51
|
Walsh M, Uretsky M, Tripodis Y, Nowinski CJ, Rasch A, Bruce H, Ryder M, Martin BM, Palmisano JN, Katz DI, Dwyer B, Daneshvar DH, Walley AY, Kim TW, Goldstein LE, Stern RA, Alvarez VE, Huber BR, McKee AC, Stein TD, Mez J, Alosco ML. Clinical and Neuropathological Correlates of Substance Use in American Football Players. J Alzheimers Dis 2024; 101:971-986. [PMID: 39269838 DOI: 10.3233/jad-240300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy more frequently found in deceased former football players. CTE has heterogeneous clinical presentations with multifactorial causes. Previous literature has shown substance use (alcohol/drug) can contribute to Alzheimer's disease and related tauopathies pathologically and clinically. Objective To examine the association between substance use and clinical and neuropathological endpoints of CTE. Methods Our sample included 429 deceased male football players. CTE was neuropathologically diagnosed. Informant interviews assessed features of substance use and history of treatment for substance use to define indicators: history of substance use treatment (yes vs no, primary variable), alcohol severity, and drug severity. Outcomes included scales that were completed by informants to assess cognition (Cognitive Difficulties Scale, BRIEF-A Metacognition Index), mood (Geriatric Depression Scale-15), behavioral regulation (BRIEF-A Behavioral Regulation Index, Barratt Impulsiveness Scale-11), functional ability (Functional Activities Questionnaire), as well as CTE status and cumulative p-tau burden. Regression models tested associations between substance use indicators and outcomes. Results Of the 429 football players (mean age = 62.07), 313 (73%) had autopsy confirmed CTE and 100 (23%) had substance use treatment history. Substance use treatment and alcohol/drug severity were associated with measures of behavioral regulation (FDR-p-values<0.05, ΔR2 = 0.04-0.18) and depression (FDR-p-values<0.05, ΔR2 = 0.02-0.05). Substance use indicators had minimal associations with cognitive scales, whereas p-tau burden was associated with all cognitive scales (p-values <0.05). Substance use treatment had no associations with neuropathological endpoints (FDR-p-values>0.05). Conclusions Among deceased football players, substance use was common and associated with clinical symptoms.
Collapse
Affiliation(s)
- Michael Walsh
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Madeline Uretsky
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Christopher J Nowinski
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
| | - Abigail Rasch
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Hannah Bruce
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Megan Ryder
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Brett M Martin
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N Palmisano
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Douglas I Katz
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Brigid Dwyer
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Daniel H Daneshvar
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Alexander Y Walley
- Grayken Center for Addiction, Clinical Addiction Research and Education Unit, Section of General Internal Medicine, Boston Medical Center, and Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Theresa W Kim
- Grayken Center for Addiction, Clinical Addiction Research and Education Unit, Section of General Internal Medicine, Boston Medical Center, and Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Lee E Goldstein
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Biomedical, Electrical & Computer Engineering, Boston University College of Engineering, Boston, MA, USA
| | - Robert A Stern
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Victor E Alvarez
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Bertrand Russell Huber
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, MA, USA
| | - Ann C McKee
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- U.S. Department of Veteran Affairs, VA Boston Healthcare System, Jamaica Plain, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
52
|
Priemer DS, Perl DP. Neurotrauma: 2024 update. FREE NEUROPATHOLOGY 2024; 5:26. [PMID: 39450188 PMCID: PMC11499945 DOI: 10.17879/freeneuropathology-2024-5849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
2023 was an important year for research in traumatic brain injury (TBI), particularly as it concerned interests in neuropathology. After reviewing the literature, we present the advancements that we felt were of particular importance to the neuropathology community. Highlighted are articles that report upon: (1) the first large-cohort assessment for the neuropathology of intimate partner violence, (2) the assessment of chronic traumatic encephalopathy (CTE) in young athletes, (3) the observation of cortical sulcal depth vascular changes in CTE, (4) a proposal for a tau immunohistochemical panel to evaluate complex cases of CTE in the context of multiple tauopathies, (5) the relationship of TBI and/or CTE with TDP-43 pathology, (6) repetitive TBI inducing pathology in C9orf72-transgenic mice, (7) radiologic patterns of head and neck injury following vehicular underbody blast exposure, (8) chronic alterations in brain metal content following repetitive impact TBI, (9) neurovascular unit injury following low-level blast exposure, and finally (10) an assessment of Muhammad Ali's clinical history leading to the conclusion that he suffered from young-onset, idiopathic Parkinson Disease. We close our writing with in memoriam to Dr. Byron A. Kakulas, a renowned figure in the neuropathology of spinal cord injury who we lost in 2023.
Collapse
Affiliation(s)
- David S. Priemer
- The Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Daniel P. Perl
- The Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
53
|
Nader S, Karlovich E, Cortes EP, Insausti R, Meloni G, Jacobs M, Crary JF, Morgello S. Predictors of hippocampal tauopathy in people with and at risk for human immunodeficiency virus infection. J Neurovirol 2023; 29:647-657. [PMID: 37926797 DOI: 10.1007/s13365-023-01181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Combination antiretroviral therapy (cART) has extended lifespans of people living with HIV (PWH), increasing both the risk for age-related neuropathologies and the importance of distinguishing effects of HIV and its comorbidities from neurodegenerative disorders. The accumulation of hyperphosphorylated tau (p-tau) in hippocampus is a common degenerative change, with specific patterns of hippocampal subfield vulnerability observed in different disease contexts. Currently, associations between chronic HIV, its comorbidities, and p-tau burden and distribution in the hippocampus are unexplored. We used immunohistochemistry with antibody AT8 to analyze hippocampal p-tau in brain tissues of PWH (n = 71) and HIV negative controls (n = 25), for whom comprehensive clinical data were available. Using a morphology-based neuroanatomical segmentation protocol, we annotated digital slide images to measure percentage p-tau areas in the hippocampus and its subfields. Factors predicting p-tau burden and distribution were identified in univariate analyses, and those with significance at p ≤ 0.100 were advanced to multivariable regression. The patient sample had a mean age of 61.5 years. Age predicted overall hippocampal p-tau burden. Subfield p-tau predictors were for Cornu Ammonis (CA)1, age; for CA2 and subiculum, seizure history; for CA3, seizure history and head trauma; and for CA4/dentate, history of hepatitis C virus (HCV) infection. In this autopsy sample, hippocampal p-tau burden and distribution were not predicted by HIV, viral load, or immunologic status, with viral effects limited to associations between HCV and CA4/dentate vulnerability. Hippocampal p-tau pathologies in cART-era PWH appear to reflect age and comorbidities, but not direct effects of HIV infection.
Collapse
Affiliation(s)
- Sophie Nader
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esma Karlovich
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Etty P Cortes
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo Insausti
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA
| | - Gregory Meloni
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle Jacobs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Susan Morgello
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
54
|
Stewart W, Buckland ME, Abdolmohammadi B, Affleck AJ, Alvarez VE, Gilchrist S, Huber BR, Lee EB, Lyall DM, Nowinski CJ, Russell ER, Stein TD, Suter CM, McKee AC. Risk of chronic traumatic encephalopathy in rugby union is associated with length of playing career. Acta Neuropathol 2023; 146:829-832. [PMID: 37872234 PMCID: PMC10627955 DOI: 10.1007/s00401-023-02644-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Affiliation(s)
- William Stewart
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QQ, UK.
- Department of Neuropathology, Queen Elizabeth University Hospital, 1345 Govan Rd, Glasgow, G51 4TF, UK.
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Bobak Abdolmohammadi
- Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Andrew J Affleck
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Victor E Alvarez
- Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- US Department of Veteran Affairs, Veterans Affairs (VA) Boston Healthcare System, Boston, MA, 02130, USA
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Shannon Gilchrist
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Bertrand R Huber
- Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- US Department of Veteran Affairs, Veterans Affairs (VA) Boston Healthcare System, Boston, MA, 02130, USA
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- US Department of Veteran Affairs, VA Bedford Healthcare System, Bedford, MA, 01730, USA
- National Center for PTSD, VA Boston Healthcare, Boston, MA, 02130, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donald M Lyall
- School of Health and Wellbeing, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Christopher J Nowinski
- Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- Concussion Legacy Foundation, Boston, MA, 02115, USA
| | - Emma R Russell
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thor D Stein
- Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- US Department of Veteran Affairs, Veterans Affairs (VA) Boston Healthcare System, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- US Department of Veteran Affairs, VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Catherine M Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Ann C McKee
- Alzheimer's Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- US Department of Veteran Affairs, Veterans Affairs (VA) Boston Healthcare System, Boston, MA, 02130, USA
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- US Department of Veteran Affairs, VA Bedford Healthcare System, Bedford, MA, 01730, USA
- National Center for PTSD, VA Boston Healthcare, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| |
Collapse
|
55
|
Byard R, Tiemensma M, Buckland ME, Vink R. Chronic traumatic encephalopathy (CTE)-features and forensic considerations. Forensic Sci Med Pathol 2023; 19:620-624. [PMID: 37058211 PMCID: PMC10752833 DOI: 10.1007/s12024-023-00624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative condition, in which the only known cause is exposure to repeated episodes of blunt head trauma. It most often occurs in professional and amateur athletes who have had frequent and repetitive cranial impacts during contact sports, but may also be found in victims of domestic violence, military personnel exposed to explosive devices and in individuals with severe epilepsy. The pathognomonic pathological findings are of neurofibrillary tangles and pretangles in the depths of the cerebral sulci caused by perivascular accumulation of phosphorylated Tau (pTau). Cases may be high profile requiring an evaluation of whether the neuropathological findings of CTE can be related to injuries previously sustained on the sporting field. Failure to examine the brain or to adequately sample appropriate areas at autopsy may lead to cases being overlooked and to an underestimation of the incidence of this condition in the community. Performing immunohistochemical staining for pTau in three areas from the neocortex has been found to be a useful screening tool for CTE. Ascertaining whether there is a history of head trauma, including exposure to contact sports, as a standard part of forensic clinical history protocols will help identify at-risk individuals so that Coronial consideration of the need for brain examination can be appropriately informed. Repetitive head trauma, particularly from contact sport, is being increasingly recognized as a cause of significant preventable neurodegeneration.
Collapse
Affiliation(s)
- Roger Byard
- Adelaide School of Biomedicine, The University of Adelaide, Level 2, Room N237, Helen Mayo North, Frome Road, 5005, Adelaide, SA, Australia.
- Forensic Science South Australia, 5000, Adelaide, SA, Australia.
| | - Marianne Tiemensma
- Forensic Pathology Unit, Royal Darwin Hospital, 0800, Darwin, NT, Australia
- College of Medicine and Public Health, Flinders University, 5042, Bedford Park, SA, Australia
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, 2050, Camperdown, NSW, Australia
| | - Robert Vink
- Clinical and Health Sciences, University of South Australia, 5001, Adelaide, SA, Australia
| |
Collapse
|
56
|
Dams-O'Connor K, Seifert AC, Crary JF, Delman BN, Del Bigio MR, Kovacs GG, Lee EB, Nolan AL, Pruyser A, Selmanovic E, Stewart W, Woodoff-Leith E, Folkerth RD. The neuropathology of intimate partner violence. Acta Neuropathol 2023; 146:803-815. [PMID: 37897548 PMCID: PMC10627910 DOI: 10.1007/s00401-023-02646-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
Lifelong brain health consequences of traumatic brain injury (TBI) include the risk of neurodegenerative disease. Up to one-third of women experience intimate partner violence (IPV) in their lifetime, often with TBI, yet remarkably little is known about the range of autopsy neuropathologies encountered in IPV. We report a prospectively accrued case series from a single institution, the New York City Office of Chief Medical Examiner, evaluated in partnership with the Brain Injury Research Center of Mount Sinai, using a multimodal protocol comprising clinical history review, ex vivo imaging in a small subset, and comprehensive neuropathological assessment by established consensus protocols. Fourteen brains were obtained over 2 years from women with documented IPV (aged 3rd-8th decade; median, 4th) and complex histories including prior TBI in 6, nonfatal strangulation in 4, cerebrovascular, neurological, and/or psychiatric conditions in 13, and epilepsy in 7. At autopsy, all had TBI stigmata (old and/or recent). In addition, white matter regions vulnerable to diffuse axonal injury showed perivascular and parenchymal iron deposition and microgliosis in some subjects. Six cases had evidence of cerebrovascular disease (lacunes and/or chronic infarcts). Regarding neurodegenerative disease pathologies, Alzheimer disease neuropathologic change was present in a single case (8th decade), with no chronic traumatic encephalopathy neuropathologic change (CTE-NC) identified in any. Findings from this initial series then prompted similar exploration in an expanded case series of 70 archival IPV cases (aged 2nd-9th decade; median, 4th) accrued from multiple international institutions. In this secondary case series, we again found evidence of vascular and white matter pathologies. However, only limited neurodegenerative proteinopathies were encountered in the oldest subjects, none meeting consensus criteria for CTE-NC. These observations from this descriptive exploratory study reinforce a need to consider broad co-morbid and neuropathological substrates contributing to brain health outcomes in the context of IPV, some of which may be potentially modifiable.
Collapse
Affiliation(s)
- Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Brain Injury Research Center of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan C Seifert
- Department of Diagnostic, Molecular and Interventional Radiology, Biomedical Engineering and Imaging Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John F Crary
- Department of Pathology, Molecular, and Cell Based Medicine, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, and Artificial Intelligence & Human Health, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Mount Sinai Hospital, New York, NY, USA
| | - Bradley N Delman
- Department of Diagnostic, Molecular and Interventional Radiology, Biomedical Engineering and Imaging Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Marc R Del Bigio
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Room 401 Brodie Centre, 727 McDermot Avenue, Winnipeg, MB, Canada
- Diagnostic Services - Pathology, Shared Health Manitoba, Winnipeg, MB, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease (CRND) and Department of Laboratory Medicine and Pathobiology, Krembil Discovery Tower, University of Toronto, 60 Leonard Ave, Toronto, ON, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amber L Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ariel Pruyser
- Department of Rehabilitation and Human Performance, Brain Injury Research Center of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Enna Selmanovic
- Department of Rehabilitation and Human Performance, Brain Injury Research Center of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Stewart
- Department of Neuropathology, Elizabeth University Hospital, Glasgow, G514TF, Queen, UK
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G128QQ, UK
| | - Emma Woodoff-Leith
- Department of Pathology, Molecular, and Cell Based Medicine, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, and Artificial Intelligence & Human Health, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Mount Sinai Hospital, New York, NY, USA
| | - Rebecca D Folkerth
- Office of Chief Medical Examiner, 520 First Avenue, New York, NY, 10116, USA.
