51
|
Sobek S, Dalla Rosa I, Pommier Y, Bornholz B, Kalfalah F, Zhang H, Wiesner RJ, von Kleist-Retzow JC, Hillebrand F, Schaal H, Mielke C, Christensen MO, Boege F. Negative regulation of mitochondrial transcription by mitochondrial topoisomerase I. Nucleic Acids Res 2013; 41:9848-57. [PMID: 23982517 PMCID: PMC3834834 DOI: 10.1093/nar/gkt768] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial topoisomerase I is a genetically distinct mitochondria-dedicated enzyme with a crucial but so far unknown role in the homeostasis of mitochondrial DNA metabolism. Here, we present data suggesting a negative regulatory function in mitochondrial transcription or transcript stability. Deficiency or depletion of mitochondrial topoisomerase I increased mitochondrial transcripts, whereas overexpression lowered mitochondrial transcripts, depleted respiratory complexes I, III and IV, decreased cell respiration and raised superoxide levels. Acute depletion of mitochondrial topoisomerase I triggered neither a nuclear mito-biogenic stress response nor compensatory topoisomerase IIβ upregulation, suggesting the concomitant increase in mitochondrial transcripts was due to release of a local inhibitory effect. Mitochondrial topoisomerase I was co-immunoprecipitated with mitochondrial RNA polymerase. It selectively accumulated and rapidly exchanged at a subset of nucleoids distinguished by the presence of newly synthesized RNA and/or mitochondrial RNA polymerase. The inactive Y559F-mutant behaved similarly without affecting mitochondrial transcripts. In conclusion, mitochondrial topoisomerase I dampens mitochondrial transcription and thereby alters respiratory capacity. The mechanism involves selective association of the active enzyme with transcriptionally active nucleoids and a direct interaction with mitochondrial RNA polymerase. The inhibitory role of topoisomerase I in mitochondrial transcription is strikingly different from the stimulatory role of topoisomerase I in nuclear transcription.
Collapse
Affiliation(s)
- Stefan Sobek
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Med. Faculty, D-40225 Düsseldorf, Germany, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA, Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Köln, D-50931 Köln, Germany, Center for Molecular Medicine Cologne, University of Köln, D-50931 Köln, Germany, Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases, University of Köln, D-50931 Köln, Germany, Department of Pediatrics, Med. Faculty, University of Köln, D-50931 Köln, Germany and Center for Microbiology and Virology, Institute of Virology, Heinrich-Heine-University, Med. Faculty, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Kazak L, Reyes A, He J, Wood SR, Brea-Calvo G, Holen TT, Holt IJ. A cryptic targeting signal creates a mitochondrial FEN1 isoform with tailed R-Loop binding properties. PLoS One 2013; 8:e62340. [PMID: 23675412 PMCID: PMC3652857 DOI: 10.1371/journal.pone.0062340] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/20/2013] [Indexed: 11/19/2022] Open
Abstract
A growing number of DNA transacting proteins is found in the nucleus and in mitochondria, including the DNA repair and replication protein Flap endonuclease 1, FEN1. Here we show a truncated FEN1 isoform is generated by alternative translation initiation, exposing a mitochondrial targeting signal. The shortened form of FEN1, which we term FENMIT, localizes to mitochondria, based on import into isolated organelles, immunocytochemistry and subcellular fractionation. In vitro FENMIT binds to flap structures containing a 5' RNA flap, and prefers such substrates to single-stranded RNA. FENMIT can also bind to R-loops, and to a lesser extent to D-loops. Exposing human cells to ethidium bromide results in the generation of RNA/DNA hybrids near the origin of mitochondrial DNA replication. FENMIT is recruited to the DNA under these conditions, and is released by RNase treatment. Moreover, high levels of recombinant FENMIT expression inhibit mtDNA replication, following ethidium bromide treatment. These findings suggest FENMIT interacts with RNA/DNA hybrids in mitochondrial DNA, such as those found at the origin of replication.
Collapse
Affiliation(s)
- Lawrence Kazak
- MRC-Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Cambridge, United Kingdom
| | - Aurelio Reyes
- MRC-Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Cambridge, United Kingdom
| | - Jiuya He
- MRC-Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Cambridge, United Kingdom
| | - Stuart R. Wood
- MRC-Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Cambridge, United Kingdom
| | - Gloria Brea-Calvo
- MRC-Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Cambridge, United Kingdom
| | | | - Ian J. Holt
- MRC-National Institute for Medical Research, Mill Hill, London, United Kingdom
| |
Collapse
|
53
|
Gilkerson R, Bravo L, Garcia I, Gaytan N, Herrera A, Maldonado A, Quintanilla B. The mitochondrial nucleoid: integrating mitochondrial DNA into cellular homeostasis. Cold Spring Harb Perspect Biol 2013; 5:a011080. [PMID: 23637282 DOI: 10.1101/cshperspect.a011080] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The packaging of mitochondrial DNA (mtDNA) into DNA-protein assemblies called nucleoids provides an efficient segregating unit of mtDNA, coordinating mtDNA's involvement in cellular metabolism. From the early discovery of mtDNA as "extranuclear" genetic material, its organization into nucleoids and integration into both the mitochondrial organellar network and the cell at large via a variety of signal transduction pathways, mtDNA is a crucial component of the cell's homeostatic network. The mitochondrial nucleoid is composed of a set of DNA-binding core proteins involved in mtDNA maintenance and transcription, and a range of peripheral factors, which are components of signaling pathways controlling mitochondrial biogenesis, metabolism, apoptosis, and retrograde mitochondria-to-nucleus signaling. The molecular interactions of nucleoid components with the organellar network and cellular signaling pathways provide exciting clues to the dynamic integration of mtDNA into cellular metabolic homeostasis.
Collapse
Affiliation(s)
- Robert Gilkerson
- Department of Biology, University of Texas-Pan American, Edinburg, TX 78539-2999, USA.
| | | | | | | | | | | | | |
Collapse
|
54
|
Kamenisch Y, Berneburg M. Mitochondrial CSA and CSB: Protein interactions and protection from ageing associated DNA mutations. Mech Ageing Dev 2013; 134:270-4. [DOI: 10.1016/j.mad.2013.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/05/2013] [Accepted: 03/25/2013] [Indexed: 12/31/2022]
|
55
|
Bladder cancer-induced skeletal muscle wasting: disclosing the role of mitochondria plasticity. Int J Biochem Cell Biol 2013; 45:1399-409. [PMID: 23608519 DOI: 10.1016/j.biocel.2013.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/15/2013] [Accepted: 04/14/2013] [Indexed: 11/22/2022]
Abstract
Loss of skeletal muscle is a serious consequence of cancer as it leads to weakness and increased risk of death. To better understand the interplay between urothelial carcinoma and skeletal muscle wasting, cancer-induced catabolic profile and its relationship with muscle mitochondria dynamics were evaluated using a rat model of chemically induced urothelial carcinogenesis by the administration of N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN). The histologic signs of non-muscle-invasive bladder tumors observed in BBN animals were related to 17% loss of body weight and high serum levels of IL-1β, TNF-α, TWEAK, C-reactive protein, myostatin and lactate and high urinary MMPs activities, suggesting a catabolic phenotype underlying urothelial carcinoma. The 12% loss of gastrocnemius mass was related to mitochondrial dysfunction, manifested by decreased activity of respiratory chain complexes due to, at least partially, the impairment of protein quality control (PQC) systems involving the mitochondrial proteases paraplegin and Lon. This was paralleled by the accumulation of oxidatively modified mitochondrial proteins. In overall, our data emphasize the relevance of studying the regulation of PQC systems in cancer cachexia aiming to identify therapeutic targets to counteract muscle wasting.
Collapse
|
56
|
U-turn DNA bending by human mitochondrial transcription factor A. Curr Opin Struct Biol 2013; 23:116-24. [PMID: 23333034 DOI: 10.1016/j.sbi.2012.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 02/03/2023]
Abstract
Transcription factor A (TFAM) is involved in the transcription regulation, maintenance and compaction of the mitochondrial genome. Recent structural data on TFAM showed its mode of operation and clarified previous biochemical and genetic results. In solution, TFAM is highly dynamic. According to crystal structures of its complex with the cognate light-strand promoter (LSP) binding sequence, it intertwines and dramatically bends DNA, thereby allowing interactions with the transcription initiation machinery. Recent studies have shown TFAM sliding on non-specific DNA, which induces compaction by increasing DNA flexibility. Finally, the structural localization of disease-related TFAM mutations suggests functional impairment at the molecular level.
