to polyphagous characteristics. Based on the comparative transcriptome analysis of resistant and susceptible ACB against Bt Cry1Ab toxin, we identified 26 genes related to Cry1Ab resistance. Additionally, transcriptomics of insects exposed to conditions of low temperature and diapause (LT) vs. room temperature and diapause (RT) provided insights into the genetic mechanisms of cold adaptation. We also successfully developed an efficient CRISPR/Cas9-based genome editing system and applied it to explore the role of color pattern genes in the ecological adaptation of ACB. Taken together, our study provides a fully annotated high-quality reference genome and efficient gene editing system to realize the potential of ACB as a study system to address important biological questions such as insecticide resistance, seasonal adaptation, and coloration. These valuable genomic resources will also benefit the development of novel strategies for maize pest management.
Collapse
Affiliation(s)
- Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xi'en Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanghui Cao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yaohui Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mengmeng Qi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ningning Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lansa Qian
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chenxu Zhu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
53
|
Van den Berg J, Prasanna BM, Midega CAO, Ronald PC, Carrière Y, Tabashnik BE. Managing Fall Armyworm in Africa: Can Bt Maize Sustainably Improve Control? JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1934-1949. [PMID: 34505143 DOI: 10.1093/jee/toab161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 05/28/2023]
Abstract
The recent invasion of Africa by fall armyworm, Spodoptera frugiperda, a lepidopteran pest of maize and other crops, has heightened concerns about food security for millions of smallholder farmers. Maize genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) is a potentially useful tool for controlling fall armyworm and other lepidopteran pests of maize in Africa. In the Americas, however, fall armyworm rapidly evolved practical resistance to maize producing one Bt toxin (Cry1Ab or Cry1Fa). Also, aside from South Africa, Bt maize has not been approved for cultivation in Africa, where stakeholders in each nation will make decisions about its deployment. In the context of Africa, we address maize production and use; fall armyworm distribution, host range, and impact; fall armyworm control tactics other than Bt maize; and strategies to make Bt maize more sustainable and accessible to smallholders. We recommend mandated refuges of non-Bt maize or other non-Bt host plants of at least 50% of total maize hectares for single-toxin Bt maize and 20% for Bt maize producing two or more distinct toxins that are each highly effective against fall armyworm. The smallholder practices of planting more than one maize cultivar and intercropping maize with other fall armyworm host plants could facilitate compliance. We also propose creating and providing smallholder farmers access to Bt maize that produces four distinct Bt toxins encoded by linked genes in a single transgene cassette. Using this novel Bt maize as one component of integrated pest management could sustainably improve control of lepidopteran pests including fall armyworm.
Collapse
Affiliation(s)
- Johnnie Van den Berg
- Unit for Environmental Sciences and Management, IPM Program, North-West University, Potchefstroom, 2520, South Africa
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, Nairobi, 00601, Kenya
| | - Charles A O Midega
- Unit for Environmental Sciences and Management, IPM Program, North-West University, Potchefstroom, 2520, South Africa
- Poverty and Health Integrated Solutions, Kisumu, 40141, Kenya
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
54
|
Zhang D, Jin M, Yang Y, Zhang J, Yang Y, Liu K, Soberón M, Bravo A, Xiao Y, Wu K. Synergistic resistance of Helicoverpa armigera to Bt toxins linked to cadherin and ABC transporters mutations. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 137:103635. [PMID: 34363975 DOI: 10.1016/j.ibmb.2021.103635] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Resistance evolution of target pests reduces efficacy of Bacillus thuringiensis Cry toxins used in insect-pest control. Mutations in Cadherin (CAD) or ATP-binding cassette (ABC) transporters genes are linked to Cry resistance in different pests. Also, it has been shown that ABCC2 and CAD have synergistic interaction on Cry toxicity when co-express in cell lines, which we confirmed here by Helicoverpa armigera HaABCC2 and HaCAD expression in Hi5 cells. To confirm that CAD and ABC transporters interact in vivo, we constructed nearly H. armigera isogenic lines such as LFC2 and 96CAD strains, linked to HaABCC2 and HaCAD mutations that showed 512- and 396-fold Cry1Ac resistance-ratios, respectively. Interestingly, Fusion-1 strain linked to both HaABCC2 and HaCAD mutations, showed 6273-fold resistance-ratio, significantly higher than the single mutant strains. To confirm the interaction of HaABCC2 and CAD in Cry1Ac resistance, we analyzed the Cry1Ac susceptibility in CRISPR/Cas9 knockdown strains, C2-KO (ABCC2-gene knockout-strain) and CAD-KO (CAD-gene knockout-strain), that showed 112- and 531-fold Cry1Ac resistance-ratios, respectively. However, the resistance-ratio of Fusion-2 strain obtained from crossing C2-KO and CAD-KO strains, was only 816-fold. The analysis of HaABCC3 gene transcript levels showed nearly 4-fold lower expression in LFC2 and Fusion-1 strains compared to the susceptible strain, suggesting that additional mutations in these strains resulted in low HaABCC3 expression, which contribute to their enhanced Cry1Ac resistance. Our data show that the CAD and ABCC2/ABCC3 interact synergistically to induce high Cry1Ac resistance in H. armigera. These results can be helpful for Bt resistance monitoring and pest management.
Collapse
Affiliation(s)
- Dandan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Minghui Jin
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yanchao Yang
- College of Life Science, Central China Normal University, Wuhan, China
| | - Jianfeng Zhang
- College of Life Science, Central China Normal University, Wuhan, China
| | - Yongbo Yang
- College of Life Science, Central China Normal University, Wuhan, China
| | - Kaiyu Liu
- College of Life Science, Central China Normal University, Wuhan, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
| | - Yutao Xiao
- Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
55
|
Yang J, Xu X, Lin S, Chen S, Lin G, Song Q, Bai J, You M, Xie M. Profiling of MicroRNAs in Midguts of Plutella xylostella Provides Novel Insights Into the Bacillus thuringiensis Resistance. Front Genet 2021; 12:739849. [PMID: 34567090 PMCID: PMC8455949 DOI: 10.3389/fgene.2021.739849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/20/2021] [Indexed: 01/03/2023] Open
Abstract
The diamondback moth (DBM), Plutella xylostella, one of the most destructive lepidopteran pests worldwide, has developed field resistance to Bacillus thuringiensis (Bt) Cry toxins. Although miRNAs have been reported to be involved in insect resistance to multiple insecticides, our understanding of their roles in mediating Bt resistance is limited. In this study, we constructed small RNA libraries from midguts of the Cry1Ac-resistant (Cry1S1000) strain and the Cry1Ac-susceptible strain (G88) using a high-throughput sequencing analysis. A total of 437 (76 known and 361 novel miRNAs) were identified, among which 178 miRNAs were classified into 91 miRNA families. Transcripts per million analysis revealed 12 differentially expressed miRNAs between the Cry1S1000 and G88 strains. Specifically, nine miRNAs were down-regulated and three up-regulated in the Cry1S1000 strain compared to the G88 strain. Next, we predicted the potential target genes of these differentially expressed miRNAs and carried out GO and KEGG pathway analyses. We found that the cellular process, metabolism process, membrane and the catalytic activity were the most enriched GO terms and the Hippo, MAPK signaling pathway might be involved in Bt resistance of DBM. In addition, the expression patterns of these miRNAs and their target genes were determined by RT-qPCR, showing that partial miRNAs negatively while others positively correlate with their corresponding target genes. Subsequently, novel-miR-240, one of the differentially expressed miRNAs with inverse correlation with its target genes, was confirmed to interact with Px017590 and Px007885 using dual luciferase reporter assays. Our study highlights the characteristics of differentially expressed miRNAs in midguts of the Cry1S1000 and G88 strains, paving the way for further investigation of miRNA roles in mediating Bt resistance.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuejiao Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sujie Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shiyao Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guifang Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Jianlin Bai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Miao Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
56
|
Jin W, Zhai Y, Yang Y, Wu Y, Wang X. Cadherin Protein Is Involved in the Action of Bacillus thuringiensis Cry1Ac Toxin in Ostrinia furnacalis. Toxins (Basel) 2021; 13:658. [PMID: 34564662 PMCID: PMC8473148 DOI: 10.3390/toxins13090658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal proteins have been extensively planted for insect pest control, but the evolution of Bt resistance in target pests threatens the sustainability of this approach. Mutations of cadherin in the midgut brush border membrane was associated with Cry1Ac resistance in several lepidoptera species, including the Asian corn borer, Ostrinia furnacalis, a major pest of maize in Asian-Western Pacific countries. However, the causality of O. furnacalis cadherin (OfCad) with Cry1Ac resistance remains to be clarified. In this study, in vitro and in vivo approaches were employed to examine the involvement of OfCad in mediating Cry1Ac toxicity. Sf9 cells transfected with OfCad showed significant immunofluorescent binding with Cry1Ac toxin and exhibited a concentration-dependent mortality effect when exposed to Cry1Ac. The OfCad knockout strain OfCad-KO, bearing homozygous 15.4 kb deletion of the OfCad gene generated by CRISPR/Cas9 mutagenesis, exhibited moderate-level resistance to Cry1Ac (14-fold) and low-level resistance to Cry1Aa (4.6-fold), but no significant changes in susceptibility to Cry1Ab and Cry1Fa, compared with the original NJ-S strain. The Cry1Ac resistance phenotype was inherited as autosomal, recessive mode, and significantly linked with the OfCad knockout in the OfCad-KO strain. These results demonstrate that the OfCad protein is a functional receptor for Cry1Ac, and disruption of OfCad confers a moderate Cry1Ac resistance in O. furnacalis. This study provides new insights into the mode of action of the Cry1Ac toxin and useful information for designing resistance monitoring and management strategies for O. furnacalis.
Collapse
Affiliation(s)
| | | | | | | | - Xingliang Wang
- Key Laboratory of Integrated Pest Management on Crops in East China (MARA), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (W.J.); (Y.Z.); (Y.Y.); (Y.W.)
| |
Collapse
|
57
|
Yang F, Kerns DL, Little NS, Santiago González JC, Tabashnik BE. Early Warning of Resistance to Bt Toxin Vip3Aa in Helicoverpa zea. Toxins (Basel) 2021; 13:618. [PMID: 34564622 PMCID: PMC8473270 DOI: 10.3390/toxins13090618] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Evolution of resistance by pests can reduce the benefits of crops genetically engineered to produce insecticidal proteins from Bacillus thuringiensis (Bt). Because of the widespread resistance of Helicoverpa zea to crystalline (Cry) Bt toxins in the United States, the vegetative insecticidal protein Vip3Aa is the only Bt toxin produced by Bt corn and cotton that remains effective against some populations of this polyphagous lepidopteran pest. Here we evaluated H. zea resistance to Vip3Aa using diet bioassays to test 42,218 larvae from three lab strains and 71 strains derived from the field during 2016 to 2020 in Arkansas, Louisiana, Mississippi, Tennessee, and Texas. Relative to the least susceptible of the three lab strains tested (BZ), susceptibility to Vip3Aa of the field-derived strains decreased significantly from 2016 to 2020. Relative to another lab strain (TM), 7 of 16 strains derived from the field in 2019 were significantly resistant to Vip3Aa, with up to 13-fold resistance. Susceptibility to Vip3Aa was significantly lower for strains derived from Vip3Aa plants than non-Vip3Aa plants, providing direct evidence of resistance evolving in response to selection by Vip3Aa plants in the field. Together with previously reported data, the results here convey an early warning of field-evolved resistance to Vip3Aa in H. zea that supports calls for urgent action to preserve the efficacy of this toxin.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (D.L.K.); (J.C.S.G.)
| | - David L. Kerns
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (D.L.K.); (J.C.S.G.)
| | | | - José C. Santiago González
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (D.L.K.); (J.C.S.G.)
| | | |
Collapse
|
58
|
Legros M, Marshall JM, Macfadyen S, Hayes KR, Sheppard A, Barrett LG. Gene drive strategies of pest control in agricultural systems: Challenges and opportunities. Evol Appl 2021; 14:2162-2178. [PMID: 34603490 PMCID: PMC8477592 DOI: 10.1111/eva.13285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022] Open
Abstract
Recent advances in gene-editing technologies have opened new avenues for genetic pest control strategies, in particular around the use of gene drives to suppress or modify pest populations. Significant uncertainty, however, surrounds the applicability of these strategies to novel target species, their efficacy in natural populations and their eventual safety and acceptability as control methods. In this article, we identify issues associated with the potential use of gene drives in agricultural systems, to control pests and diseases that impose a significant cost to agriculture around the world. We first review the need for innovative approaches and provide an overview of the most relevant biological and ecological traits of agricultural pests that could impact the outcome of gene drive approaches. We then describe the specific challenges associated with using gene drives in agricultural systems, as well as the opportunities that these environments may offer, focusing in particular on the advantages of high-threshold gene drives. Overall, we aim to provide a comprehensive view of the potential opportunities and the remaining uncertainties around the use of gene drives in agricultural systems.
