51
|
Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-β accumulation and independently accelerates the development of tau abnormalities. J Neurosci 2011; 31:9513-25. [PMID: 21715616 DOI: 10.1523/jneurosci.0858-11.2011] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized pathologically by progressive neuronal loss, extracellular plaques containing the amyloid-β (Aβ) peptides, and neurofibrillary tangles composed of hyperphosphorylated tau proteins. Aβ is thought to act upstream of tau, affecting its phosphorylation and therefore aggregation state. One of the major risk factors for AD is traumatic brain injury (TBI). Acute intra-axonal Aβ and diffuse extracellular plaques occur in ∼30% of human subjects after severe TBI. Intra-axonal accumulations of tau but not tangle-like pathologies have also been found in these patients. Whether and how these acute accumulations contribute to subsequent AD development is not known, and the interaction between Aβ and tau in the setting of TBI has not been investigated. Here, we report that controlled cortical impact TBI in 3xTg-AD mice resulted in intra-axonal Aβ accumulations and increased phospho-tau immunoreactivity at 24 h and up to 7 d after TBI. Given these findings, we investigated the relationship between Aβ and tau pathologies after trauma in this model by systemic treatment of Compound E to inhibit γ-secretase activity, a proteolytic process required for Aβ production. Compound E treatment successfully blocked posttraumatic Aβ accumulation in these injured mice at both time points. However, tau pathology was not affected. Our data support a causal role for TBI in acceleration of AD-related pathologies and suggest that TBI may independently affect Aβ and tau abnormalities. Future studies will be required to assess the behavioral and long-term neurodegenerative consequences of these pathologies.
Collapse
|
52
|
Traumatic brain injury and amyloid-β pathology: a link to Alzheimer's disease? Nat Rev Neurosci 2011; 11:361-70. [PMID: 20216546 DOI: 10.1038/nrn2808] [Citation(s) in RCA: 419] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Traumatic brain injury (TBI) has devastating acute effects and in many cases seems to initiate long-term neurodegeneration. Indeed, an epidemiological association between TBI and the development of Alzheimer's disease (AD) later in life has been demonstrated, and it has been shown that amyloid-β (Aβ) plaques — one of the hallmarks of AD — may be found in patients within hours following TBI. Here, we explore the mechanistic underpinnings of the link between TBI and AD, focusing on the hypothesis that rapid Aβ plaque formation may result from the accumulation of amyloid precursor protein in damaged axons and a disturbed balance between Aβ genesis and catabolism following TBI.
Collapse
|
53
|
Blaylock RL, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. Surg Neurol Int 2011; 2:107. [PMID: 21886880 PMCID: PMC3157093 DOI: 10.4103/2152-7806.83391] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/06/2011] [Indexed: 12/17/2022] Open
Abstract
Some individuals suffering from mild traumatic brain injuries, especially repetitive mild concussions, are thought to develop a slowly progressive encephalopathy characterized by a number of the neuropathological elements shared with various neurodegenerative diseases. A central pathological mechanism explaining the development of progressive neurodegeneration in this subset of individuals has not been elucidated. Yet, a large number of studies indicate that a process called immunoexcitotoxicity may be playing a central role in many neurodegenerative diseases including chronic traumatic encephalopathy (CTE). The term immunoexcitotoxicity was first coined by the lead author to explain the evolving pathological and neurodevelopmental changes in autism and the Gulf War Syndrome, but it can be applied to a number of neurodegenerative disorders. The interaction between immune receptors within the central nervous system (CNS) and excitatory glutamate receptors trigger a series of events, such as extensive reactive oxygen species/reactive nitrogen species generation, accumulation of lipid peroxidation products, and prostaglandin activation, which then leads to dendritic retraction, synaptic injury, damage to microtubules, and mitochondrial suppression. In this paper, we discuss the mechanism of immunoexcitotoxicity and its link to each of the pathophysiological and neurochemical events previously described with CTE, with special emphasis on the observed accumulation of hyperphosphorylated tau.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences, LLC Visiting Professor of Biology, Belhaven University, Jackson, MS 315 Rolling Meadows Rd, Ridgeland, MS 39157, USA
| | | |
Collapse
|
54
|
Huggins JM, Brown JN, Capehart B, Townsend ML, Legge J, Melnyk SD. Medication adherence in combat veterans with traumatic brain injury. Am J Health Syst Pharm 2011; 68:254-8. [DOI: 10.2146/ajhp090629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
| | - Jamie N. Brown
- Drug Information, Pharmacy Service, Durham Veterans Affairs Medical Center (VAMC), Durham, NC
| | - Bruce Capehart
- OEF/OIF Program, Durham VAMC, and Assistant Professor, Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham
| | - Mary L. Townsend
- School of Pharmacy, Campbell University, Buies Creek, NC, and Clinical Pharmacist, Pharmacy Service, Durham VAMC
| | | | | |
Collapse
|
55
|
Loane DJ, Washington PM, Vardanian L, Pocivavsek A, Hoe HS, Duff KE, Cernak I, Rebeck GW, Faden AI, Burns MP. Modulation of ABCA1 by an LXR agonist reduces β-amyloid levels and improves outcome after traumatic brain injury. J Neurotrauma 2011; 28:225-36. [PMID: 21175399 PMCID: PMC3037807 DOI: 10.1089/neu.2010.1595] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) increases brain beta-amyloid (Aβ) in humans and animals. Although the role of Aβ in the injury cascade is unknown, multiple preclinical studies have demonstrated a correlation between reduced Aβ and improved outcome. Therefore, therapeutic strategies that enhance Aβ clearance may be beneficial after TBI. Increased levels of ATP-binding cassette A1 (ABCA1) transporters can enhance Aβ clearance through an apolipoprotein E (apoE)-mediated pathway. By measuring Aβ and ABCA1 after experimental TBI in C57BL/6J mice, we found that Aβ peaked early after injury (1-3 days), whereas ABCA1 had a delayed response (beginning at 3 days). As ABCA1 levels increased, Aβ levels returned to baseline levels-consistent with the known role of ABCA1 in Aβ clearance. To test if enhancing ABCA1 levels could block TBI-induced Aβ, we treated TBI mice with the liver X-receptor (LXR) agonist T0901317. Pre- and post-injury treatment increased ABCA1 levels at 24 h post-injury, and reduced the TBI-induced increase in Aβ. This reduction in Aβ was not due to decreased amyloid precursor protein processing, or a shift in the solubility of Aβ, indicating enhanced clearance. T0901317 also limited motor coordination deficits in injured mice and reduced brain lesion volume. These data indicate that activation of LXR can reduce Aβ accumulation after TBI, and is accompanied by improved functional recovery.