Collapse
|
57
|
Kazak L, Reyes A, Duncan AL, Rorbach J, Wood SR, Brea-Calvo G, Gammage PA, Robinson AJ, Minczuk M, Holt IJ. Alternative translation initiation augments the human mitochondrial proteome. Nucleic Acids Res 2012; 41:2354-69. [PMID: 23275553 PMCID: PMC3575844 DOI: 10.1093/nar/gks1347] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alternative translation initiation (ATI) is a mechanism of producing multiple proteins from a single transcript, which in some cases regulates trafficking of proteins to different cellular compartments, including mitochondria. Application of a genome-wide computational screen predicts a cryptic mitochondrial targeting signal for 126 proteins in mouse and man that is revealed when an AUG codon located downstream from the canonical initiator methionine codon is used as a translation start site, which we term downstream ATI (dATI). Experimental evidence in support of dATI is provided by immunoblotting of endogenous truncated proteins enriched in mitochondrial cell fractions or of co-localization with mitochondria using immunocytochemistry. More detailed cellular localization studies establish mitochondrial targeting of a member of the cytosolic poly(A) binding protein family, PABPC5, and of the RNA/DNA helicase PIF1α. The mitochondrial isoform of PABPC5 co-immunoprecipitates with the mitochondrial poly(A) polymerase, and is markedly reduced in abundance when mitochondrial DNA and RNA are depleted, suggesting it plays a role in RNA metabolism in the organelle. Like PABPC5 and PIF1α, most of the candidates identified by the screen are not currently annotated as mitochondrial proteins, and so dATI expands the human mitochondrial proteome.
Collapse
Affiliation(s)
- Lawrence Kazak
- MRC-Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Cambridge CB2 0XY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Kolesar JE, Wang CY, Taguchi YV, Chou SH, Kaufman BA. Two-dimensional intact mitochondrial DNA agarose electrophoresis reveals the structural complexity of the mammalian mitochondrial genome. Nucleic Acids Res 2012; 41:e58. [PMID: 23275548 PMCID: PMC3575812 DOI: 10.1093/nar/gks1324] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mitochondrial genome exists in numerous structural conformations, complicating the study of mitochondrial DNA (mtDNA) metabolism. Here, we describe the development of 2D intact mtDNA agarose gel electrophoresis (2D-IMAGE) for the separation and detection of approximately two-dozen distinct topoisomers. Although the major topoisomers were well conserved across many cell and tissue types, unique differences in certain cells and tissues were also observed. RNase treatment revealed that partially hybridized RNAs associated primarily with covalently closed circular DNA, consistent with this structure being the template for transcription. Circular structures composed of RNA:DNA hybrids contained only heavy-strand DNA sequences, implicating them as lagging-strand replication intermediates. During recovery from replicative arrest, 2D-IMAGE showed changes in both template selection and replication products. These studies suggest that discrete topoisomers are associated with specific mtDNA-directed processes. Because of the increased resolution, 2D-IMAGE has the potential to identify novel mtDNA intermediates involved in replication or transcription, or pathology including oxidative linearization, deletions or depletion.
Collapse
Affiliation(s)
- Jill E Kolesar
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street VET220E, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
59
|
Feng H, Kang C, Dickman JR, Koenig R, Awoyinka I, Zhang Y, Ji LL. Training-induced mitochondrial adaptation: role of peroxisome proliferator-activated receptor γ coactivator-1α, nuclear factor-κB and β-blockade. Exp Physiol 2012; 98:784-95. [DOI: 10.1113/expphysiol.2012.069286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
60
|
Effects of overexpression of mitochondrial transcription factor A on lifespan and oxidative stress response in Drosophila melanogaster. Biochem Biophys Res Commun 2012. [PMID: 23206694 DOI: 10.1016/j.bbrc.2012.11.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial transcription factor A (TFAM) plays a role in the maintenance of mitochondrial DNA (mtDNA) by packaging mtDNA, forming the mitochondrial nucleoid. There have been many reports about a function of TFAM at the cellular level, but only a few studies have been done in individual organisms. Here we examined the effects of TFAM on the Drosophila lifespan and oxidative stress response, by overexpressing TFAM using the GAL4/UAS system. Under standard conditions, the lifespan of TFAM-overexpressing flies was shorter than that of the control flies. However, the lifespan of TFAM-overexpressing flies was longer when they were treated with 1% H(2)O(2). These results suggest that even though excess TFAM has a negative influence on lifespan, it has a defensive function under strong oxidative stress. In the TFAM-overexpressing flies, no significant changes in mtDNA copy number or mtDNA transcription were observed. However, the results of a total antioxidant activity assay suggest the possibility that TFAM is involved in the elimination of oxidative stress. The present results clearly show the effects of TFAM overexpression on the lifespan of Drosophila under both standard conditions and oxidative stress conditions, and our findings contribute to the understanding of the physiological mechanisms involving TFAM in mitochondria.
Collapse
|
61
|
Lu B, Lee J, Nie X, Li M, Morozov YI, Venkatesh S, Bogenhagen DF, Temiakov D, Suzuki CK. Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell 2012. [PMID: 23201127 DOI: 10.1016/j.molcel.2012.10.023] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human mitochondrial transcription factor A (TFAM) is a high-mobility group (HMG) protein at the nexus of mitochondrial DNA (mtDNA) replication, transcription, and inheritance. Little is known about the mechanisms underlying its posttranslational regulation. Here, we demonstrate that TFAM is phosphorylated within its HMG box 1 (HMG1) by cAMP-dependent protein kinase in mitochondria. HMG1 phosphorylation impairs the ability of TFAM to bind DNA and to activate transcription. We show that only DNA-free TFAM is degraded by the Lon protease, which is inhibited by the anticancer drug bortezomib. In cells with normal mtDNA levels, HMG1-phosphorylated TFAM is degraded by Lon. However, in cells with severe mtDNA deficits, nonphosphorylated TFAM is also degraded, as it is DNA free. Depleting Lon in these cells increases levels of TFAM and upregulates mtDNA content, albeit transiently. Phosphorylation and proteolysis thus provide mechanisms for rapid fine-tuning of TFAM function and abundance in mitochondria, which are crucial for maintaining and expressing mtDNA.
Collapse
Affiliation(s)
- Bin Lu
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Sex-dependent differences in rat brown adipose tissue mitochondrial biogenesis and insulin signaling parameters in response to an obesogenic diet. Mol Cell Biochem 2012; 373:125-35. [DOI: 10.1007/s11010-012-1481-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/17/2012] [Indexed: 01/10/2023]
|
63
|
Campbell CT, Kolesar JE, Kaufman BA. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:921-9. [DOI: 10.1016/j.bbagrm.2012.03.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/08/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
|
64
|
Liu J, Yao Y, Yu B, Mao X, Huang Z, Chen D. Effect of folic acid supplementation on hepatic antioxidant function and mitochondrial-related gene expression in weanling intrauterine growth retarded piglets. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
65
|
Liu J, Chen D, Yao Y, Yu B, Mao X, He J, Huang Z, Zheng P. Intrauterine growth retardation increases the susceptibility of pigs to high-fat diet-induced mitochondrial dysfunction in skeletal muscle. PLoS One 2012; 7:e34835. [PMID: 22523560 PMCID: PMC3327708 DOI: 10.1371/journal.pone.0034835] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/06/2012] [Indexed: 01/07/2023] Open
Abstract
It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR) increases the susceptibility of offspring to high-fat (HF) diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW), and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA), and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD). These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA) contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jingbo Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Ying Yao
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| |
Collapse
|
66
|
Pohjoismäki JLO, Boettger T, Liu Z, Goffart S, Szibor M, Braun T. Oxidative stress during mitochondrial biogenesis compromises mtDNA integrity in growing hearts and induces a global DNA repair response. Nucleic Acids Res 2012; 40:6595-607. [PMID: 22508755 PMCID: PMC3413112 DOI: 10.1093/nar/gks301] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cardiomyocyte development in mammals is characterized by a transition from hyperplastic to hypertrophic growth soon after birth. The rise of cardiomyocyte cell mass in postnatal life goes along with a proportionally bigger increase in the mitochondrial mass in response to growing energy requirements. Relatively little is known about the molecular processes regulating mitochondrial biogenesis and mitochondrial DNA (mtDNA) maintenance during developmental cardiac hypertrophy. Genome-wide transcriptional profiling revealed the activation of transcriptional regulatory circuits controlling mitochondrial biogenesis in growing rat hearts. In particular, we detected a specific upregulation of factors involved in mtDNA expression and translation. More surprisingly, we found a specific upregulation of DNA repair proteins directly linked to increased oxidative damage during heart mitochondrial biogenesis, but only relatively minor changes in the mtDNA replication machinery. Our study paves the way for improved understanding of mitochondrial biogenesis, mtDNA maintenance and physiological adaptation processes in the heart and provides the first evidence for the recruitment of nucleotide excision repair proteins to mtDNA in cardiomyocytes upon DNA damage.