Collapse
Affiliation(s)
- Mathieu Legros
- CSIRO Agriculture and FoodCanberraACTAustralia
- CSIRO Synthetic Biology Future Science PlatformCanberraACTAustralia
| | - John M. Marshall
- Divisions of Biostatistics and Epidemiology – School of Public HealthUniversity of CaliforniaBerkeleyCAUSA
| | | | | | | | - Luke G. Barrett
- CSIRO Agriculture and FoodCanberraACTAustralia
- CSIRO Synthetic Biology Future Science PlatformCanberraACTAustralia
| |
Collapse
|
59
|
Carvalho KDS, Guedes DRD, Crespo MM, de Melo-Santos MAV, Silva-Filha MHNL. Aedes aegypti continuously exposed to Bacillus thuringiensis svar. israelensis does not exhibit changes in life traits but displays increased susceptibility for Zika virus. Parasit Vectors 2021; 14:379. [PMID: 34321098 PMCID: PMC8317411 DOI: 10.1186/s13071-021-04880-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Abstract
Background Aedes aegypti can transmit arboviruses worldwide, and Bacillus thuringiensis svar. israelensis (Bti)-based larvicides represent an effective tool for controlling this species. The safety of Bti and lack of resistance have been widely reported; however, little is known regarding the impact of the extensive use of these larvicides on the life traits of mosquitoes. Therefore, this study investigated biological parameters, including susceptibility to arbovirus, of an Ae. aegypti strain (RecBti) subjected to 29 generations of exposure to Bti compared with the RecL reference strain. Methods The biological parameters of individuals reared under controlled conditions were compared. Also, the viral susceptibility of females not exposed to Bti during their larval stage was analysed by oral infection and followed until 14 or 21 days post-infection (dpi). Results RecBti individuals did not display alterations in the traits that were assessed (fecundity, fertility, pupal weight, developmental time, emergence rate, sex ratio and haematophagic capacity) compared to RecL individuals. Females from both strains were susceptible to dengue serotype 2 (DENV-2) and Zika virus (ZIKV). However, RecBti females showed significantly higher rates of ZIKV infection compared with RecL females at 7 (90% versus 68%, Chi-square: χ2 = 7.27, df = 1, P = 0.006) and 14 dpi (100% versus 87%, Chi-square: χ2 = 7.69, df = 1, P = 0.005) and for dissemination at 7 dpi (83.3% versus 36%, Fisher’s exact test: P < 0.0001, OR = 0.11, 95% CI 0.03–0.32). Quantification of DENV-2 and ZIKV viral particles produced statistically similar results for females from both strains. Conclusions Prolonged exposure of Ae. aegypti larvae to Bti did not alter most of the evaluated biological parameters, except that RecBti females exhibited a higher vector susceptibility for ZIKV. This finding is related to a background of Bti exposure for several generations but not to a previous exposure of the tested females during the larval stage. This study highlights mosquito responses that could be associated with the chronic exposure to Bti in addition to the primary larvicidal effect elicited by this control agent. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04880-6.
Collapse
Affiliation(s)
| | | | - Mônica Maria Crespo
- Department of Entomology, Instituto Aggeu Magalhães-Fiocruz, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
60
|
Álvarez-Alfageme F, Devos Y, Camargo AM, Arpaia S, Messéan A. Managing resistance evolution to transgenic Bt maize in corn borers in Spain. Crit Rev Biotechnol 2021; 42:201-219. [PMID: 34154477 DOI: 10.1080/07388551.2021.1931018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Since 1998, genetically engineered Bt maize varieties expressing the insecticidal Cry1Ab protein (i.e. event MON 810) have been grown in the European Union (EU), mainly in Spain. These varieties confer resistance against the European and Mediterranean corn borer (ECB and MCB), which are the major lepidopteran maize pests in the EU, particularly in Mediterranean areas. However, widespread, repeated and exclusive use of Bt maize is anticipated to increase the risk of Cry1Ab resistance to evolve in corn borer populations. To delay resistance evolution, typically, refuges of non-Bt maize are planted near or adjacent to, or within Bt maize fields. Moreover, changes in Cry1Ab susceptibility in field populations of corn borers and unexpected damage to maize MON 810, due to corn borers, are monitored on an annual basis. After two decades of Bt maize cultivation in Spain, neither resistant corn borer populations nor farmer complaints on unexpected field damage have been reported. However, whether the resistance monitoring strategy followed in Spain, currently based on discriminating concentration bioassays, is sufficiently sensitive to timely detect early warning signs of resistance in the field remains a point of contention. Moreover, the Cry1Ab resistance allele frequency to Bt maize, which has recently been estimated in MCB populations from north-eastern Spain, might exceed that recommended for successful resistance management. To ensure Bt maize durability in Spain, it is key that adequate resistance management approaches, including monitoring of resistance and farmer compliance with refuge requirements, continue to be implemented and are incorporated in integrated pest management schemes.
Collapse
Affiliation(s)
| | | | | | | | - Antoine Messéan
- INRAE, Eco-Innov, Université Paris-Saclay, Thiverval-Grignon, France
| |
Collapse
|
61
|
Qi L, Dai H, Jin Z, Shen H, Guan F, Yang Y, Tabashnik BE, Wu Y. Evaluating Cross-Resistance to Cry and Vip Toxins in Four Strains of Helicoverpa armigera With Different Genetic Mechanisms of Resistance to Bt Toxin Cry1Ac. Front Microbiol 2021; 12:670402. [PMID: 34054780 PMCID: PMC8160511 DOI: 10.3389/fmicb.2021.670402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
Evolution of resistance by pests has diminished the efficacy of transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt). In China, where transgenic cotton producing Bt toxin Cry1Ac has been planted since 1997, field control failures have not been reported but the frequency of resistance to Cry1Ac has increased in the cotton bollworm, Helicoverpa armigera. This provides incentive to switch to multi-toxin Bt cotton, which is grown in many other countries. Previous work created four laboratory strains of H. armigera with >100-fold resistance to Cry1Ac, with the genetic basis of resistance known in all but the LF256 strain. Here, we analyzed the genetic basis of resistance in Cry1Ac in LF256 and evaluated cross-resistance of all four strains to three toxins produced by widely planted multi-toxin Bt cotton: Cry1Fa, Cry2Ab, and Vip3Aa. DNA sequencing revealed that LF256 lacked the mutations in three genes (HaTSPAN1, HaABCC2, and HaABCC3) that confer resistance to Cry1Ac in two other strains of H. armigera we analyzed. Together with previous results, the data reported here show that each of the four strains examined has a different genetic basis of resistance to Cry1Ac. Significant positive cross-resistance occurred to Cry1Fa in three of the four strains tested but not to Cry2Ab or Vip3Aa in any strain. Thus, Cry2Ab and Vip3Aa are likely to be especially valuable for increasing the efficacy and durability of Bt cotton against H. armigera populations that have some resistance to Cry1Ac.
Collapse
Affiliation(s)
- Liangxuan Qi
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hanyang Dai
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zeng Jin
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huiwen Shen
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Fang Guan
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bruce E Tabashnik
- Department of Entomology, The University of Arizona, Tucson, AZ, United States
| | - Yidong Wu
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
62
|
Huang F. Resistance of the fall armyworm, Spodoptera frugiperda, to transgenic Bacillus thuringiensis Cry1F corn in the Americas: lessons and implications for Bt corn IRM in China. INSECT SCIENCE 2021; 28:574-589. [PMID: 32478944 DOI: 10.1111/1744-7917.12826] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/24/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major target pest of Bt crops (e.g., corn, cotton, and soybean) in North and South America. This pest has recently invaded Africa and Asia including China and the invasion has placed a great threat to the food security in many countries of these two continents. Due to the extensive use of Bt crops, practical resistance of S. frugiperda to Cry1F corn (TC 1507) with field control problems has widely occurred in Puerto Rico, Brazil, Argentina, and the mainland United States. Analyzing data generated from decade-long studies showed that several factors might have contributed to the wide development of the resistance. These factors include (1) limited modes of action of Bt proteins used in Bt crops; (2) cross-resistance among Cry1 proteins; (3) use of nonhigh dose Bt crop traits; (4) that the resistance is complete on Bt corn plants; (5) abundant in initial Cry1F resistance alleles; and (6) lack of fitness costs/recessive fitness costs of the resistance. The long-term use of Bt crop technology in the Americas suggests that Bt corn can be an effective tool for controlling S. frugiperda in China. IRM programs for Bt corn in China should be as simple as possible to be easily adopted by small-scale growers. The following aspects may be considered in its Bt corn IRM programs: (1) use of only "high dose" traits for both S. frugiperda and stalk borers; (2) developing and implementing a combined resistance monitoring program; (3) use "gene pyramiding" as a primary IRM strategy; and (4) if possible, Bt corn may not be planted in the areas where S. frugiperda overwinters. Lessons and experience gained from the global long-term use of Bt crops should have values in improving IRM programs in the Americas, as well as for a sustainable use of Bt corn technology in China.
Collapse
Affiliation(s)
- Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
63
|
CRISPR-mediated mutations in the ABC transporter gene ABCA2 confer pink bollworm resistance to Bt toxin Cry2Ab. Sci Rep 2021; 11:10377. [PMID: 34001946 PMCID: PMC8128902 DOI: 10.1038/s41598-021-89771-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022] Open
Abstract
Crops genetically engineered to produce insecticidal proteins from Bacillus thuringiensis (Bt) have many benefits and are important globally for managing insect pests. However, the evolution of pest resistance to Bt crops reduces their benefits. Understanding the genetic basis of such resistance is needed to better monitor, manage, and counter pest resistance to Bt crops. Previous work shows that resistance to Bt toxin Cry2Ab is associated with mutations in the gene encoding the ATP-binding cassette protein ABCA2 in lab- and field-selected populations of the pink bollworm (Pectinophora gossypiella), one of the world’s most destructive pests of cotton. Here we used CRISPR/Cas9 gene editing to test the hypothesis that mutations in the pink bollworm gene encoding ABCA2 (PgABCA2) can cause resistance to Cry2Ab. Consistent with this hypothesis, introduction of disruptive mutations in PgABCA2 in a susceptible strain of pink bollworm increased the frequency of resistance to Cry2Ab and facilitated creation of a Cry2Ab-resistant strain. All Cry2Ab-resistant individuals tested in this study had disruptive mutations in PgABCA2. Overall, we found 17 different disruptive mutations in PgABCA2 gDNA and 26 in PgABCA2 cDNA, including novel mutations corresponding precisely to single-guide (sgRNA) sites used for CRISPR/Cas9. Together with previous results, these findings provide the first case of practical resistance to Cry2Ab where evidence identifies a specific gene in which disruptive mutations can cause resistance and are associated with resistance in field-selected populations.
