51
|
Mohorianu I, Fowler EK, Dalmay T, Chapman T. Control of seminal fluid protein expression via regulatory hubs in Drosophila melanogaster. Proc Biol Sci 2018; 285:20181681. [PMID: 30257913 PMCID: PMC6170815 DOI: 10.1098/rspb.2018.1681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
Highly precise, yet flexible and responsive coordination of expression across groups of genes underpins the integrity of many vital functions. However, our understanding of gene regulatory networks (GRNs) is often hampered by the lack of experimentally tractable systems, by significant computational challenges derived from the large number of genes involved or from difficulties in the accurate identification and characterization of gene interactions. Here we used a tractable experimental system in which to study GRNs: the genes encoding the seminal fluid proteins that are transferred along with sperm (the 'transferome') in Drosophila melanogaster fruit flies. The products of transferome genes are core determinants of reproductive success and, to date, only transcription factors have been implicated in the modulation of their expression. Hence, as yet, we know nothing about the post-transcriptional mechanisms underlying the tight, responsive and precise regulation of this important gene set. We investigated this omission in the current study. We first used bioinformatics to identify potential regulatory motifs that linked the transferome genes in a putative interaction network. This predicted the presence of putative microRNA (miRNA) 'hubs'. We then tested this prediction, that post-transcriptional regulation is important for the control of transferome genes, by knocking down miRNA expression in adult males. This abolished the ability of males to respond adaptively to the threat of sexual competition, indicating a regulatory role for miRNAs in the regulation of transferome function. Further bioinformatics analysis then identified candidate miRNAs as putative regulatory hubs and evidence for variation in the strength of miRNA regulation across the transferome gene set. The results revealed regulatory mechanisms that can underpin robust, precise and flexible regulation of multiple fitness-related genes. They also help to explain how males can adaptively modulate ejaculate composition.
Collapse
Affiliation(s)
- Irina Mohorianu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Emily K Fowler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
52
|
Wase N, Black P, DiRusso C. Innovations in improving lipid production: Algal chemical genetics. Prog Lipid Res 2018; 71:101-123. [DOI: 10.1016/j.plipres.2018.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
|
53
|
Ramanan R, Tran QG, Cho DH, Jung JE, Kim BH, Shin SY, Choi SH, Liu KH, Kim DS, Lee SJ, Crespo JL, Lee HG, Oh HM, Kim HS. The Ancient Phosphatidylinositol 3-Kinase Signaling System Is a Master Regulator of Energy and Carbon Metabolism in Algae. PLANT PHYSIOLOGY 2018; 177:1050-1065. [PMID: 29769325 PMCID: PMC6053016 DOI: 10.1104/pp.17.01780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/02/2018] [Indexed: 05/08/2023]
Abstract
Algae undergo a complete metabolic transformation under stress by arresting cell growth, inducing autophagy and hyper-accumulating biofuel precursors such as triacylglycerols and starch. However, the regulatory mechanisms behind this stress-induced transformation are still unclear. Here, we use biochemical, mutational, and "omics" approaches to demonstrate that PI3K signaling mediates the homeostasis of energy molecules and influences carbon metabolism in algae. In Chlamydomonas reinhardtii, the inhibition and knockdown (KD) of algal class III PI3K led to significantly decreased cell growth, altered cell morphology, and higher lipid and starch contents. Lipid profiling of wild-type and PI3K KD lines showed significantly reduced membrane lipid breakdown under nitrogen starvation (-N) in the KD. RNA-seq and network analyses showed that under -N conditions, the KD line carried out lipogenesis rather than lipid hydrolysis by initiating de novo fatty acid biosynthesis, which was supported by tricarboxylic acid cycle down-regulation and via acetyl-CoA synthesis from glycolysis. Remarkably, autophagic responses did not have primacy over inositide signaling in algae, unlike in mammals and vascular plants. The mutant displayed a fundamental shift in intracellular energy flux, analogous to that in tumor cells. The high free fatty acid levels and reduced mitochondrial ATP generation led to decreased cell viability. These results indicate that the PI3K signal transduction pathway is the metabolic gatekeeper restraining biofuel yields, thus maintaining fitness and viability under stress in algae. This study demonstrates the existence of homeostasis between starch and lipid synthesis controlled by lipid signaling in algae and expands our understanding of such processes, with biotechnological and evolutionary implications.
Collapse
Affiliation(s)
- Rishiram Ramanan
- Department of Environmental Science, School of Earth Science Systems, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671316, Kerala, India
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Quynh-Giao Tran
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jae-Eun Jung
- Genome Research Center, KRIBB, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byung-Hyuk Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang-Yoon Shin
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sae-Hae Choi
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dae-Soo Kim
- Genome Research Center, KRIBB, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seon-Jin Lee
- Biomedical Genomics Research Center, KRIBB, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - José L Crespo
- Instituto de Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Seville 41092, Spain
| | - Hee-Gu Lee
- Biomedical Genomics Research Center, KRIBB, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
54
|
de Abreu E Lima F, Li K, Wen W, Yan J, Nikoloski Z, Willmitzer L, Brotman Y. Unraveling lipid metabolism in maize with time-resolved multi-omics data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1102-1115. [PMID: 29385634 DOI: 10.1111/tpj.13833] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 05/19/2023]
Abstract
Maize is the cereal crop with the highest production worldwide, and its oil is a key energy resource. Improving the quantity and quality of maize oil requires a better understanding of lipid metabolism. To predict the function of maize genes involved in lipid biosynthesis, we assembled transcriptomic and lipidomic data sets from leaves of B73 and the high-oil line By804 in two distinct time-series experiments. The integrative analysis based on high-dimensional regularized regression yielded lipid-transcript associations indirectly validated by Gene Ontology and promoter motif enrichment analyses. The co-localization of lipid-transcript associations using the genetic mapping of lipid traits in leaves and seedlings of a B73 × By804 recombinant inbred line population uncovered 323 genes involved in the metabolism of phospholipids, galactolipids, sulfolipids and glycerolipids. The resulting association network further supported the involvement of 50 gene candidates in modulating levels of representatives from multiple acyl-lipid classes. Therefore, the proposed approach provides high-confidence candidates for experimental testing in maize and model plant species.
