51
|
Xu B, Karayiorgou M, Gogos JA. MicroRNAs in psychiatric and neurodevelopmental disorders. Brain Res 2010; 1338:78-88. [PMID: 20388499 PMCID: PMC2883644 DOI: 10.1016/j.brainres.2010.03.109] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/18/2010] [Accepted: 03/31/2010] [Indexed: 11/25/2022]
Abstract
Abnormalities in microRNA (miRNA)-mediated gene regulation have been observed in a variety of human diseases, especially in cancer. Here, we provide an account of newly emerging connections between miRNAs with various psychiatric and neurodevelopmental disorders, including recent findings of miRNA dysregulation in the 22q11.2 microdeletion syndrome, a well-established genetic risk factor for schizophrenia. miRNAs appear to be components of both the genetic architecture of these complex phenotypes as well as integral parts of the biological pathways that mediate the effects of primary genetic deficits. Therefore, they may contribute to both genetic heterogeneity and phenotypic variation of psychiatric and neurodevelopmental disorders and could serve as novel therapeutic targets.
Collapse
Affiliation(s)
- Bin Xu
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY
- Department of Psychiatry, Columbia University, New York, NY
| | | | - Joseph A. Gogos
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY
- Department of Neuroscience, Columbia University, New York, NY
| |
Collapse
|
52
|
Chaves ML, Camozzato AL, Ferreira ED, Piazenski I, Kochhann R, Dall'Igna O, Mazzini GS, Souza DO, Portela LV. Serum levels of S100B and NSE proteins in Alzheimer's disease patients. J Neuroinflammation 2010; 7:6. [PMID: 20105309 PMCID: PMC2832635 DOI: 10.1186/1742-2094-7-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 01/27/2010] [Indexed: 12/04/2022] Open
Abstract
Background Alzheimer's disease is the most common dementia in the elderly, and the potential of peripheral biochemical markers as complementary tools in the neuropsychiatric evaluation of these patients has claimed further attention. Methods We evaluated serum levels of S100B and neuron-specific enolase (NSE) in 54 mild, moderate and severe Alzheimer's disease (AD) patients and in 66 community-dwelling elderly. AD patients met the probable NINCDS-ADRDA criteria. Severity of dementia was ascertained by the Clinical Dementia Rating (CDR) scale, cognitive function by the Mini Mental State Examination (MMSE), and neuroimage findings with magnetic resonance imaging. Serum was obtained from all individuals and frozen at -70°C until analysis. Results By comparing both groups, serum S100B levels were lower in AD group, while serum NSE levels were the same both groups. In AD patients, S100B levels were positively correlated with CDR scores (rho = 0.269; p = 0.049) and negatively correlated with MMSE scores (rho = -0.33; P = 0.048). NSE levels decreased in AD patients with higher levels of brain atrophy. Conclusions The findings suggest that serum levels of S100B may be a marker for brain functional condition and serum NSE levels may be a marker for morphological status in AD.
Collapse
Affiliation(s)
- Márcia L Chaves
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, 90035-003 Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Yang L, Li F, Zhang H, Ge W, Mi C, Sun R, Liu C. Astrocyte activation and memory impairment in the repetitive febrile seizures model. Epilepsy Res 2009; 86:209-20. [DOI: 10.1016/j.eplepsyres.2009.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/15/2009] [Accepted: 07/02/2009] [Indexed: 10/20/2022]
|
54
|
Revesz T, Holton JL, Lashley T, Plant G, Frangione B, Rostagno A, Ghiso J. Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 2009; 118:115-30. [PMID: 19225789 PMCID: PMC2844092 DOI: 10.1007/s00401-009-0501-8] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 11/30/2022]
Abstract
In cerebral amyloid angiopathy (CAA), amyloid fibrils deposit in walls of arteries, arterioles and less frequently in veins and capillaries of the central nervous system, often resulting in secondary degenerative vascular changes. Although the amyloid-beta peptide is by far the commonest amyloid subunit implicated in sporadic and rarely in hereditary forms of CAA, a number of other proteins may also be involved in rare familial diseases in which CAA is also a characteristic morphological feature. These latter proteins include the ABri and ADan subunits in familial British dementia and familial Danish dementia, respectively, which are also known under the umbrella term BRI2 gene-related dementias, variant cystatin C in hereditary cerebral haemorrhage with amyloidosis of Icelandic-type, variant transthyretins in meningo-vascular amyloidosis, disease-associated prion protein (PrP(Sc)) in hereditary prion disease with premature stop codon mutations and mutated gelsolin (AGel) in familial amyloidosis of Finnish type. In this review, the characteristic morphological features of the different CAAs is described and the implication of the biochemical, genetic and transgenic animal data for the pathogenesis of CAA is discussed.
Collapse
Affiliation(s)
- Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, Queen Square, London WC1N3BG, UK.
| | | | | | | | | | | | | |
Collapse
|
55
|
Larner AJ. Epileptic seizures in AD patients. Neuromolecular Med 2009; 12:71-7. [PMID: 19557550 DOI: 10.1007/s12017-009-8076-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
Epileptic seizures have long been recognised as a complication of the clinical syndrome of Alzheimer's disease, particularly in advanced disease, but have hitherto been viewed essentially as epiphenomena of the neurodegenerative process. Progress with animal models of Alzheimer's disease has suggested that this view may be incorrect, and that seizures may be a reflection of pathophysiological processes similar to or overlapping with those responsible for cognitive decline. This overlap between neuropsychological and neurophysiological changes suggests that seizures in Alzheimer's disease may be a valid therapeutic target, over and above symptomatic treatment. This article reviews data on the prevalence of seizures in Alzheimer's disease, seizure types, pathophysiology and treatment. Seizure prevalence increases with disease duration, but early-onset disease is associated with a greater risk of seizures, in part related to the frequency of presenilin-1 gene mutations in early-onset disease. Seizures are mostly of partial origin, with both complex partial and secondary generalised seizures. Seizure pathophysiology may relate to increased amyloid beta-peptide production, structural alterations in neurones related to cytoskeletal dysfunction, cerebrovascular changes, neurotransmitter dysfunction or combinations thereof. Through modification of these pathophysiological pathways, there may be possible roles for anti-epileptic drugs such as sodium valproate and lacosamide in the treatment of Alzheimer's disease. In summary, epileptic seizures are part of the AD phenotype, and merit further investigation.