Collapse
Affiliation(s)
- Jaakko L O Pohjoismäki
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.
| | | | | | | | | | | |
Collapse
|
67
|
Transcription from the second heavy-strand promoter of human mtDNA is repressed by transcription factor A in vitro. Proc Natl Acad Sci U S A 2012; 109:6513-8. [PMID: 22493245 DOI: 10.1073/pnas.1118710109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell-based studies support the existence of two promoters on the heavy strand of mtDNA: heavy-strand promoter 1 (HSP1) and HSP2. However, transcription from HSP2 has been reported only once in a cell-free system, and never when recombinant proteins have been used. Here, we document transcription from HSP2 using an in vitro system of defined composition. An oligonucleotide template representing positions 596-685 of mtDNA was sufficient to observe transcription by the human mtRNA polymerase (POLRMT) that was absolutely dependent on mitochondrial transcription factor B2 (TFB2M). POLRMT/TFB2M-dependent transcription was inhibited by concentrations of mitochondrial transcription factor A (TFAM) stoichiometric with the transcription template, a condition that activates transcription from the light-strand promoter (LSP) in vitro. Domains of TFAM required for LSP activation were also required for HSP2 repression, whereas other mtDNA binding proteins failed to alter transcriptional output. Binding sites for TFAM were located on both sides of the start site of transcription from HSP2, suggesting that TFAM binding interferes with POLRMT and/or TFB2M binding. Consistent with a competitive binding model for TFAM repression of HSP2, the impact of TFAM concentration on HSP2 transcription was diminished by elevating the POLRMT and TFB2M concentrations. In the context of our previous studies of LSP and HSP1, it is now clear that three promoters exist in human mtDNA. Each promoter has a unique requirement for and/or response to the level of TFAM present, thus implying far greater complexity in the regulation of mammalian mitochondrial transcription than recognized to date.
Collapse
|
68
|
Baris OR, Klose A, Kloepper JE, Weiland D, Neuhaus JFG, Schauen M, Wille A, Müller A, Merkwirth C, Langer T, Larsson NG, Krieg T, Tobin DJ, Paus R, Wiesner RJ. The mitochondrial electron transport chain is dispensable for proliferation and differentiation of epidermal progenitor cells. Stem Cells 2012; 29:1459-68. [PMID: 21780252 DOI: 10.1002/stem.695] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tissue stem cells and germ line or embryonic stem cells were shown to have reduced oxidative metabolism, which was proposed to be an adaptive mechanism to reduce damage accumulation caused by reactive oxygen species. However, an alternate explanation is that stem cells are less dependent on specialized cytoplasmic functions compared with differentiated cells, therefore, having a high nuclear-to-cytoplasmic volume ratio and consequently a low mitochondrial content. To determine whether stem cells rely or not on mitochondrial respiration, we selectively ablated the electron transport chain in the basal layer of the epidermis, which includes the epidermal progenitor/stem cells (EPSCs). This was achieved using a loxP-flanked mitochondrial transcription factor A (Tfam) allele in conjunction with a keratin 14 Cre transgene. The epidermis of these animals (Tfam(EKO)) showed a profound depletion of mitochondrial DNA and complete absence of respiratory chain complexes. However, despite a short lifespan due to malnutrition, epidermal development and skin barrier function were not impaired. Differentiation of epidermal layers was normal and no proliferation defect or major increase of apoptosis could be observed. In contrast, mice with an epidermal ablation of prohibitin-2, a scaffold protein in the inner mitochondrial membrane, displayed a dramatic phenotype observable already in utero, with severely impaired skin architecture and barrier function, ultimately causing death from dehydration shortly after birth. In conclusion, we here provide unequivocal evidence that EPSCs, and probably tissue stem cells in general, are independent of the mitochondrial respiratory chain, but still require a functional dynamic mitochondrial compartment.
Collapse
Affiliation(s)
- Olivier R Baris
- Center for Physiology and Pathophysiology, Institute for Vegetative Physiology,University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Miller BF, Robinson MM, Bruss MD, Hellerstein M, Hamilton KL. A comprehensive assessment of mitochondrial protein synthesis and cellular proliferation with age and caloric restriction. Aging Cell 2012; 11:150-61. [PMID: 22081942 DOI: 10.1111/j.1474-9726.2011.00769.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is proposed that caloric restriction (CR) increases mitochondrial biogenesis. However, it is not clear why CR increases an energetically costly biosynthetic process. We hypothesized that 40% CR would decrease mitochondrial protein synthesis and would be regulated by translational rather than transcriptional mechanisms. We assessed cumulative mitochondrial protein synthesis over 6 weeks and its transcriptional and translational regulation in the liver, heart, and skeletal muscle of young (6 month), middle (12 month), and old (24 month) male B6D2F1 mice that were lifelong CR or ad lib (AL) controls. Mitochondrial protein synthesis was not different between AL and CR (fractional synthesis over 6 weeks (range): liver, 91-100%; heart, 74-85%; skeletal muscle, 53-72%) despite a decreased cellular proliferation in liver and heart with CR. With CR, there was an increase in AMP-activated protein kinase phosphorylation/total (P:T) in heart and liver, and an increase in peroxisome proliferator-activated receptor gamma coactivator 1-α mRNA in all tissues, but not protein. Ribosomal protein S6 was decreased with CR. In conclusion, CR maintained mitochondrial protein synthesis while decreasing cellular proliferation during a time of energetic stress, which is consistent with the concept that CR increases somatic maintenance. Alternative mechanisms to global translation initiation may be responsible for selective translation of mitochondrial proteins.
Collapse
Affiliation(s)
- Benjamin F Miller
- Department of Health and Exercise Science, Colorado State University, Fort Collins, 80523-1582, USA.
| | | | | | | | | |
Collapse
|
70
|
|
71
|
Mitochondrial transcription: lessons from mouse models. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:961-9. [PMID: 22120174 DOI: 10.1016/j.bbagrm.2011.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/22/2022]
Abstract
Mammalian mitochondrial DNA (mtDNA) is a circular double-stranded DNA genome of ~16.5 kilobase pairs (kb) that encodes 13 catalytic proteins of the ATP-producing oxidative phosphorylation system (OXPHOS), and the rRNAs and tRNAs required for the translation of the mtDNA transcripts. All the components needed for transcription and replication of the mtDNA are, therefore, encoded in the nuclear genome, as are the remaining components of the OXPHOS system and the mitochondrial translation machinery. Regulation of mtDNA gene expression is very important for modulating the OXPHOS capacity in response to metabolic requirements and in pathological processes. The combination of in vitro and in vivo studies has allowed the identification of the core machinery required for basal mtDNA transcription in mammals and a few proteins that regulate mtDNA transcription. Specifically, the generation of knockout mouse strains in the last several years, has been key to understanding the basis of mtDNA transcription in vivo. However, it is well accepted that many components of the transcription machinery are still unknown and little is known about mtDNA gene expression regulation under different metabolic requirements or disease processes. In this review we will focus on how the creation of knockout mouse models and the study of their phenotypes have contributed to the understanding of mitochondrial transcription in mammals. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
|
72
|
Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter. Nat Struct Mol Biol 2011; 18:1281-9. [PMID: 22037172 DOI: 10.1038/nsmb.2160] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/13/2011] [Indexed: 11/09/2022]
Abstract
Human mitochondrial transcription factor A, TFAM, is essential for mitochondrial DNA packaging and maintenance and also has a crucial role in transcription. Crystallographic analysis of TFAM in complex with an oligonucleotide containing the mitochondrial light strand promoter (LSP) revealed two high-mobility group (HMG) protein domains that, through different DNA recognition properties, intercalate residues at two inverted DNA motifs. This induced an overall DNA bend of ~180°, stabilized by the interdomain linker. This U-turn allows the TFAM C-terminal tail, which recruits the transcription machinery, to approach the initiation site, despite contacting a distant DNA sequence. We also ascertained that structured protein regions contacting DNA in the crystal were highly flexible in solution in the absence of DNA. Our data suggest that TFAM bends LSP to create an optimal DNA arrangement for transcriptional initiation while facilitating DNA compaction elsewhere in the genome.