Collapse
Affiliation(s)
- David J. Loane
- Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Lilit Vardanian
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C
| | - Ana Pocivavsek
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C
| | - Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C
| | - Karen E. Duff
- Department of Pathology, Taub Institute for Alzheimer Disease Research, and Integrative Neuroscience New York State Psychiatric Institute, Columbia University Medical Center, New York, New York
| | - Ibolja Cernak
- Johns Hopkins University, Applied Physics Laboratory, Laurel, Maryland
| | - G. William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C
| | - Alan I. Faden
- Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, National Study Center for Trauma and EMS, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mark P. Burns
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C
| |
Collapse
|
56
|
Abstract
Traumatic brain injury (TBI) is seen by the insurance industry and many health care providers as an "event." Once treated and provided with a brief period of rehabilitation, the perception exists that patients with a TBI require little further treatment and face no lasting effects on the central nervous system or other organ systems. In fact, TBI is a chronic disease process, one that fits the World Health Organization definition as having one or more of the following characteristics: it is permanent, caused by non-reversible pathological alterations, requires special training of the patient for rehabilitation, and/or may require a long period of observation, supervision, or care. TBI increases long-term mortality and reduces life expectancy. It is associated with increased incidences of seizures, sleep disorders, neurodegenerative diseases, neuroendocrine dysregulation, and psychiatric diseases, as well as non-neurological disorders such as sexual dysfunction, bladder and bowel incontinence, and systemic metabolic dysregulation that may arise and/or persist for months to years post-injury. The purpose of this article is to encourage the classification of TBI as the beginning of an ongoing, perhaps lifelong process, that impacts multiple organ systems and may be disease causative and accelerative. Our intent is not to discourage patients with TBI or their families and caregivers, but rather to emphasize that TBI should be managed as a chronic disease and defined as such by health care and insurance providers. Furthermore, if the chronic nature of TBI is recognized by government and private funding agencies, research can be directed at discovering therapies that may interrupt the disease processes months or even years after the initiating event.
Collapse
Affiliation(s)
- Brent E Masel
- Department of Neurology, Transitional Learning Center at Galveston, The Moody Center for Traumatic Brain & Spinal Cord Injury Research/Mission Connect, The University of Texas Medical Branch, Galveston, Texas 77550, USA.
| | | |
Collapse
|
57
|
PKC activator therapeutic for mild traumatic brain injury in mice. Neurobiol Dis 2010; 41:329-37. [PMID: 20951803 DOI: 10.1016/j.nbd.2010.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/25/2010] [Accepted: 10/02/2010] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) is a frequent consequence of vehicle, sport and war related injuries. More than 90% of TBI patients suffer mild injury (mTBI). However, the pathologies underlying the disease are poorly understood and treatment modalities are limited. We report here that in mice, the potent PKC activator bryostatin1 protects against mTBI induced learning and memory deficits and reduction in pre-synaptic synaptophysin and post-synaptic spinophylin immunostaining. An effective treatment has to start within the first 8h after injury, and includes 5 × i.p. injections over a period of 14 days. The treatment is dose dependent. Exploring the effects of the repeated bryostatin1 treatment on the processing of the amyloid precursor protein, we found that the treatment induced an increase in the putative α-secretase ADAM10 and a reduction in β-secretase activities. Both these effects could contribute towards a reduction in β-amyloid production. These results suggest that bryostatin1 protects against mTBI cognitive and synaptic sequela by rescuing synapses, which is possibly mediated by an increase in ADAM10 and a decrease in BACE1 activity. Since bryostatin1 has already been extensively used in clinical trials as an anti-cancer drug, its potential as a remedy for the short- and long-term TBI sequelae is quite promising.
Collapse
|
58
|
Johnson VE, Stewart W, Graham DI, Stewart JE, Praestgaard AH, Smith DH. A neprilysin polymorphism and amyloid-beta plaques after traumatic brain injury. J Neurotrauma 2010; 26:1197-202. [PMID: 19326964 DOI: 10.1089/neu.2008.0843] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) induces the rapid formation of Alzheimer's disease (AD)-like amyloid-beta (AB) plaques in about 30% of patients. However, the mechanisms behind this selective plaque formation are unclear. We investigated a potential association between amyloid deposition acutely after TBI and a genetic polymorphism of the AB-degrading enzyme, neprilysin (n = 81). We found that the length of the GT repeats in AB-accumulators was longer than in non-accumulators. Specifically, there was an increased risk of AB plaques for patients with more than 41 total repeats (p < 0.0001; OR: 10.1). In addition, the presence of 22 repeats in at least one allele was independently associated with plaque deposition (p = 0.03; OR: 5.2). In contrast, the presence of 20 GT repeats in one allele was independently associated with a reduced incidence of AB deposition (p = 0.003). These data suggest a genetically linked mechanism that determines which TBI patients will rapidly form AB plaques. Moreover, these findings provide a potential genetic screening test for individuals at high risk of TBI, such as participants in contact sports and military personnel.
Collapse
Affiliation(s)
- Victoria E Johnson
- Penn Center for Brain Injury and Repair, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
59
|
Kasturi BS, Stein DG. Traumatic brain injury causes long-term reduction in serum growth hormone and persistent astrocytosis in the cortico-hypothalamo-pituitary axis of adult male rats. J Neurotrauma 2010. [PMID: 19317601 DOI: 10.1089/neu.2008-075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED In humans, traumatic brain injury (TBI) causes pathological changes in the hypothalamus (HT) and the pituitary. One consequence of TBI is hypopituitarism, with deficiency of single or multiple hormones of the anterior pituitary (AP), including growth hormone (GH). At present no animal model of TBI with ensuing hypopituitarism has been demonstrated. The main objective of this study was to investigate whether cortical contusion injury (CCI) could induce long-term reduction of serum GH in rats. We also tested the hypothesis that TBI to the medial frontal cortex (MFC) would induce inflammatory changes in the HT and AP. METHODS Nine young adult male rats were given sham surgery (n = 4) or controlled impact contusions (n = 5) of the MFC. Two months post-injury they were killed, trunk blood collected and their brains and AP harvested. GH was measured in serum and AP using ELISA and Western blot respectively. Interleukin-1beta (IL-1beta) and glial fibrillary acidic protein (GFAP) were measured in the cortex (Cx), HT, and AP by Western blot. RESULTS Lesion rats had significantly (p < 0.05) lower levels of GH in the AP and serum, unaltered serum IGF-1, and significantly (p < 0.05) higher levels of IL-1beta in the Cx and HT and GFAP in the Cx, HT, and AP compared to that of shams. CONCLUSION CCI leads to a long-term depletion of serum GH in male rats. This chronic change in GH post-TBI is probably the result of systemic and persistent inflammatory changes observed at the level of HT and AP, the mechanism of which is not yet known.