Collapse
Affiliation(s)
- A J Larner
- Cognitive Function Clinic, Walton Centre for Neurology and Neurosurgery, Lower Lane, Fazakerley, Liverpool, UK.
| |
Collapse
|
56
|
Demirtas H. AgNOR status in Down's syndrome infants and a plausible phenotype formation hypothesis. Micron 2009; 40:511-8. [PMID: 19339189 DOI: 10.1016/j.micron.2009.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 10/21/2022]
Abstract
Down's syndrome (DS) or trisomy 21 is the most frequent genetic birth defect associated with mental retardation. Although DS has been known for more than a 100 years and its chromosomal basis recognized for half a century (1959), the underlying patho-mechanisms for the phenotype formation remain elusive and cannot be fully explained by simple gene dosage effect. The general consensus is that the extra chromosome 21 genes perturb the global metabolism of the body cells. Our experiments show that the most prominent metabolic perturbation occurs during ribosome biogenesis in the cells of DS babies/infants. In humans, ribosomal RNA (rRNA) gene families or nucleolar organizer regions (NORs) are localized at the secondary constriction (on the satellite stalks) of five pairs of acrocentric chromosomes (13, 14, 15, 21 and 22) and their activities are evaluated specifically either in metaphase or interphase through a procedure known as AgNOR or silver staining. Our successive AgNOR studies, supported by RNA and nuclear protein measurement, show that cells from DS infants produce more ribosomes than expected, accounting for the extra set of active rRNA gene family (1/6-1/11) situated on the extra chromosome 21. Thus, the presence of an extra chromosome 21 stimulates a global increase in ribosome biogenesis in cooperation with other NOR-bearing chromosomes, causing unnecessary rRNA and ribosomal proteins synthesis compared to controls. Following the description of NORs, AgNOR, AgNOR-proteins, AgNOR measurement and our experimental results, we propose that the extra RNA and protein synthesis can cause a fundamental handicap to DS infants, contributing to the formation of DS phenotypes, due to the wasted energy in producing unnecessary macromolecules, including energy (GTP)-dependent transport of the excessive ribosomes from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Halil Demirtas
- Erciyes University, Medical Faculty, Medical Biology Department 38039 Kayseri, Turkey.
| |
Collapse
|
57
|
Brozzi F, Arcuri C, Giambanco I, Donato R. S100B Protein Regulates Astrocyte Shape and Migration via Interaction with Src Kinase: IMPLICATIONS FOR ASTROCYTE DEVELOPMENT, ACTIVATION, AND TUMOR GROWTH. J Biol Chem 2009; 284:8797-811. [PMID: 19147496 DOI: 10.1074/jbc.m805897200] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
S100B is a Ca(2+)-binding protein of the EF-hand type that is abundantly expressed in astrocytes and has been implicated in the regulation of several intracellular activities, including proliferation and differentiation. We show here that reducing S100B levels in the astrocytoma cell line GL15 and the Müller cell line MIO-M1 by small interference RNA technique results in a rapid disassembly of stress fibers, collapse of F-actin onto the plasma membrane and reduced migration, and acquisition of a stellate shape. Also, S100B-silenced GL15 and MIO-M1 Müller cells show a higher abundance of glial fibrillary acidic protein filaments, which mark differentiated astrocytes, compared with control cells. These effects are dependent on reduced activation of the phosphatidylinositol 3-kinase (PI3K) downstream effectors, Akt and RhoA, and consequently elevated activity of GSK3beta and Rac1 and decreased activity of the RhoA-associated kinase. Also, rat primary astrocytes transiently down-regulate S100B expression when exposed to the differentiating agent dibutyryl cyclic AMP and re-express S100B at later stages of dibutyryl cyclic AMP-induced differentiation. Moreover, reducing S100B levels results in a remarkably slow resumption of S100B expression, suggesting the S100B might regulate its own expression. Finally, we show that S100B interacts with Src kinase, thereby stimulating the PI3K/Akt and PI3K/RhoA pathways. These results suggest that S100B might contribute to reduce the differentiation potential of cells of the astrocytic lineage and participate in the astrocyte activation process in the case of brain insult and in invasive properties of glioma cells.
Collapse
Affiliation(s)
- Flora Brozzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, C.P. 81 Succ. 3, 06122 Perugia, Italy
| | | | | | | |
Collapse
|
58
|
Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I. S100B's double life: intracellular regulator and extracellular signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:1008-22. [PMID: 19110011 DOI: 10.1016/j.bbamcr.2008.11.009] [Citation(s) in RCA: 520] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/12/2008] [Accepted: 11/21/2008] [Indexed: 12/22/2022]
Abstract
The Ca2+-binding protein of the EF-hand type, S100B, exerts both intracellular and extracellular functions. Recent studies have provided more detailed information concerning the mechanism(s) of action of S100B as an intracellular regulator and an extracellular signal. Indeed, intracellular S100B acts as a stimulator of cell proliferation and migration and an inhibitor of apoptosis and differentiation, which might have important implications during brain, cartilage and skeletal muscle development and repair, activation of astrocytes in the course of brain damage and neurodegenerative processes, and of cardiomyocyte remodeling after infarction, as well as in melanomagenesis and gliomagenesis. As an extracellular factor, S100B engages RAGE (receptor for advanced glycation end products) in a variety of cell types with different outcomes (i.e. beneficial or detrimental, pro-proliferative or pro-differentiative) depending on the concentration attained by the protein, the cell type and the microenvironment. Yet, RAGE might not be the sole S100B receptor, and S100B's ability to engage RAGE might be regulated by its interaction with other extracellular factors. Future studies using S100B transgenic and S100B null mice might shed more light on the functional role(s) of the protein.