- Department of Forensic Medicine, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
57
|
Stern RA, Trujillo-Rodriguez D, Tripodis Y, Pulukuri SV, Alosco ML, Adler CH, Balcer LJ, Bernick C, Baucom Z, Marek KL, McClean MD, Johnson KA, McKee AC, Stein TD, Mez J, Palmisano JN, Cummings JL, Shenton ME, Reiman EM. Amyloid PET across the cognitive spectrum in former professional and college American football players: findings from the DIAGNOSE CTE Research Project. Alzheimers Res Ther 2023; 15:166. [PMID: 37798671 PMCID: PMC10552261 DOI: 10.1186/s13195-023-01315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Exposure to repetitive head impacts (RHI) in American football players can lead to cognitive impairment and dementia due to neurodegenerative disease, particularly chronic traumatic encephalopathy (CTE). The pathognomonic lesion of CTE consists of perivascular aggregates of hyper-phosphorylated tau in neurons at the depths of cortical sulci. However, it is unclear whether exposure to RHI accelerates amyloid-β (Aβ) plaque formation and increases the risk for Alzheimer's disease (AD). Although the Aβ neuritic plaques characteristic of AD are observed in a minority of later-stage CTE cases, diffuse plaques are more common. This study examined whether former professional and college American football players, including those with cognitive impairment and dementia, have elevated neuritic Aβ plaque density, as measured by florbetapir PET. Regardless of cognitive and functional status, elevated levels of florbetapir uptake were not expected. METHODS We examined 237 men ages 45-74, including 119 former professional (PRO) and 60 former college (COL) football players, with and without cognitive impairment and dementia, and 58 same-age men without a history of contact sports or TBI (unexposed; UE) and who denied cognitive or behavioral symptoms at telephone screening. Former players were categorized into four diagnostic groups: normal cognition, subjective memory impairment, mild cognitive impairment, and dementia. Positive florbetapir PET was defined by cortical-cerebellar average SUVR of ≥ 1.10. Multivariable linear regression and analysis of covariance (ANCOVA) compared florbetapir average SUVR across diagnostic and exposure groups. Multivariable logistic regression compared florbetapir positivity. Race, education, age, and APOE4 were covariates. RESULTS There were no diagnostic group differences either in florbetapir average SUVR or the proportion of elevated florbetapir uptake. Average SUVR means also did not differ between exposure groups: PRO-COL (p = 0.94, 95% C.I. = [- 0.033, 0.025]), PRO-UE (p = 0.40, 95% C.I. = [- 0.010, 0.029]), COL-UE (p = 0.36, 95% CI = [0.0004, 0.039]). Florbetapir was not significantly associated with years of football exposure, cognition, or daily functioning. CONCLUSIONS Cognitive impairment in former American football players is not associated with PET imaging of neuritic Aβ plaque deposition. These findings are inconsistent with a neuropathological diagnosis of AD in individuals with substantial RHI exposure and have both clinical and medico-legal implications. TRIAL REGISTRATION NCT02798185.
Collapse
Affiliation(s)
- Robert A Stern
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA.
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Departments of Neurosurgery, and Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - Diana Trujillo-Rodriguez
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA
- Graduate Program in Neuroscience, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Surya V Pulukuri
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA
| | - Michael L Alosco
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Laura J Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Zachary Baucom
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kenneth L Marek
- Institute for Neurodegenerative Disorders, Invicro, LLC, New Haven, CT, USA
| | - Michael D McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Keith A Johnson
- Massachusetts General Hospital, Harvard Medical School, Gordon Center for Medical Imaging, Brigham and Women's Hospital, Boston, MA, USA
| | - Ann C McKee
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Thor D Stein
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University CTE Center, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord Street, Boston, MA, L525, USA
- Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joseph N Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Jeffrey L Cummings
- Department of Brain Health, School of Integrated Health Sciences, Chambers-Grundy Center for Transformative Neuroscience, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Harvard Medical School, Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| |
Collapse
|
58
|
McKee AC, Mez J, Abdolmohammadi B, Butler M, Huber BR, Uretsky M, Babcock K, Cherry JD, Alvarez VE, Martin B, Tripodis Y, Palmisano JN, Cormier KA, Kubilus CA, Nicks R, Kirsch D, Mahar I, McHale L, Nowinski C, Cantu RC, Stern RA, Daneshvar D, Goldstein LE, Katz DI, Kowall NW, Dwyer B, Stein TD, Alosco ML. Neuropathologic and Clinical Findings in Young Contact Sport Athletes Exposed to Repetitive Head Impacts. JAMA Neurol 2023; 80:1037-1050. [PMID: 37639244 PMCID: PMC10463175 DOI: 10.1001/jamaneurol.2023.2907] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023]
Abstract
Importance Young contact sport athletes may be at risk for long-term neuropathologic disorders, including chronic traumatic encephalopathy (CTE). Objective To characterize the neuropathologic and clinical symptoms of young brain donors who were contact sport athletes. Design, Setting, and Participants This case series analyzes findings from 152 of 156 brain donors younger than 30 years identified through the Understanding Neurologic Injury and Traumatic Encephalopathy (UNITE) Brain Bank who donated their brains from February 1, 2008, to September 31, 2022. Neuropathologic evaluations, retrospective telephone clinical assessments, and online questionnaires with informants were performed blinded. Data analysis was conducted between August 2021 and June 2023. Exposures Repetitive head impacts from contact sports. Main Outcomes and Measures Gross and microscopic neuropathologic assessment, including diagnosis of CTE, based on defined diagnostic criteria; and informant-reported athletic history and informant-completed scales that assess cognitive symptoms, mood disturbances, and neurobehavioral dysregulation. Results Among the 152 deceased contact sports participants (mean [SD] age, 22.97 [4.31] years; 141 [92.8%] male) included in the study, CTE was diagnosed in 63 (41.4%; median [IQR] age, 26 [24-27] years). Of the 63 brain donors diagnosed with CTE, 60 (95.2%) were diagnosed with mild CTE (stages I or II). Brain donors who had CTE were more likely to be older (mean difference, 3.92 years; 95% CI, 2.74-5.10 years) Of the 63 athletes with CTE, 45 (71.4%) were men who played amateur sports, including American football, ice hockey, soccer, rugby, and wrestling; 1 woman with CTE played collegiate soccer. For those who played football, duration of playing career was significantly longer in those with vs without CTE (mean difference, 2.81 years; 95% CI, 1.15-4.48 years). Athletes with CTE had more ventricular dilatation, cavum septum pellucidum, thalamic notching, and perivascular pigment-laden macrophages in the frontal white matter than those without CTE. Cognitive and neurobehavioral symptoms were frequent among all brain donors. Suicide was the most common cause of death, followed by unintentional overdose; there were no differences in cause of death or clinical symptoms based on CTE status. Conclusions and Relevance This case series found that young brain donors exposed to repetitive head impacts were highly symptomatic regardless of CTE status, and the causes of symptoms in this sample are likely multifactorial. Future studies that include young brain donors unexposed to repetitive head impacts are needed to clarify the association among exposure, white matter and microvascular pathologic findings, CTE, and clinical symptoms.
Collapse
Affiliation(s)
- Ann C. McKee
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
- National Center for PTSD, VA Boston Healthcare, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Jesse Mez
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Bobak Abdolmohammadi
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Morgane Butler
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Bertrand Russell Huber
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
- National Center for PTSD, VA Boston Healthcare, Boston, Massachusetts
| | - Madeline Uretsky
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Katharine Babcock
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Jonathan D. Cherry
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Victor E. Alvarez
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Brett Martin
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Yorghos Tripodis
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Joseph N. Palmisano
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, Massachusetts
| | - Kerry A. Cormier
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Caroline A. Kubilus
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Raymond Nicks
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Daniel Kirsch
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Ian Mahar
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Lisa McHale
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Concussion Legacy Foundation, Boston, Massachusetts
| | - Christopher Nowinski
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Concussion Legacy Foundation, Boston, Massachusetts
| | - Robert C. Cantu
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Concussion Legacy Foundation, Boston, Massachusetts
- Department of Neurosurgery, Emerson Hospital, Concord, Massachusetts
- Department of Neurosurgery, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Robert A. Stern
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurosurgery, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Daniel Daneshvar
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Rehabilitation Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lee E. Goldstein
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Psychiatry, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Biomedical, Electrical, and Computer Engineering, Boston University College of Engineering, Boston, Massachusetts
| | - Douglas I. Katz
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Neil W. Kowall
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Brigid Dwyer
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Braintree Rehabilitation Hospital, Braintree, Massachusetts
| | - Thor D. Stein
- Veterans Affairs (VA) Boston Healthcare System, US Department of Veteran Affairs, Boston, Massachusetts
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- VA Bedford Healthcare System, US Department of Veteran Affairs, Bedford, Massachusetts
| | - Michael L. Alosco
- Alzheimer’s Disease Research Center and Chronic Traumatic Encephalopathy Center, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts
| |
Collapse
|
59
|
Mayer AR, Dodd AB, Dodd RJ, Stephenson DD, Ling JM, Mehos CJ, Patton DA, Robertson-Benta CR, Gigliotti AP, Vermillion MS, Noghero A. Head Kinematics, Blood Biomarkers, and Histology in Large Animal Models of Traumatic Brain Injury and Hemorrhagic Shock. J Neurotrauma 2023; 40:2205-2216. [PMID: 37341029 PMCID: PMC10701512 DOI: 10.1089/neu.2022.0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
Traumatic brain injury (TBI) and severe blood loss resulting in hemorrhagic shock (HS) are each leading causes of mortality and morbidity worldwide, and present additional treatment considerations when they are comorbid (TBI+HS) as a result of competing pathophysiological responses. The current study rigorously quantified injury biomechanics with high precision sensors and examined whether blood-based surrogate markers were altered in general trauma as well as post-neurotrauma. Eighty-nine sexually mature male and female Yucatan swine were subjected to a closed-head TBI+HS (40% of circulating blood volume; n = 68), HS only (n = 9), or sham trauma (n = 12). Markers of systemic (e.g., glucose, lactate) and neural functioning were obtained at baseline, and at 35 and 295 min post-trauma. Opposite and approximately twofold differences existed for both magnitude (device > head) and duration (head > device) of quantified injury biomechanics. Circulating levels of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and ubiquitin C-terminal hydrolase L1 (UCH-L1) demonstrated differential sensitivity for both general trauma (HS) and neurotrauma (TBI+HS) relative to shams in a temporally dynamic fashion. GFAP and NfL were both strongly associated with changes in systemic markers during general trauma and exhibited consistent time-dependent changes in individual sham animals. Finally, circulating GFAP was associated with histopathological markers of diffuse axonal injury and blood-brain barrier breach, as well as variations in device kinematics following TBI+HS. Current findings therefore highlight the need to directly quantify injury biomechanics with head mounted sensors and suggest that GFAP, NfL, and UCH-L1 are sensitive to multiple forms of trauma rather than having a single pathological indication (e.g., GFAP = astrogliosis).
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Psychology, and University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Andrew B. Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Rebecca J. Dodd
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - David D. Stephenson
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Josef M. Ling
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Carissa J. Mehos
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Declan A. Patton
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cidney R. Robertson-Benta
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Andrew P. Gigliotti
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Meghan S. Vermillion
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Alessio Noghero
- The Mind Research Network/Lovelace Biomedical Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| |
Collapse
|
60
|
Phansalkar R, Goodwill VS, Nirschl JJ, De Lillo C, Choi J, Spurlock E, Coughlin DG, Pizzo D, Sigurdson CJ, Hiniker A, Alvarez VE, Mckee AC, Lin JH. TDP43 pathology in chronic traumatic encephalopathy retinas. Acta Neuropathol Commun 2023; 11:152. [PMID: 37737191 PMCID: PMC10515050 DOI: 10.1186/s40478-023-01650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive head trauma. Brain pathology in CTE is characterized by neuronal loss, gliosis, and a distinctive pattern of neuronal accumulation of hyper-phosphorylated tau (p-tau) and phospho-TDP43 (p-TDP43). Visual anomalies have been reported by patients with CTE, but the ocular pathology underlying these symptoms is unknown. We evaluated retinal pathology in post-mortem eyes collected from 8 contact sport athletes with brain autopsy-confirmed stage IV CTE and compared their findings to retinas from 8 control patients without CTE and with no known history of head injury. Pupil-optic nerve cross sections were prepared and stained with hematoxylin and eosin (H&E), p-tau, p-TDP43, and total TDP43 by immunohistochemistry. No significant retinal degeneration was observed in CTE eyes compared to control eyes by H&E. Strong cytoplasmic p-TDP43 and total TDP43 staining was found in 6/8 CTE eyes in a subset of inner nuclear layer interneurons (INL) of the retina, while only 1/8 control eyes showed similar p-TDP43 pathology. The morphology and location of these inner nuclear layer interneurons were most compatible with retinal horizontal cells, although other retinal cell types present in INL could not be ruled out. No p-tau pathology was observed in CTE or control retinas. These findings identify novel retinal TDP43 pathology in CTE retinas and support further investigation into the role of p-TDP43 in producing visual deficits in patients with CTE.
Collapse
Affiliation(s)
| | - Vanessa S Goodwill
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Jeffrey J Nirschl
- Departments of Ophthalmology and Pathology, Stanford University, Stanford, CA, USA
| | | | - Jihee Choi
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth Spurlock
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - David G Coughlin
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Donald Pizzo
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | | | - Annie Hiniker
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Ann C Mckee
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Jonathan H Lin
- Departments of Ophthalmology and Pathology, Stanford University, Stanford, CA, USA.
- VA Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
61
|
Beversdorf DQ, Paretsky M. Traumatic Encephalopathy Syndrome: Can It Stand the Test of Time? Neurology 2023; 101:461-462. [PMID: 37380430 DOI: 10.1212/wnl.0000000000207711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Affiliation(s)
- David Q Beversdorf
- From the Department of Radiology, Neurology, and Psychology, College of Arts & Sciences, University of Missouri, Columbia.
| | - Melissa Paretsky
- From the Department of Radiology, Neurology, and Psychology, College of Arts & Sciences, University of Missouri, Columbia
| |
Collapse
|
62
|
Zou Y, Qi B, Tan J, Guan L, Zhang Q, Sun Y, Huang F. Deciphering the Inhibitory Mechanism of Naphthoquinone-Dopamine on the Aggregation of Tau Core Fragments PHF6* and PHF6. ACS Chem Neurosci 2023; 14:3265-3277. [PMID: 37585669 DOI: 10.1021/acschemneuro.3c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
The formation of neurofibrillary tangles by abnormal aggregation of tau protein is considered to be an important pathological characteristic of tauopathies, including Alzheimer's disease and chronic traumatic encephalopathy. Two hexapeptides 275VQIINK280 and 306VQIVYK311 in the microtubule binding region, named PHF6* and PHF6, are known to be aggregation-prone and responsible for tau fibrillization. Previous experiments reported that naphthoquinone-dopamine (NQDA) could effectively inhibit the aggregation of PHF6* and PHF6 and disrupt the fibrillar aggregates into nontoxic species, displaying a dual effect on the amyloid aggregation. However, the underlying molecular mechanism remains mostly elusive. Herein, we performed all-atom molecular dynamics (MD) simulations for 114 μs in total to systematically investigate the impacts of NQDA on the oligomerization of PHF6* and PHF6. The conformational ensembles of PHF6* and PHF6 peptides generated by replica exchange MD simulations show that NQDA could effectively prevent the hydrogen bond formation, reduce the ability of peptides to self-assemble into long β-strand and large β-sheets, and induce peptides to form a loosely packed and coil-rich oligomer. The interaction analysis shows that the binding of NQDA to PHF6* is mainly through hydrophobic interactions with residue I277 and hydrogen bonding interactions with Q276; for the PHF6 peptides, NQDA displays a strong π-π stacking interaction with residue Y310, thus impeding the Y310-Y310 π-π stacking and I308-Y310 CH-π interactions. The DA group of NQDA displays a stronger cation-π interaction than the NQ group, while the NQ group exhibits a stronger π-π stacking interaction. MD simulations demonstrate that NQDA prevents the conformational conversion to β-sheet-rich aggregates and displays an inhibitory effect on the oligomerization dynamics of PHF6* and PHF6. Our results provide a complete picture of inhibitory mechanisms of NQDA on PHF6* and PHF6 oligomerization, which may pave the way for designing drug candidates for the treatment of tauopathies.