Collapse
Affiliation(s)
| | - Kun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Weiwei Wen
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Zoran Nikoloski
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Lothar Willmitzer
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| |
Collapse
|
55
|
Thiriet-Rupert S, Carrier G, Trottier C, Eveillard D, Schoefs B, Bougaran G, Cadoret JP, Chénais B, Saint-Jean B. Identification of transcription factors involved in the phenotype of a domesticated oleaginous microalgae strain of Tisochrysis lutea. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
56
|
Characterization of dysregulated lncRNA-mRNA network based on ceRNA hypothesis to reveal the occurrence and recurrence of myocardial infarction. Cell Death Discov 2018. [PMID: 29531832 PMCID: PMC5841419 DOI: 10.1038/s41420-018-0036-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) play important roles in initiation and development of human diseases. However, the mechanism of ceRNA regulated by lncRNA in myocardial infarction (MI) remained unclear. In this study, we performed a multi-step computational method to construct dysregulated lncRNA-mRNA networks for MI occurrence (DLMN_MI_OC) and recurrence (DLMN_MI_Re) based on “ceRNA hypothesis”. We systematically integrated lncRNA and mRNA expression profiles and miRNA-target regulatory interactions. The constructed DLMN_MI_OC and DLMN_MI_Re both exhibited biological network characteristics, and functional analysis demonstrated that the networks were specific for MI. Additionally, we identified some lncRNA-mRNA ceRNA modules involved in MI occurrence and recurrence. Finally, two new panel biomarkers defined by four lncRNAs (RP1-239B22.5, AC135048.13, RP11-4O1.2, RP11-285F7.2) from DLMN_MI_OC and three lncRNAs (RP11-363E7.4, CTA-29F11.1, RP5-894A10.6) from DLMN_MI_Re with high classification performance were, respectively, identified in distinguishing controls from patients, and patients with recurrent events from those without recurrent events. This study will provide us new insight into ceRNA-mediated regulatory mechanisms involved in MI occurrence and recurrence, and facilitate the discovery of candidate diagnostic and prognosis biomarkers for MI.
Collapse
|
57
|
Moriyama T, Toyoshima M, Saito M, Wada H, Sato N. Revisiting the Algal "Chloroplast Lipid Droplet": The Absence of an Entity That Is Unlikely to Exist. PLANT PHYSIOLOGY 2018; 176:1519-1530. [PMID: 29061905 PMCID: PMC5813570 DOI: 10.1104/pp.17.01512] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 05/03/2023]
Abstract
The precise localization of the lipid droplets and the metabolic pathways associated with oil production are crucial to the engineering of microalgae for biofuel production. Several studies have reported detecting lipid droplets within the chloroplast of the microalga Chlamydomonas reinhardtii, which accumulates considerable amounts of triacylglycerol and starch within the cell under nitrogen deprivation or high-light stress conditions. Starch undoubtedly accumulates within the chloroplast, but there have been debates on the localization of the lipid droplets, which are cytosolic organelles in other organisms. Although it is impossible to prove an absence, we tried to repeat experiments that previously indicated the presence of lipid droplets in chloroplasts. Here, we present microscopic results showing no evidence for the presence of lipid droplets within the chloroplast stroma, even though some lipid droplets existed in close association with the chloroplast or were largely engulfed by the chloroplasts. These lipid droplets are cytosolic structures, distinct from the plastoglobules present in the chloroplast stroma. These results not only contrast with the old ideas but also point out that what were previously thought to be chloroplast lipid droplets are likely to be embedded within chloroplast invaginations in association with the outer envelope of the chloroplast without intervention of the endoplasmic reticulum. These findings point to the intriguing possibility of a tight metabolic flow from the chloroplast to the lipid droplet through a close association rather than direct contact of both organelles.
Collapse
Affiliation(s)
- Takashi Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Masakazu Toyoshima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Masakazu Saito
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| |
Collapse
|
58
|
Jagadevan S, Banerjee A, Banerjee C, Guria C, Tiwari R, Baweja M, Shukla P. Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:185. [PMID: 29988523 PMCID: PMC6026345 DOI: 10.1186/s13068-018-1181-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/20/2018] [Indexed: 05/03/2023]
Abstract
In the wake of the uprising global energy crisis, microalgae have emerged as an alternate feedstock for biofuel production. In addition, microalgae bear immense potential as bio-cell factories in terms of producing key chemicals, recombinant proteins, enzymes, lipid, hydrogen and alcohol. Abstraction of such high-value products (algal biorefinery approach) facilitates to make microalgae-based renewable energy an economically viable option. Synthetic biology is an emerging field that harmoniously blends science and engineering to help design and construct novel biological systems, with an aim to achieve rationally formulated objectives. However, resources and tools used for such nuclear manipulation, construction of synthetic gene network and genome-scale reconstruction of microalgae are limited. Herein, we present recent developments in the upcoming field of microalgae employed as a model system for synthetic biology applications and highlight the importance of genome-scale reconstruction models and kinetic models, to maximize the metabolic output by understanding the intricacies of algal growth. This review also examines the role played by microalgae as biorefineries, microalgal culture conditions and various operating parameters that need to be optimized to yield biofuel that can be economically competitive with fossil fuels.