Collapse
|
73
|
Nadal-Casellas A, Proenza AM, Lladó I, Gianotti M. Effects of ovariectomy and 17-β estradiol replacement on rat brown adipose tissue mitochondrial function. Steroids 2011; 76:1051-6. [PMID: 21540046 DOI: 10.1016/j.steroids.2011.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/09/2011] [Accepted: 04/12/2011] [Indexed: 12/01/2022]
Abstract
Taking into account the sexual dimorphism previously reported regarding mitochondrial function and biogenesis in brown adipose tissue, the aim of the present study was to go further into these differences by investigating the effect of ovariectomy and 17-β estradiol (E2) replacement on brown adipose tissue mitochondrial function. In this study, fourteen-week-old control female and ovariectomized female Wistar rats were used. Rats were ovariectomized at 5 weeks of age and were treated every 2 days with placebo (OVX group) or E2 (10 μg/kg) (OVX+E2 group) for 4 weeks before sacrifice. We studied the levels of oxidative capacity, antioxidant defence and oxidative damage markers in brown adipose tissue. Moreover, the levels of key elements of mitochondrial biogenesis as well as UCP1 protein levels, as an index of mitochondrial thermogenic capacity, were also determined. In response to ovariectomy, mitochondrial proliferation increased, resulting in less functional mitochondria, since oxidative capacity and antioxidant defences decreased. Although E2 supplementation was able to restore the serum levels of E2 shown by control rats, the treatment reverted the effects of the ovariectomy only in part, and oxidative and antioxidant capacities in OVX+E2 rats did not reach the levels shown by control females. Taking these results into account, we suggest that ovarian hormones are responsible, at least in part, for the sexual dimorphism in BAT mitochondrial function. However, other signals produced by ovary, rather than E2, would play an important role in the control of mitochondrial function in BAT.
Collapse
Affiliation(s)
- Antònia Nadal-Casellas
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Cra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain.
| | | | | | | |
Collapse
|
74
|
Rebelo AP, Dillon LM, Moraes CT. Mitochondrial DNA transcription regulation and nucleoid organization. J Inherit Metab Dis 2011; 34:941-51. [PMID: 21541724 DOI: 10.1007/s10545-011-9330-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 12/18/2022]
Abstract
Mitochondrial biogenesis is a complex process depending on both nuclear and mitochondrial DNA (mtDNA) transcription regulation to tightly coordinate mitochondrial levels and the cell's energy demand. The energy requirements for a cell to support its metabolic function can change in response to varying physiological conditions, such as, proliferation and differentiation. Therefore, mitochondrial transcription regulation is constantly being modulated in order to establish efficient mitochondrial oxidative metabolism and proper cellular function. The aim of this article is to review the function of major protein factors that are directly involved in the process of mtDNA transcription regulation, as well as, the importance of mitochondrial nucleoid structure and its influence on mtDNA segregation and transcription regulation. Here, we discuss the current knowledge on the molecular mode of action of transcription factors comprising the mitochondrial transcriptional machinery, as well as the action of nuclear receptors on regulatory regions of the mtDNA.
Collapse
Affiliation(s)
- Adriana P Rebelo
- Departments of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | | | | |
Collapse
|
75
|
Zhong Y, Hu YJ, Chen B, Peng W, Sun Y, Yang Y, Zhao XY, Fan GR, Huang X, Kong WJ. Mitochondrial transcription factor A overexpression and base excision repair deficiency in the inner ear of rats with D-galactose-induced aging. FEBS J 2011; 278:2500-10. [PMID: 21575134 DOI: 10.1111/j.1742-4658.2011.08176.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oxidative damage to mtDNA is associated with excessive reactive oxygen species production. The mitochondrial common deletion (mtDNA 4977-bp and 4834-bp deletion in humans and rats, respectively) is the most typical and frequent form of mtDNA damage associated with aging and degenerative diseases. The accumulation of the mitochondrial common deletion has been proposed to play a crucial role in age-related hearing loss (presbycusis). However, the mechanisms underlying the formation and accumulation of mtDNA deletions are still obscure. In the present study, a rat mimetic aging model induced by D-Gal was used to explore the origin of deletion mutations and how mtDNA repair systems modulate this process in the inner ear during aging. We found that the mitochondrial common deletion was greatly increased and mitochondrial base excision repair capacity was significantly reduced in the inner ear in D-Gal-treated rats as compared with controls. The overexpression of mitochondrial transcription factor A induced by D-Gal significantly stimulated mtDNA replication, resulting in an increase in mtDNA copy number. In addition, an age-related loss of auditory sensory cells in the inner ear was observed in D-Gal-treated rats. Taken together, our data suggest that mitochondrial base excision repair capacity deficiency and an increase in mtDNA replication resulting from mitochondrial transcription factor A overexpression may contribute to the accumulation of mtDNA deletions in the inner ear during aging. This study also provides new insights into the development of presbycusis.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
The implications of mitochondrial DNA copy number regulation during embryogenesis. Mitochondrion 2011; 11:686-92. [PMID: 21635974 DOI: 10.1016/j.mito.2011.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/20/2011] [Accepted: 05/18/2011] [Indexed: 11/21/2022]
Abstract
Mutations of mitochondrial DNA (mtDNA) cause a wide array of multisystem disorders, particularly affecting organs with high energy demands. Typically only a proportion of the total mtDNA content is mutated (heteroplasmy), and high percentage levels of mutant mtDNA are associated with a more severe clinical phenotype. MtDNA is inherited maternally and the heteroplasmy level in each one of the offspring is often very different to that found in the mother. The mitochondrial genetic bottleneck hypothesis was first proposed as the explanation for these observations over 20 years ago. Although the precise bottleneck mechanism is still hotly debated, the regulation of cellular mtDNA content is a key issue. Here we review current understanding of the factors regulating the amount of mtDNA within cells and discuss the relevance of these findings to our understanding of the inheritance of mtDNA heteroplasmy.
Collapse
|
77
|
Watanabe A, Arai M, Koitabashi N, Niwano K, Ohyama Y, Yamada Y, Kato N, Kurabayashi M. Mitochondrial transcription factors TFAM and TFB2M regulate Serca2 gene transcription. Cardiovasc Res 2010; 90:57-67. [PMID: 21113058 DOI: 10.1093/cvr/cvq374] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Sarco(endo)plasmic reticulum Ca²(+)-ATPase 2a (SERCA2a) transports Ca²(+) by consuming ATP produced by mitochondrial respiratory chain enzymes. Messenger RNA (mRNA) for these enzymes is transcribed by mitochondrial transcription factors A (TFAM) and B2 (TFB2M). This study examined whether TFAM and TFB2M coordinately regulate the transcription of the Serca2 gene and mitochondrial genes. METHODS AND RESULTS Nuclear localization of TFAM and TFB2M was demonstrated by immunostaining in rat neonatal cardiac myocytes. Chromatin immunoprecipitation assay and fluorescence correlation spectroscopy revealed that TFAM and TFB2M bind to the -122 to -114 nt and -122 to -117 nt regions of the rat Serca2 gene promoter, respectively. Mutation of these sites resulted in decreased Serca2 gene transcription. In a rat myocardial infarction model, Serca2a mRNA levels significantly correlated with those of Tfam (r = 0.54, P < 0.001) and Tfb2m (r = 0.73, P < 0.001). Overexpression of TFAM and TFB2M blocked hydrogen peroxide- and norepinephrine-induced decreases in Serca2a mRNA levels. In addition, overexpression of TFAM and TFB2M increased the mitochondrial DNA (mtDNA) copy number and mRNA levels of mitochondrial enzymes. CONCLUSION Although TFAM and TFB2M are recognized as mtDNA-specific transcription factors, they also regulate transcription of nuclear DNA, i.e. the Serca2 gene. Our findings suggest a novel paradigm in which the transcription of genes for mitochondrial enzymes that produce ATP and the gene for SERCA2a that consumes ATP is coordinately regulated by the same transcription factors. This mechanism may contribute to maintaining proper cardiac function.