Collapse
Affiliation(s)
- Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Bote Qi
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Jingwang Tan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Lulu Guan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Qingwen Zhang
- College of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, P. R. China
| | - Yunxiang Sun
- Department of Physics, Ningbo University, 818 Fenghua Road, Ningbo 315211, Zhejiang, P. R. China
| | - Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, Zhejiang, P. R. China
| |
Collapse
|
63
|
Rossi C, Campese N, Colosimo C. Emerging Symptomatic Treatment of Chronic Traumatic Encephalopathy (CTE): a narrative review. Expert Opin Pharmacother 2023; 24:1415-1425. [PMID: 37300418 DOI: 10.1080/14656566.2023.2224501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Chronic traumatic encephalopathy (CTE) is an emergent neurodegenerative tauopathy well characterized pathologically but with limited consensus about clinical criteria. The clinical features include cognitive, behavioral, and motor symptoms such as parkinsonism, gait, balance disorder, and bulbar impairment. Their recognition derives from retrospective studies in pathologically confirmed CTE patients. This is one of the main reasons for the lack of specific pharmacological studies targeting symptoms or pathologic pathways of this disease. AREAS COVERED In this narrative review, we overview the possible symptomatic treatment options for CTE, based on pathological similarities with other neurodegenerative diseases that may share common pathological pathways with CTE. The PubMed database was screened for articles addressing the symptomatic treatment of CTE and Traumatic Encephalopathy Syndrome (TES). Additional references were retrieved by reference cross-check and retained if pertinent to the subject. The clinicaltrials.gov database was screened for ongoing trials on the treatment of CTE. EXPERT OPINION The similarities with the other tauopathies allow us, in the absence of disease-specific evidence, to translate some knowledge from these neurodegenerative disorders to CTE's symptomatic treatment, but any conclusion should be drawn cautiously and a patient-tailored strategy should be always preferred balancing the risks and benefits of each treatment.
Collapse
Affiliation(s)
- Carlo Rossi
- Neurology Unit, F. Lotti Hospital of Pontedera. Azienda Sanitaria Locale Toscana Nord-Ovest, Pisa, Italy
| | - Nicole Campese
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Carlo Colosimo
- Department of Neurology, S. Maria University Hospital, Terni, Italy
| |
Collapse
|
64
|
Suter CM, Affleck AJ, Pearce AJ, Junckerstorff R, Lee M, Buckland ME. Chronic traumatic encephalopathy in a female ex-professional Australian rules footballer. Acta Neuropathol 2023; 146:547-549. [PMID: 37391669 PMCID: PMC10412665 DOI: 10.1007/s00401-023-02610-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Affiliation(s)
- Catherine M Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Andrew J Affleck
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | | | - Maggie Lee
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
65
|
Lee CD, Meehan WP, Bazarian J. Participation of Children in American Football. N Engl J Med 2023; 389:660-662. [PMID: 37585634 DOI: 10.1056/nejmclde2302021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
66
|
Flavin WP, Hosseini H, Ruberti JW, Kavehpour HP, Giza CC, Prins ML. Traumatic brain injury and the pathways to cerebral tau accumulation. Front Neurol 2023; 14:1239653. [PMID: 37638180 PMCID: PMC10450935 DOI: 10.3389/fneur.2023.1239653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Tau is a protein that has received national mainstream recognition for its potential negative impact to the brain. This review succinctly provides information on the structure of tau and its normal physiological functions, including in hibernation and changes throughout the estrus cycle. There are many pathways involved in phosphorylating tau including diabetes, stroke, Alzheimer's disease (AD), brain injury, aging, and drug use. The common mechanisms for these processes are put into context with changes observed in mild and repetitive mild traumatic brain injury (TBI). The phosphorylation of tau is a part of the progression to pathology, but the ability for tau to aggregate and propagate is also addressed. Summarizing both the functional and dysfunctional roles of tau can help advance our understanding of this complex protein, improve our care for individuals with a history of TBI, and lead to development of therapeutic interventions to prevent or reverse tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- William P. Flavin
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Steve Tisch BrainSPORT Program, Department of Pediatrics and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Helia Hosseini
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
| | - Jeffrey W. Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - H. Pirouz Kavehpour
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
- Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA, United States
| | - Christopher C. Giza
- Steve Tisch BrainSPORT Program, Department of Pediatrics and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Mayumi L. Prins
- Steve Tisch BrainSPORT Program, Department of Pediatrics and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Bioengineering, UCLA, Los Angeles, CA, United States
- Department of Neurosurgery, Brain Injury Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
67
|
Dhaynaut M, Grashow R, Normandin MD, Wu O, Marengi D, Terry DP, Sanchez JS, Weisskopf MG, Speizer FE, Taylor HA, Guehl NJ, Seshadri S, Beiser A, Daneshvar DH, Johnson K, Iverson GL, Zafonte R, El Fakhri G, Baggish AL. Tau Positron Emission Tomography and Neurocognitive Function Among Former Professional American-Style Football Players. J Neurotrauma 2023; 40:1614-1624. [PMID: 37282582 PMCID: PMC10458363 DOI: 10.1089/neu.2022.0454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
American-style football (ASF) players experience repetitive head impacts that may result in chronic traumatic encephalopathy neuropathological change (CTE-NC). At present, a definitive diagnosis of CTE-NC requires the identification of localized hyperphosphorylated Tau (p-Tau) after death via immunohistochemistry. Some studies suggest that positron emission tomography (PET) with the radiotracer [18F]-Flortaucipir (FTP) may be capable of detecting p-Tau and thus establishing a diagnosis of CTE-NC among living former ASF players. To assess associations between FTP, football exposure, and objective neuropsychological measures among former professional ASF players, we conducted a study that compared former professional ASF players with age-matched male control participants without repetitive head impact exposure. Former ASF players and male controls underwent structural magnetic resonance imaging and PET using FTP for p-Tau and [11C]-PiB for amyloid-β. Former players underwent neuropsychological testing. The ASF exposure was quantified as age at first exposure, professional career duration, concussion signs and symptoms burden, and total years of any football play. Neuropsychological testing included measures of memory, executive functioning, and depression symptom severity. P-Tau was quantified as FTP standardized uptake value ratios (SUVR) and [11C]-PiB by distribution volume ratios (DVR) using cerebellar grey matter as the reference region. There were no significant differences in [18F]-FTP uptake among former ASF players (n = 27, age = 50 ± 7 years) compared with control participants (n = 11, age = 55 ± 4 years), nor did any participant have significant amyloid-β burden. Among ASF participants, there were no associations between objective measures of neurocognitive functioning and [18F]-FTP uptake. There was a marginally significant difference, however, between [18F]-FTP uptake isolated to the entorhinal cortex among players in age-, position-, and race-adjusted models (p = 0.05) that may represent an area of future investigation. The absence of increased [18F]-FTP uptake in brain regions previously implicated in CTE among former professional ASF players compared with controls questions the utility of [18F]-FTP PET for clinical evaluation in this population.
Collapse
Affiliation(s)
- Maeva Dhaynaut
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel Grashow
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Football Players Health Study at Harvard University, Harvard Medical School, Boston, Massachusetts, USA
| | - Marc D. Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ona Wu
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Dean Marengi
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Douglas P. Terry
- Vanderbilt Sports Concussion Center, Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin S. Sanchez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marc G. Weisskopf
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Football Players Health Study at Harvard University, Harvard Medical School, Boston, Massachusetts, USA
| | - Frank E. Speizer
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Football Players Health Study at Harvard University, Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachsetts, USA
| | - Herman A. Taylor
- Football Players Health Study at Harvard University, Harvard Medical School, Boston, Massachusetts, USA
- Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Nicolas J. Guehl
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sudha Seshadri
- The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UTHSA, San Antonio, Texas, USA
| | - Alexa Beiser
- NHLBI's Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Biostatistics and Neurology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Daniel H. Daneshvar
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts 02129, USA
| | - Keith Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, Massachusetts, USA
- Sports Concussion Program, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| | - Ross Zafonte
- Football Players Health Study at Harvard University, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron L. Baggish
- Football Players Health Study at Harvard University, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Cardiology, Lausanne University Hospital (CHUV) and Institute for Sport Science, University of Lausanne (ISSUL), Lausanne, Switzerland
| |
Collapse
|
68
|
Rosen G, Kirsch D, Horowitz S, Cherry JD, Nicks R, Kelley H, Uretsky M, Dell'Aquila K, Mathias R, Cormier KA, Kubilus CA, Mez J, Tripodis Y, Stein TD, Alvarez VE, Alosco ML, McKee AC, Huber BR. Three dimensional evaluation of cerebrovascular density and branching in chronic traumatic encephalopathy. Acta Neuropathol Commun 2023; 11:123. [PMID: 37491342 PMCID: PMC10369801 DOI: 10.1186/s40478-023-01612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts (RHI) and characterized by perivascular accumulations of hyperphosphorylated tau protein (p-tau) at the depths of the cortical sulci. Studies of living athletes exposed to RHI, including concussive and nonconcussive impacts, have shown increased blood-brain barrier permeability, reduced cerebral blood flow, and alterations in vasoreactivity. Blood-brain barrier abnormalities have also been reported in individuals neuropathologically diagnosed with CTE. To further investigate the three-dimensional microvascular changes in individuals diagnosed with CTE and controls, we used SHIELD tissue processing and passive delipidation to optically clear and label blocks of postmortem human dorsolateral frontal cortex. We used fluorescent confocal microscopy to quantitate vascular branch density and fraction volume. We compared the findings in 41 male brain donors, age at death 31-89 years, mean age 64 years, including 12 donors with low CTE (McKee stage I-II), 13 with high CTE (McKee stage III-IV) to 16 age- and sex-matched non-CTE controls (7 with RHI exposure and 9 with no RHI exposure). The density of vessel branches in the gray matter sulcus was significantly greater in CTE cases than in controls. The ratios of sulcus versus gyrus vessel branch density and fraction volume were also greater in CTE than in controls and significantly above one for the CTE group. Hyperphosphorylated tau pathology density correlated with gray matter sulcus fraction volume. These findings point towards increased vascular coverage and branching in the dorsolateral frontal cortex (DLF) sulci in CTE, that correlates with p-tau pathology.
Collapse
Affiliation(s)
- Grace Rosen
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, USA
| | - Daniel Kirsch
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Sarah Horowitz
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, USA
| | - Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Raymond Nicks
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Hunter Kelley
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Madeline Uretsky
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Kevin Dell'Aquila
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Rebecca Mathias
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Kerry A Cormier
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, USA
| | - Caroline A Kubilus
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, USA
| | - Thor D Stein
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Victor E Alvarez
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
| | - Ann C McKee
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA
- VA Bedford Healthcare System, US Department of Veterans Affairs, Bedford, MA, USA
| | - Bertrand R Huber
- VA Boston Healthcare System, US Department of Veterans Affairs, 150 S Huntington Avenue, Boston, MA, 02130, USA.
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA.
- Boston University Alzheimer's Disease Research Center and Boston University CTE Center, Boston, USA.
- National Center for PTSD, US Department of Veterans Affairs, Boston, MA, USA.
| |
Collapse
|
69
|
Iverson GL, Kissinger-Knox A, Huebschmann NA, Castellani RJ, Gardner AJ. A narrative review of psychiatric features of traumatic encephalopathy syndrome as conceptualized in the 20th century. Front Neurol 2023; 14:1214814. [PMID: 37545715 PMCID: PMC10401603 DOI: 10.3389/fneur.2023.1214814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Some ultra-high exposure boxers from the 20th century suffered from neurological problems characterized by slurred speech, personality changes (e.g., childishness or aggressiveness), and frank gait and coordination problems, with some noted to have progressive Parkinsonian-like signs. Varying degrees of cognitive impairment were also described, with some experiencing moderate to severe dementia. The onset of the neurological problems often began while they were young men and still actively fighting. More recently, traumatic encephalopathy syndrome (TES) has been proposed to be present in athletes who have a history of contact (e.g., soccer) and collision sport participation (e.g., American-style football). The characterization of TES has incorporated a much broader description than the neurological problems described in boxers from the 20th century. Some have considered TES to include depression, suicidality, anxiety, and substance abuse. Purpose We carefully re-examined the published clinical literature of boxing cases from the 20th century to determine whether there is evidence to support conceptualizing psychiatric problems as being diagnostic clinical features of TES. Methods We reviewed clinical descriptions from 155 current and former boxers described in 21 articles published between 1928 and 1999. Results More than one third of cases (34.8%) had a psychiatric, neuropsychiatric, or neurobehavioral problem described in their case histories. However, only 6.5% of the cases were described as primarily psychiatric or neuropsychiatric in nature. The percentages documented as having specific psychiatric problems were as follows: depression = 11.0%, suicidality = 0.6%, anxiety = 3.9%, anger control problems = 20.0%, paranoia/suspiciousness = 11.6%, and personality change = 25.2%. Discussion We conclude that depression, suicidality (i.e., suicidal ideation, intent, or planning), and anxiety were not considered to be clinical features of TES during the 20th century. The present review supports the decision of the consensus group to remove mood and anxiety disorders, and suicidality, from the new 2021 consensus core diagnostic criteria for TES. More research is needed to determine if anger dyscontrol is a core feature of TES with a clear clinicopathological association. The present findings, combined with a recently published large clinicopathological association study, suggest that mood and anxiety disorders are not characteristic of TES and they are not associated with chronic traumatic encephalopathy neuropathologic change.