Collapse
|
64
|
Karthik K, Negi J, Rathinam M, Saini N, Sreevathsa R. Exploitation of Novel Bt ICPs for the Management of Helicoverpa armigera (Hübner) in Cotton ( Gossypium hirsutum L.): A Transgenic Approach. Front Microbiol 2021; 12:661212. [PMID: 33995323 PMCID: PMC8116509 DOI: 10.3389/fmicb.2021.661212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/18/2021] [Indexed: 12/02/2022] Open
Abstract
Cotton is a commercial crop of global importance. The major threat challenging the productivity in cotton has been the lepidopteron insect pest Helicoverpa armigera or cotton bollworm which voraciously feeds on various plant parts. Biotechnological interventions to manage this herbivore have been a universally inevitable option. The advent of plant genetic engineering and exploitation of Bacillus thuringiensis (Bt) insecticidal crystal proteins (ICPs) marked the beginning of plant protection in cotton through transgenic technology. Despite phenomenal success and widespread acceptance, the fear of resistance development in insects has been a perennial concern. To address this issue, alternate strategies like introgression of a combination of cry protein genes and protein-engineered chimeric toxin genes came into practice. The utility of chimeric toxins produced by domain swapping, rearrangement of domains, and other strategies aid in toxins emerging with broad spectrum efficacy that facilitate the avoidance of resistance in insects toward cry toxins. The present study demonstrates the utility of two Bt ICPs, cry1AcF (produced by domain swapping) and cry2Aa (produced by codon modification) in transgenic cotton for the mitigation of H. armigera. Transgenics were developed in cotton cv. Pusa 8–6 by the exploitation of an apical meristem-targeted in planta transformation protocol. Stringent trait efficacy-based selective screening of T1 and T2 generation transgenic plants enabled the identification of plants resistant to H. armigera upon deliberate challenging. Evaluation of shortlisted events in T3 generation identified a total of nine superior transgenic events with both the genes (six with cry1AcF and three with cry2Aa). The transgenic plants depicted 80–100% larval mortality of H. armigera and 10–30% leaf damage. Molecular characterization of the shortlisted transgenics demonstrated stable integration, inheritance and expression of transgenes. The study is the first of its kind to utilise a non-tissue culture-based transformation strategy for the development of stable transgenics in cotton harbouring two novel genes, cry1AcF and cry2Aa for insect resistance. The identified transgenic events can be potential options toward the exploitation of unique cry genes for the management of the polyphagous insect pest H. armigera.
Collapse
Affiliation(s)
- Kesiraju Karthik
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Jyotsana Negi
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Navinder Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
65
|
Pang R, Xing K, Yuan L, Liang Z, Chen M, Yue X, Dong Y, Ling Y, He X, Li X, Zhang W. Peroxiredoxin alleviates the fitness costs of imidacloprid resistance in an insect pest of rice. PLoS Biol 2021; 19:e3001190. [PMID: 33844686 PMCID: PMC8062100 DOI: 10.1371/journal.pbio.3001190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/22/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Chemical insecticides have been heavily employed as the most effective measure for control of agricultural and medical pests, but evolution of resistance by pests threatens the sustainability of this approach. Resistance-conferring mutations sometimes impose fitness costs, which may drive subsequent evolution of compensatory modifier mutations alleviating the costs of resistance. However, how modifier mutations evolve and function to overcome the fitness cost of resistance still remains unknown. Here we show that overexpression of P450s not only confers imidacloprid resistance in the brown planthopper, Nilaparvata lugens, the most voracious pest of rice, but also leads to elevated production of reactive oxygen species (ROS) through metabolism of imidacloprid and host plant compounds. The inevitable production of ROS incurs a fitness cost to the pest, which drives the increase or fixation of the compensatory modifier allele T65549 within the promoter region of N. lugens peroxiredoxin (NlPrx) in the pest populations. T65549 allele in turn upregulates the expression of NlPrx and thus increases resistant individuals' ability to clear the cost-incurring ROS of any source. The frequent involvement of P450s in insecticide resistance and their capacity to produce ROS while metabolizing their substrates suggest that peroxiredoxin or other ROS-scavenging genes may be among the common modifier genes for alleviating the fitness cost of insecticide resistance.
Collapse
Affiliation(s)
- Rui Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Science, Guangzhou, Guangdong, China
| | - Ke Xing
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Longyu Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhikun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangzhao Yue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Ling
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xionglei He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- * E-mail: (XL); (WZ)
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail: (XL); (WZ)
| |
Collapse
|
66
|
Din SU, Azam S, Rao AQ, Shad M, Ahmed M, Gul A, Latif A, Ali MA, Husnain T, Shahid AA. Development of broad-spectrum and sustainable resistance in cotton against major insects through the combination of Bt and plant lectin genes. PLANT CELL REPORTS 2021; 40:707-721. [PMID: 33634360 DOI: 10.1007/s00299-021-02669-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Second generation Bt insecticidal toxin in comibination with Allium sativum leaf agglutinin gene has been successfully expressed in cotton to develop sustainable resistance against major chewing and sucking insects. The first evidence of using the Second-generation Bt gene in combination with Allium sativum plant lectin to develop sustainable resistance against chewing and sucking insects has been successfully addressed in the current study. Excessive use of Bt δ-endotoxins in the field is delimiting its insecticidal potential. Second-generation Bt Vip3Aa could be the possible alternative because it does not share midgut receptor sites with any known cry proteins. Insecticidal potential of plant lectins against whitefly remains to be evaluated. In this study, codon-optimized synthetic Bt Vip3Aa gene under CaMV35S promoter and Allium sativum leaf agglutinin gene under phloem-specific promoter were transformed in a local cotton variety. Initial screening of putative transgenic cotton plants was done through amplification, histochemical staining and immunostrip assay. The mRNA expression of Vip3Aa gene was increased to be ninefold in transgenic cotton line L6P3 than non-transgenic control while ASAL expression was found to be fivefold higher in transgenic line L34P2 as compared to non-transgenic control. The maximum Vip3Aa concentration was observed in transgenic line L6P3. Two copy numbers in homozygous form at chromosome number 9 and one copy number in hemizygous form at chromosome number 10 was observed in transgenic line L6P3 through fluorescent in situ hybridization. Significant variation was observed in transgenic cotton lines for morphological characteristics, whereas physiological parameters of plants and fiber characteristics (as assessed by scanning electron microscopic) remained comparable in transgenic and non-transgenic cotton lines. Leaf-detach bioassay showed that all the transgenic lines were significantly resistant to Helicoverpa armigera showing mortality rates between 78% and 100%. Similarly, up to 95% mortality of whiteflies was observed in transgenic cotton lines when compared with non-transgenic control lines.
Collapse
Affiliation(s)
- Salah Ud Din
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, 1 Km Defence Road, Lahore, 54500, Pakistan
| | - Saira Azam
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
| | - Abdul Qayyum Rao
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan.
| | - Mohsin Shad
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
| | - Mukhtar Ahmed
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
| | - Ambreen Gul
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
| | - Ayesha Latif
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
| | | | - Tayyab Husnain
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
| | - Ahmad Ali Shahid
- Plant Transformation Lab, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab Lahore, Lahore, 53700, Pakistan
| |
Collapse
|
67
|
Pérez-Staples D, Díaz-Fleischer F, Montoya P. The Sterile Insect Technique: Success and Perspectives in the Neotropics. NEOTROPICAL ENTOMOLOGY 2021; 50:172-185. [PMID: 33113111 DOI: 10.1007/s13744-020-00817-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The sterile insect technique (SIT), an environmentally friendly means of control, is currently used against plant, animal, and human pests under the area-wide integrated pest management. It consists in the mass production, sterilization, and release of insects in an affected area where sterile males mate with wild females leading to no reproduction. Here, we review SIT in the Neotropics and focus on particular recent successful cases of eradication of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), as well as effective programs used against the Mexican fruit fly Anastrepha ludens (Loew), the New World screwworm fly Cochliomyia hominivorax (Coquerel)), and the Cactus moth Cactoblastis cactorum (Berg). We examine when SIT does not work and innovations that have made SIT more efficient and also highlight complimentary techniques that can be used in conjunction. We address potential candidate species that could be controlled through SIT, for example Philornis downsi Dodge & Aitken. Finally, we consider the impact of climate change in the context of the use of the SIT against these pests. Given the recent dramatic decline in insect biodiversity, investing in environmentally friendly means of pest control should be a priority. We conclude that SIT should be promoted in the region, and leadership and political will is needed for continued success of SIT in the Neotropics.
Collapse
Affiliation(s)
| | | | - P Montoya
- Programa Moscafrut SENASICA-SADER, Metapa de Domínguez, Chiapas, Mexico
| |
Collapse
|
68
|
Yang F, Santiago González JC, Sword GA, Kerns DL. Genetic basis of resistance to the Vip3Aa Bt protein in Helicoverpa zea. PEST MANAGEMENT SCIENCE 2021; 77:1530-1535. [PMID: 33201547 DOI: 10.1002/ps.6176] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Helicoverpa zea is a destructive pest and target of maize and cotton expressing Cry and Vip3Aa proteins in North America. The efficacy of Cry proteins against H. zea in the USA has been largely compromised by resistance. A rapid shift towards planting Bt cotton and maize producing Vip3Aa will accelerate evolution of resistance to Vip3Aa in H. zea. Research on the genetic basis of Vip3Aa resistance in H. zea is urgently needed, and can provide fundamental information for managing resistance in this pest. Here, we characterize the inheritance of Vip3Aa resistance in H. zea. RESULTS Susceptibility of a Vip3Aa-susceptible strain (SS), a resistant strain (RR), and progeny from different crosses against Vip3Aa39 was determined. RR was established from an F2 screening of a population from Texas sampled in 2019. RR had a resistance ratio of 45194.1-fold against Vip3Aa39 relative to SS. Maternal effects and sex linkage were absent in RR. The dominance D value, calculated based on median lethal concentration (LC50 ) values, was -1.0 and the effective dominance (DML ), calculated based on a given Vip3Aa39 concentration, was ≤0.0 at concentrations of 0.1-31.6 μg cm-2 . The test using a monogenic mode of inheritance showed that resistance to Vip3Aa in H. zea was largely due to a single gene. CONCLUSION Results of this study indicate that Vip3Aa resistance in H. zea is monogenic, autosomal, and recessive. This information is valuable for studying the mechanism of Vip3Aa resistance, monitoring of resistance development, and designing appropriate strategies for preventive management of Vip3Aa resistance. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
69
|
Singh TVK, Kukanur VS, G B S. Frequency of resistance alleles to Cry1Ac toxin from cotton bollworm, Helicoverpa armigera (Hübner) collected from Bt-cotton growing areas of Telangana state of India. J Invertebr Pathol 2021; 183:107559. [PMID: 33617874 DOI: 10.1016/j.jip.2021.107559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
Transgenic cotton expressing Bacillus thuringiensis (Bt) cry1Ac and cry2Ab toxin genes is widely cultivated to manage bollworm complex in India. Cotton bollworm Helicoverpa armigera (Hübner) is one of the most serious of this complex. It is likely to evolve resistance to Cry toxins in view of continual selection pressure due to extensive cultivation of Bt cotton. Monitoring susceptibility of cotton bollworm using conventional bioassays is reported to have shown its increasing tolerance to Cry1Ac over the years. We report using an F2 screen Cry1Ac resistance allele frequencies of 0.050 (95% CI 0.022-0.076) and 0.056 (95% CI 0.035-0.075) in the insect populations collected from pigeon pea grown alongside Bt cotton in the respective years of 2016 and 2017 in the Telangana state of India. Compared to our earlier studies for 2013 and 2014, resistance allele frequency to Cry1Ac in the cotton bollworm in the following two years remains unchanged. The significance of these results is discussed in the context of non-Bt host crops acting as refuge for cotton bollworm for ensuring sustainable resistance management.