Collapse
Affiliation(s)
- Atai Watanabe
- Department of Medicine and Biological Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Hyvärinen AK, Kumanto MK, Marjavaara SK, Jacobs HT. Effects on mitochondrial transcription of manipulating mTERF protein levels in cultured human HEK293 cells. BMC Mol Biol 2010; 11:72. [PMID: 20846394 PMCID: PMC2955023 DOI: 10.1186/1471-2199-11-72] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 09/16/2010] [Indexed: 11/22/2022] Open
Abstract
Background Based on its activities in vitro, the mammalian mitochondrial transcription termination factor mTERF has been proposed to regulate mitochondrial transcription by favouring termination at its high-affinity binding immediately downstream of the rDNA segment of mitochondrial DNA, and initiation selectively at the PH1 site of the heavy-strand promoter. This defines an rDNA transcription unit distinct from the 'global' heavy-strand transcription unit initiating at PH2. However, evidence that the relative activities of the two heavy-strand transcription units are modulated by mTERF in vivo is thus far lacking. Results To test this hypothesis, we engineered human HEK293-derived cells for over-expression or knockdown of mTERF, and measured the steady-state levels of transcripts belonging to different transcription units, namely tRNALeu(UUR) and ND1 mRNA for the PH2 transcription unit, and tRNAPhe plus 12S and 16S rRNA for the PH1 transcription unit. The relative levels of 16S rRNA and ND1 mRNA were the same under all conditions tested, although mTERF knockdown resulted in increased levels of transcripts of 12S rRNA. The amount of tRNAPhe relative to tRNALeu(UUR) was unaffected by mTERF over-expression, altered only slightly by mTERF knockdown, and was unchanged during recovery from ethidium bromide-induced depletion of mitochondrial RNA. mTERF overexpression or knockdown produced a substantial shift (3-5-fold) in the relative abundance of antisense transcripts either side of its high-affinity binding site. Conclusions mTERF protein levels materially affect the amount of readthrough transcription on the antisense strand of mtDNA, whilst the effects on sense-strand transcripts are complex, and suggest the influence of compensatory mechanisms.
Collapse
Affiliation(s)
- Anne K Hyvärinen
- Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | | | | | | |
Collapse
|
79
|
The mitochondrial transcription factor A functions in mitochondrial base excision repair. DNA Repair (Amst) 2010; 9:1080-9. [PMID: 20739229 DOI: 10.1016/j.dnarep.2010.07.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 07/07/2010] [Accepted: 07/13/2010] [Indexed: 11/23/2022]
Abstract
Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected in mitochondria, whereas base excision repair (BER) has been comprehensively characterized in these organelles. The BER proteins are associated with the inner membrane in mitochondria and thus with the mitochondrial nucleoid, where TFAM is also situated. However, a function for TFAM in BER has not yet been investigated. This study examines the role of TFAM in BER. In vitro studies with purified recombinant TFAM indicate that it preferentially binds to DNA containing 8-oxoguanines, but not to abasic sites, uracils, or a gap in the sequence. TFAM inhibited the in vitro incision activity of 8-oxoguanine DNA glycosylase (OGG1), uracil-DNA glycosylase (UDG), apurinic endonuclease 1 (APE1), and nucleotide incorporation by DNA polymerase γ (pol γ). On the other hand, a DNA binding-defective TFAM mutant, L58A, showed less inhibition of BER in vitro. Characterization of TFAM knockdown (KD) cells revealed that these lysates had higher 8oxoG incision activity without changes in αOGG1 protein levels, TFAM KD cells had mild resistance to menadione and increased damage accumulation in the mtDNA when compared to the control cells. In addition, we found that the tumor suppressor p53, which has been shown to interact with and alter the DNA binding activity of TFAM, alleviates TFAM-induced inhibition of BER proteins. Together, the results suggest that TFAM modulates BER in mitochondria by virtue of its DNA binding activity and protein interactions.
Collapse
|
80
|
Thomas RR, Khan SM, Portell FR, Smigrodzki RM, Bennett JP. Recombinant human mitochondrial transcription factor A stimulates mitochondrial biogenesis and ATP synthesis, improves motor function after MPTP, reduces oxidative stress and increases survival after endotoxin. Mitochondrion 2010; 11:108-18. [PMID: 20727424 DOI: 10.1016/j.mito.2010.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/15/2010] [Accepted: 08/06/2010] [Indexed: 11/17/2022]
Abstract
Recombinant human mitochondrial transcription factor A protein (rhTFAM) was evaluated for its acute effects on cultured cells and chronic effects in mice. Fibroblasts incubated with rhTFAM acutely increased respiration in a chloramphenicol-sensitive manner. SH-SY5Y cells showed rhTFAM concentration-dependent reduction of methylpyridinium (MPP(+))-induced oxidative stress and increases in lowered ATP levels and viability. Mice treated with weekly i.v. rhTFAM showed increased mitochondrial gene copy number, complex I protein levels and ATP production rates; oxidative damage to proteins was decreased ~50%. rhTFAM treatment improved motor recovery rate after treatment with MPTP and dose-dependently improved survival in the lipopolysaccharide model of endotoxin sepsis.
Collapse
Affiliation(s)
- Ravindar R Thomas
- Morris Udall Parkinson's Disease Research Center of Excellence, University of Virginia, Charlottesville, VA, United States
| | | | | | | | | |
Collapse
|
81
|
Core human mitochondrial transcription apparatus is a regulated two-component system in vitro. Proc Natl Acad Sci U S A 2010; 107:12133-8. [PMID: 20562347 DOI: 10.1073/pnas.0910581107] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The core human mitochondrial transcription apparatus is currently regarded as an obligate three-component system comprising the bacteriophage T7-related mitochondrial RNA polymerase, the rRNA methyltransferase-related transcription factor, h-mtTFB2, and the high mobility group box transcription/DNA-packaging factor, h-mtTFA/TFAM. Using a faithful recombinant human mitochondrial transcription system from Escherichia coli, we demonstrate that specific initiation from the mtDNA promoters, LSP and HSP1, only requires mitochondrial RNA polymerase and h-mtTFB2 in vitro. When h-mtTFA is added to these basal components, LSP exhibits a much lower threshold for activation and a larger amplitude response than HSP1. In addition, when LSP and HSP1 are together on the same transcription template, h-mtTFA-independent transcription from HSP1 and h-mtTFA-dependent transcription from both promoters is enhanced and a higher concentration of h-mtTFA is required to stimulate HSP1. Promoter competition experiments revealed that, in addition to LSP competing transcription components away from HSP1, additional cis-acting signals are involved in these aspects of promoter regulation. Based on these results, we speculate that the human mitochondrial transcription system may have evolved to differentially regulate transcription initiation and transcription-primed mtDNA replication in response to the amount of h-mtTFA associated with nucleoids, which could begin to explain the heterogeneity of nucleoid structure and activity in vivo. Furthermore, this study sheds new light on the evolution of mitochondrial transcription components by showing that the human system is a regulated two-component system in vitro, and thus more akin to that of budding yeast than thought previously.
Collapse
|
82
|
Litonin D, Sologub M, Shi Y, Savkina M, Anikin M, Falkenberg M, Gustafsson CM, Temiakov D. Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J Biol Chem 2010; 285:18129-33. [PMID: 20410300 DOI: 10.1074/jbc.c110.128918] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human mitochondrial transcription is driven by a single subunit RNA polymerase and a set of basal transcription factors. The development of a recombinant in vitro transcription system has allowed for a detailed molecular characterization of the individual components and their contribution to transcription initiation. We found that TFAM and TFB2M act synergistically and increase transcription efficiency 100-200-fold as compared with RNA polymerase alone. Both the light-strand promoter (LSP) and the HSP1 promoters displayed maximal levels of in vitro transcription when TFAM was present in an amount equimolar to the DNA template. Importantly, we did not detect any significant transcription activity in the presence of the TFB2M paralog, TFB1M, or when templates containing the putative HSP2 promoter were used. These data confirm previous observations that TFB1M does not function as a bona fide transcription factor and raise questions as to whether HSP2 serves as a functional promoter in vivo. In addition, we did not detect transcription stimulation by the ribosomal protein MRPL12. Thus, only two essential initiation factors, TFAM and TFB2M, and two promoters, LSP and HSP1, are required to drive transcription of the mitochondrial genome.