Collapse
Affiliation(s)
- Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, Section Anatomy, University of Perugia, Via del Giochetto C.P. 81 Succ. 3, 06122 Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Yilmaz SI, Demirtas H. AgNOR increase in buccal epithelial cells of trisomy 21 infants. Micron 2008; 39:1262-5. [DOI: 10.1016/j.micron.2008.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 03/27/2008] [Accepted: 03/28/2008] [Indexed: 12/11/2022]
|
60
|
Naito KS, Sekijima Y, Ikeda SI. Cerebral amyloid angiopathy-related hemorrhage in a middle-aged patient with Down's syndrome. Amyloid 2008; 15:275-7. [PMID: 19065301 DOI: 10.1080/13506120802524981] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A patient with Down's syndrome (DS) died of cerebral hemorrhage at age 52. At autopsy, a large sub-cortical hematoma was present in the right frontal lobe, and microscopic examination showed numerous senile plaques and neurofibrillary tangles in an extensive area of neocortex and also disclosed heavy involvement of vascular walls by amyloid deposition. These senile plaque and vascular amyloid deposits were specifically stained with an antibody to Abeta. His APOE genotype was epsilon4/epsilon4. This is a rare case of DS with cerebral amyloid angiopathy (CAA)-related cerebral hemorrhage. Genetic factors, such as APOE genotype, conceivably determine the risk of vascular rupture in individuals with CAA, even among patients with DS.
Collapse
Affiliation(s)
- Ko-Suke Naito
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan.
| | | | | |
Collapse
|
61
|
LeBlanc AC. Introspective analysis of amyloid as the cause of Alzheimer’s disease: alternative model proposed. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.5.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the lifespan of the population of developed countries increases, we are faced with managing a disease that is taking almost epidemic proportions and has a high social and economical cost; Alzheimer’s disease (AD). As everyone knows, AD robs the person not only of their memories but also their personalities and leaves only the shell of a once vibrant and functional human being that now requires care 24-h a day. Similar to the race to prevent, treat or cure cancer and heart diseases, it is essential and of extreme urgency to spearhead efforts against AD. To date, there are no effective treatments against AD. Amyloid is largely favored as the cause of the disease. Immense resources and efforts have been dedicated to anti-amyloid therapies and we are at the cusp of finding out if these will work of not. However, the arguments supporting the amyloid hypothesis can be challenged and an alternate model is presented herein.
Collapse
Affiliation(s)
- Andréa C LeBlanc
- The Sir Mortimer B Davis Jewish General Hospital, The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, 3755 Ch. Côte Ste-Catherine, Montréal, Québec H3T 1E2, Canada and, Department of Neurology & Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
62
|
Abstract
Down syndrome (DS) is the most common chromosomal abnormality occurring in humans. Up to 77% of DS children have associated gastrointestinal (GI) abnormalities, which may be structural or functional in nature. Functional disturbances may, in turn, affect the outcome of corrective surgical procedures, prompting to caution. It is becoming clear that the processes affecting the enteric nervous system (ENS) in DS not only affect the micro-anatomy but also nerve function, and there is some histological evidence of ENS variations in both human and DS animal models. This suggests that developmental disorders of the ENS are probably fundamental to the functional GI disturbances encountered in patients with DS. The anomalous brain development, function and resulting intellectual impairment associated with DS appears to result from the genetic imbalance created by the trisomy of chromosome 21. The possible links between the brain, GI and ENS involvement are not as yet entirely clear. Neurotropic factors affecting brain development during embryogenesis are probably interlinked with ENS development, but the precise mechanism of how this occurs has yet to be established. This study explores what is known about the ENS dysfunction in DS and reviews the possible importance of chromosome 21 located and other genes in its etiology. Functional motor disturbances of the esophagus and colon are not uncommon and may be congenital or acquired in nature. The most prominent of these include esophageal dysmotility syndromes (e.g. achalasia, gastroesophageal reflux, dysphagia) as well as a higher incidence of chronic constipation and Hirschsprung's disease (HSCR) (2-15%) occurring in association with DS. Chromosome 21 itself is thought to be the site of a modifier gene for HSCR. Recently identified candidate genetic mechanisms provide unique insights into the genetic background of the neurological and cognitive disorders associated with DS. Although the role of the triplicated chromosome 21 and genetic dosage remain important, the additional role of other chromosome 21 genes in the etiology of ENS developmental anomalies remains undetermined and requires ongoing research.
Collapse
Affiliation(s)
- S W Moore
- Division of Paediatric Surgery, Department of Surgical Sciences, Faculty of Health Sciences, University of Stellenbosch, P.O. Box 19063, Tygerberg, 7505, South Africa.
| |
Collapse
|
63
|
Bianchi R, Giambanco I, Donato R. S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiol Aging 2008; 31:665-77. [PMID: 18599158 DOI: 10.1016/j.neurobiolaging.2008.05.017] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 05/09/2008] [Accepted: 05/18/2008] [Indexed: 12/16/2022]
Abstract
Extracellular S100B is known to affect astrocytic, neuronal and microglial activities, with different effects depending on its concentration. Whereas at relatively low concentrations S100B exerts trophic effects on neurons and astrocytes, at relatively high concentrations the protein causes neuronal apoptosis and activates astrocytes and microglia, thus potentially representing an endogenous factor implicated in neuroinflammation. We have reported that RAGE ligation by S100B in BV-2 microglia results in the upregulation of expression of the pro-inflammatory cyclo-oxygenase 2 (COX-2) via parallel Ras-Cdc42-Rac1-dependent activation of c-Jun NH(2) terminal protein kinase (JNK) and Ras-Rac1-dependent stimulation of NF-kappaB transcriptional activity. We show here that: (1) S100B also stimulates AP-1 transcriptional activity in microglia via RAGE-dependent activation of JNK; (2) S100B upregulates IL-1beta and TNF-alpha expression in microglia via RAGE engagement; and (3) S100B/RAGE-induced upregulation of COX-2, IL-1beta and TNF-alpha expression requires the concurrent activation of NF-kappaB and AP-1. We also show that S100B synergizes with IL-1beta and TNF-alpha to upregulate on COX-2 expression in microglia. Given the crucial roles of COX-2, IL-1beta and TNF-alpha in the inflammatory response, we propose that, by engaging RAGE, S100B might play an important role in microglia activation in the course of brain damage.