Collapse
Affiliation(s)
- T V K Singh
- Department of Entomology, Prof. Jayashankar Telangana State Agricultural University, Hyderabad 500 030, Telangana, India.
| | - Vinod S Kukanur
- Department of Entomology, Prof. Jayashankar Telangana State Agricultural University, Hyderabad 500 030, Telangana, India; International Crops Research Institute for Semi-arid Tropics, Hyderabad, India
| | - Supriya G B
- Department of Entomology, Prof. Jayashankar Telangana State Agricultural University, Hyderabad 500 030, Telangana, India
| |
Collapse
|
70
|
Pinos D, Andrés-Garrido A, Ferré J, Hernández-Martínez P. Response Mechanisms of Invertebrates to Bacillus thuringiensis and Its Pesticidal Proteins. Microbiol Mol Biol Rev 2021; 85:e00007-20. [PMID: 33504654 PMCID: PMC8549848 DOI: 10.1128/mmbr.00007-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on Bacillus thuringiensis This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of B. thuringiensis-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are responsible for conferring resistance to B. thuringiensis Nevertheless, other mechanisms may also contribute to the reduction of the effectiveness of B. thuringiensis-based products for managing insect pests and even to the acquisition of resistance. Here, we review the relevant literature reporting how invertebrates (mainly insects and Caenorhabditis elegans) respond to exposure to B. thuringiensis as either whole bacteria, spores, and/or its pesticidal proteins.
Collapse
Affiliation(s)
- Daniel Pinos
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Ascensión Andrés-Garrido
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Juan Ferré
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Patricia Hernández-Martínez
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| |
Collapse
|
71
|
Huang F. Dominance and fitness costs of insect resistance to genetically modified Bacillus thuringiensis crops. GM CROPS & FOOD 2021; 12:192-211. [PMID: 33380258 PMCID: PMC7781549 DOI: 10.1080/21645698.2020.1852065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Evolution of resistance to genetically modified Bacillus thuringiensis (Bt) crops in pest populations is a major threat to the sustainability of the technology. Incidents of field resistance that have led to control problems of Bt crops or significantly reduced susceptibility of individual Bt proteins in pyramided plants have increased dramatically across the world, especially in recent years. Analysis of globally published data showed that 61.5% and 60.0% of the cases of resistance with major alleles that allowed homozygous resistant genotypes to survival on Bt crops were functionally non-recessive and did not involve fitness costs, respectively. Dominance levels (DFLs) measured on Bt plants ranged from -0.02 to 1.56 with a mean (± sem) of 0.35 ± 0.13 for the 13 cases of single-gene resistance to Bt plants that have been evaluated. Among these, all six cases with field control problems were functionally non-recessive with a mean DFL of 0.63 ± 0.24, which was significantly greater than the DFL (0.11 ± 0.07) of the seven cases without field resistance. In addition, index of fitness costs (IFC) of major resistance was calculated for each case based on the fitness of resistant (R'R') and heterozygous (R'S') genotypes on non-Bt plants divided by the fitness of their susceptible (S'S') counterparts. The estimated IFCs for 15 cases of single-gene resistance were similar for R'R' and R'S', and for the cases with and without field resistance; and the values averaged 1.10 ± 0.12 for R'R' and 1.20 ± 0.18 for R'S'. Limited published data suggest that resistance of insects to dual/multiple-gene Bt crops is likely to be more recessive than the related single-gene resistance, but their IFCs are similar. The quantitative analysis of the global data documents that the prevalence of non-recessive resistance has played an essential role in the widespread evolution of resistance to Bt crops, while the lack of fitness costs is apparently not as critical as the non-recessive resistance. The results suggest that planting of 'high dose' traits is an effective method for Bt crop IRM and more comprehensive management strategies that are also effective for functionally non-recessive resistance should be deployed.
Collapse
Affiliation(s)
- Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| |
Collapse
|
72
|
Saikai Y, Hurley TM, Mitchell PD. An agent-based model of insect resistance management and mitigation for Bt maize: a social science perspective. PEST MANAGEMENT SCIENCE 2021; 77:273-284. [PMID: 32696499 DOI: 10.1002/ps.6016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Farmers around the world have used Bt maize for more than two decades, delaying resistance using a high-dose/refuge strategy. Nevertheless, field-evolved resistance to Bacillus thuringiensis (Bt) toxins has been documented. This paper describes a spatially explicit population genetics model of resistance to Bt toxins by the insect Ostrinia nubilalis and an agent-based model of farmer adoption of Bt maize incorporating social networks. The model was used to evaluate multiple resistance mitigation policies, including combinations of increased refuges for all farms, localized bans on Bt maize where resistance develops, area-wide sprays of insecticides on fields with resistance and taxes on Bt maize seed for all farms. Evaluation metrics included resistance allele frequency, pest population density, farmer adoption of Bt maize and economic surplus. RESULTS The most effective mitigation policies for maintaining a low resistance allele frequency were 50% refuge and localized bans. Area-wide sprays were the most effective for maintaining low pest populations. Based on economic surplus, refuge requirements were the recommended policy for mitigating resistance to high-dose Bt maize. Social networks further enhanced the benefits of refuges relative to other mitigation policies but accelerated the emergence of resistance. CONCLUSION These results support using refuges as the foundation of resistance mitigation for high-dose Bt maize, just as for resistance management. Other mitigation policies examined were more effective but more costly. Social factors had substantial effects on the recommended management and mitigation of insect resistance, suggesting that agent-based models can make useful contributions for policy analysis.
Collapse
Affiliation(s)
- Yuji Saikai
- Agricultural and Applied Economics, University of Wisconsin, Madison, WI, USA
| | | | - Paul D Mitchell
- Agricultural and Applied Economics, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
73
|
Independent and Synergistic Effects of Knocking out Two ABC Transporter Genes on Resistance to Bacillus thuringiensis Toxins Cry1Ac and Cry1Fa in Diamondback Moth. Toxins (Basel) 2020; 13:toxins13010009. [PMID: 33374143 PMCID: PMC7823965 DOI: 10.3390/toxins13010009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Insecticidal proteins from Bacillus thuringiensis (Bt) are used widely in sprays and transgenic crops to control insect pests. However, evolution of resistance by pests can reduce the efficacy of Bt toxins. Here we analyzed resistance to Bt toxins Cry1Ac and Cry1Fa in the diamondback moth (Plutella xylostella), one of the world's most destructive pests of vegetable crops. We used CRISPR/Cas9 gene editing to create strains with knockouts of the ATP-binding cassette (ABC) transporter genes PxABCC2, PxABCC3, or both. Bioassay results show that knocking out either gene alone caused at most 2.9-fold resistance but knocking out both caused >10,320-fold resistance to Cry1Ac and 380-fold resistance to Cry1Fa. Cry1Ac resistance in the double knockout strain was recessive and genetically linked with the PxABCC2/PxABCC3 loci. The results provide insight into the mechanism of cross-resistance to Cry1Fa in diamondback moth. They also confirm previous work with this pest showing that mutations disrupting both genes cause higher resistance to Cry1Ac than mutations affecting either PxABCC2 or PxABCC3 alone. Together with previous work, the results here highlight the value of using single and multiple gene knockouts to better understand the independent and synergistic effects of putative Bt toxin receptors on resistance to Bt toxins.
Collapse
|
74
|
Transgenic cotton and sterile insect releases synergize eradication of pink bollworm a century after it invaded the United States. Proc Natl Acad Sci U S A 2020; 118:2019115118. [PMID: 33443170 DOI: 10.1073/pnas.2019115118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Invasive organisms pose a global threat and are exceptionally difficult to eradicate after they become abundant in their new habitats. We report a successful multitactic strategy for combating the pink bollworm (Pectinophora gossypiella), one of the world's most invasive pests. A coordinated program in the southwestern United States and northern Mexico included releases of billions of sterile pink bollworm moths from airplanes and planting of cotton engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). An analysis of computer simulations and 21 y of field data from Arizona demonstrate that the transgenic Bt cotton and sterile insect releases interacted synergistically to reduce the pest's population size. In Arizona, the program started in 2006 and decreased the pest's estimated statewide population size from over 2 billion in 2005 to zero in 2013. Complementary regional efforts eradicated this pest throughout the cotton-growing areas of the continental United States and northern Mexico a century after it had invaded both countries. The removal of this pest saved farmers in the United States $192 million from 2014 to 2019. It also eliminated the environmental and safety hazards associated with insecticide sprays that had previously targeted the pink bollworm and facilitated an 82% reduction in insecticides used against all cotton pests in Arizona. The economic and social benefits achieved demonstrate the advantages of using agricultural biotechnology in concert with classical pest control tactics.
Collapse
|
75
|
Khan MH, Jander G, Mukhtar Z, Arshad M, Sarwar M, Asad S. Comparison of in Vitro and in Planta Toxicity of Vip3A for Lepidopteran Herbivores. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2959-2971. [PMID: 33080004 DOI: 10.1093/jee/toaa211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Indexed: 06/11/2023]
Abstract
Agricultural pest infestation is as old as domestication of food crops and contributes a major share to the cost of crop production. In a transgenic pest control approach, plant production of Vip3A, an insecticidal protein from Bacillus thuringiensis, is effective against lepidopteran pests. A synthetic Vip3A gene was evaluated for efficacy against Spodoptera litura Fabricius (Lepidoptera: Noctuidae; cotton leafworm), Spodoptera exigua Hübner (Lepidoptera: Noctuidae; beet armyworm), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae; fall armyworm), Helicoverpa armigera Hübner (Lepidoptera: Noctuidae; cotton bollworm), Helicoverpa zea Boddie (Lepidoptera: Noctuidae; corn earworm), Heliothis virescens Fabricius (Lepidoptera: Noctuidae; tobacco budworm), and Manduca sexta L. (Lepidoptera: Sphingidae; tobacco hornworm) in tobacco. In artificial diet assays, the concentration required to achieve 50% mortality was highest for H. zea followed by H. virescens > S. exigua > H. armigera > M. sexta > S. frugiperda > S. litura. By contrast, in bioassays with detached leaves from Vip3A transgenic tobacco, the time until 50% lethality was M. sexta > H. virescens > S. litura > H. zea > H. armigera > S. exigua. There was no significant correlation between the artificial diet and transgenic plant bioassay results. Notably, the two insect species that are best-adapted for growth on tobacco, M. sexta and H. virescens, showed the greatest time to 50% mortality on Vip3A-transgenic tobacco. Together, our results suggest that artificial diet assays may be a poor predictor of Vip3A efficacy in transgenic plants, lepidopteran species vary in their sensitivity to Vip3A in diet-dependent manner, and host plant adaptation of the targeted herbivores should be considered when designing transgenic plants for pest control.