Collapse
Affiliation(s)
- Dmitry Litonin
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Spelbrink JN. Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB Life 2010; 62:19-32. [PMID: 20014006 DOI: 10.1002/iub.282] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Various proteins involved in replication, repair, and the structural organization of mitochondrial DNA (mtDNA) have been characterized in detail over the past 25 or so years. In addition, in recent years, many proteins were identified with a role in the dynamics of the mitochondrial network. Using advanced imaging and an increasing number of cytological techniques, we have begun to realize that an important aspect to mtDNA maintenance, in both health and disease, is its organization within the dynamic mitochondrial network in discrete protein-DNA complexes usually termed nucleoids. Here, I review recent developments in the study of nucleoid dynamics and proteins. I will discuss the implications of the organization of mtDNA in nucleoids in light of DNA replication, repair, gene expression, segregation, and inheritance.
Collapse
Affiliation(s)
- Johannes N Spelbrink
- FinMIT Centre of Excellence, Institute of Medical Technology and Tampere University Hospital, University of Tampere, Tampere 33014 TAY, Finland.
| |
Collapse
|
84
|
Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy. Mol Aspects Med 2010; 31:145-70. [PMID: 20206201 DOI: 10.1016/j.mam.2010.02.008] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 02/19/2010] [Indexed: 12/17/2022]
Abstract
The role of oncoproteins and tumor suppressor proteins in promoting the malignant transformation of mammalian cells by affecting properties such as proliferative signalling, cell cycle regulation and altered adhesion is well established. Chemicals, viruses and radiation are also generally accepted as agents that commonly induce mutations in the genes encoding these cancer-causing proteins, thereby giving rise to cancer. However, more recent evidence indicates the importance of two additional key factors imposed on proliferating cells that are involved in transformation to malignancy and these are hypoxia and/or stressful conditions of nutrient deprivation (e.g. lack of glucose). These two additional triggers can initiate and promote the process of malignant transformation when a low percentage of cells overcome and escape cellular senescence. It is becoming apparent that hypoxia causes the progressive elevation in mitochondrial ROS production (chronic ROS) which over time leads to stabilization of cells via increased HIF-2alpha expression, enabling cells to survive with sustained levels of elevated ROS. In cells under hypoxia and/or low glucose, DNA mismatch repair processes are repressed by HIF-2alpha and they continually accumulate mitochondrial ROS-induced oxidative DNA damage and increasing numbers of mutations driving the malignant transformation process. Recent evidence also indicates that the resulting mutated cancer-causing proteins feedback to amplify the process by directly affecting mitochondrial function in combinatorial ways that intersect to play a major role in promoting a vicious spiral of malignant cell transformation. Consequently, many malignant processes involve periods of increased mitochondrial ROS production when a few cells survive the more common process of oxidative damage induced cell senescence and death. The few cells escaping elimination emerge with oncogenic mutations and survive to become immortalized tumors. This review focuses on evidence highlighting the role of mitochondria as drivers of elevated ROS production during malignant transformation and hence, their potential as targets for cancer therapy. The review is organized into five main sections concerning different aspects of "mitochondrial malignancy". The first concerns the functions of mitochondrial ROS and its importance as a pacesetter for cell growth versus senescence and death. The second considers the available evidence that cellular stress in the form of hypoxic and/or hypoglycaemic conditions represent two of the major triggering events for cancer and how oncoproteins reinforce this process by altering gene expression to bring about a common set of changes in mitochondrial function and activity in cancer cells. The third section presents evidence that oncoproteins and tumor suppressor proteins physically localize to the mitochondria in cancer cells where they directly regulate malignant mitochondrial programs, including apoptosis. The fourth section covers common mutational changes in the mitochondrial genome as they relate to malignancy and the relationship to the other three areas. The last section concerns the relevance of these findings, their importance and significance for novel targeted approaches to anti-cancer therapy and selective triggering in cancer cells of the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Stephen J Ralph
- Genomic Research Centre, Griffith Institute of Health and Medical Research, School of Medical Science, Griffith University, Parklands Avenue, Southport, 4222 Qld, Australia.
| | | | | | | | | |
Collapse
|
85
|
Galli S, Jahn O, Hitt R, Hesse D, Opitz L, Plessmann U, Urlaub H, Poderoso JJ, Jares-Erijman EA, Jovin TM. A new paradigm for MAPK: structural interactions of hERK1 with mitochondria in HeLa cells. PLoS One 2009; 4:e7541. [PMID: 19847302 PMCID: PMC2760858 DOI: 10.1371/journal.pone.0007541] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 09/30/2009] [Indexed: 11/19/2022] Open
Abstract
Extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) are members of the MAPK family and participate in the transduction of stimuli in cellular responses. Their long-term actions are accomplished by promoting the expression of specific genes whereas faster responses are achieved by direct phosphorylation of downstream effectors located throughout the cell. In this study we determined that hERK1 translocates to the mitochondria of HeLa cells upon a proliferative stimulus. In the mitochondrial environment, hERK1 physically associates with (i) at least 5 mitochondrial proteins with functions related to transport (i.e. VDAC1), signalling, and metabolism; (ii) histones H2A and H4; and (iii) other cytosolic proteins. This work indicates for the first time the presence of diverse ERK-complexes in mitochondria and thus provides a new perspective for assessing the functions of ERK1 in the regulation of cellular signalling and trafficking in HeLa cells.
Collapse
Affiliation(s)
- Soledad Galli
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CIHIDECAR, CONICET, Buenos Aires, Argentina
- * E-mail: (SG); (TMJ)
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology of the Brain, Göttingen, Germany
| | - Reiner Hitt
- Transkriptomanalyselabor, University of Göttingen, Zentrum 3, Biochemistry and Molecular Cell Biology, Göttingen, Germany
| | - Doerte Hesse
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lennart Opitz
- Transkriptomanalyselabor, University of Göttingen, Zentrum 3, Biochemistry and Molecular Cell Biology, Göttingen, Germany
| | - Uwe Plessmann
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Juan Jose Poderoso
- Laboratory of Oxygen Metabolism, University Hospital “Jose de San Martin”, UBA, Buenos Aires, Argentina
| | - Elizabeth A. Jares-Erijman
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CIHIDECAR, CONICET, Buenos Aires, Argentina
| | - Thomas M. Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Laboratorio Max Planck de Dinámica Celular, FCEyN, UBA, Buenos Aires, Argentina
- * E-mail: (SG); (TMJ)
| |
Collapse
|
86
|
Rebelo AP, Williams SL, Moraes CT. In vivo methylation of mtDNA reveals the dynamics of protein-mtDNA interactions. Nucleic Acids Res 2009; 37:6701-15. [PMID: 19740762 PMCID: PMC2777446 DOI: 10.1093/nar/gkp727] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To characterize the organization of mtDNA–protein complexes (known as nucleoids) in vivo, we have probed the mtDNA surface exposure using site-specific DNA methyltransferases targeted to the mitochondria. We have observed that DNA methyltransferases have different accessibility to different sites on the mtDNA based on the levels of protein occupancy. We focused our studies on selected regions of mtDNA that are believed to be major regulatory regions involved in transcription and replication. The transcription termination region (TERM) within the tRNALeu(UUR) gene was consistently and strongly protected from methylation, suggesting frequent and high affinity binding of mitochondrial transcription termination factor 1 (mTERF1) to the site. Protection from methylation was also observed in other regions of the mtDNA, including the light and heavy strand promoters (LSP, HSP) and the origin of replication of the light strand (OL). Manipulations aiming at increasing or decreasing the levels of the mitochondrial transcription factor A (TFAM) led to decreased in vivo methylation, whereas manipulations that stimulated mtDNA replication led to increased methylation. We also analyzed the effect of ATAD3 and oxidative stress in mtDNA exposure. Our data provide a map of human mtDNA accessibility and demonstrate that nucleoids are dynamically associated with proteins.