Collapse
|
60
|
Kasturi BS, Stein DG. Traumatic brain injury causes long-term reduction in serum growth hormone and persistent astrocytosis in the cortico-hypothalamo-pituitary axis of adult male rats. J Neurotrauma 2010; 26:1315-24. [PMID: 19317601 DOI: 10.1089/neu.2008.0751] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED In humans, traumatic brain injury (TBI) causes pathological changes in the hypothalamus (HT) and the pituitary. One consequence of TBI is hypopituitarism, with deficiency of single or multiple hormones of the anterior pituitary (AP), including growth hormone (GH). At present no animal model of TBI with ensuing hypopituitarism has been demonstrated. The main objective of this study was to investigate whether cortical contusion injury (CCI) could induce long-term reduction of serum GH in rats. We also tested the hypothesis that TBI to the medial frontal cortex (MFC) would induce inflammatory changes in the HT and AP. METHODS Nine young adult male rats were given sham surgery (n = 4) or controlled impact contusions (n = 5) of the MFC. Two months post-injury they were killed, trunk blood collected and their brains and AP harvested. GH was measured in serum and AP using ELISA and Western blot respectively. Interleukin-1beta (IL-1beta) and glial fibrillary acidic protein (GFAP) were measured in the cortex (Cx), HT, and AP by Western blot. RESULTS Lesion rats had significantly (p < 0.05) lower levels of GH in the AP and serum, unaltered serum IGF-1, and significantly (p < 0.05) higher levels of IL-1beta in the Cx and HT and GFAP in the Cx, HT, and AP compared to that of shams. CONCLUSION CCI leads to a long-term depletion of serum GH in male rats. This chronic change in GH post-TBI is probably the result of systemic and persistent inflammatory changes observed at the level of HT and AP, the mechanism of which is not yet known.
Collapse
|
61
|
Aksenov MY, Aksenova MV, Mactutus CF, Booze RM. HIV-1 protein-mediated amyloidogenesis in rat hippocampal cell cultures. Neurosci Lett 2010; 475:174-8. [PMID: 20363291 DOI: 10.1016/j.neulet.2010.03.073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/24/2010] [Accepted: 03/26/2010] [Indexed: 10/25/2022]
Abstract
Since the beginning of the highly active antiretroviral therapy (HAART) era, epidemiological evidence indicates an increasing incidence of Alzheimer's (AD)-like brain pathology in aging HIV patients. Emerging evidence warns of potential convergent mechanisms underlying HIV- and Abeta-mediated neurodegeneration. We found that HIV-1 Tat B and gp120 promote the secretion of Abeta 1-42 in primary rat fetal hippocampal cell cultures. Our results demonstrate that the variant of Tat expressed by the neurotropic subtype of HIV-1 virus (HIV-1 clade B) specifically induces both the release of amyloidogenic Abeta 1-42 and the accumulation of cell-bound amyloid aggregates. The results of the research rationalize testing of the ability of beta-amyloid aggregation inhibitors to attenuate HIV protein-mediated cognitive deficits in animal models of NeuroAIDS. The long-term goal of the study is to evaluate the potential benefits of anti-amyloidogenic therapies for management of cognitive dysfunction in aging HIV-1 patients.
Collapse
Affiliation(s)
- M Y Aksenov
- Program in Behavioral Neuroscience, University of South Carolina, United States.
| | | | | | | |
Collapse
|
62
|
Temporal-spatial expression of presenilin 1 and the production of amyloid-beta after acute spinal cord injury in adult rat. Neurochem Int 2009; 56:387-93. [PMID: 19932144 DOI: 10.1016/j.neuint.2009.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/04/2009] [Accepted: 11/10/2009] [Indexed: 01/03/2023]
Abstract
Regulated intramembrane proteolysis (RIP) is one of the signaling pathways mediating information transfer from the extracellular to the intracellular domain. gamma-Secretase is an aspartyl protease of the RIP that cleaves the intramembrane region of type I integral membrane proteins, such as amyloid precursor protein (APP). Presenilin 1 (PS1) is the catalytic subunit of gamma-secretase and PS1 mutations cause Alzheimer's disease, spastic paraplegia and spinal cord atrophy. The biological function of PS1 in the spinal cord has not been fully elucidated. Thus, to clarify the involvement of RIP in spinal cord injury, we examined the expression of PS1, APP and amyloid-beta protein (Abeta) following rat spinal cord hemisection. Western blot analysis showed that PS1, APP and Abeta levels increased 1 day after spinal cord hemisection. Immunohistochemistry showed an increased number of PS1 immunopositive cells about 1mm from the lesion site. PS1, APP and Abeta double staining with cell-type specific markers showed colocalization of PS1 with axons in the white matter of the lesioned side. These findings suggest that RIP signaling occurs following rat spinal cord injury. In the future, the control of RIP may offer a new strategy for the treatment of spinal cord injury.