Collapse
Affiliation(s)
- Muhammad Hassaan Khan
- Agricultural Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute for Engineering and Applied Sciences (PIEAS), Nilore Islamabad, Pakistan
| | | | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute for Engineering and Applied Sciences (PIEAS), Nilore Islamabad, Pakistan
| | - Muhammad Arshad
- Agricultural Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute for Engineering and Applied Sciences (PIEAS), Nilore Islamabad, Pakistan
| | - Muhammad Sarwar
- Agricultural Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute for Engineering and Applied Sciences (PIEAS), Nilore Islamabad, Pakistan
| | - Shaheen Asad
- Agricultural Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute for Engineering and Applied Sciences (PIEAS), Nilore Islamabad, Pakistan
| |
Collapse
|
76
|
A novel Bacillus thuringiensis isolate toxic to cotton pink bollworm (Pectinophora gossypiella Saunders). Microb Pathog 2020; 150:104671. [PMID: 33307119 DOI: 10.1016/j.micpath.2020.104671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/11/2023]
Abstract
In this study, we report a novel indigenous Bacillus thuringiensis (Bt) isolate, T26, which showed spores and crystals under scanning electron microscope and pathogenicity against the pink bollworm (Pectinophora gossypiella Saunders) in artificial diet based bioassay. SDS-PAGE analysis of the spore-crystal mixture of the Bt isolate, T26 revealed presence of three major protein bands of approximate molecular weights of 80, 55 and 40 kDa. The draft genome assembly consists of 56 scaffolds with an entire draft genome size of 5,054,095 bp. NCBI blast analysis revealed that assembled draft genome is spread over in a chromosome (4,818,543 bp) and one plasmid (235,552 bp). NCBI Prokaryotic Genome Annotation Pipeline (PGAP) showed presence of 5033 coding gene sequences and 159 RNAs genes. None of the known lepidopteran active genes (cry1, cry2 and cry9) could be detected with PCR or with whole genome sequence analysis using Bt toxin scanner tool or CryProcessor tool. Thus, presence of protein crystals and toxicity towards cotton pink bollworm and absence of any known cry/vip/cyt type of genes in draft genome indicates it is a novel type of Bt isolate. Further investigation of this genome sequence along with protein sequencing will lead to understand the novel factors responsible for its virulence and could be a useful tool for the insect resistance management in pink bollworm.
Collapse
|
77
|
Inner Workings: RNA-based pesticides aim to get around resistance problems. Proc Natl Acad Sci U S A 2020; 117:32823-32826. [PMID: 33298569 DOI: 10.1073/pnas.2024033117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
78
|
Abstract
Despite the continuous deployment of new treatment strategies and agents over many decades, most disseminated cancers remain fatal. Cancer cells, through their access to the vast information of the human genome, have a remarkable capacity to deploy adaptive strategies for even the most effective treatments. We note there are two critical steps in the clinical manifestation of treatment resistance. The first, which is widely investigated, requires molecular machinery necessary to eliminate the cytotoxic effect of the treatment. However, the emergence of a resistant phenotype is not in itself clinically significant. That is, resistant cells affect patient outcomes only when they succeed in the second step of resistance by proliferating into a sufficiently large population to allow tumor progression and treatment failure. Importantly, proliferation of the resistant phenotype is by no means certain and, in fact, depends on complex Darwinian dynamics governed by the costs and benefits of the resistance mechanisms in the context of the local environment and competing populations. Attempts to target the molecular machinery of resistance have had little clinical success largely because of the diversity within the human genome-therapeutic interruption of one mechanism simply results in its replacement by an alternative. Here we explore evolutionarily informed strategies (adaptive, double-bind, and extinction therapies) for overcoming treatment resistance that seek to understand and exploit the critical evolutionary dynamics that govern proliferation of the resistant phenotypes. In general, this approach has demonstrated that, while emergence of resistance mechanisms in cancer cells to every current therapy is inevitable, proliferation of the resistant phenotypes is not and can be delayed and even prevented with sufficient understanding of the underlying eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Robert A Gatenby
- Cancer Biology and Evolution Program
- Department of Radiology, Moffitt Cancer Center, Tampa, Florida 33612 USA
| | | |
Collapse
|
79
|
M Camargo A, Arias‐Martín M, Castañera P, P Farinós G. Performance of Sesamia nonagrioides on cultivated and wild host plants: Implications for Bt maize resistance management. PEST MANAGEMENT SCIENCE 2020; 76:3657-3666. [PMID: 32418304 PMCID: PMC7586834 DOI: 10.1002/ps.5913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/02/2020] [Accepted: 05/17/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Sesamia nonagrioides is an important maize pest in the Mediterranean basin that is effectively controlled by Cry1Ab-expressing maize (Bt maize). The continued cultivation of Bt maize in Spain exerts high selection pressure on the target pests, which could lead to the development of resistance. Provision of refuges of non-Bt plants is an essential component in the high-dose/refuge (HDR) strategy to delay resistance evolution. Here we analyze the suitability of cultivated (rice and sorghum) and wild (Johnsongrass, cattail, common reed and giant reed) plants, reported as hosts of S. nonagrioides, for larval development and oviposition of this pest compared to maize, and we evaluate their potential role in delaying resistance development to Bt maize. RESULTS Bioassays conducted with plant pieces or whole plants showed that the larval cycle could only be completed in the three cultivated plants and in Johnsongrass. Females showed a strong preference for ovipositing on maize in comparison with sorghum or rice. Although young larvae consumed more sorghum than maize in two-choice bioassays, both larvae and adults had a better performance (shorter larval period and higher pupal weight, fecundity and fertility) when larvae fed on maize throughout their larval stage than when they fed on sorghum or rice. CONCLUSION None of the alternative hosts of S. nonagrioides tested here should be considered as natural unstructured refuges within the HDR strategy for Bt maize and this pest in Spain, as some of the necessary requirements to fulfill this strategy would not be met. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana M Camargo
- Dept. of Microbial & Plant Biotechnologycentre es Centro de Investigaciones Biológicas Margarita SalasMadridSpain
| | - María Arias‐Martín
- Dept. of Microbial & Plant Biotechnologycentre es Centro de Investigaciones Biológicas Margarita SalasMadridSpain
| | - Pedro Castañera
- Dept. of Microbial & Plant Biotechnologycentre es Centro de Investigaciones Biológicas Margarita SalasMadridSpain
| | - Gema P Farinós
- Dept. of Microbial & Plant Biotechnologycentre es Centro de Investigaciones Biológicas Margarita SalasMadridSpain
| |
Collapse
|
80
|
Carrière Y, Degain BA, Harpold VS, Unnithan GC, Tabashnik BE. Gene Flow Between Bt and Non-Bt Plants in a Seed Mixture Increases Dominance of Resistance to Pyramided Bt Corn in Helicoverpa zea (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2041-2051. [PMID: 32582955 DOI: 10.1093/jee/toaa138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 06/11/2023]
Abstract
For delaying evolution of pest resistance to transgenic corn producing Bacillus thuringiensis (Bt) toxins, limited data are available to compare the effectiveness of refuges of non-Bt corn planted in seed mixtures versus blocks. Here we addressed this issue in the ear-feeding pest Helicoverpa zea Boddie by measuring its survival and development in the laboratory on ears from field plots with 90% Cry1A.105 + Cry2Ab corn and 10% non-Bt corn planted in a seed mixture or blocks. We compared a strain of H. zea selected for resistance to Cry1Ac in the laboratory, its parent strain not selected in the laboratory, and their F1 progeny. The relative survival of the F1 progeny and dominance of resistance were higher on ears from Bt plants in the seed mixture than the block. Half of the kernels in ears from non-Bt plants in the seed mixture produced both Cry1A.105 and Cry2Ab. However, survival on ears from non-Bt plants did not differ between the block and seed mixture. In simulations based on the observed survival, resistance to Cry1A.105 + Cry2Ab corn evolved faster with the seed mixture than the blocks, because of the higher dominance of resistance in the seed mixture. Increasing the refuge percentage improved durability of Cry1A.105 + Cry2Ab corn more for the blocks than the seed mixture. These findings imply that, for a given percentage of non-Bt corn, resistance of H. zea and other ear-feeding pests to multi-toxin Bt corn is likely to evolve faster for seed mixtures than blocks.
Collapse
Affiliation(s)
- Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ
| | - Ben A Degain
- Department of Entomology, University of Arizona, Tucson, AZ
| | | | | | | |
Collapse
|
81
|
Farhan Y, Smith JL, Limay-Rios V, Schaafsma AW. The Effect of Simulated Lepidopteran Ear Feeding Injury on Mycotoxin Accumulation in Grain Corn (Poales: Poaceae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2187-2196. [PMID: 32865199 DOI: 10.1093/jee/toaa174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Fusarium graminearum Schwabe (Hypocreales: Nectriaceae) and Fusarium verticillioides (Saccardo) (Hypocreales: Nectriaceae) Nirenberg infection results in accumulation of deoxynivalenol (DON), zearalenone (ZON), and fumonisin (FBs) mycotoxins in infected corn, Zea mays L. Lepidopteran insect feeding may exacerbate fungal infection by providing entry points on the ear resulting in increased mycotoxin contamination of grain. The objective of the current study was to simulate different types and severity levels (extent of injury) of lepidopteran injury to corn ears at different stages of ear development and its effect on mycotoxin accumulation in grain corn. Field experiments were conducted under conditions favorable for F. graminearum development where insect injury was simulated to corn ears and inoculated with F. graminearum. All simulated injury treatments resulted in elevated mycotoxin concentration compared with ears without simulated injury; however, the severity of injury within a treatment had little effect. Injury to kernels on the side of the ear resulted in greater DON and ZON concentration than injury to tip kernels, grazing injury applied at physiological maturity, or when no injury was simulated. Greater FBs was measured when tip kernel injury was simulated at the blister stage or when side kernel injury was simulated at milk and dent stages compared with noninjured ears, silk clipping, tip injury at milk and dent stages, or grazing injury at physiological maturity. The current study confirms that the risk of mycotoxin accumulation in the Great Lakes region is greater in the presence of ear-feeding insect pests and may differ depending on the feeding behavior of pest species.
Collapse
Affiliation(s)
- Yasmine Farhan
- University of Guelph, Ridgetown Campus, Ridgetown, Ontario, Canada
| | - Jocelyn L Smith
- University of Guelph, Ridgetown Campus, Ridgetown, Ontario, Canada
| | | | | |
Collapse
|
82
|
Brewer TR, Bonsall MB. Combining refuges with transgenic insect releases for the management of an insect pest with non-recessive resistance to Bt crops in agricultural landscapes. J Theor Biol 2020; 509:110514. [PMID: 33053395 DOI: 10.1016/j.jtbi.2020.110514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/01/2020] [Accepted: 10/05/2020] [Indexed: 02/02/2023]
Abstract
Reinforcing the high-dose/refuge strategy with releases of transgenic insects has been suggested as a method for simultaneously managing agricultural pest populations and resistance to transgenic crops. Theoretical and empirical studies have shown that these approaches can work when deployed against closed populations and the assumptions of the HDR strategy are met. However, field-evolved resistance is often linked to non-recessive resistance or refuge non-compliance, and pest management regimes are likely to take place at the landscape-level. It is therefore important to understand how effective such strategies are when resistance is non-recessive, and how they could be employed in agricultural landscapes. We developed a spatially-explicit model to investigate the efficacy of strategies combining refuges with transgenic insect releases to manage a pest with non-recessive resistance in agricultural landscapes. We compared two release strategies, area-wide releases and localised releases targeted at population hotspots, and analysed the effects of refuge and release parameters on population and resistance dynamics. Area-wide releases reliably achieved landscape-level pest eradication. Localised releases also eradicated the pest when low release thresholds were combined with high release ratios, and maintained the pest at low densities when insufficient to achieve extinction. Reinforcing refuges with localised releases also greatly enhanced the probability of resistance extinction. However, when resistance remained in the population, localised releases prevented resistance from reaching fixation rather than greatly delaying or reversing resistance evolution. Our work indicates that combining refuges with simple release policies is effective for landscape-level pest suppression when the HDR assumptions are violated, but more nuanced release strategies may be required to enhance the benefits to resistance management.