Collapse
Affiliation(s)
- Adriana P Rebelo
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
87
|
Fukuoh A, Ohgaki K, Hatae H, Kuraoka I, Aoki Y, Uchiumi T, Jacobs HT, Kang D. DNA conformation-dependent activities of human mitochondrial RNA polymerase. Genes Cells 2009; 14:1029-42. [PMID: 19624753 DOI: 10.1111/j.1365-2443.2009.01328.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mitochondrial RNA polymerase (POLRMT) is a core protein for mitochondrial DNA (mtDNA) transcription. In addition, POLRMT is assumed to be involved in replication, although its exact role is not yet clearly elucidated. We have found novel properties of human POLRMT using a reconstituted transcription system. Various lengths of RNA molecules were synthesized from templates even without a defined promoter sequence, when we used supercoiled circular double-stranded DNA as a template. This promoter-independent activity was as strong as the promoter-dependent one. Promoter-independent DNA conformation-dependent transcription required TFB2M. On supercoiled templates, the promoter-independent activity was strongly suppressed by a putatively physiological amount of TFAM, while promoter-dependent transcription was inhibited to a lesser extent. These different inhibition patterns by TFAM may be important for prevention of random RNA synthesis in vivo. Promoter-independent activity was also observed on relaxed circular single-stranded DNA, where its activity no longer required TFB2M. RNA synthesis on single-stranded DNA was weakly suppressed by a putatively physiological amount of TFAM but restored by the addition of mitochondrial single-stranded DNA binding protein. We suggest that these properties of POLRMT could explain the characteristic features of mammalian mtDNA transcription and replication.
Collapse
Affiliation(s)
- Atsushi Fukuoh
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Chen JQ, Cammarata PR, Baines CP, Yager JD. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1540-70. [PMID: 19559056 DOI: 10.1016/j.bbamcr.2009.06.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 12/21/2022]
Abstract
There has been increasing evidence pointing to the mitochondrial respiratory chain (MRC) as a novel and important target for the actions of 17beta-estradiol (E(2)) and estrogen receptors (ER) in a number of cell types and tissues that have high demands for mitochondrial energy metabolism. This novel E(2)-mediated mitochondrial pathway involves the cooperation of both nuclear and mitochondrial ERalpha and ERbeta and their co-activators on the coordinate regulation of both nuclear DNA- and mitochondrial DNA-encoded genes for MRC proteins. In this paper, we have: 1) comprehensively reviewed studies that reveal a novel role of estrogens and ERs in the regulation of MRC biogenesis; 2) discussed their physiological, pathological and pharmacological implications in the control of cell proliferation and apoptosis in relation to estrogen-mediated carcinogenesis, anti-cancer drug resistance in human breast cancer cells, neuroprotection for Alzheimer's disease and Parkinson's disease in brain, cardiovascular protection in human heart and their beneficial effects in lens physiology related to cataract in the eye; and 3) pointed out new research directions to address the key questions in this important and newly emerging area. We also suggest a novel conceptual approach that will contribute to innovative regimens for the prevention or treatment of a wide variety of medical complications based on E(2)/ER-mediated MRC biogenesis pathway.
Collapse
Affiliation(s)
- Jin-Qiang Chen
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|
89
|
Cotney J, McKay SE, Shadel GS. Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness. Hum Mol Genet 2009; 18:2670-82. [PMID: 19417006 DOI: 10.1093/hmg/ddp208] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial biogenesis is controlled by signaling networks that relay information to and from the organelles. However, key mitochondrial factors that mediate such pathways and how they contribute to human disease are not understood fully. Here we demonstrate that the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 are key downstream effectors of mitochondrial biogenesis that perform unique, yet cooperative functions. The primary function of h-mtTFB2 is mtDNA transcription and maintenance, which is independent of its rRNA methyltransferase activity, while that of h-mtTFB1 is mitochondrial 12S rRNA methylation needed for normal mitochondrial translation, metabolism and cell growth. Over-expression of h-mtTFB1 causes 12S rRNA hypermethylation, aberrant mitochondrial biogenesis and increased sorbitol-induced cell death. These phenotypes are recapitulated in cells harboring the pathogenic A1555G mtDNA mutation, implicating a deleterious rRNA methylation-dependent retrograde signal in maternally inherited deafness pathology and shedding significant insight into how h-mtTFB1 acts as a nuclear modifier of this disease.
Collapse
Affiliation(s)
- Justin Cotney
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, PO Box 208023, New Haven, CT 06520-8023, USA
| | | | | |
Collapse
|
90
|
Kienhöfer J, Häussler DJF, Ruckelshausen F, Muessig E, Weber K, Pimentel D, Ullrich V, Bürkle A, Bachschmid MM. Association of mitochondrial antioxidant enzymes with mitochondrial DNA as integral nucleoid constituents. FASEB J 2009; 23:2034-44. [PMID: 19228881 DOI: 10.1096/fj.08-113571] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mitochondrial DNA (mtDNA) is organized in protein-DNA macrocomplexes called nucleoids. Average nucleoids contain 2-8 mtDNA molecules, which are organized by the histone-like mitochondrial transcription factor A. Besides well-characterized constituents, such as single-stranded binding protein or polymerase gamma (Pol gamma), various other proteins with ill-defined functions have been identified. We report for the first time that mammalian nucleoids contain essential enzymes of an integral antioxidant system. Intact nucleoids were isolated with sucrose density gradients from rat and bovine heart as well as human Jurkat cells. Manganese superoxide dismutase (SOD2) was detected by Western blot in the nucleoid fractions. DNA, mitochondrial glutathione peroxidase (GPx1), and Pol gamma were coimmunoprecipitated with SOD2 from nucleoid fractions, which suggests that an antioxidant system composed of SOD2 and GPx1 are integral constituents of nucleoids. Interestingly, in cultured bovine endothelial cells the association of SOD2 with mtDNA was absent. Using a sandwich filter-binding assay, direct association of SOD2 by salt-sensitive ionic forces with a chemically synthesized mtDNA fragment was demonstrated. Increasing salt concentrations during nucleoid isolation on sucrose density gradients disrupted the association of SOD2 with mitochondrial nucleoids. Our biochemical data reveal that nucleoids contain an integral antioxidant system that may protect mtDNA from superoxide-induced oxidative damage.
Collapse
|
91
|
Iyer S, Thomas RR, Portell FR, Dunham LD, Quigley CK, Bennett JP. Recombinant mitochondrial transcription factor A with N-terminal mitochondrial transduction domain increases respiration and mitochondrial gene expression. Mitochondrion 2009; 9:196-203. [PMID: 19460293 DOI: 10.1016/j.mito.2009.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 01/26/2009] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
Abstract
We developed a scalable procedure to produce human mitochondrial transcription factor A (TFAM) modified with an N-terminal protein transduction domain (PTD) and mitochondrial localization signal (MLS) that allow it to cross membranes and enter mitochondria through its "mitochondrial transduction domain" (MTD=PTD+MLS). Alexa488-labeled MTD-TFAM rapidly entered the mitochondrial compartment of cybrid cells carrying the G11778A LHON mutation. MTD-TFAM reversibly increased respiration and levels of respiratory proteins. In vivo treatment of mice with MTD-TFAM increased motor endurance and complex I-driven respiration in mitochondria from brain and skeletal muscle. MTD-TFAM increases mitochondrial bioenergetics and holds promise for treatment of mitochondrial diseases involving deficiencies of energy production.
Collapse
Affiliation(s)
- Shilpa Iyer
- Center for the Study of Neurodegenerative Diseases and The Morris K. Udall Parkinson's Disease Research Center of Excellence, University of Virginia, PO Box 800394, Charlottesville, VA 22908, United States
| | | | | | | | | | | |
Collapse
|
92
|
Torraco A, Diaz F, Vempati UD, Moraes CT. Mouse models of oxidative phosphorylation defects: powerful tools to study the pathobiology of mitochondrial diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:171-80. [PMID: 18601959 PMCID: PMC2652735 DOI: 10.1016/j.bbamcr.2008.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/28/2008] [Accepted: 06/04/2008] [Indexed: 01/14/2023]
Abstract
Defects in the oxidative phosphorylation system (OXPHOS) are responsible for a group of extremely heterogeneous and pleiotropic pathologies commonly known as mitochondrial diseases. Although many mutations have been found to be responsible for OXPHOS defects, their pathogenetic mechanisms are still poorly understood. An important contribution to investigate the in vivo function of several mitochondrial proteins and their role in mitochondrial dysfunction, has been provided by mouse models. Thanks to their genetic and physiologic similarity to humans, mouse models represent a powerful tool to investigate the impact of pathological mutations on metabolic pathways. In this review we discuss the main mouse models of mitochondrial disease developed, focusing on the ones that directly affect the OXPHOS system.