Collapse
|
63
|
Perez JL, Carrero I, Gonzalo P, Arevalo-Serrano J, Sanz-Anquela JM, Ortega J, Rodriguez M, Gonzalo-Ruiz A. Soluble oligomeric forms of beta-amyloid (Abeta) peptide stimulate Abeta production via astrogliosis in the rat brain. Exp Neurol 2009; 223:410-21. [PMID: 19879263 DOI: 10.1016/j.expneurol.2009.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 09/29/2009] [Accepted: 10/17/2009] [Indexed: 10/20/2022]
Abstract
The aim of this study was to investigate the interaction between beta-amyloid (Abeta) peptide and astrogliosis in early stages of Abeta toxicity. In Wistar rats, anaesthetised with equitesine, a single microinjection of Abeta1-42 oligomers was placed into the retrosplenial cortex. Control animals were injected with Abeta42-1 peptide into the corresponding regions of cerebral cortex. Immunocytochemical analysis revealed an intense Abeta immunoreactivity (IR) at the level of Abeta1-42 injection site, increasing from the first 24 h to later (72 h) time point. Control injection showed a light staining surrounding the injection site. In Abeta oligomers-treated animals, Abeta-immunopositive product also accumulates in cortical cells, particularly in frontal and temporal cortices at an early (24 h) time point. Abeta-IR structures-like diffuse aggregates forms were also observed in hippocampus and in several cortical areas, increasing from the first 24 h to later (72 h) time point. In control animals no specific staining was seen neither in cortical cells nor in structures-like diffuse aggregates forms. Injections of Abeta oligomers also induce activation of astrocytes surrounding and infiltrating the injection site. Astrocyte activation is evidenced by morphological changes and upregulation of glial fibrillary acidic protein (GFAP). By GFAP immunoblotting we detected two immunopositive protein bands, at 50 and 48 kDa molecular mass. Confocal analysis also showed that GFAP co-localized with Abeta-IR material in a time-dependent manner. In conclusion, our results indicate that astrocyte activation might have a critical role in the mechanisms of Abeta-induced neurodegeneration, and that should be further studied as possible targets for therapeutic intervention in AD.
Collapse
Affiliation(s)
- J L Perez
- Laboratory of Neuroanatomy, Institute of Neuroscience of Castilla and León, Valladolid University (Campus of Soria), Spain
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Marklund N, Blennow K, Zetterberg H, Ronne-Engström E, Enblad P, Hillered L. Monitoring of brain interstitial total tau and beta amyloid proteins by microdialysis in patients with traumatic brain injury. J Neurosurg 2009; 110:1227-37. [PMID: 19216653 DOI: 10.3171/2008.9.jns08584] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Damage to axons contributes to postinjury disabilities and is commonly observed following traumatic brain injury (TBI). Traumatic brain injury is an important environmental risk factor for the development of Alzheimer disease (AD). In the present feasibility study, the aim was to use intracerebral microdialysis catheters with a high molecular cutoff membrane (100 kD) to harvest interstitial total tau (T-tau) and amyloid beta 1-42 (Abeta42) proteins, which are important biomarkers for axonal injury and for AD, following moderate-to-severe TBI. METHODS Eight patients (5 men and 3 women) were included in the study; 5 of the patients had a focal/mixed TBI and 3 had a diffuse axonal injury (DAI). Following the bedside analysis of the routinely measured energy metabolic markers (that is, glucose, lactate/pyruvate ratio, glycerol, and glutamate), the remaining dialysate was pooled and two 12-hour samples per day were used to analyze T-tau and Abeta42 by enzyme-linked immunosorbent assay from Day 1 up to 8 days postinjury. RESULTS The results show high levels of interstitial T-tau and Abeta42 postinjury. Patients with a predominantly focal lesion had higher interstitial T-tau levels than in the DAI group from Days 1 to 3 postinjury (p < 0.05). In contrast, patients with DAI had consistently higher Abeta42 levels when compared with patients with focal injury. CONCLUSIONS These results suggest that monitoring of interstitial T-tau and Abeta42 by using microdialysis may be an important tool when evaluating the presence and role of axonal injury following TBI.
Collapse
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University Hospital, Uppsala, Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
65
|
Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. Nat Med 2009; 15:377-9. [PMID: 19287391 DOI: 10.1038/nm.1940] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 02/18/2009] [Indexed: 02/04/2023]
Abstract
Amyloid-beta (Abeta) peptides, found in Alzheimer's disease brain, accumulate rapidly after traumatic brain injury (TBI) in both humans and animals. Here we show that blocking either beta- or gamma-secretase, enzymes required for production of Abeta from amyloid precursor protein (APP), can ameliorate motor and cognitive deficits and reduce cell loss after experimental TBI in mice. Thus, APP secretases are promising targets for treatment of TBI.
Collapse
|
66
|
Chen XH, Johnson VE, Uryu K, Trojanowski JQ, Smith DH. A lack of amyloid beta plaques despite persistent accumulation of amyloid beta in axons of long-term survivors of traumatic brain injury. Brain Pathol 2008; 19:214-23. [PMID: 18492093 DOI: 10.1111/j.1750-3639.2008.00176.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Traumatic brain injury (TBI) is a risk factor for developing Alzheimer's disease (AD). Additionally, TBI induces AD-like amyloid beta (Abeta) plaque pathology within days of injury potentially resulting from massive accumulation of amyloid precursor protein (APP) in damaged axons. Here, progression of Abeta accumulation was examined using brain tissue from 23 cases with post-TBI survival of up to 3 years. Even years after injury, widespread axonal pathology was consistently observed and was accompanied by intra-axonal co-accumulations of APP with its cleavage enzymes, beta-site APP cleaving enzyme and presenilin-1 and their product, Abeta. However, in marked contrast to the plaque pathology noted in short-term cases post TBI, virtually no Abeta plaques were found in long-term survivors. A potential mechanism for Abeta plaque regression was suggested by the post-injury accumulation of an Abeta degrading enzyme, neprilysin. These findings fail to support the premise that progressive plaque pathology after TBI ultimately results in AD.
Collapse
Affiliation(s)
- Xiao-Han Chen
- Department of Neurosurgery, School of Medicine, University of Pennsylvania, 3320 Smith Walk, Philadelphia, PA 19104-6316, USA
| | | | | | | | | |
Collapse
|
67
|
Clarke J, Thornell A, Corbett D, Soininen H, Hiltunen M, Jolkkonen J. Overexpression of APP provides neuroprotection in the absence of functional benefit following middle cerebral artery occlusion in rats. Eur J Neurosci 2008; 26:1845-52. [PMID: 17897395 DOI: 10.1111/j.1460-9568.2007.05807.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cerebral ischaemia leads to a transient accumulation of beta-amyloid precursor protein (APP) and beta-amyloid (Abeta) peptides adjacent to the ischaemic lesion. There is conflicting evidence that APP/Abeta fragments may either enhance neuronal plasticity or be neurotoxic. The aim of the current study was to assess the effect of overexpression of human APP in rats on functional recovery following cerebral ischaemia. Adult APP-overexpressing (hAPP695 Tg) rats subjected to transient middle cerebral artery occlusion (MCAO) had significantly smaller infarct volumes than non-transgenic littermates, yet did not perform better on a series of sensorimotor or learning tests during a 6-month follow-up period. In fact, transgenic animals were found to be significantly more impaired in both the beam-walking and Morris water maze tests following MCAO. Immunohistochemistry showed human Abeta-positive staining in the cortex and hippocampus of APP transgenic rats. The present data suggest that while overexpression of APP in rats may provide some histological neuroprotection in the event of cerebral ischaemia, this does not translate into significant functional recovery.