Collapse
Affiliation(s)
- Tom R Brewer
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Rd, Oxford OX1 3SZ, United Kingdom.
| | - Michael B Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Rd, Oxford OX1 3SZ, United Kingdom; St. Peter's College, New Inn Hall Street, Oxford OX1 2DL, United Kingdom
| |
Collapse
|
83
|
Cadherin repeat 5 mutation associated with Bt resistance in a field-derived strain of pink bollworm. Sci Rep 2020; 10:16840. [PMID: 33033325 PMCID: PMC7544870 DOI: 10.1038/s41598-020-74102-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/23/2020] [Indexed: 11/08/2022] Open
Abstract
Evolution of resistance by pests reduces the benefits of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Here we analyzed resistance to Bt toxin Cry1Ac in a field-derived strain of pink bollworm (Pectinophora gossypiella), a global pest of cotton. We discovered that the r14 allele of the pink bollworm cadherin gene (PgCad1) has a 234-bp insertion in exon 12 encoding a mutant PgCad1 protein that lacks 36 amino acids in cadherin repeat 5 (CR5). A strain homozygous for this allele had 237-fold resistance to Cry1Ac, 1.8-fold cross-resistance to Cry2Ab, and developed from neonate to adult on Bt cotton producing Cry1Ac. Inheritance of resistance to Cry1Ac was recessive and tightly linked with r14. PgCad1 transcript abundance in midgut tissues did not differ between resistant and susceptible larvae. Toxicity of Cry1Ac to transformed insect cells was lower for cells expressing r14 than for cells expressing wild-type PgCad1. Wild-type PgCad1 was transported to the cell membrane, whereas PgCad1 produced by r14 was not. In larval midgut tissue, PgCad1 protein occurred primarily on the brush border membrane only in susceptible larvae. The results imply r14 mediates pink bollworm resistance to Cry1Ac by reduced translation, increased degradation, and/or mislocalization of cadherin.
Collapse
|
84
|
Resistance to Bacillus thuringiensis Cry1Ac toxin requires mutations in two Plutella xylostella ATP-binding cassette transporter paralogs. PLoS Pathog 2020; 16:e1008697. [PMID: 32776976 PMCID: PMC7446926 DOI: 10.1371/journal.ppat.1008697] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/20/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022] Open
Abstract
The diamondback moth, Plutella xylostella, is a cosmopolitan pest and the first species to develop field resistance to toxins from the gram-positive bacterium Bacillus thuringiensis (Bt). Although previous work has suggested that mutations of ATP-binding cassette transporter subfamily C2 (ABCC2) or C3 (ABCC3) genes can confer Cry1Ac resistance, here we reveal that P. xylostella requires combined mutations in both PxABCC2 and PxABCC3 to achieve high-level Cry1Ac resistance, rather than simply a mutation of either gene. We identified natural mutations of PxABCC2 and PxABCC3 that concurrently occurred in a Cry1Ac-resistant strain (Cry1S1000) of P. xylostella, with a mutation (RA2) causing the mis-splicing of PxABCC2 and another mutation (RA3) leading to the premature termination of PxABCC3. Genetic linkage analysis showed that RA2 and RA3 were tightly linked to Cry1Ac resistance. Introgression of RA2 and RA3 enabled a susceptible strain (G88) of P. xylostella to obtain high resistance to Cry1Ac, confirming that these genes confer resistance. To further support the role of PxABCC2 and PxABCC3 in Cry1Ac resistance, frameshift mutations were introduced into PxABCC2 and PxABCC3 singly and in combination in the G88 strain with CRISPR/Cas9 mediated mutagenesis. Bioassays of CRISPR-based mutant strains, plus genetic complementation tests, demonstrated that the deletion of PxABCC2 or PxABCC3 alone provided < 4-fold tolerance to Cry1Ac, while disruption of both genes together conferred >8,000-fold resistance to Cry1Ac, suggesting the redundant/complementary roles of PxABCC2 and PxABCC3. This work advances our understanding of Bt resistance in P. xylostella by demonstrating mutations within both PxABCC2 and PxABCC3 genes are required for high-level Cry1Ac resistance. Bacillus thuringiensis (Bt) foliar sprays and transgenic crops expressing Bt toxins are used extensively to control insect pests, but the evolution of resistance limits their efficacy. Multiple studies have reported that ATP-binding cassette (ABC) transporters are important Bt receptors, and mutations in either ABCC2 or ABCC3 can lead to Cry1Ac-toxin resistance, although this process is not fully understood. In this study, we applied both forward and reverse genetic analyses to demonstrate that high-level Bt-Cry1Ac resistance in Plutella xylostella requires concurrent mutations in both PxABCC2 and PxABCC3. We identified inactivating mutations in these two genes from a Cry1Ac-resistant strain (Cry1S1000) of P. xylostella and conducted genetic linkage analysis, which supported the role that PxABCC2 and PxABCC3 were the causal genes of Cry1Ac resistance. We then knocked out PxABCC2 and PxABCC3 in a P. xylostella susceptible reference strain (G88) to confirm that high-level Cry1Ac resistance requires mutation of PxABCC2 and PxABCC3, rather than a mutation of either one gene. This finding expands our understanding of complex Bt resistance processes and may be relevant to Bt-Cry1Ac resistance in other lepidopteran insects.
Collapse
|
85
|
Carrière Y, Brown Z, Aglasan S, Dutilleul P, Carroll M, Head G, Tabashnik BE, Jørgensen PS, Carroll SP. Crop rotation mitigates impacts of corn rootworm resistance to transgenic Bt corn. Proc Natl Acad Sci U S A 2020; 117:18385-18392. [PMID: 32690686 PMCID: PMC7414139 DOI: 10.1073/pnas.2003604117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt) can suppress pests and reduce insecticide sprays, but their efficacy is reduced when pests evolve resistance. Although farmers plant refuges of non-Bt host plants to delay pest resistance, this tactic has not been sufficient against the western corn rootworm, Diabrotica virgifera virgifera In the United States, some populations of this devastating pest have rapidly evolved practical resistance to Cry3 toxins and Cry34/35Ab, the only Bt toxins in commercially available corn that kill rootworms. Here, we analyzed data from 2011 to 2016 on Bt corn fields producing Cry3Bb alone that were severely damaged by this pest in 25 crop-reporting districts of Illinois, Iowa, and Minnesota. The annual mean frequency of these problem fields was 29 fields (range 7 to 70) per million acres of Cry3Bb corn in 2011 to 2013, with a cost of $163 to $227 per damaged acre. The frequency of problem fields declined by 92% in 2014 to 2016 relative to 2011 to 2013 and was negatively associated with rotation of corn with soybean. The effectiveness of corn rotation for mitigating Bt resistance problems did not differ significantly between crop-reporting districts with versus without prevalent rotation-resistant rootworm populations. In some analyses, the frequency of problem fields was positively associated with planting of Cry3 corn and negatively associated with planting of Bt corn producing both a Cry3 toxin and Cry34/35Ab. The results highlight the central role of crop rotation for mitigating impacts of D. v. virgifera resistance to Bt corn.
Collapse
Affiliation(s)
- Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721;
| | - Zachary Brown
- Department of Agricultural and Resource Economics, North Carolina State University, Raleigh, NC 27607
| | - Serkan Aglasan
- Department of Agricultural and Resource Economics, North Carolina State University, Raleigh, NC 27607
| | - Pierre Dutilleul
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | | | - Graham Head
- Bayer U.S. Crop Science, Chesterfield, MO 63017
| | | | | | - Scott P Carroll
- Department of Entomology and Nematology, University of California, Davis, CA 95616
| |
Collapse
|
86
|
Structural and Functional Insights into the C-terminal Fragment of Insecticidal Vip3A Toxin of Bacillus thuringiensis. Toxins (Basel) 2020; 12:toxins12070438. [PMID: 32635593 PMCID: PMC7404976 DOI: 10.3390/toxins12070438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
The vegetative insecticidal proteins (Vips) secreted by Bacillus thuringiensis are regarded as the new generation of insecticidal toxins because they have different insecticidal properties compared with commonly applied insecticidal crystal proteins (Cry toxins). Vip3A toxin, representing the vast majority of Vips, has been used commercially in transgenic crops and bio-insecticides. However, the lack of both structural information on Vip3A and a clear understanding of its insecticidal mechanism at the molecular level limits its further development and broader application. Here we present the first crystal structure of the C-terminal fragment of Vip3A toxin (Vip3Aa11200–789). Since all members of this insecticidal protein family are highly conserved, the structure of Vip3A provides unique insight into the general domain architecture and protein fold of the Vip3A family of insecticidal toxins. Our structural analysis reveals a four-domain organization, featuring a potential membrane insertion region, a receptor binding domain, and two potential glycan binding domains of Vip3A. In addition, cytotoxicity assays and insect bioassays show that the purified C-terminal fragment of Vip3Aa toxin alone have no insecticidal activity. Taken together, these findings provide insights into the mode of action of the Vip3A family of insecticidal toxins and will boost the development of Vip3A into more efficient bio-insecticides.
Collapse
|
87
|
Raeman R, Hua G, Zhang Q, Adang MJ. Fluorescent analyses of Bacillus thuringiensis Cry1Fa and Cry1Ab toxin binding sites on brush border membrane vesicles of Ostrinia nubilalis (Hübner), Diatraea grandiosella (Dyar), and Helicoverpa zea (Boddie) larvae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104592. [PMID: 32527425 DOI: 10.1016/j.pestbp.2020.104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Bacillus thuringiensis (Bt) Cry1Fa and Cry1Ab proteins are important Cry toxins due to their high, selective toxicity against a number of lepidopteran species, including important pests of corn and cotton. Competition binding assays are a classical tool for investigating Cry toxin interactions with target pest insects. We developed a fluorescence-based binding assay and assessed Cry1Fa and Cry1Ab toxin binding to brush border membrane preparations from lepidopteran corn pests including Ostrinia nubilalis (European corn borer, ECB), Diatraea grandiosella (south western corn borer, SWCB), and Helicoverpa zea (corn earworm, CEW). Homologous and heterologous competition binding assays with fluorophore-(Alexa488)-labeled Cry1Fa toxin showed that Cry1Fa shares binding site(s) with Cry1Ab toxin in ECB, and SWCB for which Cry1Ab has higher affinity than Cry1Fa. Apart from the shared binding sites, Cry1Ab and Cry1Fa bind an additional site(s) in ECB and SWCB. In CEW, Cry1Fa and Cry1Ab each, has a high affinity binding site(s), which binds the heterologous toxin with low affinity. The Cry1Ab-Cry1Fa toxin binding models for ECB, SWCB and CEW based on our results are considered in the context of what is known about acquired cross-resistance against Cry1Ab and Cry1Fa toxins.