Collapse
Affiliation(s)
- Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Avik Banerjee
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Chiranjib Banerjee
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Chandan Guria
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004 India
| | - Rameshwar Tiwari
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Hauz-Khas, New Delhi 110016 India
| | - Mehak Baweja
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
59
|
Ajjawi I, Verruto J, Aqui M, Soriaga LB, Coppersmith J, Kwok K, Peach L, Orchard E, Kalb R, Xu W, Carlson TJ, Francis K, Konigsfeld K, Bartalis J, Schultz A, Lambert W, Schwartz AS, Brown R, Moellering ER. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat Biotechnol 2017. [DOI: 10.1038/nbt.3865] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
60
|
Gargouri M, Bates PD, Park JJ, Kirchhoff H, Gang DR. Functional photosystem I maintains proper energy balance during nitrogen depletion in Chlamydomonas reinhardtii, promoting triacylglycerol accumulation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:89. [PMID: 28413444 PMCID: PMC5390395 DOI: 10.1186/s13068-017-0774-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/05/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND Nutrient deprivation causes significant stress to the unicellular microalga, Chlamydomonas reinhardtii, which responds by significantly altering its metabolic program. Following N deprivation, the accumulation of starch and triacylglycerols (TAGs) is significantly altered following massive reprogramming of cellular metabolism. One protein that was found to change dramatically and early to this stress was TAB2, a photosystem I (PSI) translation initiation factor, whose transcript and protein levels increased significantly after only 30 min of N deprivation. A detailed physiological and omics-based analysis of an insertional mutant of Chlamydomonas with reduced TAB2 function was conducted to determine what role the functional PSI plays in regulating the cellular response to N deprivation. RESULTS The tab2 mutant displayed increased acetate assimilation and elevated starch levels during the first 6 h of N deprivation, followed by a shift toward altered amino acid synthesis, reduced TAG content and altered fatty acid profiles. These results suggested a central role for PSI in controlling cellular metabolism and its implication in regulation of lipid/starch partitioning. Time course analyses of the tab2 mutant versus wild type under N-deprived versus N replete conditions revealed changes in the ATP/NADPH ratio and suggested that TAG biosynthesis may be associated with maintaining the redox state of the cell during N deprivation. The loss of ability to accumulate TAG in the tab2 mutant co-occurred with an up-regulation of photo-protective mechanisms, suggesting that the synthesis of TAG in the wild type occurs not only as a temporal energy sink, but also as a protective electron sink. CONCLUSIONS By exploiting the tab2 mutation in the cells of C. reinhardtii cultured under autotrophic, mixotrophic, and heterotrophic conditions during nitrogen replete growth and for the first 8 days of nitrogen deprivation, we showed that TAG accumulation and lipid/starch partitioning are dynamically regulated by alterations in PSI function, which concomitantly alters the immediate ATP/NADPH demand. This occurs even without removal of nitrogen from the medium, but sufficient external carbon must nevertheless be available. Efforts to increase lipid accumulation in algae such as Chlamydomonas need to consider carefully how the energy balance of the cell is involved in or affected by such efforts and that numerous layers of metabolic and genetic regulatory control are likely to interfere with such efforts to control oil biosynthesis. Such knowledge will enable synthetic biology approaches to alter the response to the N depletion stress, leading to rewiring of the regulatory networks so that lipid accumulation could be turned on in the absence of N deprivation, allowing for the development of algal production strains with highly enhanced lipid accumulation profiles.
Collapse
Affiliation(s)
- Mahmoud Gargouri
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, P.O. Box 901, 2050 Hammam-Lif, Tunisia
| | - Philip D. Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Jeong-Jin Park
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
| | - David R. Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
61
|
Rai V, Muthuraj M, Gandhi MN, Das D, Srivastava S. Real-time iTRAQ-based proteome profiling revealed the central metabolism involved in nitrogen starvation induced lipid accumulation in microalgae. Sci Rep 2017; 7:45732. [PMID: 28378827 PMCID: PMC5381106 DOI: 10.1038/srep45732] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/06/2017] [Indexed: 02/06/2023] Open
Abstract
To understand the post-transcriptional molecular mechanisms attributing to oleaginousness in microalgae challenged with nitrogen starvation (N-starvation), the longitudinal proteome dynamics of Chlorella sp. FC2 IITG was investigated using multipronged quantitative proteomics and multiple reaction monitoring assays. Physiological data suggested a remarkably enhanced lipid accumulation with concomitant reduction in carbon flux towards carbohydrate, protein and chlorophyll biosynthesis. The proteomics-based investigations identified the down-regulation of enzymes involved in chlorophyll biosynthesis (porphobilinogen deaminase) and photosynthetic carbon fixation (sedoheptulose-1,7 bisphosphate and phosphoribulokinase). Profound up-regulation of hydroxyacyl-ACP dehydrogenase and enoyl-ACP reductase ascertained lipid accumulation. The carbon skeletons to be integrated into lipid precursors were regenerated by glycolysis, β-oxidation and TCA cycle. The enhanced expression of glycolysis and pentose phosphate pathway enzymes indicates heightened energy needs of FC2 cells for the sustenance of N-starvation. FC2 cells strategically reserved nitrogen by incorporating it into the TCA-cycle intermediates to form amino acids; particularly the enzymes involved in the biosynthesis of glutamate, aspartate and arginine were up-regulated. Regulation of arginine, superoxide dismutase, thioredoxin-peroxiredoxin, lipocalin, serine-hydroxymethyltransferase, cysteine synthase, and octanoyltransferase play a critical role in maintaining cellular homeostasis during N-starvation. These findings may provide a rationale for genetic engineering of microalgae, which may enable synchronized biomass and lipid synthesis.