Collapse
Affiliation(s)
- Jared Clarke
- BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | | | | | | | | | | |
Collapse
|
68
|
Apolipoprotein E receptors and amyloid expression are modulated in an apolipoprotein E-dependent fashion in response to hippocampal deafferentation in rodent. Neuroscience 2007; 150:58-63. [PMID: 17935896 DOI: 10.1016/j.neuroscience.2007.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/18/2007] [Accepted: 07/09/2007] [Indexed: 11/23/2022]
Abstract
The entorhinal cortex lesion paradigm is a widely accepted and efficient method to provoke reactive synaptogenesis and terminal remodeling in the adult CNS. This approach has been used successfully to contrast the profile of reactivity from various proteins associated with Alzheimer's disease pathophysiology in wild-type and apolipoprotein E (apoE)-deficient (APOE ko) mice. Results indicate that the production of the beta-amyloid 1-40 peptide (A beta 40) is increased in response to neuronal injury, with a timing that is different between wild-type and APOE ko animals. Moreover, we report that baseline levels of the A beta 40 peptide are significantly higher in the APOE ko mice. The expression of the apolipoprotein E receptor type 2 (apoER2) is also modulated by the deafferentation process in the hippocampus, but only in APOE ko mice. These results provide novel insights as to the molecular mechanisms responsible for the poor plastic response reported in apoE4-expressing and apoE deficient mice in response to hippocampal injury.
Collapse
|
69
|
Uryu K, Chen XH, Martinez D, Browne KD, Johnson VE, Graham DI, Lee VMY, Trojanowski JQ, Smith DH. Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp Neurol 2007; 208:185-92. [PMID: 17826768 PMCID: PMC3979356 DOI: 10.1016/j.expneurol.2007.06.018] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/05/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
Studies in animal models have shown that traumatic brain injury (TBI) induces the rapid accumulation of many of the same key proteins that form pathologic aggregates in neurodegenerative diseases. Here, we examined whether this rapid process also occurs in humans after TBI. Brain tissue from 18 cases who died after TBI and from 6 control cases was examined using immunohistochemistry. Following TBI, widespread axonal injury was persistently identified by the accumulation of neurofilament protein and amyloid precursor protein (APP) in axonal bulbs and varicosities. Axonal APP was found to co-accumulate with its cleavage enzymes, beta-site APP cleaving enzyme (BACE), presenilin-1 (PS1) and their product, amyloid-beta (Abeta). In addition, extensive accumulation of alpha-synuclein (alpha-syn) was found in swollen axons and tau protein was found to accumulate in both axons and neuronal cell bodies. These data show rapid axonal accumulation of proteins implicated in neurodegenerative diseases including Alzheimer's disease and the synucleinopathies. The cause of axonal pathology can be attributed to disruption of axons due to trauma, or as a secondary effect of raised intracranial pressure or hypoxia. Such axonal pathology in humans may provide a unique environment whereby co-accumulation of APP, BACE, and PS1 leads to intra-axonal production of Abeta as well as accumulation of alpha-syn and tau. This process may have important implications for survivors of TBI who have been shown to be at greater risk of developing neurodegenerative diseases.
Collapse
Affiliation(s)
- Kunihiro Uryu
- The Center for Neurodegenerative Disease Research, Pathology and Laboratory Medicine, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Diffuse types of traumatic brain injury (TBI) are more difficult to diagnose than focal types in forensic postmortem examination, since macroscopic abnormalities may be minimal. In addition, most microscopic findings are not specific to TBI and are sometimes not obvious in cases when the survival period is short. Therefore, early diagnosis of diffuse TBI is most difficult. Histopathological and immunohistochemical examinations of various elements including axons, nerve cells, and glial cells in a sufficient number of blocks are indispensable. Mapping of changes in these elements with complicated focal lesions, even if the lesions are trivial, on anatomical diagrams would be useful. The combination of histopathological and immunohistochemical examinations as well as analysis of the exact history of the trauma, if possible, and elimination of other causes of death would lead to accurate diagnosis of diffuse types of TBI in cases when the survival period is brief.
Collapse
Affiliation(s)
- Mamoru Ogata
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| |
Collapse
|
71
|
Van Den Heuvel C, Thornton E, Vink R. Traumatic brain injury and Alzheimer's disease: a review. PROGRESS IN BRAIN RESEARCH 2007; 161:303-16. [PMID: 17618986 DOI: 10.1016/s0079-6123(06)61021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In an effort to identify the factors that are involved in the pathogenesis of Alzheimer's disease (AD), epidemiological studies have featured prominently in contemporary research. Of those epidemiological factors, accumulating evidence implicates traumatic brain injury (TBI) as a possible predisposing factor in AD development. Exactly how TBI triggers the neurodegenerative cascade of events in AD remains controversial. There has been extensive research directed towards understanding the potential relationship between TBI and AD and the putative influence that apolipoprotein E (APOE) genotype has on this relationship. The aim of the current paper is to provide a critical summary of the experimental and human studies regarding the association between TBI, AD and APOE genotype. It will be shown that despite significant discrepancies in the literature, there still appears to be an increasing trend to support the hypothesis that TBI is a potential risk factor for AD. Furthermore, although it is known that APOE genotype plays an important role in AD, its link to a deleterious outcome following TBI remains inconclusive and ambiguous.