Collapse
Affiliation(s)
- Reben Raeman
- Departments of Entomology, University of Georgia, Athens, GA 30602-2603, United States of America
| | - Gang Hua
- Departments of Entomology, University of Georgia, Athens, GA 30602-2603, United States of America
| | - Qi Zhang
- Departments of Entomology, University of Georgia, Athens, GA 30602-2603, United States of America
| | - Michael J Adang
- Departments of Entomology, University of Georgia, Athens, GA 30602-2603, United States of America; Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-2603, United States of America.
| |
Collapse
|
88
|
Pinos D, Chakroun M, Millán-Leiva A, Jurat-Fuentes JL, Wright DJ, Hernández-Martínez P, Ferré J. Reduced Membrane-Bound Alkaline Phosphatase Does Not Affect Binding of Vip3Aa in a Heliothis virescens Resistant Colony. Toxins (Basel) 2020; 12:toxins12060409. [PMID: 32575644 PMCID: PMC7354626 DOI: 10.3390/toxins12060409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
The Vip3Aa insecticidal protein from Bacillus thuringiensis (Bt) is produced by specific transgenic corn and cotton varieties for efficient control of target lepidopteran pests. The main threat to this technology is the evolution of resistance in targeted insect pests and understanding the mechanistic basis of resistance is crucial to deploy the most appropriate strategies for resistance management. In this work, we tested whether alteration of membrane receptors in the insect midgut might explain the >2000-fold Vip3Aa resistance phenotype in a laboratory-selected colony of Heliothis virescens (Vip-Sel). Binding of 125I-labeled Vip3Aa to brush border membrane vesicles (BBMV) from 3rd instar larvae from Vip-Sel was not significantly different from binding in the reference susceptible colony. Interestingly, BBMV from Vip-Sel larvae showed dramatically reduced levels of membrane-bound alkaline phosphatase (mALP) activity, which was further confirmed by a strong downregulation of the membrane-bound alkaline phosphatase 1 (HvmALP1) gene. However, the involvement of HvmALP1 as a receptor for the Vip3Aa protein was not supported by results from ligand blotting and viability assays with insect cells expressing HvmALP1.
Collapse
Affiliation(s)
- Daniel Pinos
- Department of Genetics, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (M.C.); (A.M.-L.); (P.H.-M.)
| | - Maissa Chakroun
- Department of Genetics, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (M.C.); (A.M.-L.); (P.H.-M.)
| | - Anabel Millán-Leiva
- Department of Genetics, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (M.C.); (A.M.-L.); (P.H.-M.)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Denis J. Wright
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berks SL5 7PY, UK;
| | - Patricia Hernández-Martínez
- Department of Genetics, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (M.C.); (A.M.-L.); (P.H.-M.)
| | - Juan Ferré
- Department of Genetics, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (M.C.); (A.M.-L.); (P.H.-M.)
- Correspondence:
| |
Collapse
|
89
|
Huang J, Xu Y, Zuo Y, Yang Y, Tabashnik BE, Wu Y. Evaluation of five candidate receptors for three Bt toxins in the beet armyworm using CRISPR-mediated gene knockouts. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103361. [PMID: 32199887 DOI: 10.1016/j.ibmb.2020.103361] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 05/29/2023]
Abstract
Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) can provide safe and effective control of some major pests, but evolution of resistance by pests diminishes these benefits. Better understanding of the genetics and mechanisms of resistance is urgently needed to improve methods for monitoring, managing, and countering pest resistance to Bt toxins. Here we used CRISPR-mediated knockouts to evaluate the role of five genes encoding candidate Bt toxin receptors in Spodoptera exigua (beet armyworm), a devastating pest of vegetable, field and flower crops. We compared susceptibility to Bt toxins Cry1Ac, Cry1Fa, and Cry1Ca between the parent susceptible strain and each of five strains homozygous for the knockout of one of the candidate genes (SeAPN1, SeCad1, SeABCC1, SeABCC2 or SeABCC3). The results from the 15 pairwise comparisons reveal that SeABCC2 has a major role and SeCad1 a minor role in mediating toxicity of Cry1Ac and Cry1Fa. SeABCC2 also has a minor role in toxicity of Cry1Ca. In addition, the results imply little or no role for the other three candidate receptors in toxicity of Cry1Ac or Cry1Fa; or for the four candidate receptors other than SeABCC2 in toxicity of Cry1Ca.
Collapse
Affiliation(s)
- Jianlei Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yanjun Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yayun Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
90
|
Fabrick JA, LeRoy DM, Unnithan GC, Yelich AJ, Carrière Y, Li X, Tabashnik BE. Shared and Independent Genetic Basis of Resistance to Bt Toxin Cry2Ab in Two Strains of Pink Bollworm. Sci Rep 2020; 10:7988. [PMID: 32409635 PMCID: PMC7224296 DOI: 10.1038/s41598-020-64811-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
Evolution of pest resistance threatens the benefits of crops genetically engineered to produce insecticidal proteins from Bacillus thuringiensis (Bt). Field populations of the pink bollworm (Pectinophora gossypiella), a global pest of cotton, have evolved practical resistance to transgenic cotton producing Bt toxin Cry2Ab in India, but not in the United States. Previous results show that recessive mutations disrupting an autosomal ATP-binding cassette gene (PgABCA2) are associated with pink bollworm resistance to Cry2Ab in field-selected populations from India and in one lab-selected strain from the United States (Bt4-R2). Here we discovered that an independently derived, lab-selected Cry2Ab-resistant pink bollworm strain from the United States (BX-R) also harbors mutations that disrupt PgABCA2. Premature stop codons introduced by mis-splicing of PgABCA2 pre-mRNA were prevalent in field-selected larvae from India and in both lab-selected strains. The most common mutation in field-selected larvae from India was also detected in both lab-selected strains. Results from interstrain crosses indicate BX-R has at least one additional mechanism of resistance to Cry2Ab that does not involve PgABCA2 and is not completely recessive or autosomal. We conclude that recessive mutations disrupting PgABCA2 are the primary, but not the only, mechanism of resistance to Cry2Ab in pink bollworm.
Collapse
Affiliation(s)
- Jeffrey A Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA.
| | - Dannialle M LeRoy
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | | | - Alex J Yelich
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
91
|
Mutations in a Novel Cadherin Gene Associated with Bt Resistance in Helicoverpa zea. G3-GENES GENOMES GENETICS 2020; 10:1563-1574. [PMID: 32179620 PMCID: PMC7202007 DOI: 10.1534/g3.120.401053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transgenic corn and cotton produce crystalline (Cry) proteins derived from the soil bacterium Bacillus thuringiensis (Bt) that are toxic to lepidopteran larvae. Helicoverpa zea, a key pest of corn and cotton in the U.S., has evolved widespread resistance to these proteins produced in Bt corn and cotton. While the genomic targets of Cry selection and the mutations that produce resistant phenotypes are known in other lepidopteran species, little is known about how selection by Cry proteins shape the genome of H. zea. We scanned the genomes of Cry1Ac-selected and unselected H. zea lines, and identified twelve genes on five scaffolds that differed between lines, including cadherin-86C (cad-86C), a gene from a family that is involved in Cry1A resistance in other lepidopterans. Although this gene was expressed in the H. zea larval midgut, the protein it encodes has only 17 to 22% identity with cadherin proteins from other species previously reported to be involved in Bt resistance. An analysis of midgut-expressed cDNAs showed significant between-line differences in the frequencies of putative nonsynonymous substitutions (both SNPs and indels). Our results indicate that cad-86C is a likely target of Cry1Ac selection in H. zea. It remains unclear, however, whether genomic changes at this locus directly disrupt midgut binding of Cry1Ac and cause Bt resistance, or indirectly enhance fitness of H. zea in the presence of Cry1Ac by some other mechanism. Future work should investigate phenotypic effects of these nonsynonymous substitutions and their impact on fitness of H. zea larvae that ingest Cry1Ac.
Collapse
|
92
|
Wang X, Xu Y, Huang J, Jin W, Yang Y, Wu Y. CRISPR-Mediated Knockout of the ABCC2 Gene in Ostrinia furnacalis Confers High-Level Resistance to the Bacillus thuringiensis Cry1Fa Toxin. Toxins (Basel) 2020; 12:toxins12040246. [PMID: 32290427 PMCID: PMC7232378 DOI: 10.3390/toxins12040246] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022] Open
Abstract
The adoption of transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal crystalline (Cry) proteins has reduced insecticide application, increased yields, and contributed to food safety worldwide. However, the efficacy of transgenic Bt crops is put at risk by the adaptive resistance evolution of target pests. Previous studies indicate that resistance to Bacillus thuringiensis Cry1A and Cry1F toxins was genetically linked with mutations of ATP-binding cassette (ABC) transporter subfamily C gene ABCC2 in at least seven lepidopteran insects. Several strains selected in the laboratory of the Asian corn borer, Ostrinia furnacalis, a destructive pest of corn in Asian Western Pacific countries, developed high levels of resistance to Cry1A and Cry1F toxins. The causality between the O. furnacalisABCC2 (OfABCC2) gene and resistance to Cry1A and Cry1F toxins remains unknown. Here, we successfully generated a homozygous strain (OfC2-KO) of O. furnacalis with an 8-bp deletion mutation of ABCC2 by the CRISPR/Cas9 approach. The 8-bp deletion mutation results in a frame shift in the open reading frame of transcripts, which produced a predicted protein truncated in the TM4-TM5 loop region. The knockout strain OfC2-KO showed much more than a 300-fold resistance to Cry1Fa, and low levels of resistance to Cry1Ab and Cry1Ac (<10-fold), but no significant effects on the toxicities of Cry1Aa and two chemical insecticides (abamectin and chlorantraniliprole), compared to the background NJ-S strain. Furthermore, we found that the Cry1Fa resistance was autosomal, recessive, and significantly linked with the 8-bp deletion mutation of OfABCC2 in the OfC2-KO strain. In conclusion, in vivo functional investigation demonstrates the causality of the OfABCC2 truncating mutation with high-level resistance to the Cry1Fa toxin in O. furnacalis. Our results suggest that the OfABCC2 protein might be a functional receptor for Cry1Fa and reinforces the association of this gene to the mode of action of the Cry1Fa toxin.
Collapse
Affiliation(s)
| | | | | | | | | | - Yidong Wu
- Correspondence: ; Tel.: +86-25-8439-6062
| |
Collapse
|
93
|
Tabashnik BE, Carrière Y. Evaluating Cross-resistance Between Vip and Cry Toxins of Bacillus thuringiensis. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:553-561. [PMID: 31821498 DOI: 10.1093/jee/toz308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 05/27/2023]
Abstract
Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have revolutionized control of some major pests. Some recently introduced Bt crops make Vip3Aa, a vegetative insecticidal protein (Vip), which reportedly does not share binding sites or structural homology with the crystalline (Cry) proteins of Bt used widely in transgenic crops for more than two decades. Field-evolved resistance to Bt crops with practical consequences for pest control includes 21 cases that collectively reduce the efficacy of nine Cry proteins, but such practical resistance has not been reported yet for any Vip. Here, we review previously published data to evaluate cross-resistance between Vip and Cry toxins. We analyzed 31 cases based on 48 observations, with each case based on one to five observations assessing cross-resistance from pairwise comparisons between 21 resistant strains and 13 related susceptible strains of eight species of lepidopteran pests. Confirming results from previous analyses of smaller data sets, we found weak, statistically significant cross-resistance between Vip3 and Cry1 toxins, with a mean of 1.5-fold cross-resistance in 21 cases (range: 0.30-4.6-fold). Conversely, we did not detect significant positive cross-resistance between Vip3 toxins and Cry2Ab. Distinguishing between weak, significant cross-resistance, and no cross-resistance may be useful for better understanding mechanisms of resistance and effectively managing pest resistance to Bt crops.