Collapse
Affiliation(s)
- Vineeta Rai
- Department of Biosciences and Bioengineering, Wadhwani Research Center for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Muthusivaramapandian Muthuraj
- Department of Biosciences and Bioengineering, Centre for Energy, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mayuri N. Gandhi
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debasish Das
- Department of Biosciences and Bioengineering, Centre for Energy, Indian Institute of Technology Guwahati, Assam 781039, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Mumbai, Powai - 400067, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Wadhwani Research Center for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Mumbai, Powai - 400067, India
| |
Collapse
|
62
|
Chen H, Zheng Y, Zhan J, He C, Wang Q. Comparative metabolic profiling of the lipid-producing green microalga Chlorella reveals that nitrogen and carbon metabolic pathways contribute to lipid metabolism. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:153. [PMID: 28630648 PMCID: PMC5471736 DOI: 10.1186/s13068-017-0839-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Microalgae are a promising feedstock for biofuel production. Microalgal metabolic pathways are heavily influenced by environmental factors. For instance, lipid metabolism can be induced by nitrogen-limiting conditions. However, the underlying mechanisms of lipid biosynthesis are unclear. In this study, we analyzed the global metabolic profiles of three genetically closely related Chlorella strains (C1, C2, and C3) with significant differences in lipid productivity to identify the contributions of key metabolic pathways to lipid metabolism. We found that nitrogen obtained from amino acid catabolism was assimilated via the glutamate-glutamine pathway and then stored as amino acids and intermediate molecules (particularly proline, alanine, arginine, succinate, and gamma-aminobutyrate) via the corresponding metabolic pathways, which led to carbon-nitrogen disequilibrium. Excess carbon obtained from photosynthesis or glycolysis was re-distributed into carbon-containing compounds, such as glucose-6-phosphate, fructose-6-phosphate, phosphoenolpyruvate, lactate, citrate, 3-hydroxybutyrate, and leucine, and then diverted into lipid metabolism for the production of storage lipids via the gamma-aminobutyrate pathway, glycolysis, and the tricarboxylic acid cycle. These results were substantiated in the model green alga Chlamydomonas reinhardtii by analyzing various mutants deficient in glutamate synthase/NADH-dependent, glutamate synthase/Fd-dependent, glutamine synthetase, aspartate aminotransferase, alanine aminotransferase, pyruvate kinase, and citrate synthase. Our study suggests that not only carbon but also nitrogen assimilation and distribution pathways contribute to lipid biosynthesis. Furthermore, these findings may facilitate genetic engineering efforts to enhance microalgal biofuel production.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, 430072 Hubei China
| | - Yanli Zheng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, 430072 Hubei China
- University of the Chinese Academy of Sciences, Beijing, 100039 China
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, 430072 Hubei China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, 430072 Hubei China
| | - Qiang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, 430072 Hubei China
| |
Collapse
|
63
|
Kang NK, Kim EK, Kim YU, Lee B, Jeong WJ, Jeong BR, Chang YK. Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:231. [PMID: 29046718 PMCID: PMC5635583 DOI: 10.1186/s13068-017-0919-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/30/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Genetic engineering of microalgae is necessary to produce economically feasible strains for biofuel production. Current efforts are focused on the manipulation of individual metabolic genes, but the outcomes are not sufficiently stable and/or efficient for large-scale production of biofuels and other materials. Transcription factors (TFs) are emerging as good alternatives for engineering of microalgae, not only to increase production of biomaterials but to enhance stress tolerance. Here, we investigated an AP2 type TF Wrinkled1 in Arabidopsis (AtWRI1) known as a key regulator of lipid biosynthesis in plants, and applied it to industrial microalgae, Nannochloropsis salina. RESULTS We expressed AtWRI1 TF heterologously in N. salina, named NsAtWRI1, in an effort to re-enact its key regulatory function of lipid accumulation. Stable integration AtWRI1 was confirmed by RESDA PCR, and its expression was confirmed by Western blotting using the FLAG tag. Characterizations of transformants revealed that the neutral and total lipid contents were greater in NsAtWRI1 transformants than in WT under both normal and stress conditions from day 8. Especially, total lipid contents were 36.5 and 44.7% higher in NsAtWRI1 2-3 than in WT under normal and osmotic stress condition, respectively. FAME contents of NsAtWRI1 2-3 were also increased compared to WT. As a result, FAME yield of NsAtWRI1 2-3 was increased to 768 mg/L/day, which was 64% higher than that of WT under the normal condition. We identified candidates of AtWRI1-regulated genes by searching for the presence of the AW-box in promoter regions, among which lipid metabolic genes were further analyzed by qRT-PCR. Overall, qRT-PCR results on day 1 indicated that AtWRI1 down-regulated TAGL and DAGK, and up-regulated PPDK, LPL, LPGAT1, and PDH, resulting in enhanced lipid production in NsAtWRI1 transformants from early growth phase. CONCLUSION AtWRI1 TF regulated several genes involved in lipid synthesis in N. salina, resulting in enhancement of neutral lipid and FAME production. These findings suggest that heterologous expression of AtWRI1 TF can be utilized for efficient biofuel production in industrial microalgae.