Collapse
Affiliation(s)
- Corinna Van Den Heuvel
- Discipline of Pathology, University of Adelaide, Centre for Neurological Diseases, The Hanson Institute, Adelaide, Australia.
| | | | | |
Collapse
|
72
|
Thornton E, Vink R, Blumbergs PC, Van Den Heuvel C. Soluble amyloid precursor protein α reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats. Brain Res 2006; 1094:38-46. [PMID: 16697978 DOI: 10.1016/j.brainres.2006.03.107] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 03/14/2006] [Accepted: 03/23/2006] [Indexed: 11/23/2022]
Abstract
Amyloid precursor protein (APP) has previously been shown to increase following traumatic brain injury (TBI). Whereas a number of investigators assume that increased APP may lead to the production of neurotoxic Abeta and be deleterious to outcome, the soluble alpha form of APP (sAPPalpha) is a product of the non-amyloidogenic cleavage of amyloid precursor protein that has previously been shown in vitro to have many neuroprotective and neurotrophic functions. However, no study to date has addressed whether sAPPalpha may be neuroprotective in vivo. The present study examined the effects of in vivo, posttraumatic sAPPalpha administration on functional motor outcome, cellular apoptosis, and axonal injury following severe impact-acceleration TBI in rats. Intracerebroventricular administration of sAPPalpha at 30 min posttrauma significantly improved motor outcome compared to vehicle-treated controls as assessed using the rotarod task. Immunohistochemical analysis using antibodies directed toward caspase-3 showed that posttraumatic treatment with sAPPalpha significantly reduced the number of apoptotic neuronal perikarya within the hippocampal CA3 region and within the cortex 3 days after injury compared to vehicle-treated animals. Similarly, sAPPalpha-treated animals demonstrated a reduction in axonal injury within the corpus callosum at all time points, with the reduction being significant at both 3 and 7 days postinjury. Our results demonstrate that in vivo administration of sAPPalpha improves functional outcome and reduces neuronal cell loss and axonal injury following severe diffuse TBI in rats. Promotion of APP processing toward sAPPalpha may thus be a novel therapeutic strategy in the treatment of TBI.
Collapse
Affiliation(s)
- Emma Thornton
- Department of Pathology Level 3, Medical School North, The University of Adelaide South Australia, Australia 5005
| | | | | | | |
Collapse
|
73
|
Iwata A, Browne KD, Chen XH, Yuguchi T, Smith DH. Traumatic brain injury induces biphasic upregulation of ApoE and ApoJ protein in rats. J Neurosci Res 2006; 82:103-14. [PMID: 16118797 DOI: 10.1002/jnr.20607] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Apolipoproteins play an important role in cell repair and have been found to increase shortly after traumatic brain injury (TBI). In addition, apolipoproteins reduce amyloid-beta (Abeta) accumulation in models of Alzheimer's disease. Considering that TBI induces progressive neurodegeneration including Abeta accumulation, we explored potential long-term changes in the gene and protein expression of apolipoproteins E and J (ApoE and J) over 6 months after injury. Anesthetized male Sprague-Dawley rats were subjected to parasagittal fluid-percussion brain injury and their brains were evaluated at 2, 4, 7, 14 days, and 1 and 6 months after TBI. In situ hybridization, Western blot, and immunohistochemical analysis demonstrated that although there was a prolonged upregulation in both the gene expression and protein concentration of ApoE and J after injury, these responses were uncoupled. Upregulation of ApoE and J mRNA expression lasted from 4 days to 1 month after injury. In contrast, a biphasic increase in protein concentration and number of immunoreactive cells for ApoE and ApoJ was observed, initially peaking at 2 days (i.e., before increased mRNA expression), returning to baseline by 2 weeks and then gradually increasing through 6 months postinjury. In addition, ApoE and J were found to colocalize with Abeta accumulation in neurons and astrocytes at 1-6 months after injury. Collectively, these data suggest that ApoE and J play a role in the acute sequelae of brain trauma and reemerge long after the initial insult, potentially to modulate progressive neurodegenerative changes.
Collapse
Affiliation(s)
- Akira Iwata
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6316, USA
| | | | | | | | | |
Collapse
|
74
|
Szczygielski J, Mautes A, Steudel WI, Falkai P, Bayer TA, Wirths O. Traumatic brain injury: cause or risk of Alzheimer's disease? A review of experimental studies. J Neural Transm (Vienna) 2005; 112:1547-64. [PMID: 15959838 DOI: 10.1007/s00702-005-0326-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 04/25/2005] [Indexed: 02/06/2023]
Abstract
Traumatic Brain Injury is the leading cause of death and disability among young individuals in our society. Moreover, according to some epidemiological studies, head trauma is one of the most potent environmental risk factors for subsequent development of Alzheimer's disease. Interestingly, pathological features that are present also in Alzheimer's disease (in particular deposition of beta-amyloid protein) were observed in traumatised brains already a few hours after the initial insult. The primary objective of this review is to present methodology and results of numerous recent human and animal studies dealing with this issue. Special emphasis was placed on head trauma experiments in transgenic mouse models of Alzheimer's disease. We further evaluate the connection between traumatic brain insults and subsequent development of dementia and try to differentiate between primary and secondary pathological mechanisms.
Collapse
Affiliation(s)
- J Szczygielski
- Department of Psychiatry, Section Neurobiology, Saarland University, Homburg, Germany
| | | | | | | | | | | |
Collapse
|
75
|
van Groen T, Puurunen K, Mäki HM, Sivenius J, Jolkkonen J. Transformation of diffuse beta-amyloid precursor protein and beta-amyloid deposits to plaques in the thalamus after transient occlusion of the middle cerebral artery in rats. Stroke 2005; 36:1551-6. [PMID: 15933257 DOI: 10.1161/01.str.0000169933.88903.cf] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The present study examined the long-term presence of beta-amyloid precursor protein (APP) and beta-amyloid (Abeta) accumulation in the rat thalamus after focal cerebral ischemia. METHODS Male Wistar rats were subjected to transient middle cerebral artery occlusion (MCAO) for 2 hours. Sensorimotor outcome was assessed using a tapered/ledged beam-walking task after operation. The distribution of APP and Abeta was examined immunohistochemically at 1 week, 1 month, and 9 months after MCAO. RESULTS MCAO caused a long-lasting deficit in forelimb and hind limb function assessed using the beam-walking test. Histologic examination revealed a transient increase in APP and Abeta staining in axons in the corpus callosum and in neurons at the border of the ischemic region. APP and Abeta deposits persisted in the thalamic nuclei (ventroposterior lateral and ventroposterior medial nuclei), eventually leading to dense plaque-like deposits by the end of the 9-month follow-up. The deposits were surrounded by an astroglial scar. The deposits were positive for Abeta and N-terminal APP, but not for C-terminal APP. Antibodies against the C-terminal of Abeta, ie, Abeta42 and Abeta40, showed a preferential staining for Abeta42. Congo red or thioflavine S did not stain the deposits. CONCLUSIONS The present results demonstrated the persistent presence and aggregation of APP and Abeta, or their fragments, to dense plaque-like deposits in the ventroposterior lateral and ventroposterior medial nuclei of rats subjected to focal cerebral ischemia.