Collapse
Affiliation(s)
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ
| |
Collapse
|
94
|
Kranthi KR, Stone GD. Long-term impacts of Bt cotton in India. NATURE PLANTS 2020; 6:188-196. [PMID: 32170289 DOI: 10.1038/s41477-020-0615-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/05/2020] [Indexed: 05/29/2023]
Abstract
Most scholarship on the closely-watched case of genetically modified Bacillus thuringiensis (Bt) cotton in India has focused on short-term impacts and has also ignored other major changes in India's cotton agriculture. This Perspective combines several data sources over a 20-year span to provide long-term comparisons of Bt adoption with yields and other inputs at both countrywide and state-specific scales. Bt cotton adoption is shown to be a poor indicator of yield trends but a strong indicator of initial reductions in pesticide use. Yield increases correspond to changes in fertilizer and other inputs. Bt cotton has continued to control one major cotton pest, but with Bt resistance in another pest and surging populations of non-target pests, farmers now spend more on pesticides today than before the introduction of Bt. Indications are that the situation will continue to deteriorate.
Collapse
Affiliation(s)
- K R Kranthi
- International Cotton Advisory Committee, Washington D.C., WA, USA
| | - Glenn Davis Stone
- Department of Anthropology, Washington University, St. Louis, MO, USA.
| |
Collapse
|
95
|
Wang J, Ma H, Zhao S, Huang J, Yang Y, Tabashnik BE, Wu Y. Functional redundancy of two ABC transporter proteins in mediating toxicity of Bacillus thuringiensis to cotton bollworm. PLoS Pathog 2020; 16:e1008427. [PMID: 32191775 PMCID: PMC7108736 DOI: 10.1371/journal.ppat.1008427] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/31/2020] [Accepted: 02/21/2020] [Indexed: 01/20/2023] Open
Abstract
Evolution of pest resistance reduces the efficacy of insecticidal proteins from the gram-positive bacterium Bacillus thuringiensis (Bt) used widely in sprays and transgenic crops. Better understanding of the genetic basis of resistance is needed to more effectively monitor, manage, and counter pest resistance to Bt toxins. Here we used CRISPR/Cas9 gene editing to clarify the genetics of Bt resistance and the associated effects on susceptibility to other microbial insecticides in one of the world's most damaging pests, the cotton bollworm (Helicoverpa armigera). We discovered that CRISPR-mediated knockouts of ATP-binding cassette (ABC) transporter genes HaABCC2 and HaABCC3 together caused >15,000-fold resistance to Bt toxin Cry1Ac, whereas knocking out either HaABCC2 or HaABCC3 alone had little or no effect. Inheritance of resistance was autosomal and recessive. Bioassays of progeny from interstrain crosses revealed that one wild type allele of either HaABCC2 or HaABCC3 is sufficient to sustain substantial susceptibility to Cry1Ac. In contrast with previous results, susceptibility to two insecticides derived from bacteria other than Bt (abamectin and spinetoram), was not affected by knocking out HaABCC2, HaABCC3, or both. The results here provide the first evidence that either HaABCC2 or HaABCC3 protein is sufficient to confer substantial susceptibility to Cry1Ac. The functional redundancy of these two proteins in toxicity of Cry1Ac to H. armigera is expected to reduce the likelihood of field-evolved resistance relative to disruption of a toxic process where mutations affecting a single protein can confer resistance.
Collapse
Affiliation(s)
- Jing Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Huanhuan Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shan Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jianlei Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bruce E. Tabashnik
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
96
|
Visser A, Du Plessis H, Erasmus A, Van den Berg J. Plant Abandonment by Busseola fusca (Lepidoptera: Noctuidae) Larvae: Do Bt Toxins Have an Effect? INSECTS 2020; 11:E77. [PMID: 31979149 PMCID: PMC7074050 DOI: 10.3390/insects11020077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/09/2023]
Abstract
Busseola fusca (Fuller; Lepidoptera: Noctuidae) is an important pest of maize in Africa and can be effectively controlled by Bt maize. However, the sustainability of this technology is threatened by resistance evolution, which necessitates the implementation of the high-dose/refuge insect resistance management (IRM) strategy. Despite the success of this IRM strategy, it is based on several assumptions about insect-hostplant interactions that are not always valid for different pest species. In this study, the plant abandonment behavior of Cry1Ab-resistant and susceptible B. fusca larvae were evaluated on a non-Bt, single toxin (Cry1Ab), and a pyramid event (Cry1.105 + Cry2Ab2) of maize over a four-day period. The aim was to determine if larvae are more likely to abandon maize plants that contain Bt-toxins than conventional non-Bt plants, and if resistance to the Cry1Ab-toxin affects this behavior. This study found that both Bt-resistant and susceptible B. fusca neonate larvae show feeding avoidance behavior and increased plant abandonment rates when exposed to Bt maize leaf tissue. The implications of these findings for the design of IRM strategies and choice of refuge structures are discussed in the context of Bt maize in Africa.
Collapse
Affiliation(s)
- Andri Visser
- Unit for Environmental Sciences and Management, IPM program, North-West University, Potchefstroom 2520, South Africa; (A.V.); (H.D.P.)
| | - Hannalene Du Plessis
- Unit for Environmental Sciences and Management, IPM program, North-West University, Potchefstroom 2520, South Africa; (A.V.); (H.D.P.)
| | - Annemie Erasmus
- Agricultural Research Council, Grain Crops, Private Bag X1251, Potchefstroom 2520, South Africa;
| | - Johnnie Van den Berg
- Unit for Environmental Sciences and Management, IPM program, North-West University, Potchefstroom 2520, South Africa; (A.V.); (H.D.P.)
| |
Collapse
|
97
|
Carrière Y, Degain B, Unnithan GC, Harpold VS, Li X, Tabashnik BE. Seasonal Declines in Cry1Ac and Cry2Ab Concentration in Maturing Cotton Favor Faster Evolution of Resistance to Pyramided Bt Cotton in Helicoverpa zea (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2907-2914. [PMID: 31587050 DOI: 10.1093/jee/toz236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 06/10/2023]
Abstract
Under ideal conditions, widely adopted transgenic crop pyramids producing two or more distinct insecticidal proteins from Bacillus thuringiensis (Bt) that kill the same pest can substantially delay evolution of resistance by pests. However, deviations from ideal conditions diminish the advantages of such pyramids. Here, we tested the hypothesis that changes in maturing cotton producing Cry1Ac and Cry2Ab affect evolution of resistance in Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), a pest with low inherent susceptibility to both toxins. In terminal leaves of field-grown Bt cotton, the concentration of both toxins was significantly higher for young, squaring plants than for old, fruiting plants. We used laboratory bioassays with plant material from field-grown cotton to test H. zea larvae from a strain selected for resistance to Cry1Ac in the laboratory, its more susceptible parent strain, and their F1 progeny. On young Bt cotton, no individuals survived to pupation. On old Bt cotton, survival to pupation was significantly higher for the lab-selected strain and the F1 progeny relative to the unselected parent strain, indicating dominant inheritance of resistance. Redundant killing, the extent to which insects resistant to one toxin are killed by another toxin in a pyramid, was complete on young Bt cotton, but not on old Bt cotton. No significant fitness costs associated with resistance were detected on young or old non-Bt cotton. Incorporation of empirical data into simulations indicates the observed increased selection for resistance on old Bt cotton could accelerate evolution of resistance to cotton producing Cry1Ac and Cry2Ab in H. zea.
Collapse
Affiliation(s)
- Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ
| | - Ben Degain
- Department of Entomology, University of Arizona, Tucson, AZ
| | | | | | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ
| | | |
Collapse
|
98
|
Smith JL, Farhan Y, Schaafsma AW. Practical Resistance of Ostrinia nubilalis (Lepidoptera: Crambidae) to Cry1F Bacillus thuringiensis maize discovered in Nova Scotia, Canada. Sci Rep 2019; 9:18247. [PMID: 31796764 PMCID: PMC6890797 DOI: 10.1038/s41598-019-54263-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/07/2019] [Indexed: 11/09/2022] Open
Abstract
Transgenic maize, Zea mays L., modified to express insecticidal proteins from the bacterium Bacillus thuringiensis Berliner, was introduced in 1996 to control Ostrinia nubilalis Hübner (Lepidoptera: Crambidae), a key maize pest in North America. The high-dose/refuge concept, developed to delay or prevent resistance evolution to this technology, has been exemplified by O. nubilalis as no cases of practical resistance were identified in >20 years. This study documents the first case of practical resistance to Cry1F Bt maize by O. nubilalis in North America. Four collections of O. nubilalis were made from Cry1F maize in Nova Scotia, Canada with unexpected injury (UXI) ranging from 30-70%. Greater survival of UXI collections was observed when larvae were exposed to the highest concentration of 200 ng Cry1F cm-2 in diet-overlay bioassays compared to susceptible laboratory colonies. Larvae also fed and survived on Cry1F leaf tissue in 7 d bioassays. A collection from non-Bt maize, 120 km west of the UXI region, also survived 200 ng Cry1F cm-2, but was susceptible to Cry1F leaf tissue. Detection of Cry1F-resistant O. nubilalis in what might be considered an insignificant maize-growing region indicates that a number of preventable causal factors may have been related to inadequate stewardship of Bt maize technology.
Collapse
Affiliation(s)
- Jocelyn L Smith
- Department of Plant Agriculture, Ridgetown Campus, University of Guelph, 120 Main St. E., Ridgetown, ON, N0P 2C0, Canada.
| | - Yasmine Farhan
- Department of Plant Agriculture, Ridgetown Campus, University of Guelph, 120 Main St. E., Ridgetown, ON, N0P 2C0, Canada
| | - Arthur W Schaafsma
- Department of Plant Agriculture, Ridgetown Campus, University of Guelph, 120 Main St. E., Ridgetown, ON, N0P 2C0, Canada
| |
Collapse
|
99
|
Wang Y, Quan Y, Yang J, Shu C, Wang Z, Zhang J, Gatehouse AMR, Tabashnik BE, He K. Evolution of Asian Corn Borer Resistance to Bt Toxins Used Singly or in Pairs. Toxins (Basel) 2019; 11:E461. [PMID: 31390820 PMCID: PMC6723947 DOI: 10.3390/toxins11080461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/30/2022] Open
Abstract
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized pest control, but the benefits of this approach have been reduced by the evolution of resistance in pests. The widely adopted 'pyramid strategy' for delaying resistance entails transgenic crops producing two or more distinct toxins that kill the same pest. The limited experimental evidence supporting this strategy comes primarily from a model system under ideal conditions. Here we tested the pyramid strategy under nearly worst-case conditions, including some cross-resistance between the toxins in the pyramid. In a laboratory selection experiment with an artificial diet, we used Bt toxins Cry1Ab, Cry1F, and Cry1Ie singly or in pairs against Ostrinia furnacalis, one of the most destructive pests of corn in Asia. Under the conditions evaluated, pairs of toxins did not consistently delay the evolution of resistance relative to single toxins.
Collapse
Affiliation(s)
- Yueqin Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yudong Quan
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changlong Shu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenying Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Kanglai He
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|