Collapse
Affiliation(s)
- Nam Kyu Kang
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Eun Kyung Kim
- Advanced Biomass R&D Center, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Young Uk Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Bongsoo Lee
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Byeong-ryool Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Advanced Biomass R&D Center, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
64
|
Zinati Z, Shamloo-Dashtpagerdi R, Behpouri A. In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron ( Crocus sativus L. ) stigma. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2016; 5:233-246. [PMID: 28261627 PMCID: PMC5326487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characterization of miRNAs along with the corresponding target genes in C. sativus might expand our perspectives on the roles of miRNAs in carotenoid/apocarotenoid biosynthetic pathway. A computational analysis was used to identify miRNAs and their targets using EST (Expressed Sequence Tag) library from mature saffron stigmas. Then, a gene co- expression network was constructed to identify genes which are potentially involved in carotenoid/apocarotenoid biosynthetic pathways. EST analysis led to the identification of two putative miRNAs (miR414 and miR837-5p) along with the corresponding stem- looped precursors. To our knowledge, this is the first report on miR414 and miR837-5p in C. sativus. Co-expression network analysis indicated that miR414 and miR837-5p may play roles in C. sativus metabolic pathways and led to identification of candidate genes including six transcription factors and one protein kinase probably involved in carotenoid/apocarotenoid biosynthetic pathway. Presence of transcription factors, miRNAs and protein kinase in the network indicated multiple layers of regulation in saffron stigma. The candidate genes from this study may help unraveling regulatory networks underlying the carotenoid/apocarotenoid biosynthesis in saffron and designing metabolic engineering for enhanced secondary metabolites.
Collapse
Affiliation(s)
- Zahra Zinati
- Agroecology Department, College of Agriculture and Natural Resources of Darab, Shiraz University, Iran,
| | | | - Ali Behpouri
- Agroecology Department, College of Agriculture and Natural Resources of Darab, Shiraz University, Iran
| |
Collapse
|
65
|
Carotenoids from microalgae: A review of recent developments. Biotechnol Adv 2016; 34:1396-1412. [DOI: 10.1016/j.biotechadv.2016.10.005] [Citation(s) in RCA: 369] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023]
|
66
|
Tan KWM, Lin H, Shen H, Lee YK. Nitrogen-induced metabolic changes and molecular determinants of carbon allocation in Dunaliella tertiolecta. Sci Rep 2016; 6:37235. [PMID: 27849022 PMCID: PMC5110973 DOI: 10.1038/srep37235] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/25/2016] [Indexed: 01/06/2023] Open
Abstract
Certain species of microalgae are natural accumulators of lipids, while others are more inclined to store starch. However, what governs the preference to store lipids or starch is not well understood. In this study, the microalga Dunaliella tertiolecta was used as a model to study the global gene expression profile regulating starch accumulation in microalgae. D. tertiolecta, when depleted of nitrogen, produced only 1% of dry cell weight (DCW) in neutral lipids, while starch was rapidly accumulated up to 46% DCW. The increased in starch content was accompanied by a coordinated overexpression of genes shunting carbon towards starch synthesis, a response not seen in the oleaginous microalgae Nannochloropsis oceanica, Chlamydomonas reinhardtii or Chlorella vulgaris. Genes in the central carbon metabolism pathways, particularly those of the tricarboxylic acid cycle, were also simultaneously upregulated, indicating a robust interchange of carbon skeletons for anabolic and catabolic processes. In contrast, fatty acid and triacylglycerol synthesis genes were downregulated or unchanged, suggesting that lipids are not a preferred form of storage in these cells. This study reveals the transcriptomic influence behind storage reserve allocation in D. tertiolecta and provides valuable insights into the possible manipulation of genes for engineering microorganisms to synthesize products of interest.