Collapse
Affiliation(s)
- Thomas van Groen
- Department of Neuroscience and Neurology, University of Kuopio, PO Box 1627, 70211 Kuopio, Finland
| | | | | | | | | |
Collapse
|
76
|
Abstract
PURPOSE OF REVIEW The link between head injury and dementia/Alzheimer's disease is controversial. This review discusses some recent epidemiological, human autopsy and experimental studies on the relationship between traumatic head injury and dementia. RECENT FINDINGS Recent epidemiological studies have shown that head injury is a risk factor for the development of dementia/Alzheimer's disease, whereas others have not. After experimental brain trauma the long-term accumulation of amyloid beta peptide suggests that neurodegeneration is influenced by apolipoprotein E epsilon 4, and after human brain injury both amyloid beta peptide deposition and tau pathology are seen, even in younger patients. Amyloid beta peptide levels in the cerebrospinal fluid and the overproduction of beta amyloid precursor protein in humans and animals after traumatic brain injury are increased. Repeated mild head trauma in both animals and humans accelerates amyloid beta peptide accumulation and cognitive impairment. Retrospective autopsy data support clinical studies suggesting that severe traumatic brain injury with long-lasting morphological residuals are a risk factor for the development of dementia/Alzheimer's disease. The influence of the apolipoprotein E genotype on the prognosis of traumatic brain injury is under discussion. SUMMARY Although epidemiological studies and retrospective autopsy data provide evidence that a later cognitive decline may occur after severe traumatic brain injury, the relationship between dementia after head/brain trauma and apolipoprotein E status is still ambiguous. Both human postmortem and experimental studies showing apolipoprotein beta deposition and tau pathology after head injury support the link between traumatic brain injury and dementia, and further studies are warranted to clarify this relationship.
Collapse
|
77
|
Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH. Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:357-71. [PMID: 15277212 PMCID: PMC1618579 DOI: 10.1016/s0002-9440(10)63303-2] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plaques composed of amyloid beta (Abeta) have been found within days following brain trauma in humans, similar to the hallmark plaque pathology of Alzheimer's disease (AD). Here, we evaluated the potential source of this Abeta and long-term mechanisms that could lead to its production. Inertial brain injury was induced in pigs via head rotational acceleration of 110 degrees over 20 ms in the coronal plane. Animals were euthanized at 3 hours, 3 days, 7 days, and 6 months post-injury. Immunohistochemistry and Western blot analyses of the brains were performed using antibodies specific for amyloid precursor protein (APP), Abeta peptides, beta-site APP-cleaving enzyme (BACE), presenilin-1 (PS-1), caspase-3, and caspase-mediated cleavage of APP (CCA). Substantial co-accumulation for all of these factors was found in swollen axons at all time points up to 6 months following injury. Western blot analysis of injured brains confirmed a substantial increase in the protein levels of these factors, particularly in the white matter. These data suggest that impaired axonal transport due to trauma induces long-term pathological co-accumulation of APP with BACE, PS-1, and activated caspase. The abnormal concentration of these factors may lead to APP proteolysis and Abeta formation within the axonal membrane compartment.
Collapse
Affiliation(s)
- Xiao-Han Chen
- Department of Neurosurgery, University of Pennsylvania, 105c Hayden Hall, 3320 SmithWalk, Philadelphia, PA 19104-6316, USA
| | | | | | | | | | | |
Collapse
|
78
|
Akiyama H, McGeer PL. Specificity of mechanisms for plaque removal after Aβ immunotherapy for Alzheimer disease. Nat Med 2004; 10:117-8; author reply 118-9. [PMID: 14760408 DOI: 10.1038/nm0204-117] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
79
|
Atwood CS, Bowen RL, Smith MA, Perry G. Cerebrovascular requirement for sealant, anti-coagulant and remodeling molecules that allow for the maintenance of vascular integrity and blood supply. ACTA ACUST UNITED AC 2004; 43:164-78. [PMID: 14499467 DOI: 10.1016/s0165-0173(03)00206-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The integrity of the vasculature and the maintenance of the blood supply to the brain are crucial for the survival of higher vertebrates. However, peripheral mechanisms of sealing the vasculature that rely on the clotting of blood and platelet aggregation around the site of a 'leak' would lead to decreased cerebral perfusion and compromise the viability of terminally differentiated and irreplaceable neurons. Therefore, in higher organisms it is likely that a sealant/anti-coagulant system that maintains vascular supply has evolved as a necessity to life. We propose that one such system involves the amyloid-beta precursor protein (AbetaPP) and its cleavage product Abeta since (1) both AbetaPP/Abeta are known to deposit in the media of the cerebrovasculature wall following localized injury, (2) Abeta is generated from AbetaPP, a known acute phase reactant, (3) Abeta's physiochemical properties allow it to span between the extracellular matrix and the (endothelial) cell membrane and under inflammatory conditions aggregate to form an intracranial 'scab', thereby maintaining structural integrity of the blood brain barrier, (4) AbetaPP/Abeta together act as an anti-coagulant, (5) Abeta promotes vascular/neuronal remodeling, and (6) Abeta deposits resolve after injury. These properties are consistent with the acute phase generation and rapid cortical deposition of AbetaPP/Abeta following injury (either sustained by trauma or stresses associated with aging) that would be an important compensatory response aimed at limiting the loss of terminally differentiated neurons. Such a system would allow the maintenance of blood supply to the brain by sealing vascular lesions, preventing hemorrhagic stroke while at the same time inhibiting the coagulation cascade from blocking capillaries. Obviously, strategies to remove Abeta would have serious consequences for the integrity of the blood-brain barrier. Indeed, recent in vivo evidence demonstrates that the removal of deposited Abeta from the vasculature leads to increased cerebral microhemorrhage and strongly support the above mentioned functions of AbetaPP/Abeta. These insights also explain the root cause of the encephalitis and meningitis suffered by individuals in immunotherapy trials as being directly associated with the removal of Abeta from the vasculature, i.e. immunological responses to Abeta vaccination do not discriminate between physiologically purposive deposits of Abeta (vascular deposits) and pathological deposits of Abeta (senile plaques).