Collapse
Affiliation(s)
- Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States
- Department of Physical Medicine and Rehabilitation, Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, MA, United States
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, MA, United States
- MassGeneral Hospital for Children Sports Concussion Program, Boston, MA, United States
| | - Alicia Kissinger-Knox
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States
- MassGeneral Hospital for Children Sports Concussion Program, Boston, MA, United States
| | | | - Rudolph J. Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Andrew J. Gardner
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
70
|
Peters ME, Lyketsos CG. The glymphatic system's role in traumatic brain injury-related neurodegeneration. Mol Psychiatry 2023; 28:2707-2715. [PMID: 37185960 DOI: 10.1038/s41380-023-02070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
In at least some individuals who suffer a traumatic brain injury (TBI), there exists a risk of future neurodegenerative illness. This review focuses on the association between the brain-based paravascular drainage pathway known as the "glymphatic system" and TBI-related neurodegeneration. The glymphatic system is composed of cerebrospinal fluid (CSF) flowing into the brain parenchyma along paravascular spaces surrounding penetrating arterioles where it mixes with interstitial fluid (ISF) before being cleared along paravenous drainage pathways. Aquaporin-4 (AQP4) water channels on astrocytic end-feet appear essential for the functioning of this system. The current literature linking glymphatic system disruption and TBI-related neurodegeneration is largely based on murine models with existing human research focused on the need for biomarkers of glymphatic system function (e.g., neuroimaging modalities). Key findings from the existing literature include evidence of glymphatic system flow disruption following TBI, mechanisms of this decreased flow (i.e., AQP4 depolarization), and evidence of protein accumulation and deposition (e.g., amyloid β, tau). The same studies suggest that glymphatic dysfunction leads to subsequent neurodegeneration, cognitive decline, and/or behavioral change although replication in humans is needed. Identified emerging topics from the literature are as follows: link between TBI, sleep, and glymphatic system dysfunction; influence of glymphatic system disruption on TBI biomarkers; and development of novel treatments for glymphatic system disruption following TBI. Although a burgeoning field, more research is needed to elucidate the role of glymphatic system disruption in TBI-related neurodegeneration.
Collapse
Affiliation(s)
- Matthew E Peters
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Constantine G Lyketsos
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
71
|
Sang XZ, Wang CQ, Chen W, Rong H, Hou LJ. An exhaustive analysis of post-traumatic brain injury dementia using bibliometric methodologies. Front Neurol 2023; 14:1165059. [PMID: 37456644 PMCID: PMC10345842 DOI: 10.3389/fneur.2023.1165059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Background It is widely accepted that traumatic brain injury (TBI) increases the risk of developing long-term dementia, although some controversies surrounding this topic exist. Annually, approximately 69 million individuals suffer from TBI all around the world. Such a large population of TBI patients could lead to a future surge in the number of dementia patients. Due to the potentially severe consequences of TBI, various research projects on post-TBI dementia have emerged worldwide. Therefore, it is essential to comprehend the current status and development of post-TBI dementia for future research. Objective The purpose of the study was to provide an overview of the field and identify hotspots, research frontiers, and future research trends for post-TBI dementia. Methods Articles related to post-TBI dementia were retrieved from the Web of Science Core Collection for the period between 2007 and 2022, and analyzing them based on factors such as citations, authors, institutions, countries, journals, keywords, and references. Data analysis and visualization were conducted using VOSviewer, CiteSpace, and an online bibliometric platform (https://bibliometric.com). Results From 2007 to 2022, we obtained a total of 727 articles from 3,780 authors and 1,126 institutions across 52 countries, published in 262 journals. These articles received a total of 29,353 citations, citing 25,713 references from 3,921 journals. Over the last 15 years, there has been a significant upward trend in both publications and citations. The most productive country was the United States, the most productive institution was Boston University, and the most productive author was McKee AC. Journal of Neurotrauma has been identified as the periodical with the greatest number of publications. Three clusters were identified through cluster analysis of keywords. A burst in the use of the term "outcome" in 2019 is indicative of a future research hotspot. The timeline view of references showed 14 clusters, of which the first 4 clusters collected the majority of papers. The first 4 clusters were "chronic traumatic encephalopathy," "age of onset," "tauopathy," and "cognitive decline," respectively, suggesting some areas of interest in the field. Conclusion The subject of post-TBI dementia has raised much interest from scientists. Notably, America is at the forefront of research in this area. Further collaborative research between different countries is imperative. Two topical issues in this field are "The association between TBI and dementia-related alterations" and "chronic traumatic encephalopathy (CTE)." Studies on clinical manifestation, therapy, pathology, and pathogenic mechanisms are also popular in the field.
Collapse
Affiliation(s)
- Xian-Zheng Sang
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cheng-Qing Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wen Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hong Rong
- Department of Outpatient, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Li-Jun Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
72
|
Daneshvar DH, Nair ES, Baucom ZH, Rasch A, Abdolmohammadi B, Uretsky M, Saltiel N, Shah A, Jarnagin J, Baugh CM, Martin BM, Palmisano JN, Cherry JD, Alvarez VE, Huber BR, Weuve J, Nowinski CJ, Cantu RC, Zafonte RD, Dwyer B, Crary JF, Goldstein LE, Kowall NW, Katz DI, Stern RA, Tripodis Y, Stein TD, McClean MD, Alosco ML, McKee AC, Mez J. Leveraging football accelerometer data to quantify associations between repetitive head impacts and chronic traumatic encephalopathy in males. Nat Commun 2023; 14:3470. [PMID: 37340004 PMCID: PMC10281995 DOI: 10.1038/s41467-023-39183-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/30/2023] [Indexed: 06/22/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy associated with repetitive head impacts (RHI), but the components of RHI exposure underlying this relationship are unclear. We create a position exposure matrix (PEM), composed of American football helmet sensor data, summarized from literature review by player position and level of play. Using this PEM, we estimate measures of lifetime RHI exposure for a separate cohort of 631 football playing brain donors. Separate models examine the relationship between CTE pathology and players' concussion count, athletic positions, years of football, and PEM-derived measures, including estimated cumulative head impacts, linear accelerations, and rotational accelerations. Only duration of play and PEM-derived measures are significantly associated with CTE pathology. Models incorporating cumulative linear or rotational acceleration have better model fit and are better predictors of CTE pathology than duration of play or cumulative head impacts alone. These findings implicate cumulative head impact intensity in CTE pathogenesis.
Collapse
Affiliation(s)
- Daniel H Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA.
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA.
- Department of Physical Medicine and Rehabilitation, Mass General Brigham-Spaulding Rehabilitation, Charlestown, MA, USA.
| | - Evan S Nair
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Zachary H Baucom
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Abigail Rasch
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Bobak Abdolmohammadi
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Madeline Uretsky
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Nicole Saltiel
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Arsal Shah
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Johnny Jarnagin
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Christine M Baugh
- Center for Bioethics and Humanities, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brett M Martin
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Joseph N Palmisano
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Bertrand R Huber
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Christopher J Nowinski
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
| | - Robert C Cantu
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Ross D Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Mass General Brigham-Spaulding Rehabilitation, Charlestown, MA, USA
- Department of Physical Medicine and Rehabilitation, Brigham and Women's Hospital, Boston, MA, USA
| | - Brigid Dwyer
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - John F Crary
- Neuropathology Brain Bank & Research Core, Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lee E Goldstein
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Douglas I Katz
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Michael D McClean
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
73
|
Iverson GL, Jamshidi P, Fisher-Hubbard AO, Deep-Soboslay A, Hyde TM, Kleinman JE, deJong JL, Shepherd CE, Hazrati LN, Castellani RJ. Chronic traumatic encephalopathy neuropathologic change is uncommon in men who played amateur American football. Front Neurol 2023; 14:1143882. [PMID: 37404944 PMCID: PMC10315537 DOI: 10.3389/fneur.2023.1143882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/02/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction We examined postmortem brain tissue from men, over the age of 50, for chronic traumatic encephalopathy neuropathologic change (CTE-NC). We hypothesized that (i) a small percentage would have CTE-NC, (ii) those who played American football during their youth would be more likely to have CTE-NC than those who did not play contact or collision sports, and (iii) there would be no association between CTE-NC and suicide as a manner of death. Methods Brain tissue from 186 men and accompanying clinical information were obtained from the Lieber Institute for Brain Development. Manner of death was determined by a board-certified forensic pathologist. Information was obtained from next of kin telephone interviews, including medical, social, demographic, family, and psychiatric history. The 2016 and 2021 consensus definitions were used for CTE-NC. Two authors screened all cases, using liberal criteria for identifying "possible" CTE-NC, and five authors examined the 15 selected cases. Results The median age at the time of death was 65 years (interquartile range = 57-75; range = 50-96). There were 25.8% with a history of playing American football and 36.0% who had suicide as their manner of death. No case was rated as definitively having "features" of CTE-NC by all five authors. Ten cases were rated as having features of CTE-NC by three or more authors (5.4% of the sample), including 8.3% of those with a personal history of playing American football and 3.9% of those who did not play contact or collision sports. Of those with mood disorders during life, 5.5% had features of CTE-NC compared to 6.0% of those who did not have a reported mood disorder. Of those with suicide as a manner of death, 6.0% had features of CTE-NC compared to 5.0% of those who did not have suicide as a manner of death. Discussion We did not identify a single definitive case of CTE-NC, from the perspective of all raters, and only 5.4% of cases were identified as having possible features of CTE-NC by some raters. CTE-NC was very uncommon in men who played amateur American football, those with mood disorders during life, and those with suicide as a manner of death.
Collapse
Affiliation(s)
- Grant L. Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States
- Department of Physical Medicine and Rehabilitation, Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, MA, United States
- MassGeneral Hospital for Children Sports Concussion Program, Boston, MA, United States
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, MA, United States
| | - Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Amanda O. Fisher-Hubbard
- Department of Pathology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Amy Deep-Soboslay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Joyce L. deJong
- Department of Pathology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Claire E. Shepherd
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Rudolph J. Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
74
|
Mavroudis I, Balmus IM, Ciobica A, Luca AC, Gorgan DL, Dobrin I, Gurzu IL. A Review of the Most Recent Clinical and Neuropathological Criteria for Chronic Traumatic Encephalopathy. Healthcare (Basel) 2023; 11:1689. [PMID: 37372807 DOI: 10.3390/healthcare11121689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: Chronic traumatic encephalopathy (CTE) is a complex pathological condition characterized by neurodegeneration, as a result of repeated head traumas. Currently, the diagnosis of CTE can only be assumed postmortem. Thus, the clinical manifestations associated with CTE are referred to as traumatic encephalopathy syndrome (TES), for which diagnostic multiple sets of criteria can be used. (2) Objectives: In this study, we aimed to present and discuss the limitations of the clinical and neuropathological diagnostic criteria for TES/CTE and to suggest a diagnostic algorithm enabling a more accurate diagnostic procedure. (3) Results: The most common diagnostic criteria for TES/CTE discriminate between possible, probable, and improbable. However, several key variations between the available diagnostic criteria suggest that the diagnosis of CTE can still only be given with postmortem neurophysiological examination. Thus, a TES/CTE diagnosis during life imposes a different level of certainty. Here, we are proposing a comprehensive algorithm of diagnosis criteria for TES/CTE based on the similarities and differences between the previous criteria. (4) Conclusions: The diagnosis of TES/CTE requires a multidisciplinary approach; thorough investigation for other neurodegenerative disorders, systemic illnesses, and/or psychiatric conditions that can account for the symptoms; and also complex investigations of patient history, psychiatric assessment, and blood and cerebrospinal fluid biomarker evaluation.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals NHS Trust and Leeds University, Leeds LS9 7TF, UK
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Alexandru Lapusneanu Street, No. 26, 700057 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, B dul Carol I, No. 11, 700506 Iasi, Romania
| | - Alina-Costina Luca
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, B dul Carol I, No. 11, 700506 Iasi, Romania
| | - Irina Dobrin
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Irina Luciana Gurzu
- Department of Preventive Medicine and Interdisciplinarity, Discipline of Occupational Medicine, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| |
Collapse
|
75
|
Iverson GL, Castellani RJ, Cassidy JD, Schneider GM, Schneider KJ, Echemendia RJ, Bailes JE, Hayden KA, Koerte IK, Manley GT, McNamee M, Patricios JS, Tator CH, Cantu RC, Dvorak J. Examining later-in-life health risks associated with sport-related concussion and repetitive head impacts: a systematic review of case-control and cohort studies. Br J Sports Med 2023; 57:810-821. [PMID: 37316187 DOI: 10.1136/bjsports-2023-106890] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Concern exists about possible problems with later-in-life brain health, such as cognitive impairment, mental health problems and neurological diseases, in former athletes. We examined the future risk for adverse health effects associated with sport-related concussion, or exposure to repetitive head impacts, in former athletes. DESIGN Systematic review. DATA SOURCES Search of MEDLINE, Embase, Cochrane, CINAHL Plus and SPORTDiscus in October 2019 and updated in March 2022. ELIGIBILITY CRITERIA Studies measuring future risk (cohort studies) or approximating that risk (case-control studies). RESULTS Ten studies of former amateur athletes and 18 studies of former professional athletes were included. No postmortem neuropathology studies or neuroimaging studies met criteria for inclusion. Depression was examined in five studies in former amateur athletes, none identifying an increased risk. Nine studies examined suicidality or suicide as a manner of death, and none found an association with increased risk. Some studies comparing professional athletes with the general population reported associations between sports participation and dementia or amyotrophic lateral sclerosis (ALS) as a cause of death. Most did not control for potential confounding factors (eg, genetic, demographic, health-related or environmental), were ecological in design and had high risk of bias. CONCLUSION Evidence does not support an increased risk of mental health or neurological diseases in former amateur athletes with exposure to repetitive head impacts. Some studies in former professional athletes suggest an increased risk of neurological disorders such as ALS and dementia; these findings need to be confirmed in higher quality studies with better control of confounding factors. PROSPERO REGISTRATION NUMBER CRD42022159486.