Collapse
Affiliation(s)
- Kenneth Wei Min Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Huixin Lin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Hui Shen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| | - Yuan Kun Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
| |
Collapse
|
67
|
Metabolic pathways for lipid synthesis under nitrogen stress in Chlamydomonas and Nannochloropsis. Biotechnol Lett 2016; 39:1-11. [DOI: 10.1007/s10529-016-2216-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
|
68
|
Guerin C, Joët T, Serret J, Lashermes P, Vaissayre V, Agbessi MDT, Beulé T, Severac D, Amblard P, Tregear J, Durand-Gasselin T, Morcillo F, Dussert S. Gene coexpression network analysis of oil biosynthesis in an interspecific backcross of oil palm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:423-41. [PMID: 27145323 DOI: 10.1111/tpj.13208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 05/25/2023]
Abstract
Global demand for vegetable oils is increasing at a dramatic rate, while our understanding of the regulation of oil biosynthesis in plants remains limited. To gain insights into the mechanisms that govern oil synthesis and fatty acid (FA) composition in the oil palm fruit, we used a multilevel approach combining gene coexpression analysis, quantification of allele-specific expression and joint multivariate analysis of transcriptomic and lipid data, in an interspecific backcross population between the African oil palm, Elaeis guineensis, and the American oil palm, Elaeis oleifera, which display contrasting oil contents and FA compositions. The gene coexpression network produced revealed tight transcriptional coordination of fatty acid synthesis (FAS) in the plastid with sugar sensing, plastidial glycolysis, transient starch storage and carbon recapture pathways. It also revealed a concerted regulation, along with FAS, of both the transfer of nascent FA to the endoplasmic reticulum, where triacylglycerol assembly occurs, and of the production of glycerol-3-phosphate, which provides the backbone of triacylglycerols. Plastid biogenesis and auxin transport were the two other biological processes most tightly connected to FAS in the network. In addition to WRINKLED1, a transcription factor (TF) known to activate FAS genes, two novel TFs, termed NF-YB-1 and ZFP-1, were found at the core of the FAS module. The saturated FA content of palm oil appeared to vary above all in relation to the level of transcripts of the gene coding for β-ketoacyl-acyl carrier protein synthase II. Our findings should facilitate the development of breeding and engineering strategies in this and other oil crops.
Collapse
Affiliation(s)
- Chloé Guerin
- PalmElit SAS, Montferrier-sur-Lez, F-34980, France
| | - Thierry Joët
- IRD, UMR DIADE, 911 Av. Agropolis, Montpellier, 34394, France
| | - Julien Serret
- IRD, UMR DIADE, 911 Av. Agropolis, Montpellier, 34394, France
| | | | | | | | | | - Dany Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 Rue de la Cardonille, Montpellier Cedex 5, 34094, France
| | | | - James Tregear
- IRD, UMR DIADE, 911 Av. Agropolis, Montpellier, 34394, France
| | | | | | | |
Collapse
|
69
|
Goncalves EC, Wilkie AC, Kirst M, Rathinasabapathi B. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1649-60. [PMID: 26801206 PMCID: PMC5066758 DOI: 10.1111/pbi.12523] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/13/2015] [Accepted: 11/25/2015] [Indexed: 05/03/2023]
Abstract
The great need for more sustainable alternatives to fossil fuels has increased our research interests in algal biofuels. Microalgal cells, characterized by high photosynthetic efficiency and rapid cell division, are an excellent source of neutral lipids as potential fuel stocks. Various stress factors, especially nutrient-starvation conditions, induce an increased formation of lipid bodies filled with triacylglycerol in these cells. Here we review our knowledge base on glycerolipid synthesis in the green algae with an emphasis on recent studies on carbon flux, redistribution of lipids under nutrient-limiting conditions and its regulation. We discuss the contributions and limitations of classical and novel approaches used to elucidate the algal triacylglycerol biosynthetic pathway and its regulatory network in green algae. Also discussed are gaps in knowledge and suggestions for much needed research both on the biology of triacylglycerol accumulation and possible avenues to engineer improved algal strains.
Collapse
Affiliation(s)
- Elton C Goncalves
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Ann C Wilkie
- Soil and Water Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Matias Kirst
- School of Forestry, University of Florida, Gainesville, FL, USA
| | - Bala Rathinasabapathi
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
70
|
Bajhaiya AK, Ziehe Moreira J, Pittman JK. Transcriptional Engineering of Microalgae: Prospects for High-Value Chemicals. Trends Biotechnol 2016; 35:95-99. [PMID: 27387061 DOI: 10.1016/j.tibtech.2016.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/01/2023]
Abstract
Microalgae are diverse microorganisms that are of interest as novel sources of metabolites for various industrial, nutritional, and pharmaceutical applications. Recent studies have demonstrated transcriptional engineering of some metabolic pathways. We propose here that transcriptional engineering could be a viable means to manipulate the biosynthesis of specific high-value metabolic products.
Collapse
Affiliation(s)
- Amit K Bajhaiya
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; Department of Plant Physiology, Umeå Plant Science Center, Umeå University, 90187 Umeå, Sweden
| | - Javiera Ziehe Moreira
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jon K Pittman
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
71
|
Liu J, Han D, Yoon K, Hu Q, Li Y. Characterization of type 2 diacylglycerol acyltransferases in Chlamydomonas reinhardtii reveals their distinct substrate specificities and functions in triacylglycerol biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:3-19. [PMID: 26919811 DOI: 10.1111/tpj.13143] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 05/03/2023]
Abstract
Diacylglycerol acyltransferases (DGATs) catalyze a rate-limiting step of triacylglycerol (TAG) biosynthesis in higher plants and yeast. The genome of the green alga Chlamydomonas reinhardtii has multiple genes encoding type 2 DGATs (DGTTs). Here we present detailed functional and biochemical analyses of Chlamydomonas DGTTs. In vitro enzyme analysis using a radiolabel-free assay revealed distinct substrate specificities of three DGTTs: CrDGTT1 preferred polyunsaturated acyl CoAs, CrDGTT2 preferred monounsaturated acyl CoAs, and CrDGTT3 preferred C16 CoAs. When diacylglycerol was used as the substrate, CrDGTT1 preferred C16 over C18 in the sn-2 position of the glycerol backbone, but CrDGTT2 and CrDGTT3 preferred C18 over C16. In vivo knockdown of CrDGTT1, CrDGTT2 or CrDGTT3 resulted in 20-35% decreases in TAG content and a reduction of specific TAG fatty acids, in agreement with the findings of the in vitro assay and fatty acid feeding test. These results demonstrate that CrDGTT1, CrDGTT2 and CrDGTT3 possess distinct specificities toward acyl CoAs and diacylglycerols, and may work in concert spatially and temporally to synthesize diverse TAG species in C. reinhardtii. CrDGTT1 was shown to prefer prokaryotic lipid substrates and probably resides in both the endoplasmic reticulum and chloroplast envelope, indicating its role in prokaryotic and eukaryotic TAG biosynthesis. Based on these findings, we propose a working model for the role of CrDGTT1 in TAG biosynthesis. This work provides insight into TAG biosynthesis in C. reinhardtii, and paves the way for engineering microalgae for production of biofuels and high-value bioproducts.