Collapse
Affiliation(s)
- Roberta Bianchi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, C.P. 81 Succ. 3, 06122 Perugia, Italy
| | | | | |
Collapse
|
64
|
Abstract
Aging-related neurodegenerative diseases (NDs) are the culmination of many different genetic and environmental influences. Prior studies have shown that RNAs are pathologically altered during the inexorable course of some NDs. Recent evidence suggests that microRNAs (miRNAs) may be a contributing factor in neurodegeneration. miRNAs are brain-enriched, small ( approximately 22 nucleotides) non-coding RNAs that participate in mRNA translational regulation. Although discovered in the framework of worm development, miRNAs are now appreciated to play a dynamic role in many mammalian brain-related biochemical pathways, including neuroplasticity and stress responses. Research about miRNAs in the context of neurodegeneration is accumulating rapidly, and the goal of this review is to provide perspective for these new data that may be helpful to specialists in either field. An overview is provided about the normal functions for miRNAs, including some of the newer concepts related to the human brain. Recently published studies pertaining to the roles of miRNAs in NDs--including Alzheimer's disease, Parkinson's disease and triplet repeat disorders-are described. Finally, a discussion is included with theoretical syntheses and possible future directions in exploring the nexus between miRNA and ND research.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
65
|
Shaftel SS, Griffin WST, O'Banion MK. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation 2008; 5:7. [PMID: 18302763 PMCID: PMC2335091 DOI: 10.1186/1742-2094-5-7] [Citation(s) in RCA: 358] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 02/26/2008] [Indexed: 12/15/2022] Open
Abstract
Elevation of the proinflammatory cytokine Interleukin-1 (IL-1) is an integral part of the local tissue reaction to central nervous system (CNS) insult. The discovery of increased IL-1 levels in patients following acute injury and in chronic neurodegenerative disease laid the foundation for two decades of research that has provided important details regarding IL-1's biology and function in the CNS. IL-1 elevation is now recognized as a critical component of the brain's patterned response to insults, termed neuroinflammation, and of leukocyte recruitment to the CNS. These processes are believed to underlie IL-1's function in the setting of acute brain injury, where it has been ascribed potential roles in repair as well as in exacerbation of damage. Explorations of IL-1's role in chronic neurodegenerative disease have mainly focused on Alzheimer disease (AD), where indirect evidence has implicated it in disease pathogenesis. However, recent observations in animal models challenge earlier assumptions that IL-1 elevation and resulting neuroinflammatory processes play a purely detrimental role in AD, and prompt a need for new characterizations of IL-1 function. Potentially adaptive functions of IL-1 elevation in AD warrant further mechanistic studies, and provide evidence that enhancement of these effects may help to alleviate the pathologic burden of disease.
Collapse
Affiliation(s)
- Solomon S Shaftel
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| | | | | |
Collapse
|
66
|
Esposito G, Imitola J, Lu J, De Filippis D, Scuderi C, Ganesh VS, Folkerth R, Hecht J, Shin S, Iuvone T, Chesnut J, Steardo L, Sheen V. Genomic and functional profiling of human Down syndrome neural progenitors implicates S100B and aquaporin 4 in cell injury. Hum Mol Genet 2007; 17:440-57. [PMID: 17984171 DOI: 10.1093/hmg/ddm322] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Down syndrome (DS) is caused by trisomy of chromosome 21 and is characterized by mental retardation, seizures and premature Alzheimer's disease. To examine neuropathological mechanisms giving rise to this disorder, we generated multiple human DS neural progenitor cell (NPC) lines from the 19-21 week frontal cortex and characterized their genomic and functional properties. Microarray profiling of DS progenitors indicated that increased levels of gene expression were not limited to chromosome 21, suggesting that increased expression of genes on chromosome 21 altered transcriptional regulation of a subset of genes throughout the entire genome. Moreover, many transcriptionally dysregulated genes were involved in cell death and oxidative stress. Network analyses suggested that upregulated expression of chromosome 21 genes such as S100B and amyloid precursor protein activated the stress response kinase pathways, and furthermore, could be linked to upregulation of the water channel aquaporin 4 (AQP4). We further demonstrate in DS NPCs that S100B is constitutively overexpressed, that overexpression leads to increased reactive oxygen species (ROS) formation and activation of stress response kinases, and that activation of this pathway results in compensatory AQP4 expression. In addition, AQP4 expression could be induced by direct exposure to ROS, and siRNA inhibition of AQP4 resulted in elevated levels of ROS following S100B exposure. Finally, elevated levels of S100B-induced ROS and loss of AQP4 expression led to increased programmed cell death. These findings suggest that dysregulation of chromosome 21 genes in DS neural progenitors leads to increased ROS and thereby alters transcriptional regulation of cytoprotective, non-chromosome 21 genes in response to ongoing cellular insults.
Collapse
Affiliation(s)
- Giuseppe Esposito
- Department of Human Physiology and Pharmacology, Vittorio Erspamer Faculty of Pharmacy, University of Rome La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Lockstone HE, Harris LW, Swatton JE, Wayland MT, Holland AJ, Bahn S. Gene expression profiling in the adult Down syndrome brain. Genomics 2007; 90:647-60. [PMID: 17950572 DOI: 10.1016/j.ygeno.2007.08.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 11/15/2022]
Abstract
The mechanisms by which trisomy 21 leads to the characteristic Down syndrome (DS) phenotype are unclear. We used whole genome microarrays to characterize for the first time the transcriptome of human adult brain tissue (dorsolateral prefrontal cortex) from seven DS subjects and eight controls. These data were coanalyzed with a publicly available dataset from fetal DS tissue and functional profiling was performed to identify the biological processes central to DS and those that may be related to late onset pathologies, particularly Alzheimer disease neuropathology. A total of 685 probe sets were differentially expressed between adult DS and control brains at a stringent significance threshold (adjusted p value (q) < 0.005), 70% of these being up-regulated in DS. Over 25% of genes on chromosome 21 were differentially expressed in comparison to a median of 4.4% for all chromosomes. The unique profile of up-regulation on chromosome 21, consistent with primary dosage effects, was accompanied by widespread transcriptional disruption. The critical Alzheimer disease gene, APP, located on chromosome 21, was not found to be up-regulated in adult brain by microarray or QPCR analysis. However, numerous other genes functionally linked to APP processing were dysregulated. Functional profiling of genes dysregulated in both fetal and adult datasets identified categories including development (notably Notch signaling and Dlx family genes), lipid transport, and cellular proliferation. In the adult brain these processes were concomitant with cytoskeletal regulation and vesicle trafficking categories, and increased immune response and oxidative stress response, which are likely linked to the development of Alzheimer pathology in individuals with DS.