Collapse
Affiliation(s)
- Grant L Iverson
- Sports Concussion Program, MassGeneral Hospital for Children, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, Massachusetts, USA
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Rudolph J Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - J David Cassidy
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Geoff M Schneider
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Ruben J Echemendia
- Department of Psychology, University of Missouri-Kansas City, Kansas City, Missouri, USA
- University Orthopedic Centre, Concussion Care Clinic, State College, Pennsylvania, USA
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Neurosurgery, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - K Alix Hayden
- Libraries and Cultural Resources, University of Calgary, Calgary, Alberta, Canada
| | - Inga K Koerte
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Mass General Brigham, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Geoffrey T Manley
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Michael McNamee
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
- School of Sport and Exercise Sciences, Swansea University, Swansea, UK
| | - Jon S Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charles H Tator
- Department of Surgery and Division of Neurosurgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Robert C Cantu
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Robert C. Cantu Concussion Center, Emerson Hospital, Concord, Massachusetts, USA
| | - Jiri Dvorak
- Schulthess Clinic Zurich, Zurich, Switzerland
| |
Collapse
|
76
|
Patricios JS, Schneider KJ, Dvorak J, Ahmed OH, Blauwet C, Cantu RC, Davis GA, Echemendia RJ, Makdissi M, McNamee M, Broglio S, Emery CA, Feddermann-Demont N, Fuller GW, Giza CC, Guskiewicz KM, Hainline B, Iverson GL, Kutcher JS, Leddy JJ, Maddocks D, Manley G, McCrea M, Purcell LK, Putukian M, Sato H, Tuominen MP, Turner M, Yeates KO, Herring SA, Meeuwisse W. Consensus statement on concussion in sport: the 6th International Conference on Concussion in Sport-Amsterdam, October 2022. Br J Sports Med 2023; 57:695-711. [PMID: 37316210 DOI: 10.1136/bjsports-2023-106898] [Citation(s) in RCA: 315] [Impact Index Per Article: 157.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
For over two decades, the Concussion in Sport Group has held meetings and developed five international statements on concussion in sport. This 6th statement summarises the processes and outcomes of the 6th International Conference on Concussion in Sport held in Amsterdam on 27-30 October 2022 and should be read in conjunction with the (1) methodology paper that outlines the consensus process in detail and (2) 10 systematic reviews that informed the conference outcomes. Over 3½ years, author groups conducted systematic reviews of predetermined priority topics relevant to concussion in sport. The format of the conference, expert panel meetings and workshops to revise or develop new clinical assessment tools, as described in the methodology paper, evolved from previous consensus meetings with several new components. Apart from this consensus statement, the conference process yielded revised tools including the Concussion Recognition Tool-6 (CRT6) and Sport Concussion Assessment Tool-6 (SCAT6, Child SCAT6), as well as a new tool, the Sport Concussion Office Assessment Tool-6 (SCOAT6, Child SCOAT6). This consensus process also integrated new features including a focus on the para athlete, the athlete's perspective, concussion-specific medical ethics and matters related to both athlete retirement and the potential long-term effects of SRC, including neurodegenerative disease. This statement summarises evidence-informed principles of concussion prevention, assessment and management, and emphasises those areas requiring more research.
Collapse
Affiliation(s)
- Jon S Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jiri Dvorak
- Spine Unit, Schulthess Clinic Human Performance Lab, Zurich, Switzerland
| | - Osman Hassan Ahmed
- Physiotherapy Department, University Hospitals Dorset NHS Foundation Trust, Poole, UK
- The FA Centre for Para Football Research, The Football Association, Burton-Upon-Trent, Staffordshire, UK
| | - Cheri Blauwet
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation/Harvard Medical School, Boston, Massachusetts, USA
- Kelley Adaptive Sports Research Institute, Spaulding Rehabilitation, Boston, Massachusetts, USA
| | - Robert C Cantu
- CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gavin A Davis
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Cabrini Health, Malvern, Victoria, Australia
| | - Ruben J Echemendia
- Psychology, University of Missouri Kansas City, Kansas City, Missouri, USA
- Psychological and Neurobehavioral Associates, Inc, Miami, Florida, USA
| | - Michael Makdissi
- Florey Institute of Neuroscience and Mental Health-Austin Campus, Heidelberg, Victoria, Australia
- La Trobe Sport and Exercise Medicine Research Centre, Melbourne, Victoria, Australia
| | - Michael McNamee
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
- School of Sport and Exercise Medicine, Swansea University, Swansea, UK
| | - Steven Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Carolyn A Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Nina Feddermann-Demont
- University Hospital Zurich, Zurich, Switzerland
- Sports Neuroscience, University of Zurich, Zurich, Switzerland
| | - Gordon Ward Fuller
- School of Health and Related Research, University of Sheffield, Sheffield, South Yorkshire, UK
| | - Christopher C Giza
- Neurosurgery, UCLA Steve Tisch BrainSPORT Program, Los Angeles, California, USA
- Pediatrics/Pediatric Neurology, Mattel Children's Hospital UCLA, Los Angeles, California, USA
| | - Kevin M Guskiewicz
- Matthew Gfeller Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian Hainline
- National Collegiate Athletic Association (NCAA), Indianapolis, Indiana, USA
| | - Grant L Iverson
- Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
- Sports Concussion Program, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| | | | - John J Leddy
- UBMD Orthopaedics and Sports Medicne, SUNY Buffalo, Buffalo, New York, USA
| | - David Maddocks
- Melbourne Neuropsychology Services & Perry Maddocks Trollope Lawyers, Melbourne, Victoria, Australia
| | - Geoff Manley
- Neurosurgery, University of California, San Francisco, San Francisco, California, USA
| | - Michael McCrea
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Laura K Purcell
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | - Haruhiko Sato
- Neurosurgery, Seirei Mikatahara Hospital, Hamamatsu, Japan
| | | | - Michael Turner
- International Concussion and Head Injury Research Foundation, London, UK
- University College London, London, UK
| | | | - Stanley A Herring
- Department of Rehabilitation Medicine, Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, USA
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
77
|
van Amerongen S, Kamps S, Kaijser KKM, Pijnenburg YAL, Scheltens P, Teunissen CE, Barkhof F, Ossenkoppele R, Rozemuller AJM, Stern RA, Hoozemans JJM, Vijverberg EGB. Severe CTE and TDP-43 pathology in a former professional soccer player with dementia: a clinicopathological case report and review of the literature. Acta Neuropathol Commun 2023; 11:77. [PMID: 37161501 PMCID: PMC10169296 DOI: 10.1186/s40478-023-01572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
In the last decades, numerous post-mortem case series have documented chronic traumatic encephalopathy (CTE) in former contact-sport athletes, though reports of CTE pathology in former soccer players are scarce. This study presents a clinicopathological case of a former professional soccer player with young-onset dementia. The patient experienced early onset progressive cognitive decline and developed dementia in his mid-50 s, after playing soccer for 12 years at a professional level. While the clinical picture mimicked Alzheimer's disease, amyloid PET imaging did not provide evidence of elevated beta-amyloid plaque density. After he died in his mid-60 s, brain autopsy showed severe phosphorylated tau (p-tau) abnormalities fulfilling the neuropathological criteria for high-stage CTE, as well as astrocytic and oligodendroglial tau pathology in terms of tufted astrocytes, thorn-shaped astrocytes, and coiled bodies. Additionally, there were TAR DNA-binding protein 43 (TDP-43) positive cytoplasmic inclusions in the frontal lobe and hippocampus, and Amyloid Precursor Protein (APP) positivity in the axons of the white matter. A systematic review of the literature revealed only 13 other soccer players with postmortem diagnosis of CTE. Our report illustrates the complex clinicopathological correlation of CTE and the need for disease-specific biomarkers.
Collapse
Affiliation(s)
- Suzan van Amerongen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands.
- Department of Neurology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| | - Suzie Kamps
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Kyra K M Kaijser
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Yolande A L Pijnenburg
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Philip Scheltens
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- EQT Life Sciences, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Rik Ossenkoppele
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Annemieke J M Rozemuller
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Robert A Stern
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Departments of Neurosurgery, and Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | - Everard G B Vijverberg
- Department of Neurology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Alzheimer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
78
|
Qi C, Verheijen BM, Kokubo Y, Shi Y, Tetter S, Murzin AG, Nakahara A, Morimoto S, Vermulst M, Sasaki R, Aronica E, Hirokawa Y, Oyanagi K, Kakita A, Ryskeldi-Falcon B, Yoshida M, Hasegawa M, Scheres SH, Goedert M. Tau Filaments from Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC) adopt the CTE Fold. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538417. [PMID: 37162924 PMCID: PMC10168338 DOI: 10.1101/2023.04.26.538417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) of the island of Guam and the Kii peninsula of Japan is a fatal neurodegenerative disease of unknown cause that is characterised by the presence of abundant filamentous tau inclusions in brains and spinal cords. Here we used electron cryo-microscopy (cryo-EM) to determine the structures of tau filaments from the cerebral cortex of three cases of ALS/PDC from Guam and eight cases from Kii, as well as from the spinal cord of two of the Guam cases. Tau filaments had the chronic traumatic encephalopathy (CTE) fold, with variable amounts of Type I and Type II filaments. Paired helical tau filaments were also found in two Kii cases. We also identified a novel Type III CTE tau filament, where protofilaments pack against each other in an anti-parallel fashion. ALS/PDC is the third known tauopathy with CTE-type filaments and abundant tau inclusions in cortical layers II/III, the others being CTE and subacute sclerosing panencephalitis. Because these tauopathies are believed to have environmental causes, our findings support the hypothesis that ALS/PDC is caused by exogenous factors.
Collapse
Affiliation(s)
- Chao Qi
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Bert M. Verheijen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA
| | - Yasumasa Kokubo
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
| | - Yang Shi
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Current address: MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | | | | | - Asa Nakahara
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Satoru Morimoto
- Department of Oncologic Pathology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Marc Vermulst
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA
| | - Ryogen Sasaki
- Department of Nursing, Suzuka University of Medical Science, Suzuka, Japan
| | - Eleonora Aronica
- Department of Neuropathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Kiyomitsu Oyanagi
- Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | |
Collapse
|
79
|
Lee EB, Kennedy-Dietrich C, Geddes JF, Nicoll JAR, Revesz T, Smith DH, Stewart W. The perils of contact sport: pathologies of diffuse brain swelling and chronic traumatic encephalopathy neuropathologic change in a 23-year-old rugby union player. Acta Neuropathol 2023; 145:847-850. [PMID: 37086326 PMCID: PMC10175208 DOI: 10.1007/s00401-023-02576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023]
Affiliation(s)
- Edward B Lee
- Translational Neuropathology Research Laboratory, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | - James A R Nicoll
- Clinical Neurosciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William Stewart
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QQ, UK.
- Department of Neuropathology, Queen Elizabeth University Hospital, 1345 Govan Rd, Glasgow, G51 4TF, UK.
| |
Collapse
|
80
|
McKee AC, Stein TD, Huber BR, Crary JF, Bieniek K, Dickson D, Alvarez VE, Cherry JD, Farrell K, Butler M, Uretsky M, Abdolmohammadi B, Alosco ML, Tripodis Y, Mez J, Daneshvar DH. Chronic traumatic encephalopathy (CTE): criteria for neuropathological diagnosis and relationship to repetitive head impacts. Acta Neuropathol 2023; 145:371-394. [PMID: 36759368 PMCID: PMC10020327 DOI: 10.1007/s00401-023-02540-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023]
Abstract
Over the last 17 years, there has been a remarkable increase in scientific research concerning chronic traumatic encephalopathy (CTE). Since the publication of NINDS-NIBIB criteria for the neuropathological diagnosis of CTE in 2016, and diagnostic refinements in 2021, hundreds of contact sport athletes and others have been diagnosed at postmortem examination with CTE. CTE has been reported in amateur and professional athletes, including a bull rider, boxers, wrestlers, and American, Canadian, and Australian rules football, rugby union, rugby league, soccer, and ice hockey players. The pathology of CTE is unique, characterized by a pathognomonic lesion consisting of a perivascular accumulation of neuronal phosphorylated tau (p-tau) variably alongside astrocytic aggregates at the depths of the cortical sulci, and a distinctive molecular structural configuration of p-tau fibrils that is unlike the changes observed with aging, Alzheimer's disease, or any other tauopathy. Computational 3-D and finite element models predict the perivascular and sulcal location of p-tau pathology as these brain regions undergo the greatest mechanical deformation during head impact injury. Presently, CTE can be definitively diagnosed only by postmortem neuropathological examination; the corresponding clinical condition is known as traumatic encephalopathy syndrome (TES). Over 97% of CTE cases published have been reported in individuals with known exposure to repetitive head impacts (RHI), including concussions and nonconcussive impacts, most often experienced through participation in contact sports. While some suggest there is uncertainty whether a causal relationship exists between RHI and CTE, the preponderance of the evidence suggests a high likelihood of a causal relationship, a conclusion that is strengthened by the absence of any evidence for plausible alternative hypotheses. There is a robust dose-response relationship between CTE and years of American football play, a relationship that remains consistent even when rigorously accounting for selection bias. Furthermore, a recent study suggests that selection bias underestimates the observed risk. Here, we present the advances in the neuropathological diagnosis of CTE culminating with the development of the NINDS-NIBIB criteria, the multiple international studies that have used these criteria to report CTE in hundreds of contact sports players and others, and the evidence for a robust dose-response relationship between RHI and CTE.
Collapse
Affiliation(s)
- Ann C McKee
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA.
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA.
- VA Bedford Healthcare System, Bedford, MA, USA.
| | - Thor D Stein
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Bertrand R Huber
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - John F Crary
- Departments of Pathology, Neuroscience, and Artificial Intelligence and Human Health, Neuropathology Brain Bank and Research Core, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Bieniek
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Victor E Alvarez
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Jonathan D Cherry
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Boston, MA, USA
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Kurt Farrell
- Departments of Pathology, Neuroscience, and Artificial Intelligence and Human Health, Neuropathology Brain Bank and Research Core, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Morgane Butler
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Madeline Uretsky
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Bobak Abdolmohammadi
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
| | - Michael L Alosco
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Daniel H Daneshvar
- Boston University Alzheimer's Disease Research Center and CTE Centers, Department of Neurology, Boston University School of Medicine, 150 S Huntington Ave, Boston, MA, 02130, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| |
Collapse
|
81
|
Collía A, Iranzo A, Serradell M, Muñoz-Lopetegi A, Mayà G, Santamaría J, Sánchez-Valle R, Gaig C. Former participation in professional football as an occupation in patients with isolated REM sleep behavior disorder leading to a synucleinopathy: a case-control study. J Neurol 2023; 270:3234-3242. [PMID: 36939930 DOI: 10.1007/s00415-023-11591-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND Contact sports such as football are associated with late development of neurodegenerative diseases, in part due to the deleterious effect of repetitive head impacts during participation. Isolated REM sleep behavior disorder (IRBD) represents an early manifestation of neurodegenerative diseases including Parkinson disease (RBD) and dementia with Lewy bodies (DLB). We hypothesized that former professional football participation would be overrepresented in IRBD. OBJECTIVE To assess former participation in professional football as an occupation in IRBD. METHODS In a case-control retrospective study, having played football as a professional occupation in the Spanish Football Professional Leagues was examined interviewing polysomnographically confirmed IRBD patients and matched controls without IRBD. RESULTS Among 228 Caucasian Spanish IRBD patients with 68.5 ± 7.2 years, six (2.63%) were retired professional footballers. Length professional football career ranged between 11 and 16 years. Interval between football retirement and IRBD diagnosis was 39.5 ± 6.4 years. At IRBD diagnosis, the six footballers had synucleinopathy biomarkers including pathologic synuclein in the CSF and tissues, nigrostriatal dopaminergic deficit and hyposmia. Follow-up showed that three footballers developed PD and two DLB. None of the controls was a professional footballer. The percentage of professional footballers was higher in IRBD patients than in controls (2.63% versus 0.00%; p = 0.030) and among the general Spanish population (2.63% versus 0.62%; p < 0.0001). CONCLUSION We found an overrepresentation of former professional footballers in IRBD patients who later developed PD and DLB after four decades from professional retirement. In professional footballers the development of a neurodegenerative disease may be first manifested by IRBD. Screening for IRBD in former footballers might identify individuals with underlying synucleinopathies. Further studies with larger samples are needed to confirm our observations.