Collapse
Affiliation(s)
- Jin Liu
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, MD, 21202, USA
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Kangsup Yoon
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yantao Li
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, MD, 21202, USA
| |
Collapse
|
72
|
Zhou M, Wang X, Shi H, Cheng L, Wang Z, Zhao H, Yang L, Sun J. Characterization of long non-coding RNA-associated ceRNA network to reveal potential prognostic lncRNA biomarkers in human ovarian cancer. Oncotarget 2016; 7:12598-611. [PMID: 26863568 PMCID: PMC4914307 DOI: 10.18632/oncotarget.7181] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/24/2016] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence has underscored the important roles of long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) in cancer initiation and progression. In this study, we used an integrative computational method to identify miRNA-mediated ceRNA crosstalk between lncRNAs and mRNAs, and constructed global and progression-related lncRNA-associated ceRNA networks (LCeNETs) in ovarian cancer (OvCa) based on "ceRNA hypothesis". The constructed LCeNETs exhibited small world, modular architecture and high functional specificity for OvCa. Known OvCa-related genes tended to be hubs and occurred preferentially in the functional modules. Ten lncRNA ceRNAs were identified as potential candidates associated with stage progression in OvCa using ceRNA-network driven method. Finally, we developed a ten-lncRNA signature which classified patients into high- and low-risk subgroups with significantly different survival outcomes. Our study will provide novel insight for better understanding of ceRNA-mediated gene regulation in progression of OvCa and facilitate the identification of novel diagnostic and therapeutic lncRNA ceRNAs for OvCa.
Collapse
Affiliation(s)
- Meng Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Xiaojun Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Hongbo Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Zhenzhen Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Hengqiang Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Jie Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| |
Collapse
|
73
|
Bajhaiya AK, Dean AP, Zeef LAH, Webster RE, Pittman JK. PSR1 Is a Global Transcriptional Regulator of Phosphorus Deficiency Responses and Carbon Storage Metabolism in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2016; 170:1216-34. [PMID: 26704642 PMCID: PMC4775146 DOI: 10.1104/pp.15.01907] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/23/2015] [Indexed: 05/18/2023]
Abstract
Many eukaryotic microalgae modify their metabolism in response to nutrient stresses such as phosphorus (P) starvation, which substantially induces storage metabolite biosynthesis, but the genetic mechanisms regulating this response are poorly understood. Here, we show that P starvation-induced lipid and starch accumulation is inhibited in a Chlamydomonas reinhardtii mutant lacking the transcription factor Pi Starvation Response1 (PSR1). Transcriptomic analysis identified specific metabolism transcripts that are induced by P starvation but misregulated in the psr1 mutant. These include transcripts for starch and triacylglycerol synthesis but also transcripts for photosynthesis-, redox-, and stress signaling-related proteins. To further examine the role of PSR1 in regulating lipid and starch metabolism, PSR1 complementation lines in the psr1 strain and PSR1 overexpression lines in a cell wall-deficient strain were generated. PSR1 expression in the psr1 lines was shown to be functional due to rescue of the psr1 phenotype. PSR1 overexpression lines exhibited increased starch content and number of starch granules per cell, which correlated with a higher expression of specific starch metabolism genes but reduced neutral lipid content. Furthermore, this phenotype was consistent in the presence and absence of acetate. Together, these results identify a key transcriptional regulator in global metabolism and demonstrate transcriptional engineering in microalgae to modulate starch biosynthesis.
Collapse
Affiliation(s)
- Amit K Bajhaiya
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Andrew P Dean
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Leo A H Zeef
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Rachel E Webster
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jon K Pittman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
74
|
Goncalves EC, Koh J, Zhu N, Yoo MJ, Chen S, Matsuo T, Johnson JV, Rathinasabapathi B. Nitrogen starvation-induced accumulation of triacylglycerol in the green algae: evidence for a role for ROC40, a transcription factor involved in circadian rhythm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:743-57. [PMID: 26920093 DOI: 10.1111/tpj.13144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 05/24/2023]
Abstract
Microalgal triacylglycerol (TAG), a promising source of biofuel, is induced upon nitrogen starvation (-N), but the proteins and genes involved in this process are poorly known. We performed isobaric tagging for relative and absolute quantification (iTRAQ)-based quantitative proteomics to identify Chlorella proteins with modulated expression under short-term -N. Out of 1736 soluble proteins and 2187 membrane-associated proteins identified, 288 and 56, respectively, were differentially expressed under -N. Gene expression analysis on select genes confirmed the same direction of mRNA modulation for most proteins. The MYB-related transcription factor ROC40 was the most induced protein, with a 9.6-fold increase upon -N. In a previously generated Chlamydomonas mutant, gravimetric measurements of crude total lipids revealed that roc40 was impaired in its ability to increase the accumulation of TAG upon -N, and this phenotype was complemented when wild-type Roc40 was expressed. Results from radiotracer experiments were consistent with the roc40 mutant being comparable to the wild type in recycling membrane lipids to TAG but being impaired in additional de novo synthesis of TAG during -N stress. In this study we provide evidence to support the hypothesis that transcription factor ROC40 has a role in -N-induced lipid accumulation, and uncover multiple previously unknown proteins modulated by short-term -N in green algae.