Collapse
Affiliation(s)
- H E Lockstone
- Institute of Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
68
|
Lambert JC, Ferreira S, Gussekloo J, Christiansen L, Brysbaert G, Slagboom E, Cottel D, Petit T, Hauw JJ, DeKosky ST, Richard F, Berr C, Lendon C, Kamboh MI, Mann D, Christensen K, Westendorp R, Amouyel P. Evidence for the association of the S100beta gene with low cognitive performance and dementia in the elderly. Mol Psychiatry 2007; 12:870-80. [PMID: 17579612 DOI: 10.1038/sj.mp.4001974] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Variations in the S100beta gene may be instrumental in producing a continuum from mild cognitive decline to overt dementia. After screening 25 single nucleotide polymorphisms (SNPs) in S100beta, we observed association of the rs2300403 intron 2 SNP with poorer cognitive function in three independent populations. Moreover, we detected a significant association of this SNP with increased risk of developing dementia or Alzheimer's disease (AD) in six independent populations, especially in women and in the oldest. Furthermore, we characterised a new primate-specific exon within intron 2 (the corresponding mRNA isoform was called S100beta2). S100beta2 expression was increased in AD brain compared with controls, and the rs2300403 SNP was associated with elevated levels of S100beta2 mRNA in AD brains, especially in women. Therefore, this genetic variant in S100beta increases the risk of low cognitive performance and dementia, possibly by favouring a splicing event increasing S100beta2 isoform expression in the brain.
Collapse
Affiliation(s)
- J-C Lambert
- INSERM U744, Institut Pasteur de Lille, Université de Lille 2, Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Shimada A, Hayashi Y, Ogasawara M, Park MJ, Katoh M, Minakami H, Kitoh T, Kojima S, Kawa K, Kimura H. Pro-inflammatory cytokinemia is frequently found in Down syndrome patients with hematological disorders. Leuk Res 2007; 31:1199-203. [PMID: 17055049 DOI: 10.1016/j.leukres.2006.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 08/30/2006] [Accepted: 09/09/2006] [Indexed: 11/25/2022]
Abstract
Down syndrome (DS) patients are frequently complicated with infections, autoimmune phenomena and hematological disorders, including transient abnormal myelopoiesis (TAM) in infancy and acute megakaryoblastic leukaemia (AMKL) in later life. In this study, serum levels of cytokines from 23 TAM and 15 AMKL patients were examined using the highly sensitive microsphere fluorescence system. Statistical differences between DS neonates with or without TAM were found in IL-1beta [median 7.0 pg/ml (0.34-271.6) verses 0.05 pg/ml (0.0-2.4), p=0.034], TNF-alpha [8.11 pg/ml (0.1-253.0) verses 0.41 pg/ml (0.1-1.5), p=0.041], and IFN-gamma [20.0 pg/ml (0.14-406.3) verses 1.5 pg/ml (0.14-5.79), p=0.036]. Moreover, abnormal inflammatory cytokinemia was also found in myelodysplastic syndrome (MDS) and AMKL with DS. These abnormal cytokinemia may have a role in the pathophysiology of TAM, MDS and AMKL in DS, especially in liver fibrosis or myelofibrosis.
Collapse
Affiliation(s)
- Akira Shimada
- Department of Hematology/Oncology, Gunma Children's Medical Center, 779 Shimohakoda, Hokkitsu, Shibukawa, Gunma 377-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Mehta PD, Capone G, Jewell A, Freedland RL. Increased amyloid beta protein levels in children and adolescents with Down syndrome. J Neurol Sci 2007; 254:22-7. [PMID: 17275850 DOI: 10.1016/j.jns.2006.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 12/01/2006] [Accepted: 12/04/2006] [Indexed: 11/29/2022]
Abstract
BACKGROUND Persons with Down syndrome (DS) (40 years and older) have neuropathological changes characteristic of Alzheimer disease (AD). Soluble forms of amyloid beta (Abeta) peptide generated from amyloid precursor protein (APP) end at C-terminal residues 40 and 42. The presence of the apolipoprotein E (ApoE) epsilon4 allele is a significant risk factor for the development of sporadic AD. Although preliminary studies have shown an association of plasma Abeta42 and ApoE epsilon4 allele in older persons with DS who have dementia, the relationship between plasma Abeta40 and Abeta42 levels and ApoE phenotypes in children with DS has not been examined. Inflammation might play a role in the growth of DS brains. Neopterin is an immune activation marker for the cell-mediated immune response. OBJECTIVE To examine the levels of plasma Abeta40, Abeta42, and neopterin in children or adolescents with DS or controls. MATERIALS AND METHODS Blood was collected from DS (N=35; 7+/-3.8 years old) and their siblings (N=34; 10+/-4.5). Plasma Abeta40 and Abeta42, and neopterin levels were quantitated by sandwich ELISA. RESULTS Abeta40 and Abeta42 levels were higher in DS than controls. The ratio of Abeta42/Abeta40 was lower in DS than in controls. There were significant negative correlations between age and Abeta40 in DS and controls, and between age and Abeta42 levels in DS but not in controls. There was no association of Abeta40 or Abeta42 levels with Apo E in either group. Neopterin levels were higher in DS than controls, and the levels were not correlated with Abeta40 and Abeta42 levels in DS or controls. CONCLUSIONS The over expression of APP gene in DS leads to increases in plasma Abeta40 and Abeta42 levels before plaque formation in DS brain. Higher neopterin concentrations in DS reflect inflammatory cell activation. Further studies are needed to determine whether DS children with lower plasma Abeta42/Abeta40 ratios are at increased risk of developing AD during aging than those with higher ratios.