Collapse
Affiliation(s)
- Alejandra Collía
- Neurology Service, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Villarroel 170, 08036, Barcelona, Spain
| | - Alex Iranzo
- Neurology Service, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Villarroel 170, 08036, Barcelona, Spain.
| | - Mónica Serradell
- Neurology Service, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Villarroel 170, 08036, Barcelona, Spain
| | - Amaia Muñoz-Lopetegi
- Neurology Service, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Villarroel 170, 08036, Barcelona, Spain
| | - Gerard Mayà
- Neurology Service, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Villarroel 170, 08036, Barcelona, Spain
| | - Joan Santamaría
- Neurology Service, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Villarroel 170, 08036, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Neurology Service, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Villarroel 170, 08036, Barcelona, Spain
| | - Carles Gaig
- Neurology Service, Hospital Clínic Barcelona, Universitat de Barcelona, IDIBAPS, CIBERNED: CB06/05/0018-ISCIII, Villarroel 170, 08036, Barcelona, Spain
| |
Collapse
|
82
|
Alosco ML, Ly M, Mosaheb S, Saltiel N, Uretsky M, Tripodis Y, Martin B, Palmisano J, Delano-Wood L, Bondi MW, Meng G, Xia W, Daley S, Goldstein LE, Katz DI, Dwyer B, Daneshvar DH, Nowinski C, Cantu RC, Kowall NW, Stern RA, Alvarez VE, Mez J, Huber BR, McKee AC, Stein TD. Decreased myelin proteins in brain donors exposed to football-related repetitive head impacts. Brain Commun 2023; 5:fcad019. [PMID: 36895961 PMCID: PMC9990992 DOI: 10.1093/braincomms/fcad019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023] Open
Abstract
American football players and other individuals exposed to repetitive head impacts can exhibit a constellation of later-life cognitive and neuropsychiatric symptoms. While tau-based diseases such as chronic traumatic encephalopathy can underpin certain symptoms, contributions from non-tau pathologies from repetitive head impacts are increasingly recognized. We examined cross-sectional associations between myelin integrity using immunoassays for myelin-associated glycoprotein and proteolipid protein 1 with risk factors and clinical outcomes in brain donors exposed to repetitive head impacts from American football. Immunoassays for myelin-associated glycoprotein and proteolipid protein 1 were conducted on dorsolateral frontal white matter tissue samples of 205 male brain donors. Proxies of exposure to repetitive head impacts included years of exposure and age of first exposure to American football play. Informants completed the Functional Activities Questionnaire, Behavior Rating Inventory of Executive Function-Adult Version (Behavioral Regulation Index), and Barratt Impulsiveness Scale-11. Associations between myelin-associated glycoprotein and proteolipid protein 1 with exposure proxies and clinical scales were tested. Of the 205 male brain donors who played amateur and professional football, the mean age was 67.17 (SD = 16.78), and 75.9% (n = 126) were reported by informants to be functionally impaired prior to death. Myelin-associated glycoprotein and proteolipid protein 1 correlated with the ischaemic injury scale score, a global indicator of cerebrovascular disease (r = -0.23 and -0.20, respectively, Ps < 0.01). Chronic traumatic encephalopathy was the most common neurodegenerative disease (n = 151, 73.7%). Myelin-associated glycoprotein and proteolipid protein 1 were not associated with chronic traumatic encephalopathy status, but lower proteolipid protein 1 was associated with more severe chronic traumatic encephalopathy (P = 0.03). Myelin-associated glycoprotein and proteolipid protein 1 were not associated with other neurodegenerative disease pathologies. More years of football play was associated with lower proteolipid protein 1 [beta = -2.45, 95% confidence interval (CI) [-4.52, -0.38]] and compared with those who played <11 years of football (n = 78), those who played 11 or more years (n = 128) had lower myelin-associated glycoprotein (mean difference = 46.00, 95% CI [5.32, 86.69]) and proteolipid protein 1 (mean difference = 24.72, 95% CI [2.40, 47.05]). Younger age of first exposure corresponded to lower proteolipid protein 1 (beta = 4.35, 95% CI [0.25, 8.45]). Among brain donors who were aged 50 or older (n = 144), lower proteolipid protein 1 (beta = -0.02, 95% CI [-0.047, -0.001]) and myelin-associated glycoprotein (beta = -0.01, 95% CI [-0.03, -0.002]) were associated with higher Functional Activities Questionnaire scores. Lower myelin-associated glycoprotein correlated with higher Barratt Impulsiveness Scale-11 scores (beta = -0.02, 95% CI [-0.04, -0.0003]). Results suggest that decreased myelin may represent a late effect of repetitive head impacts that contributes to the manifestation of cognitive symptoms and impulsivity. Clinical-pathological correlation studies with prospective objective clinical assessments are needed to confirm our findings.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Monica Ly
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
| | - Sydney Mosaheb
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Nicole Saltiel
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Madeline Uretsky
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Brett Martin
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Joseph Palmisano
- Biostatistics and Epidemiology Data Analytics Center, Boston University School of Public Health, Boston, MA, USA
| | - Lisa Delano-Wood
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
| | - Mark W Bondi
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego Health, La Jolla, CA, USA
| | | | - Weiming Xia
- VA Bedford Healthcare System, Bedford, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sarah Daley
- VA Bedford Healthcare System, Bedford, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Lee E Goldstein
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Biomedical, Electrical & Computer Engineering, Boston University College of Engineering, Boston, MA, USA
| | - Douglas I Katz
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Brigid Dwyer
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Braintree Rehabilitation Hospital, Braintree, MA, USA
| | - Daniel H Daneshvar
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | | | - Robert C Cantu
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Concussion Legacy Foundation, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Emerson Hospital, Concord, MA, USA
| | - Neil W Kowall
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, Boston, MA, USA
| | - Robert A Stern
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurosurgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Victor E Alvarez
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, Boston, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Bertrand Russell Huber
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, Boston, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, Boston, MA, USA
| | - Ann C McKee
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, Boston, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, Boston, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Boston University Alzheimer’s Disease Research Center and CTE Center, Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- Departments of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, U.S. Department of Veteran Affairs, Jamaica Plain, Boston, MA, USA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
83
|
Tang J, Zou Y, Gong Y, Xu Z, Wan J, Wei G, Zhang Q. Molecular Mechanism in the Disruption of Chronic Traumatic Encephalopathy-Related R3-R4 Tau Protofibril by Quercetin and Gallic Acid: Similarities and Differences. ACS Chem Neurosci 2023; 14:897-908. [PMID: 36749931 DOI: 10.1021/acschemneuro.2c00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a unique progressive neurodegenerative tauopathy pathologically related to the aggregation of the tau protein to neurofibrillary tangles. Disrupting tau oligomers (protofibril) is a promising strategy to prevent CTE. Quercetin (QE) and gallic acid (GA), two polyphenol small molecules abundant in natural crops, were proved to inhibit recombinant tau and the R3 fragment of human full-length tau in vitro. However, their disruptive effect on CTE-related protofibril and the underlying molecular mechanism remain elusive. Cryo-electron microscopy resolution reveals that the R3-R4 fragment of tau forms the core of the CTE-related tau protofibril. In this study, we conducted extensive all-atom molecular dynamics simulations on CTE-related R3-R4 tau protofibril with and without QE/GA molecules. The results disclose that both QE and GA can disrupt the global structure of the protofibril, while GA shows a relatively strong effect. The binding sites, exact binding patterns, and disruptive modes for the two molecules show similarities and differences. Strikingly, both QE and GA can insert into the hydrophobic cavity of the protofibril, indicating they have the potential to compete for the space in the cavity with aggregation cofactors unique to CTE-related protofibril and thus impede the further aggregation of the tau protein. Due to relatively short time scale, our study captures the early disruptive mechanism of CTE-related R3-R4 tau protofibril by QE/GA. However, our research does provide valuable knowledge for the design of supplements or drugs to prevent or delay the development of CTE.
Collapse
Affiliation(s)
- Jiaxing Tang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 886 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yehong Gong
- School of Sports Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Zhengdong Xu
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Jiaqian Wan
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Qingwen Zhang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
84
|
Varlow C, Vasdev N. Evaluation of Tau Radiotracers in Chronic Traumatic Encephalopathy. J Nucl Med 2023; 64:460-465. [PMID: 36109185 PMCID: PMC10071800 DOI: 10.2967/jnumed.122.264404] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurologic disorder associated with head injuries, diagnosed by the perivascular accumulation of hyperphosphorylated tau protein (phospho-tau) identified at autopsy. Tau PET radiopharmaceuticals developed for imaging Alzheimer disease are under evaluation for brain injuries. The goal of this study was to conduct a head-to-head in vitro evaluation of 5 tau PET radiotracers in subjects pathologically diagnosed with CTE. Methods: Autoradiography was used to assess the specific binding and distribution of 3H-flortaucipir (also known as Tauvid, AV-1451, and T807), 3H-MK-6240 (also known as florquinitau), 3H-PI-2620, 3H-APN-1607 (also known as PM-PBB3 and florzolotau), and 3H-CBD-2115 (also known as 3H-OXD-2115) in fresh-frozen human postmortem CTE brain tissue (stages I-IV). Immunohistochemistry was performed for phospho-tau with AT8, 3R tau with RD3, 4R tau with RD4 and amyloid-β with 6F/3D antibodies. Tau target density (maximum specific binding) was quantified by saturation analysis with 3H-flortaucipir in tissue sections. Results: 3H-flortaucipir demonstrated a positive signal in all CTE cases examined, with varying degrees of specific binding (68.7% ± 10.5%; n = 12) defined by homologous blockade and to a lesser extent by heterologous blockade with MK-6240 (27.3% ± 13.6%; n = 12). The 3H-flortaucipir signal was also displaced by the monoamine oxidase (MAO)-A inhibitor clorgyline (43.9% ± 4.6%; n = 3), indicating off-target binding to MAO-A. 3H-APN-1607 was moderately displaced in homologous blocking studies and was not displaced by 3H-flortaucipir; however, substantial displacement was observed when blocking with the β-amyloid-targeting compound NAV-4694. 3H-MK-6240 and 3H-PI-2620 had negligible binding in all but 2 CTE IV cases, and binding may be attributed to pathology severity or mixed Alzheimer disease/CTE pathology. 3H-CBD-2115 showed moderate binding, displaced under homologous blockade, and aligned with 4R-tau immunostaining. Conclusion: In human CTE tissues, 3H-flortaucipir and 3H-APN-1607 revealed off-target binding to MAO-A and amyloid-β, respectively, and should be considered if these radiotracers are used in PET imaging studies of patients with brain injuries. 3H-MK-6240 and 3H-PI-2620 bind to CTE tau in severe- or mixed-pathology cases, and their respective 18F PET radiotracers warrant further evaluation in patients with severe suspected CTE.
Collapse
Affiliation(s)
- Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
85
|
Ichimata S, Kim A, Nishida N, Kovacs GG. Lack of difference between amyloid-beta burden at gyral crests and sulcal depths in diverse neurodegenerative diseases. Neuropathol Appl Neurobiol 2023; 49:e12869. [PMID: 36527296 DOI: 10.1111/nan.12869] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
AIMS The aim of this study is to clarify whether there is a difference in amyloid-beta burden between gyral crests (GCs) and sulcal depths (SDs) in different neurodegenerative proteinopathies. METHODS We analysed the burden and distribution of amyloid-beta deposition in post-mortem brain samples from 138 autopsies, including Alzheimer's disease (n = 30), Down's syndrome (n = 11), Lewy body disease (LBD; n = 53), multiple system atrophy (n = 8) and progressive supranuclear palsy (n = 36). We applied quantitative amyloid-beta burden analysis to compare amyloid-beta deposition in both GCs and SDs. We also evaluated the prevalence of amyloid-beta plaques in both regions in samples exhibiting high or low amounts of amyloid-beta pathology. RESULTS Amyloid-beta burden was evaluated in 67 and 84 samples of the frontal and temporal cortices, respectively. We did not find significant differences in the amyloid-beta burden between GCs and SDs in these regions in any examined disease. In addition, amyloid-beta plaques were almost evenly distributed in both regions in cases with low amounts of amyloid-beta pathology. Females in the LBD group showed significantly higher amyloid-beta burden than males (temporal cortex, p < 0.01). Furthermore, only one LBD case showed SD-predominant deposition associated with the coarse-grained plaques. CONCLUSIONS We have shown that amyloid-beta is almost evenly distributed in both GCs and SDs in the frontal and temporal lobes from the early stage, in diverse neurodegenerative diseases. Sex may contribute to differences in the amyloid-beta burden. The coarse-grained plaque may show SD-predominant neuritic tau deposition that must be carefully distinguished from chronic traumatic encephalopathy-related SD tau pathology.
Collapse
Affiliation(s)
- Shojiro Ichimata
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ain Kim
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
| | - Naoki Nishida
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada.,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
86
|
Abstract
Imaging of mild traumatic brain injury (TBI) using conventional techniques such as CT or MRI often results in no specific imaging correlation that would explain cognitive and clinical symptoms. Molecular imaging of mild TBI suggests that secondary events after injury can be detected using PET. However, no single specific pattern emerges that can aid in diagnosing the injury or determining the prognosis of the long-term behavioral profiles, indicating the heterogeneous and diffuse nature of TBI. Chronic traumatic encephalopathy, a primary tauopathy, has been shown to be strongly associated with repetitive TBI. In vivo data on the available tau PET tracers, however, have produced mixed results and overall low retention profiles in athletes with a history of repetitive mild TBI. Here, we emphasize that the lack of a mechanistic understanding of chronic TBI has posed a challenge when interpreting the results of molecular imaging biomarkers. We advocate for better target identification, improved analysis techniques such as machine learning or artificial intelligence, and novel tracer development.
Collapse
Affiliation(s)
- Gérard N. Bischof
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany;,Institute for Neuroscience and Medicine II–Molecular Organization of the Brain, Research Center Juelich, Juelich, Germany; and
| | - Donna J. Cross
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
87
|
Priemer DS, Perl DP. Neurotrauma: 2023 Update. FREE NEUROPATHOLOGY 2023; 4:4-14. [PMID: 37736080 PMCID: PMC10510742 DOI: 10.17879/freeneuropathology-2023-5076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
2022 was a productive year for research in traumatic brain injury (TBI) and resultant neuropathology. After an extensive review, we present related studies and publications which we felt were of particular importance to the neuropathology community. First, 2022 was highlighted by important advancements in the diagnosis and, moreover, our understanding of chronic traumatic encephalopathy (CTE). Important publications include a pair concluding that CTE primarily concerns neuronal accumulation of phosphorylated tau (ptau), but that glial ptau accumulation often helps to facilitate diagnosis. In addition, a new large community study from Australia continues the indication that CTE is relatively uncommon in the community, and the first large-cohort study on brains of military personnel similarly demonstrates that CTE appears to be uncommon among service members and does not appear to explain high rates of neuropsychiatric sequelae suffered by the warfighter. The causation of CTE by impact-type TBI was supported by the application of the Bradford Hill criteria, within the brains of headbutting bovids, and interestingly within an artificial head model exposed to linear impact. Finally, a large-scale analysis of APOE genotypes contends that gene status may influence CTE pathology and outcomes. In experimental animal work, a study using mouse models provided important evidence that TDP-43 facilitates neurodegenerative pathology and is implicated in cognitive dysfunction following TBI, and another study using a swine model for concussion demonstrated that evidence that axonal sodium channel disruption may be a driver of neurologic dysfunction after concussion. Finally, we end with memoriam to Dr. John Q. Trojanowski, a giant of neurodegenerative research and an important contributor to the neurotrauma literature, who we lost in 2022.