Collapse
Affiliation(s)
- Craig S Atwood
- School of Medicine, University of Wisconsin and William S. Middleton Memorial Veterans Administration, GRECC 11G, 2500 Overlook Terrace, Madison, WI 53705, USA.
| | | | | | | |
Collapse
|
80
|
Smith DH, Uryu K, Saatman KE, Trojanowski JQ, McIntosh TK. Protein accumulation in traumatic brain injury. Neuromolecular Med 2004; 4:59-72. [PMID: 14528053 DOI: 10.1385/nmm:4:1-2:59] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 07/14/2003] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) is one of the most devastating diseases in our society, accounting for a high percentage of mortality and disability. A major consequence of TBI is the rapid and long-term accumulation of proteins. This process largely reflects the interruption of axonal transport as a result of extensive axonal injury. Although many proteins are found accumulating after TBI, three have received particular attention; beta-amyloid precursor protein and its proteolytic products, amyloid-beta (Abeta) peptides, neurofilament proteins, and synuclein proteins. Massive coaccumulations of all of these proteins are found in damaged axons throughout the white matter after TBI. Additionally, these proteins form aggregates in other neuronal compartments and in brain parenchyma after brain trauma. Interestingly, TBI is also an epigenetic risk factor for developing neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. Here, the similarities and differences of these accumulations with pathologies of neurodegenerative diseases will be explored. In addition, the potential deleterious roles of protein accumulations on functional outcome and progressive neurodegeneration following TBI will be examined.
Collapse
Affiliation(s)
- Douglas H Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
81
|
Hoyer S. Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: therapeutic implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 541:135-52. [PMID: 14977212 DOI: 10.1007/978-1-4419-8969-7_8] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer disease is not a single disorder. Etiologically, two different types or even diseases exist: inheritance in 5% to 10% of all Alzheimer cases versus 90% to 95% AD cases whith sporadic origin (SAD). Different susceptibility genes along with adult lifestyle risk-factors- in the case of SAD the risk factor aging- may be assumed to cause the latter disorder. There is evidence that a disturbance in the insulin signal transduction pathway may be a central and early pathophysiologic event in SAD. Both, hypercortisolemia and increased adrenergic activity, in both old age and SAD may render the function of the neuronal insulin receptor vulnerable resulting in a diminished production of ATP. The reduced availability of ATP may damage the function of the endoplasmic reticulum/Golgi apparatus/trans Golgi network generating misfolded and malfolded proteins retained in the cell. In SAD, amyloid precursor protein is found to accumulate intracellularly thus not representing the cause but a driving force in the pathogenesis of SAD. Additionally, both disturbed insulin signaling and reduced ATP forward the hyperphosphorylation of tau protein. Thus, abnormalities in oxidative brain metabolism lead to the formation of two main morphologic hallmarks of SAD: senile plaques and neurofibrillary tangles. Therefore, the therapeutic goal in SAD should be the improvement of the neuronal energy state. Findings from both basic and clinical studies showed that Ginkgo biloba extract (EGb 761) may be appropiate to approach that goal.
Collapse
Affiliation(s)
- Siegfried Hoyer
- Department of Pathochemistry and General Neurochemistry, University of Heidelberg, Im Neuenheimer Feld 220/221, Heidelberg, Germany 69120
| |
Collapse
|
82
|
Abstract
BACKGROUND Diffuse axonal injury (DAI) is one of the most common and important pathologic features of traumatic brain injury (TBI). The susceptibility of axons to mechanical injury appears to be due to both their viscoelastic properties and their high organization in white matter tracts. Although axons are supple under normal conditions, they become brittle when exposed to rapid deformations associated with brain trauma. Accordingly, rapid stretch of axons can damage the axonal cytoskeleton resulting in a loss of elasticity and impairment of axoplasmic transport. Subsequent swelling of the axon occurs in discrete bulb formations or in elongated varicosities that accumulate transported proteins. Calcium entry into damaged axons is thought to initiate further damage by the activation of proteases. Ultimately, swollen axons may become disconnected and contribute to additional neuropathologic changes in brain tissue. DAI may largely account for the clinical manifestations of brain trauma. However, DAI is extremely difficult to detect noninvasively and is poorly defined as clinical syndrome. CONCLUSIONS Future advancements in the diagnosis and treatment of DAI will be dependent on our collective understanding of injury biomechanics, temporal axonal pathophysiology, and its role in patient outcome.
Collapse
Affiliation(s)
- Douglas H Smith
- Department of Neurosurgery, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
83
|
Smith DH, Chen XH, Iwata A, Graham DI. Amyloid beta accumulation in axons after traumatic brain injury in humans. J Neurosurg 2003; 98:1072-7. [PMID: 12744368 DOI: 10.3171/jns.2003.98.5.1072] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Although plaques composed of amyloid beta (AD) have been found shortly after traumatic brain injury (TBI) in humans, the source for this Abeta has not been identified. In the present study, the authors explored the potential relationship between Abeta accumulation in damaged axons and associated Abeta plaque formation. METHODS The authors performed an immunohistochemical analysis of paraffin-embedded sections of brain from 12 patients who died after TBI and from two control patients by using antibodies selective for Abeta peptides, amyloid precursor protein (APP), and neurofilament (NF) proteins. In nine brain-injured patients, extensive colocalizations of Abeta, APP, and NF protein were found in swollen axons. Many of these immunoreactive axonal profiles were present close to Abeta plaques or were surrounded by Abeta staining, which spread out into the tissue. Immunoreactive profiles were not found in the brains of the control patients. CONCLUSIONS The results of this study indicate that damaged axons can serve as a large reservoir of Abeta, which may contribute to Abeta plaque formation after TBI in humans.
Collapse
Affiliation(s)
- Douglas H Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, USA.
| | | | | | | |
Collapse
|