Collapse
Affiliation(s)
- Pankaj D Mehta
- Department of Developmental Neurobiology, Department of Infant Development, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, United States.
| | | | | | | |
Collapse
|
71
|
Stewart LS, Persinger MA, Cortez MA, Snead OC. Chronobiometry of Behavioral Activity in the Ts65Dn Model of Down Syndrome. Behav Genet 2006; 37:388-98. [PMID: 17146725 DOI: 10.1007/s10519-006-9119-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 10/09/2006] [Indexed: 11/29/2022]
Abstract
Disruption of the sleep-wake cycle has been reported among individuals with Down syndrome (DS). Here we studied behavioral rhythms in adult male and female Ts65Dn mice, a model of DS. The overall behavioral activity of Ts65Dn and diploid (2N) littermates as defined by total movements (TM), movement time (MT), ambulatory movement time (AMT), time spent in center of arena (CT), jumps (JFP), rotational behavior (TURNS), and wheel-running activity (WRA) was recorded under a 12 h:12 h light-dark photocycle. During the light phase, Ts65Dn mice exhibited higher TM, MT, CT, JFP, and WRA compared to 2N littermates. During the dark phase, Ts65Dn and 2N mice differed only in CT and WRA, with the Ts65Dn group engaging in higher levels of both. There were no gender differences for any of the behavioral variables studied. Non-linear least-squares (Cosinor) analysis of the distribution of total behavioral activity (TM) indicated that Ts65Dn mice exhibited a slightly higher mean oscillation (i.e., mesor), but significantly lower amplitude in comparison to 2N mice, suggesting that levels of TM were elevated in trisomic mice but were relatively constant throughout the photocycle. The peak of the Ts65Dn TM rhythm was significantly phase-advanced, occurring approximately 4 h earlier than 2N mice. Overall, Ts65Dn mice were hyperactive and differed significantly in daily patterns of specific behaviors from those of 2N littermates. To control for the potential confound of retinal degeneration in Ts65Dn and 2N mice, we compared and found no difference between the TM rhythm parameters of 2N and non-retinally degenerate C57/129Sv mice, suggesting that abnormal behavioral rhythmicity in Ts65Dn mice may not due to the absence of rod and cone photoreceptors. These results serve as a starting point for further investigations into the physiological basis of sleep-wake disturbances in DS patients.
Collapse
Affiliation(s)
- Lee S Stewart
- Brain and Behavior Research Program, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, Canada
| | | | | | | |
Collapse
|
72
|
Gorgas K, Teigler A, Komljenovic D, Just WW. The ether lipid-deficient mouse: Tracking down plasmalogen functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1511-26. [PMID: 17027098 DOI: 10.1016/j.bbamcr.2006.08.038] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 08/15/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
Chemical and physico-chemical properties as well as physiological functions of major mammalian ether-linked glycerolipids, including plasmalogens were reviewed. Their chemical structures were described and their effect on membrane fluidity and membrane fusion discussed. The recent generation of mouse models with ether lipid deficiency offered the possibility to study ether lipid and particularly plasmalogen functions in vivo. Ether lipid-deficient mice revealed severe phenotypic alterations, including arrest of spermatogenesis, development of cataract and defects in central nervous system myelination. In several cell culture systems lack of plasmalogens impaired intracellular cholesterol distribution affecting plasma membrane functions and structural changes of ER and Golgi cisternae. Based on these phenotypic anomalies that were accurately described conclusions were drawn on putative functions of plasmalogens. These functions were related to cell-cell or cell-extracellular matrix interactions, formation of lipid raft microdomains and intracellular cholesterol homeostasis. There are several human disorders, such as Zellweger syndrome, rhizomelic chondrodysplasia punctata, Alzheimer's disease, Down syndrome, and Niemann-Pick type C disease that are distinguished by altered tissue plasmalogen concentrations. The role plasmalogens might play in the pathology of these disorders is discussed.
Collapse
Affiliation(s)
- Karin Gorgas
- Institut für Anatomie und Zellbiologie, Abteilung Medizinische Zellbiologie, Im Neuenheimer Feld 307, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
73
|
Komatsu T, Lee MCI, Miyagi A, Shoji H, Yoshino F, Maehata Y, Maetani T, Kawamura Y, Ikeda M, Kubota E. Reactive oxygen species generation in gingival fibroblasts of Down syndrome patients detected by electron spin resonance spectroscopy. Redox Rep 2006; 11:71-7. [PMID: 16686997 DOI: 10.1179/135100006x101039] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Oral manifestations of Down syndrome include high susceptibility to gingival inflammation with early onset and rapidly progressive periodontitis. The influence of reactive oxygen species (ROS) on periodontitis of Down syndrome is unclear. The aim of this study was to characterize ROS formation in Down syndrome-gingival fibroblasts (DS-GF) using electron spin resonance (ESR) spin trapping with 5,5-dimetyl-1-pyrolline-N-oxide (DMPO), and to determine whether ROS generation plays a role in the pathogenesis of periodontitis in Down syndrome patients. We observed formation of the DMPO-OH spin adduct, indicating HO* generation from cultured DS-GF and non-DS-GF. The increased HO* generation in cultured DS-GF was strongly decreased in the presence of the H2O2 scavenger, catalase, or the iron chelator, desferal. This may due to the enzymatic ability of over-expressed CuZn-superoxide dismutase in Down syndrome to catalyze the formation of H2O2 from O2*-, thereby increasing the availability of substrate H2O2 for the iron-dependent generation of HO* via the Fenton reaction, suggesting that HO* generated from DS-GF may be involved in progressive periodontitis of Down syndrome.
Collapse
Affiliation(s)
- Tomoko Komatsu
- Department of Clinical Care Medicine, Division of Dentistry for Special Patients, Kanagawa Dental College, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
D'Costa A, Reifegerste R, Sierra S, Moses K. The Drosophila ramshackle gene encodes a chromatin-associated protein required for cell morphology in the developing eye. Mech Dev 2006; 123:591-604. [PMID: 16904300 DOI: 10.1016/j.mod.2006.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2005] [Revised: 06/26/2006] [Accepted: 06/28/2006] [Indexed: 12/21/2022]
Abstract
We have identified ramshackle (ram) as a dominant suppressor of hedgehog loss-of-function in the developing Drosophila eye. We have characterized the gene and it encodes a double bromodomain protein with eight WD40 repeats. The Ram protein is localized predominantly to polytene chromosome interbands and is required for the transcription of some genes. ram is an essential gene and null mutants die during larval life. In the developing retina, ram mutant cells have morphological defects including disrupted apical junctions, disorganized actin cytoskeletons and mislocalized nuclei, which are followed by delays in cell-cycle transitions and the expression of differentiation markers. ram is a conserved gene: its vertebrate homolog (WDR9), which lies in Down's Syndrome Critical region 2 (DCR2) is also known to be associated with Brahma-Related-Gene 1 (BRG1).