Collapse
Affiliation(s)
- David S. Priemer
- The Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Daniel P. Perl
- The Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
88
|
Alosco ML, Su Y, Stein TD, Protas H, Cherry JD, Adler CH, Balcer LJ, Bernick C, Pulukuri SV, Abdolmohammadi B, Coleman MJ, Palmisano JN, Tripodis Y, Mez J, Rabinovici GD, Marek KL, Beach TG, Johnson KA, Huber BR, Koerte I, Lin AP, Bouix S, Cummings JL, Shenton ME, Reiman EM, McKee AC, Stern RA. Associations between near end-of-life flortaucipir PET and postmortem CTE-related tau neuropathology in six former American football players. Eur J Nucl Med Mol Imaging 2023; 50:435-452. [PMID: 36152064 PMCID: PMC9816291 DOI: 10.1007/s00259-022-05963-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Flourine-18-flortaucipir tau positron emission tomography (PET) was developed for the detection for Alzheimer's disease. Human imaging studies have begun to investigate its use in chronic traumatic encephalopathy (CTE). Flortaucipir-PET to autopsy correlation studies in CTE are needed for diagnostic validation. We examined the association between end-of-life flortaucipir PET and postmortem neuropathological measurements of CTE-related tau in six former American football players. METHODS Three former National Football League players and three former college football players who were part of the DIAGNOSE CTE Research Project died and agreed to have their brains donated. The six players had flortaucipir (tau) and florbetapir (amyloid) PET prior to death. All brains from the deceased participants were neuropathologically evaluated for the presence of CTE. On average, the participants were 59.0 (SD = 9.32) years of age at time of PET. PET scans were acquired 20.33 (SD = 13.08) months before their death. Using Spearman correlation analyses, we compared flortaucipir standard uptake value ratios (SUVRs) to digital slide-based AT8 phosphorylated tau (p-tau) density in a priori selected composite cortical, composite limbic, and thalamic regions-of-interest (ROIs). RESULTS Four brain donors had autopsy-confirmed CTE, all with high stage disease (n = 3 stage III, n = 1 stage IV). Three of these four met criteria for the clinical syndrome of CTE, known as traumatic encephalopathy syndrome (TES). Two did not have CTE at autopsy and one of these met criteria for TES. Concomitant pathology was only present in one of the non-CTE cases (Lewy body) and one of the CTE cases (motor neuron disease). There was a strong association between flortaucipir SUVRs and p-tau density in the composite cortical (ρ = 0.71) and limbic (ρ = 0.77) ROIs. Although there was a strong association in the thalamic ROI (ρ = 0.83), this is a region with known off-target binding. SUVRs were modest and CTE and non-CTE cases had overlapping SUVRs and discordant p-tau density for some regions. CONCLUSIONS Flortaucipir-PET could be useful for detecting high stage CTE neuropathology, but specificity to CTE p-tau is uncertain. Off-target flortaucipir binding in the hippocampus and thalamus complicates interpretation of these associations. In vivo biomarkers that can detect the specific p-tau of CTE across the disease continuum are needed.
Collapse
Affiliation(s)
- Michael L Alosco
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yi Su
- Banner Alzheimer's Institute, Arizona State University, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Hillary Protas
- Banner Alzheimer's Institute, Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Jonathan D Cherry
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Laura J Balcer
- Departments of Neurology, Population Health and Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Charles Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Surya Vamsi Pulukuri
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Bobak Abdolmohammadi
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael J Coleman
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Joseph N Palmisano
- Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston University School of Public Health, Boston, MA, USA
| | - Yorghos Tripodis
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jesse Mez
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Gil D Rabinovici
- Memory & Aging Center, Departments of Neurology, Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kenneth L Marek
- Institute for Neurodegenerative Disorders, Invicro, LLC, New Haven, CT, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Keith A Johnson
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Bertrand Russell Huber
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
- National Center for PTSD, VA Boston Healthcare, Jamaica Plain, MA, USA
| | - Inga Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig Maximilians University, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians University, Munich, Germany
- NICUM (NeuroImaging Core Unit Munich), Ludwig Maximilians University, Munich, Germany
| | - Alexander P Lin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Martha E Shenton
- VA Boston Healthcare System, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, University of Arizona, Arizona State University, Translational Genomics Research Institute, and Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Ann C McKee
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
- VA Bedford Healthcare System, Bedford, MA, USA
| | - Robert A Stern
- Boston University Alzheimer's Disease Research Center, Boston University CTE Center, Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
- Departments of Neurosurgery, and Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
89
|
Abdel-Megeed RM, Ali SA, Khalil WB, Refaat EA, Kadry MO. Mitigation of apoptosis-mediated neurotoxicity induced by silver nanoparticles via rutaceae nutraceuticals: P53 activation and Bax/Bcl-2 regulation. Toxicol Rep 2022; 9:2055-2063. [PMID: 36518464 PMCID: PMC9742938 DOI: 10.1016/j.toxrep.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
Rapid progress in nano-scales and nanostructure extremely altered the way of diagnosing or preventing numerous diseases. One of the most important nano-medicines used in cancer treatment and diagnosis is silver nanoparticles (AgNPs). Regardless of their extensive utilization, their prospective neurotoxicity wasn't studied yet. Herein, male Swiss Albino mice were intoxicated via two Nano-scales of AgNPs; (20 nm and 100 nm) for one month (100 mg/kg) then treated by leaves extracts of both Casimiroa edulis (C. edulis) and Glycosmis pentaphylla (G. pentaphylla), in addition to, mucilage and protein, the separated compounds from C. edulis fruits and seeds respectively in a dose of (500 mg/kg). Molecular, Biochemical and histopathological examinations were then conducted. Data recorded showed a significant elevation in hydrogen peroxide (H2O2) level and reduction in glutathione peroxidase (GPX) level post AgNPs intoxication. The oxidative stress occurred was modulated upon treatment regimens. Protein expression of C-reactive protein (CRP) showed a significant elevation and Molecular analysis recorded a significant up-regulation in the expression of both Bax and caspace-3 genes upon AgNPs intoxication in both particles size. On the contrary, both Bcl2 and P53 gene expression were shown to be significantly reduced. Treatment by C. edulis, G. pentaphylla, protein and mucilage extracts revealed modulation in apoptotic and pro-apoptotic biomarkers. Histopathological examination confirmed the obtained results. AgNPs exposure could induce neurotoxicity, genetic alternation and oxidative stress; the targeted extracts could be considered as a promising candidate in modulating apoptosis and neurotoxicity induced by AgNPs.
Collapse
Affiliation(s)
- Rehab M. Abdel-Megeed
- Therapeutic Chemistry Department, National Research Center, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Sanaa A. Ali
- Therapeutic Chemistry Department, National Research Center, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Wagdy B. Khalil
- Cell Biology Department, National Research Center, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Esraa A. Refaat
- Pharmacognosy Departments, National Research Center, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Mai O. Kadry
- Therapeutic Chemistry Department, National Research Center, El Buhouth St., Dokki, Cairo 12622, Egypt
| |
Collapse
|
90
|
Cherry JD, Baucom ZH, Eppich KG, Kirsch D, Dixon ER, Tripodis Y, Bieniek KF, Farrell K, Whitney K, Uretsky M, Crary JF, Dickson D, McKee AC. Neuroimmune proteins can differentiate between tauopathies. J Neuroinflammation 2022; 19:278. [PMID: 36403052 PMCID: PMC9675129 DOI: 10.1186/s12974-022-02640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Tauopathies are a group of neurodegenerative diseases where there is pathologic accumulation of hyperphosphorylated tau protein (ptau). The most common tauopathy is Alzheimer's disease (AD), but chronic traumatic encephalopathy (CTE), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and argyrophilic grain disease (AGD) are significant health risks as well. Currently, it is unclear what specific molecular factors might drive each distinct disease and represent therapeutic targets. Additionally, there is a lack of biomarkers that can differentiate each disease in life. Recent work has suggested that neuroinflammatory changes might be specific among distinct diseases and offers a novel resource for mechanistic targets and biomarker candidates. METHODS To better examine each tauopathy, a 71 immune-related protein multiplex ELISA panel was utilized to analyze anterior cingulate grey matter from 127 individuals neuropathologically diagnosed with AD, CTE, PSP, CBD, and AGD. A partial least square regression analysis was carried out to perform unbiased clustering and identify proteins that are distinctly correlated with each tauopathy correcting for age and gender. Receiver operator characteristic and binary logistic regression analyses were then used to examine the ability of each candidate protein to distinguish diseases. Validation in postmortem cerebrospinal fluid (CSF) from 15 AD and 14 CTE cases was performed to determine if candidate proteins could act as possible novel biomarkers. RESULTS Five clusters of immune proteins were identified and compared to each tauopathy to determine if clusters were specific to distinct disease. Each cluster was found to correlate with either CTE, AD, PSP, CBD, or AGD. When examining which proteins were the strongest driver of each cluster, it was observed the most distinctive protein for CTE was CCL21, AD was FLT3L, and PSP was IL13. Individual proteins that were specific to CBD and AGD were not observed. CCL21 was observed to be elevated in CTE CSF compared to AD cases (p = 0.02), further validating the use as possible biomarkers. Sub-analyses for male only cases confirmed the results were not skewed by gender differences. CONCLUSIONS Overall, these results highlight that different neuroinflammatory responses might underlie unique mechanisms in related neurodegenerative pathologies. Additionally, the use of distinct neuroinflammatory signatures could help differentiate between tauopathies and act as novel biomarker candidate to increase specificity for in-life diagnoses.
Collapse
Affiliation(s)
- Jonathan D Cherry
- VA Boston Healthcare System, 150 S. Huntington Ave., Boston, MA, 02130, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA , USA.
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.
| | - Zach H Baucom
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kaleb G Eppich
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Daniel Kirsch
- VA Boston Healthcare System, 150 S. Huntington Ave., Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA , USA
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Erin R Dixon
- VA Boston Healthcare System, 150 S. Huntington Ave., Boston, MA, 02130, USA
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kevin F Bieniek
- Department of Pathology, UT Health San Antonio, San Antonio, TX, USA
- Gleen Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen Whitney
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madeline Uretsky
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dennis Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ann C McKee
- VA Boston Healthcare System, 150 S. Huntington Ave., Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA , USA
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
91
|
Schwab N, Taskina D, Leung E, Innes BT, Bader GD, Hazrati LN. Neurons and glial cells acquire a senescent signature after repeated mild traumatic brain injury in a sex-dependent manner. Front Neurosci 2022; 16:1027116. [PMID: 36408415 PMCID: PMC9669743 DOI: 10.3389/fnins.2022.1027116] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 08/15/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is an important public health issue, as it can lead to long-term neurological symptoms and risk of neurodegenerative disease. The pathophysiological mechanisms driving this remain unclear, and currently there are no effective therapies for mTBI. In this study on repeated mTBI (rmTBI), we have induced three mild closed-skull injuries or sham procedures, separated by 24 h, in C57BL/6 mice. We show that rmTBI mice have prolonged righting reflexes and astrogliosis, with neurological impairment in the Morris water maze (MWM) and the light dark test. Cortical and hippocampal tissue analysis revealed DNA damage in the form of double-strand breaks, oxidative damage, and R-loops, markers of cellular senescence including p16 and p21, and signaling mediated by the cGAS-STING pathway. This study identified novel sex differences after rmTBI in mice. Although these markers were all increased by rmTBI in both sexes, females had higher levels of DNA damage, lower levels of the senescence protein p16, and lower levels of cGAS-STING signaling proteins compared to their male counterparts. Single-cell RNA sequencing of the male rmTBI mouse brain revealed activation of the DNA damage response, evidence of cellular senescence, and pro-inflammatory markers reminiscent of the senescence-associated secretory phenotype (SASP) in neurons and glial cells. Cell-type specific changes were also present with evidence of brain immune activation, neurotransmission alterations in both excitatory and inhibitory neurons, and vascular dysfunction. Treatment of injured mice with the senolytic drug ABT263 significantly reduced markers of senescence only in males, but was not therapeutic in females. The reduction of senescence by ABT263 in male mice was accompanied by significantly improved performance in the MWM. This study provides compelling evidence that senescence contributes to brain dysfunction after rmTBI, but may do so in a sex-dependent manner.
Collapse
Affiliation(s)
- Nicole Schwab
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Daria Taskina
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Emily Leung
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Brendan T. Innes
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Gary D. Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lili-Naz Hazrati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
92
|
Ghozy S, El-Qushayri AE, Varney J, Kacimi SEO, Bahbah EI, Morra ME, Shah J, Kallmes KM, Abbas AS, Elfil M, Alghamdi BS, Ashraf G, Alhabbab R, Dmytriw AA. The prognostic value of neutrophil-to-lymphocyte ratio in patients with traumatic brain injury: A systematic review. Front Neurol 2022; 13:1021877. [PMID: 36353130 PMCID: PMC9638118 DOI: 10.3389/fneur.2022.1021877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
Traumatic brain injury (TBI) places a heavy load on healthcare systems worldwide. Despite significant advancements in care, the TBI-related mortality is 30–50% and in most cases involves adolescents or young adults. Previous literature has suggested that neutrophil-to-lymphocyte ratio (NLR) may serve as a sensitive biomarker in predicting clinical outcomes following TBI. With conclusive evidence in this regard lacking, this study aimed to systematically review all original studies reporting the effectiveness of NLR as a predictor of TBI outcomes. A systematic search of eight databases was conducted according to the Preferred Reporting Items for Systematic Review and Meta-Analyses statement (PRISMA) recommendations. The risk of bias was assessed using the Quality in Prognostic Studies (QUIPS) tool. Eight studies were ultimately included in the study. In most of the studies interrogated, severity outcomes were successfully predicted by NLR in both univariate and multivariate prediction models, in different follow-up durations up to 6 months. A high NLR at 24 and 48 h after TBI in pediatric patients was associated with worse clinical outcomes. On pooling the NLR values within studies assessing its association with the outcome severity (favorable or not), patients with favorable outcomes had 37% lower NLR values than those with unfavorable ones (RoM= 0.63; 95% CI = 0.44–0.88; p = 0.007). However, there were considerable heterogeneity in effect estimates (I2 = 99%; p < 0.001). Moreover, NLR was a useful indicator of mortality at both 6-month and 1-year intervals. In conjunction with clinical and radiographic parameters, NLR might be a useful, inexpensive marker in predicting clinical outcomes in patients with TBI. However, the considerable heterogeneity in current literature keeps it under investigation with further studies are warranted to confirm the reliability of NLR in predicting TBI outcomes.