Collapse
Affiliation(s)
- Elton C Goncalves
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611-0690, USA
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Ning Zhu
- Department of Biology, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Mi-Jeong Yoo
- Department of Biology, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Sixue Chen
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611-0690, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
- Department of Biology, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Takuya Matsuo
- Center for Gene Research, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Jodie V Johnson
- Chemistry Department, University of Florida, Gainesville, FL, 32611, USA
| | - Bala Rathinasabapathi
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611-0690, USA
| |
Collapse
|
75
|
Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. FRONTIERS IN PLANT SCIENCE 2015; 6:899. [PMID: 26579149 PMCID: PMC4620153 DOI: 10.3389/fpls.2015.00899] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/09/2015] [Indexed: 05/02/2023]
Abstract
Nitrate assimilation is a key process for nitrogen (N) acquisition in green microalgae. Among Chlorophyte algae, Chlamydomonas reinhardtii has resulted to be a good model system to unravel important facts of this process, and has provided important insights for agriculturally relevant plants. In this work, the recent findings on nitrate transport, nitrate reduction and the regulation of nitrate assimilation are presented in this and several other algae. Latest data have shown nitric oxide (NO) as an important signal molecule in the transcriptional and posttranslational regulation of nitrate reductase and inorganic N transport. Participation of regulatory genes and proteins in positive and negative signaling of the pathway and the mechanisms involved in the regulation of nitrate assimilation, as well as those involved in Molybdenum cofactor synthesis required to nitrate assimilation, are critically reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Emilio Fernandez
- Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
| |
Collapse
|
76
|
López García de Lomana A, Schäuble S, Valenzuela J, Imam S, Carter W, Bilgin DD, Yohn CB, Turkarslan S, Reiss DJ, Orellana MV, Price ND, Baliga NS. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:207. [PMID: 26633994 PMCID: PMC4667458 DOI: 10.1186/s13068-015-0391-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/17/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Algae accumulate lipids to endure different kinds of environmental stresses including macronutrient starvation. Although this response has been extensively studied, an in depth understanding of the transcriptional regulatory network (TRN) that controls the transition into lipid accumulation remains elusive. In this study, we used a systems biology approach to elucidate the transcriptional program that coordinates the nitrogen starvation-induced metabolic readjustments that drive lipid accumulation in Chlamydomonas reinhardtii. RESULTS We demonstrate that nitrogen starvation triggered differential regulation of 2147 transcripts, which were co-regulated in 215 distinct modules and temporally ordered as 31 transcriptional waves. An early-stage response was triggered within 12 min that initiated growth arrest through activation of key signaling pathways, while simultaneously preparing the intracellular environment for later stages by modulating transport processes and ubiquitin-mediated protein degradation. Subsequently, central metabolism and carbon fixation were remodeled to trigger the accumulation of triacylglycerols. Further analysis revealed that these waves of genome-wide transcriptional events were coordinated by a regulatory program orchestrated by at least 17 transcriptional regulators, many of which had not been previously implicated in this process. We demonstrate that the TRN coordinates transcriptional downregulation of 57 metabolic enzymes across a period of nearly 4 h to drive an increase in lipid content per unit biomass. Notably, this TRN appears to also drive lipid accumulation during sulfur starvation, while phosphorus starvation induces a different regulatory program. The TRN model described here is available as a community-wide web-resource at http://networks.systemsbiology.net/chlamy-portal. CONCLUSIONS In this work, we have uncovered a comprehensive mechanistic model of the TRN controlling the transition from N starvation to lipid accumulation. The program coordinates sequentially ordered transcriptional waves that simultaneously arrest growth and lead to lipid accumulation. This study has generated predictive tools that will aid in devising strategies for the rational manipulation of regulatory and metabolic networks for better biofuel and biomass production.
Collapse
Affiliation(s)
| | - Sascha Schäuble
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
- />Jena University Language and Information Engineering (JULIE) Lab, Friedrich-Schiller-University Jena, Jena, Germany
- />Research Group Theoretical Systems Biology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jacob Valenzuela
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
| | - Saheed Imam
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
| | - Warren Carter
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
| | | | | | - Serdar Turkarslan
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
| | - David J. Reiss
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
| | - Mónica V. Orellana
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
- />Polar Science Center, University of Washington, Seattle, WA USA
| | - Nathan D. Price
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
- />Departments of Bioengineering and Computer Science and Engineering, University of Washington, Seattle, WA USA
- />Molecular and Cellular Biology Program, University of Washington, Seattle, WA USA
| | - Nitin S. Baliga
- />Institute for Systems Biology, 401 Terry Ave N, Seattle, 98109 WA USA
- />Departments of Biology and Microbiology, University of Washington, Seattle, WA USA
- />Molecular and Cellular Biology Program, University of Washington, Seattle, WA USA
- />Lawrence Berkeley National Lab, Berkeley, CA USA
| |
Collapse
|