Collapse
Affiliation(s)
- Allison D'Costa
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322-3030, USA
| | | | | | | |
Collapse
|
75
|
Menkes JH, Flores-Sarnat L. Cerebral palsy due to chromosomal anomalies and continuous gene syndromes. Clin Perinatol 2006; 33:481-501. [PMID: 16765733 DOI: 10.1016/j.clp.2006.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When cerebral palsy is defined as a disorder of movement and posture that is due to nonprogressive disturbances that occur in the developing fetal and infant brain, a significant proportion-up to 10%--is the consequence of chromosomal anomalies and continuous gene syndromes. Abnormalities of chromosomes are constitutional or acquired. Acquired chromosomal abnormalities develop postnatally, affect only one clone of cells, and are implicated in the evolution of neoplasia. Constitutional abnormalities develop during gametogenesis or early embryogenesis and affect a significant portion of the subject's cells.
Collapse
Affiliation(s)
- John H Menkes
- Division of Pediatric Neurology, University of California, Los Angeles, USA.
| | | |
Collapse
|
76
|
Lumbreras M, Baamonde C, Martínez-Cué C, Lubec G, Cairns N, Sallés J, Dierssen M, Flórez J. Brain G protein-dependent signaling pathways in Down syndrome and Alzheimer's disease. Amino Acids 2006; 31:449-56. [PMID: 16583316 DOI: 10.1007/s00726-005-0272-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 11/02/2005] [Indexed: 10/24/2022]
Abstract
Premature aging and neuropathological features of Alzheimer's disease (AD) are commonly observed in Down syndrome (DS). Based on previous findings in a DS mouse model, the function of signaling pathways associated with adenylyl cyclase (AC) and phospholipase C (PLC) was assessed in cerebral cortex and cerebellum of age-matched adults with DS, AD, and controls. Basal production of cAMP was reduced in DS but not in AD cortex, and in both, DS and AD cerebellum. Responses to GTPgammaS, noradrenaline, SKF 38393 and forskolin were more depressed in DS than in AD cortex and cerebellum. Although no differences in PLC activity among control, DS and AD cortex were observed under basal and GTPgammaS- or Ca-stimulated conditions, the response of DS cortex to serotonergic and cholinergic stimulation was depressed, and that of AD was only impaired at cholinergic stimulation. No differences were documented in cerebellum. Our results demonstrate that PLC and AC were severely disturbed in the aged DS and AD brains, but the alterations in DS were more severe, and differed to some extent from those observed in AD.
Collapse
Affiliation(s)
- M Lumbreras
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | | | | | | | | | | | | | | |
Collapse
|
77
|
|
78
|
Nelson PG, Kuddo T, Song EY, Dambrosia JM, Kohler S, Satyanarayana G, Vandunk C, Grether JK, Nelson KB. Selected neurotrophins, neuropeptides, and cytokines: developmental trajectory and concentrations in neonatal blood of children with autism or Down syndrome. Int J Dev Neurosci 2005; 24:73-80. [PMID: 16289943 DOI: 10.1016/j.ijdevneu.2005.10.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 10/07/2005] [Accepted: 10/10/2005] [Indexed: 11/22/2022] Open
Abstract
Using a double-antibody immunoaffinity assay (Luminex) and ELISA technology, we measured concentrations of certain neurotrophins, neuropeptides, and cytokines in pooled samples (one to three subjects per sample) eluted from archived neonatal blood of children with later-diagnosed autism, Down syndrome, very preterm birth, or term control infants. We also measured analytes in blood from healthy adult controls. Case or control status for infant subjects was ascertained by retrospective review of service agency medical records. We observed inhibitory substances in eluates from archived bloodspots, especially marked for measurement of BDNF. Concentrations in control subjects differed by age: BDNF rose markedly with age, while NT-3 and NT-4/5 concentrations were lower in adults than in newborn infants. IL-8 concentrations were higher in newborn infants, preterm and term, than in adults. Considered by diagnostic group, total protein was higher in Down syndrome than in either autism or control subjects. In infants with Down syndrome, concentrations of IL-8 levels were higher than in controls, whether or not corrected for total protein; NT-3 and CGRP were lower and VIP higher. In samples from autistic subjects, NT-3 levels were significantly lower than controls and an increase in VIP approached statistical significance. Concentrations of NT-4/5 and CGRP were correlated in infants with autism but not in Down syndrome or controls. Some of these results differ from earlier findings using a single-antibody recycling immunoaffinity chromatography (RIC) system. We discuss interrelationships of VIP, NT-3 and IL-8 and their potential relevance to features of the neuropathology of autism or Down syndrome.
Collapse
Affiliation(s)
- Phillip G Nelson
- National Institute of Child Health and Development, Building 31, Room 2A25, Bethesda, MD 20892-2426, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Tsuda H, Jafar-Nejad H, Patel AJ, Sun Y, Chen HK, Rose MF, Venken KJT, Botas J, Orr HT, Bellen HJ, Zoghbi HY. The AXH Domain of Ataxin-1 Mediates Neurodegeneration through Its Interaction with Gfi-1/Senseless Proteins. Cell 2005; 122:633-44. [PMID: 16122429 DOI: 10.1016/j.cell.2005.06.012] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 04/27/2005] [Accepted: 06/09/2005] [Indexed: 11/16/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by an expanded glutamine tract in human Ataxin-1 (hAtx-1). The expansion stabilizes hAtx-1, leading to its accumulation. To understand how stabilized hAtx-1 induces selective neuronal degeneration, we studied Drosophila Atx-1 (dAtx-1), which has a conserved AXH domain but lacks a polyglutamine tract. Overexpression of hAtx-1 in fruit flies produces phenotypes similar to those of dAtx-1 but different from the polyglutamine peptide alone. We show that the Drosophila and mammalian transcription factors Senseless/Gfi-1 interact with Atx-1's AXH domain. In flies, overexpression of Atx-1 inhibits sensory-organ development by decreasing Senseless protein. Similarly, overexpression of wild-type and glutamine-expanded hAtx-1 reduces Gfi-1 levels in Purkinje cells. Deletion of the AXH domain abolishes the effects of glutamine-expanded hAtx-1 on Senseless/Gfi-1. Interestingly, loss of Gfi-1 mimics SCA1 phenotypes in Purkinje cells. These results indicate that the Atx-1/Gfi-1 interaction contributes to the selective Purkinje cell degeneration in SCA1.