Collapse
Affiliation(s)
- Sherief Ghozy
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States
- Nuffield Department of Primary Care Health Sciences and Department for Continuing Education (EBHC Program), Oxford University, Oxford, United Kingdom
- *Correspondence: Sherief Ghozy
| | | | - Joseph Varney
- School of Medicine, American University of the Caribbean, Philipsburg, Sint Maarten
| | | | | | | | - Jaffer Shah
- Drexel University College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Kevin M. Kallmes
- Nested Knowledge, Saint Paul, MN, United States
- Superior Medical Experts, Saint Paul, MN, United States
| | | | - Mohamed Elfil
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Badrah S. Alghamdi
- Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Ghulam Ashraf
| | - Rowa Alhabbab
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adam A. Dmytriw
- Neurointerventional Program, Departments of Medical Imaging and Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada
- Neuroendovascular Program, Massachusetts General Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
93
|
Butler MLMD, Dixon E, Stein TD, Alvarez VE, Huber B, Buckland ME, McKee AC, Cherry JD. Tau Pathology in Chronic Traumatic Encephalopathy is Primarily Neuronal. J Neuropathol Exp Neurol 2022; 81:773-780. [PMID: 35903039 PMCID: PMC9487650 DOI: 10.1093/jnen/nlac065] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Millions of individuals are exposed to repetitive head impacts (RHI) each year through contact sports, military blast, and interpersonal violence. RHI is the major risk factor for developing chronic traumatic encephalopathy (CTE), a neurodegenerative tauopathy. Recent consensus criteria defined the pathognomonic lesion in CTE as perivascular, hyperphosphorylated tau (p-tau) in neuronal aggregates. Astroglial p-tau is an inconsistent supporting feature and not in itself diagnostic of CTE. This study quantitated the spatial and cellular distribution of p-tau pathology in postmortem dorsolateral frontal cortex of 150 individuals with CTE, from ages 21 to 80 years old, without comorbid pathology. p-Tau-immunoreactive cells were quantitated in the gray matter sulcus, crest, subpial region, and within pathognomonic CTE lesions. Significantly more neuronal p-tau than astrocytic p-tau was found across all cortical regions (p < 0.0001). Sulcal astrocytic p-tau was primarily (75%, p < 0.0001) localized to subpial regions as thorn-shaped astrocytes, a form of age-related tau astrogliopathy. Neuronal p-tau was significantly associated with age, years of RHI exposure, and CTE severity; astrocytic p-tau pathology was only significantly associated with age. These findings strongly support neuronal degeneration as a driving feature of CTE and will help inform future research and the development of fluid biomarkers for the detection of neuronal degeneration in CTE.
Collapse
Affiliation(s)
- Morgane L M D Butler
- From the Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Erin Dixon
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Thor D Stein
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Victor E Alvarez
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Bertrand Huber
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Ann C McKee
- From the Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jonathan D Cherry
- VA Boston Healthcare System, Jamaica Plain, Massachusetts, USA
- Boston University Alzheimer’s Disease and CTE Centers, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
94
|
Sriram S, Lucke-Wold B. Advances Research in Traumatic Encephalopathy. Biomedicines 2022; 10:biomedicines10092287. [PMID: 36140388 PMCID: PMC9496579 DOI: 10.3390/biomedicines10092287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
|
95
|
Mehkri Y, McDonald B, Sriram S, Reddy R, Kounelis-Wuillaume S, Roberts JA, Lucke-Wold B. Recent Treatment Strategies in Alzheimer's Disease and Chronic Traumatic Encephalopathy. BIOMEDICAL RESEARCH AND CLINICAL REVIEWS 2022; 7:128. [PMID: 36743825 PMCID: PMC9897211 DOI: 10.31579/2692-9406/128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neurotrauma has been well linked to the progression of neurodegenerative disease. Much work has been done characterizing chronic traumatic encephalopathy, but less has been done regarding the contribution to Alzheimer's Disease. This review focuses on AD and its association with neurotrauma. Emerging clinical trials are discussed as well as novel mechanisms. We then address how some of these mechanisms are shared with CTE and emerging pre-clinical studies. This paper is a user-friendly resource that summarizes the emerging findings and proposes further investigation into key areas of interest. It is intended to serve as a catalyst for both research teams and clinicians in the quest to improve effective treatment and diagnostic options.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Department of Neurosurgery, University of Florida, Gainesville
| | | | - Sai Sriram
- Department of Neurosurgery, University of Florida, Gainesville
| | - Ramya Reddy
- Department of Neurosurgery, University of Florida, Gainesville
| | | | | | | |
Collapse
|
96
|
Asken BM, Tanner JA, VandeVrede L, Casaletto KB, Staffaroni AM, Mundada N, Fonseca C, Iaccarino L, La Joie R, Tsuei T, Mladinov M, Grant H, Shankar R, Wang KKW, Xu H, Cobigo Y, Rosen H, Gardner RC, Perry DC, Miller BL, Spina S, Seeley WW, Kramer JH, Grinberg LT, Rabinovici GD. Multi-Modal Biomarkers of Repetitive Head Impacts and Traumatic Encephalopathy Syndrome: A Clinicopathological Case Series. J Neurotrauma 2022; 39:1195-1213. [PMID: 35481808 PMCID: PMC9422800 DOI: 10.1089/neu.2022.0060] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Traumatic encephalopathy syndrome (TES) criteria were developed to aid diagnosis of chronic traumatic encephalopathy (CTE) pathology during life. Interpreting clinical and biomarker findings in patients with TES during life necessitates autopsy-based determination of the neuropathological profile. We report a clinicopathological series of nine patients with previous repetitive head impacts (RHI) classified retrospectively using the recent TES research framework (100% male and white/Caucasian, age at death 49-84) who completed antemortem neuropsychological evaluations, T1-weighted magnetic resonance imaging, diffusion tensor imaging (n = 6), (18)F-fluorodeoxyglucose-positron emission tomography (n = 5), and plasma measurement of neurofilament light (NfL), glial fibrillary acidic protein (GFAP), and total tau (n = 8). Autopsies were performed on all patients. Cognitively, low test scores and longitudinal decline were relatively consistent for memory and executive function. Medial temporal lobe atrophy was observed in all nine patients. Poor white matter integrity was consistently found in the fornix. Glucose hypometabolism was most common in the medial temporal lobe and thalamus. Most patients had elevated plasma GFAP, NfL, and total tau at their initial visit and a subset showed longitudinally increasing concentrations. Neuropathologically, five of the nine patients had CTE pathology (n = 4 "High CTE"/McKee Stage III-IV, n = 1 "Low CTE"/McKee Stage I). Primary neuropathological diagnoses (i.e., the disease considered most responsible for observed symptoms) were frontotemporal lobar degeneration (n = 2 FTLD-TDP, n = 1 FTLD-tau), Alzheimer disease (n = 3), CTE (n = 2), and primary age-related tauopathy (n = 1). In addition, hippocampal sclerosis was a common neuropathological comorbidity (n = 5) and associated with limbic-predominant TDP-43 proteinopathy (n = 4) or FTLD-TDP (n = 1). Memory and executive function decline, limbic system brain changes (atrophy, decreased white matter integrity, hypometabolism), and plasma biomarker alterations are common in RHI and TES but may reflect multiple neuropathologies. In particular, the neuropathological differential for patients with RHI or TES presenting with medial temporal atrophy and memory loss should include limbic TDP-43. Researchers and clinicians should be cautious in attributing cognitive, neuroimaging, or other biomarker changes solely to CTE tau pathology based on previous RHI or a TES diagnosis alone.
Collapse
Affiliation(s)
- Breton M. Asken
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Jeremy A. Tanner
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Lawren VandeVrede
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Kaitlin B. Casaletto
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Nidhi Mundada
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Corrina Fonseca
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Leonardo Iaccarino
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Renaud La Joie
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Torie Tsuei
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Miho Mladinov
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Harli Grant
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Ranjani Shankar
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Kevin K. W. Wang
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, Neuroscience, Psychiatry and Chemistry, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Haiyan Xu
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, Neuroscience, Psychiatry and Chemistry, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Howie Rosen
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Raquel C. Gardner
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - David C. Perry
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Bruce L. Miller
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - William W. Seeley
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Joel H. Kramer
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Lea T. Grinberg
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Gil D. Rabinovici
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
97
|
LoBue C, Cullum CM, Hart J. Examination of the Proposed Criteria for Traumatic Encephalopathy Syndrome: Case Report of a Former Professional Football Player. J Neuropsychiatry Clin Neurosci 2022; 34:268-274. [PMID: 35272492 DOI: 10.1176/appi.neuropsych.21090225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Christian LoBue
- Department of Psychiatry (all authors), Department of Neurological Surgery (LoBue, Cullum), and Department of Neurology (Cullum, Hart), University of Texas Southwestern Medical Center, Dallas; School of Behavioral and Brain Sciences, University of Texas at Dallas (Hart)
| | - C Munro Cullum
- Department of Psychiatry (all authors), Department of Neurological Surgery (LoBue, Cullum), and Department of Neurology (Cullum, Hart), University of Texas Southwestern Medical Center, Dallas; School of Behavioral and Brain Sciences, University of Texas at Dallas (Hart)
| | - John Hart
- Department of Psychiatry (all authors), Department of Neurological Surgery (LoBue, Cullum), and Department of Neurology (Cullum, Hart), University of Texas Southwestern Medical Center, Dallas; School of Behavioral and Brain Sciences, University of Texas at Dallas (Hart)
| |
Collapse
|
98
|
Murray HC, Osterman C, Bell P, Vinnell L, Curtis MA. Neuropathology in chronic traumatic encephalopathy: a systematic review of comparative post-mortem histology literature. Acta Neuropathol Commun 2022; 10:108. [PMID: 35933388 PMCID: PMC9356428 DOI: 10.1186/s40478-022-01413-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/23/2022] [Indexed: 11/10/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive head trauma and is characterised by the perivascular accumulation of hyperphosphorylated tau (p-tau) in the depths of cortical sulci. CTE can only be diagnosed postmortem and the cellular mechanisms of disease causation remain to be elucidated. Understanding the full scope of the pathological changes currently identified in CTE is necessary to identify areas requiring further research. This systematic review summarises the current literature on CTE pathology from postmortem human tissue histology studies published until 31 December 2021. Publications were included if they quantitively or qualitatively compared postmortem human tissue pathology in CTE to neuropathologically normal cases or other neurodegenerative diseases such as Alzheimer's disease (AD). Pathological entities investigated included p-tau, beta-amyloid, TDP-43, Lewy bodies, astrogliosis, microgliosis, axonopathy, vascular dysfunction, and cell stress. Of these pathologies, p-tau was the most frequently investigated, with limited reports on other pathological features such as vascular dysfunction, astrogliosis, and microgliosis. Consistent increases in p-tau, TDP-43, microgliosis, axonopathy, and cell stress were reported in CTE cases compared to neuropathologically normal cases. However, there was no clear consensus on how these pathologies compared to AD. The CTE cases used for these studies were predominantly from the VA-BU-CLF brain bank, with American football and boxing as the most frequent sources of repetitive head injury exposure. Overall, this systematic review highlights gaps in the literature and proposes three priorities for future research including: 1. The need for studies of CTE cases with more diverse head injury exposure profiles to understand the consistency of pathology changes between different populations. 2. The need for more studies that compare CTE with normal ageing and AD to further clarify the pathological signature of CTE for diagnostic purposes and to understand the disease process. 3. Further research on non-aggregate pathologies in CTE, such as vascular dysfunction and neuroinflammation. These are some of the least investigated features of CTE pathology despite being implicated in the acute phase response following traumatic head injury.
Collapse
Affiliation(s)
- Helen C. Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Chelsie Osterman
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Paige Bell
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Luca Vinnell
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, 1023 New Zealand
| |
Collapse
|
99
|
Bukhari SA, Nudelman KN, Rumbaugh M, Richeson P, Fox EJ, Montine KS, Aldecoa I, Garrido A, Franz J, Stadelmann C, Vonsattel JPG, Poston KL, Foroud TM, Montine TJ. Parkinson's Progression Markers Initiative brain autopsy program. Parkinsonism Relat Disord 2022; 101:62-65. [DOI: 10.1016/j.parkreldis.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022]
|
100
|
Stathas S, Alvarez VE, Xia W, Nicks R, Meng G, Daley S, Pothast M, Shah A, Kelley H, Esnault C, McCormack R, Dixon E, Fishbein L, Cherry JD, Huber BR, Tripodis Y, Alosco ML, Mez J, McKee AC, Stein TD. Tau phosphorylation sites serine202 and serine396 are differently altered in chronic traumatic encephalopathy and Alzheimer's disease. Alzheimers Dement 2022; 18:1511-1522. [PMID: 34854540 PMCID: PMC9160206 DOI: 10.1002/alz.12502] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/03/2021] [Accepted: 09/22/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy associated with repetitive head impacts (RHI) typically sustained by contact sport athletes. Post-translation modifications to tau in CTE have not been well delineated or compared to Alzheimer's disease (AD). METHODS We measured phosphorylated tau epitopes within dorsolateral frontal cortex from post mortem brains with neither CTE nor AD (n = 108), CTE (n = 109), AD (n = 223), and both CTE and AD (n = 33). RESULTS Levels of hyperphosphorylated tau (p-tau)202 , p-tau231 , and p-tau396 were significantly increased in CTE. Total years of RHI exposure was significantly associated with increased p-tau202 levels (P = .001), but not p-tau396 . Instead, p-tau396 was most closely related to amyloid beta (Aβ)1-42 levels (P < .001). The p-tau202 :p-tau396 ratio was significantly increased in early and late CTE compared to AD. DISCUSSION In frontal cortex, p-tau202 is the most upregulated p-tau species in CTE, while p-tau396 is most increased in AD. p-tau202 and p-tau396 measurements may aid in developing biomarkers for disease.
Collapse
Affiliation(s)
- SpiroAnthony Stathas
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Victor E. Alvarez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Weiming Xia
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Raymond Nicks
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Gaoyuan Meng
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Sarah Daley
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Morgan Pothast
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Arsal Shah
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Hunter Kelley
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Camille Esnault
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Robert McCormack
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Erin Dixon
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Lucas Fishbein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Jonathan D. Cherry
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Bertrand R. Huber
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
| | - Yorghos Tripodis
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 20118, USA
| | - Michael L. Alosco
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
| | - Jesse Mez
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
| | - Ann C. McKee
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| | - Thor D. Stein
- Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- Department of Neurology, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 20118, USA
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 72 E Concord Street, B7800, Boston, MA, 02118, USA
| |
Collapse
|