Collapse
Affiliation(s)
- Alessandra Torraco
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Uma D. Vempati
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Carlos T. Moraes
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| |
Collapse
|
93
|
Partial Depletion of Mitochondrial DNA from Human Skin Fibroblasts Induces a Gene Expression Profile Reminiscent of Photoaged Skin. J Invest Dermatol 2008; 128:2297-303. [DOI: 10.1038/jid.2008.57] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
94
|
Valle A, Guevara R, García-Palmer FJ, Roca P, Oliver J. Caloric restriction retards the age-related decline in mitochondrial function of brown adipose tissue. Rejuvenation Res 2008; 11:597-604. [PMID: 18593277 DOI: 10.1089/rej.2007.0626] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Caloric restriction (CR) has been shown to prevent the age-associated loss of mitochondrial function and biogenesis in several tissues such as liver, heart, and skeletal muscle. However, little is known about the effects of CR on a tissue in which the mitochondria have no adenosine triphosphate (ATP)-producing purpose but show a high degree of uncoupling, namely brown adipose tissue (BAT). Hence, the aim of the present study was to analyze the effect of long-term CR on BAT mitochondrial function and biogenesis. BAT mitochondria obtained from 24-month-old male and female rats previously subjected to 40% CR for 12 months were compared with mitochondria from old (24 months) and young (6 months) ad libitum fed rats. Old restricted rats compared to old ad libitum fed ones showed a reduction in BAT size with respect to fat content and adipocyte number. Mitochondrial DNA content in BAT increased with age and even more so in restricted rats, indicating a summative effect of age and CR on mitochondrial proliferation. CR induced resistance to lose total and mitochondrial protein, COX activity, and uncoupling capacity with advancing age, in relation with a lower decrease of mitochondrial transcription factor A (TFAM). In summary, our results demonstrate CR prevents the age-associated decline in mitochondrial function in BAT, probably in relation with a lower impairment of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adamo Valle
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les Illes Balears, Palma de Mallorca, Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, Spain
| | | | | | | | | |
Collapse
|
95
|
CREB-1alpha is recruited to and mediates upregulation of the cytochrome c promoter during enhanced mitochondrial biogenesis accompanying skeletal muscle differentiation. Mol Cell Biol 2008; 28:2446-59. [PMID: 18227154 DOI: 10.1128/mcb.00980-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To further understand pathways coordinating the expression of nuclear genes encoding mitochondrial proteins, we studied mitochondrial biogenesis during differentiation of myoblasts to myotubes. This energy-demanding process was accompanied by a fivefold increase of ATP turnover, covered by an eightfold increase of mitochondrial activity. While no change in mitochondrial DNA copy number was observed, mRNAs as well as proteins for nucleus-encoded cytochrome c, cytochrome c oxidase subunit IV, and mitochondrial transcription factor A (TFAM) increased, together with total cellular RNA and protein levels. Detailed analysis of the cytochrome c promoter by luciferase reporter, binding affinity, and electrophoretic mobility shift assays as well as mutagenesis studies revealed a critical role for cyclic AMP responsive element binding protein 1 (CREB-1) for promoter activation. Expression of two CREB-1 isoforms was observed by using specific antibodies and quantitative reverse transcription-PCR, and a shift from phosphorylated CREB-1Delta in myoblasts to phosphorylated CREB-1alpha protein in myotubes was shown, while mRNA ratios remained unchanged. Chromatin immunoprecipitation assays confirmed preferential binding of CREB-1alpha in situ to the cytochrome c promoter in myotubes. Overexpression of constitutively active and dominant-negative forms supported the key role of CREB-1 in regulating the expression of genes encoding mitochondrial proteins during myogenesis and probably also in other situations of enhanced mitochondrial biogenesis.
Collapse
|
96
|
Human prohibitin 1 maintains the organization and stability of the mitochondrial nucleoids. Exp Cell Res 2008; 314:988-96. [PMID: 18258228 DOI: 10.1016/j.yexcr.2008.01.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 12/28/2007] [Accepted: 01/07/2008] [Indexed: 11/20/2022]
Abstract
Mitochondrial prohibitin (PHB) proteins have diverse functions, such as the regulation of apoptosis and the maintenance of mitochondrial morphology. In this study, we clarified a novel mitochondrial function of PHB1 that regulates the organization and maintenance of mitochondrial DNA (mtDNA). In PHB1-knockdown cells, we found that mtDNA is not stained by fluorescent dyes, such as ethidium bromide and PicoGreen, although the mitochondrial membrane potential still maintains. We also demonstrated that mtDNA, which is predominantly found in the NP-40-insoluble fraction when isolated from normal mitochondria, is partially released into the soluble fraction when isolated from PHB1-knockdown cells, indicating that the organization of the mitochondrial nucleoids has been altered. Furthermore, we found that PHB1 regulates copy number of mtDNA by stabilizing TFAM protein, a known protein component of the mitochondrial nucleoids. However, TFAM does not affect the organization of mtDNA as observed in PHB1-knockdown cells. Taken together, these results demonstrate that PHB1 maintains the organization and copy number of the mtDNA through both TFAM-independent and -dependent pathways.
Collapse
|
97
|
Abstract
Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.
Collapse
Affiliation(s)
- Vernon G Coffey
- School of Medical Sciences, Exercise Metabolism Group, RMIT University, Melbourne, Victoria, Australia
| | | |
Collapse
|
98
|
Kucej M, Butow RA. Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol 2007; 17:586-92. [DOI: 10.1016/j.tcb.2007.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 08/14/2007] [Accepted: 08/14/2007] [Indexed: 12/24/2022]
|
99
|
Valle A, Guevara R, García-Palmer FJ, Roca P, Oliver J. Sexual dimorphism in liver mitochondrial oxidative capacity is conserved under caloric restriction conditions. Am J Physiol Cell Physiol 2007; 293:C1302-8. [PMID: 17652427 DOI: 10.1152/ajpcell.00203.2007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caloric restriction (CR) without malnutrition has been shown to increase maximal life span and delay the rate of aging in a wide range of species. It has been proposed that reduction in energy expenditure and oxidative damage may explain the life-extending effect of CR. Sex-related differences also have been shown to influence longevity and energy expenditure in many mammalian species. The aim of the present study was to determine the sex-related differences in rat liver mitochondrial machinery, bioenergetics, and oxidative balance in response to short-term CR. Mitochondria were isolated from 6-mo-old male and female Wistar rats fed ad libitum or subjected to 40% CR for 3 mo. Mitochondrial O2 consumption, activities of the oxidative phosphorylation system (complexes I, III, IV, and V), antioxidative activities [MnSOD, glutathione peroxidase (GPx)], mitochondrial DNA and protein content, mitochondrial H2O2 production, and markers of oxidative damage, as well as cytochrome C oxidase and mitochondrial transcription factor A levels, were measured. Female rats showed a higher oxidative capacity and GPx activity than males. This sexual dimorphism was not modified by CR. Restricted rats showed slightly increased oxygen consumption, complex III activity, and GPx antioxidant activity together with lower levels of oxidative damage. In conclusion, the sexual dimorphism in liver mitochondrial oxidative capacity was unaffected by CR, with females showing higher mitochondrial functionality and ROS protection than males.
Collapse
Affiliation(s)
- A Valle
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|
100
|
Coffey VG, Hawley JA. The molecular bases of training adaptation. SPORTS MEDICINE (AUCKLAND, N.Z.) 2007. [PMID: 17722947 DOI: 10.2165/00007256-200737090-00001.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.
Collapse
Affiliation(s)
- Vernon G Coffey
- School of Medical Sciences, Exercise Metabolism Group, RMIT University, Melbourne, Victoria, Australia
| | | |
Collapse
|