Collapse
Affiliation(s)
- Hiroshi Tsuda
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Djalali S, Höltje M, Grosse G, Rothe T, Stroh T, Grosse J, Deng DR, Hellweg R, Grantyn R, Hörtnagl H, Ahnert-Hilger G. Effects of brain-derived neurotrophic factor (BDNF) on glial cells and serotonergic neurones during development. J Neurochem 2005; 92:616-27. [PMID: 15659231 DOI: 10.1111/j.1471-4159.2004.02911.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Serotonergic neurones are among the first to develop in the central nervous system. Their survival and maturation is promoted by a variety of factors, including serotonin itself, brain-derived neurotrophic factor (BDNF) and S100beta, an astrocyte-specific Ca(2+) binding protein. Here, we used BDNF-deficient mice and cell cultures of embryonic raphe neurones to determine whether or not BDNF effects on developing serotonergic raphe neurones are influenced by its action on glial cells. In BDNF-/- mice, the number of serotonin-immunoreactive neuronal somata, the amount of the serotonin transporter, the serotonin content in the striatum and the hippocampus, and the content of 5-hydroxyindoleacetic acid in all brain regions analysed were increased. By contrast, reduced immunoreactivity was found for myelin basic protein (MBP) in all brain areas including the raphe and its target region, the hippocampus. Exogenously applied BDNF increased the number of MBP-immunopositive cells in the respective culture systems. The raphe area displayed selectively reduced immunoreactivity for S100beta. Accordingly, S100beta was increased in primary cultures of pure astrocytes by exogenous BDNF. In glia-free neuronal cultures prepared from the embryonic mouse raphe, addition of BDNF supported the survival of serotonergic neurones and increased the number of axon collaterals and primary dendrites. The latter effect was inhibited by the simultaneous addition of S100beta. These results suggest that the presence of BDNF is not a requirement for the survival and maturation of serotonergic neurones in vivo. BDNF is, however, required for the local expression of S100beta and production of MBP. Therefore BDNF might indirectly influence the development of the serotonergic system by stimulating the expression of S100beta in astrocytes and the production MBP in oligodendrocytes.
Collapse
Affiliation(s)
- S Djalali
- AG Functional Cell Biology/Centre for Anatomy, Charité-Hochschulmedizin Berlin, Phillippstrasse 12, 10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
George AJ, Holsinger RMD, McLean CA, Tan SS, Scott HS, Cardamone T, Cappai R, Masters CL, Li QX. Decreased phosphatidylethanolamine binding protein expression correlates with Abeta accumulation in the Tg2576 mouse model of Alzheimer's disease. Neurobiol Aging 2005; 27:614-23. [PMID: 15941609 DOI: 10.1016/j.neurobiolaging.2005.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 03/01/2005] [Accepted: 03/04/2005] [Indexed: 11/20/2022]
Abstract
Phosphatidylethanolamine binding protein (PEBP) is a multifunctional protein, with proposed roles as the precursor protein of hippocampal cholinergic neurostimulating peptide (HCNP), and as the Raf kinase inhibitor protein (RKIP). Previous studies have demonstrated a decrease in PEBP mRNA in CA1 region of AD hippocampus. The current study demonstrates that PEBP is decreased in the hippocampus of 11 month Tg2576 mice, in the absence of change in mRNA levels compared to non-transgenic littermates. The level of PEBP in transgenic mouse hippocampus significantly decreases at 11 months (a time point when Abeta begins accumulating) and 15 months (when Abeta plaques have formed). There was a significant correlation between decreased PEBP expression and accumulation of Abeta. Immunohistochemical studies on Tg2576 and AD brain sections demonstrate that PEBP immunoreactivities are present at the periphery of dense multicore Abeta plaques, and in selective astrocytes, primarily surrounding plaques. These findings suggest that PEBP expression may be influenced by accumulation of Abeta. Down-regulation of PEBP may result in lower levels of HCNP or altered coordination of signal transduction pathways that may contribute to neuronal dysfunction and pathogenesis in AD.
Collapse
Affiliation(s)
- Amee J George
- Department of Pathology, University of Melbourne, Parkville 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Hamurcu Z, Demirtas H, Kumandas S. Flow cytometric comparison of RNA content in peripheral blood mononuclear cells of down syndrome patients and control individuals. CYTOMETRY PART B-CLINICAL CYTOMETRY 2005; 70:24-8. [PMID: 16353214 DOI: 10.1002/cyto.b.20077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Trisomy 21 or Down syndrome (DS) is the most common genetic cause of mental retardation associated with the immunologic and other known defects. Extra chromosome 21 of DS patients contains an average of 40 extra copies of rRNA genes and the in vivo regulation of these genes' activity is not known. Because over 80% of total cellular RNA is rRNA, the measurement of total cellular RNA provides information on rRNA content. The aim of this work was to determine whether or not the additional chromosome 21 causes any increase in total cellular RNA content in mononuclear cells from peripheral blood (PBMNCs) of these patients and whether or not this content is modified with age. METHOD PBMNCs of 48 patients with DS and 48 healthy controls were studied. RNA content of isolated PBMNCs was evaluated by flow cytometric measurements. RESULTS Average RNA content of younger DS patients' cells was significantly higher than that of healthy controls (P=0.003). Furthermore, the RNA content decreased significantly with increasing age of DS patients (r=-0.377, P=0.008) in the range of 0-26 year old, whereas no significant relationship was found between age and PBMNCs' RNA content of healthy controls in the same range of ages. CONCLUSION RNA content of PBMNCs from DS patients decreases rapidly with age. This is the first work on the age-dependent decrease of the RNA content in PBMNCs of DS patients.
Collapse
Affiliation(s)
- Zuhal Hamurcu
- Department of Medical Biology, Medical Faculty, Erciyes University, 38039 Kayseri, Turkey.
| | | | | |
Collapse
|