51
|
Hu J, Wang J, Lin J, Liu T, Zhong Y, Liu J, Zheng Y, Gao Y, He J, Shang X. MD-SVM: a novel SVM-based algorithm for the motif discovery of transcription factor binding sites. BMC Bioinformatics 2019; 20:200. [PMID: 31074373 PMCID: PMC6509868 DOI: 10.1186/s12859-019-2735-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Transcription factors (TFs) play important roles in the regulation of gene expression. They can activate or block transcription of downstream genes in a manner of binding to specific genomic sequences. Therefore, motif discovery of these binding preference patterns is of central significance in the understanding of molecular regulation mechanism. Many algorithms have been proposed for the identification of transcription factor binding sites. However, it remains a challengeable problem. RESULTS Here, we proposed a novel motif discovery algorithm based on support vector machine (MD-SVM) to learn a discriminative model for TF binding sites. MD-SVM firstly obtains position weight matrix (PWM) from a set of training datasets. Then it translates the MD problem into a computational framework of multiple instance learning (MIL). It was applied to several real biological datasets. Results show that our algorithm outperforms MI-SVM in terms of both accuracy and specificity. CONCLUSIONS In this paper, we modeled the TF motif discovery problem as a MIL optimization problem. The SVM algorithm was adapted to discriminate positive and negative bags of instances. Compared to other svm-based algorithms, MD-SVM show its superiority over its competitors in term of ROC AUC. Hopefully, it could be of benefit to the research community in the understanding of molecular functions of DNA functional elements and transcription factors.
Collapse
Affiliation(s)
- Jialu Hu
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi’an, 710072 China
- Centre of Multidisciplinary Convergence Computing, School of Computer Science, Northwestern Polytechnical University, 1 Dong Xiang Road, Xi’an, 710129 China
| | - Jingru Wang
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi’an, 710072 China
| | - Jianan Lin
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi’an, 710072 China
| | - Tianwei Liu
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi’an, 710072 China
| | - Yuanke Zhong
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi’an, 710072 China
| | - Jie Liu
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi’an, 710072 China
| | - Yan Zheng
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi’an, 710072 China
| | - Yiqun Gao
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi’an, 710072 China
| | - Junhao He
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi’an, 710072 China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi’an, 710072 China
| |
Collapse
|
52
|
Guida N, Valsecchi V, Laudati G, Serani A, Mascolo L, Molinaro P, Montuori P, Di Renzo G, Canzoniero LM, Formisano L. The miR206-JunD Circuit Mediates the Neurotoxic Effect of Methylmercury in Cortical Neurons. Toxicol Sci 2019. [PMID: 29522201 DOI: 10.1093/toxsci/kfy051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Methylmercury (MeHg) causes neuronal death through different pathways. Particularly, we found that in cortical neurons it increased the expression of Repressor Element-1 Silencing Transcription Factor (REST), histone deacetylase (HDAC)4, Specificity Protein (Sp)1, Sp4, and reduced the levels of brain-derived neurotrophic factor (BDNF). Herein, in rat cortical neurons we investigated whether microRNA (miR)206 can modulate MeHg-induced cell death by regulating REST/HDAC4/Sp1/Sp4/BDNF axis. MeHg (1 µM) reduced miR206 expression after both 12 and 24 h and miR206 transfection prevented MeHg-induced neuronal death. Furthermore, miR206 reverted MeHg-induced REST and Sp4 increase and BDNF reduction at gene and protein level, and reverted HDAC4 protein increase, but not HDAC4 mRNA upregulation. Moreover, since no miR206 seed sequences were identified in the 3'-untranslated regions (3'-UTRs) of REST and SP4, we investigated the role of JunD, that presents a consensus motif on REST, Sp4, and BDNF promoters. Indeed, MeHg increased JunD mRNA and protein levels, and JunD knockdown counteracted MeHg-induced REST, Sp4 increase, but not BDNF reduction. Furthermore, we identified a miR206 binding site in the 3'-UTR of JunD mRNA (miR206/JunD) and mutagenesis of miR206/JunD site reverted JunD luciferase activity reduction induced by miR206. Finally, miR206 prevented MeHg-increased JunD binding to REST and Sp4 promoters, and MeHg-reduced BDNF expression was determined by the increase of HDAC4 binding on BDNF promoter IV. Collectively, these results suggest that miR206 downregulation induced by MeHg exposure determines an upregulation of HDAC4, that in turn downregulated BDNF, and the activation of JunD that, by binding REST and Sp4 gene promoters, increased their expression.
Collapse
Affiliation(s)
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy
| | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.,Division of Pharmacology, Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy
| | - Paolo Montuori
- Department of Preventive Medical Sciences, University Federico II, 80131 Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy
| | - Lorella M Canzoniero
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.,Division of Pharmacology, Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, "Federico II" University of Naples, 80131 Naples, Italy.,Division of Pharmacology, Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
53
|
Jiang L, Wang R, Fang L, Ge X, Chen L, Zhou M, Zhou Y, Xiong W, Hu Y, Tang X, Li G, Li Z. HCP5 is a SMAD3-responsive long non-coding RNA that promotes lung adenocarcinoma metastasis via miR-203/SNAI axis. Am J Cancer Res 2019; 9:2460-2474. [PMID: 31131047 PMCID: PMC6525996 DOI: 10.7150/thno.31097] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/23/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction: Transforming growth factor-beta (TGFβ) signaling plays a vital role in lung adenocarcinoma (LUAD) progression. However, the involvement of TGFβ-regulated long non-coding RNAs (lncRNAs) in metastasis of LUAD remains poorly understood. Methods: We performed bioinformatic analyses to identify putative lncRNAs regulated by TGF-β/SMAD3 and validated the results by quantitative PCR in LUAD cells. We performed luciferase reporter and chromatin immunoprecipitation assays to demonstrate the transcriptional regulation of the lncRNA histocompatibility leukocyte antigen complex P5 (HCP5) we decided to focus on. Stable HCP5 knockdown and HCP5-overexpressing A549 cell variants were generated respectively, to study HCP5 function and understand its mechanism of action. We also confirmed our findings in mouse xenografts and metastasis models. We analyzed the correlation between the level of lncRNA expression with EGFR, KRAS mutations, smoke state and prognostic of LUAD patients. Results: We found that the lncRNA HCP5 is induced by TGFβ and transcriptionally regulated by SMAD3, which promotes LUAD tumor growth and metastasis. Moreover, HCP5 is overexpressed in tumor tissues of patients with LUAD, specifically in patients with EGFR and KRAS mutations and current smoker. HCP5 high expression level is positively correlated with poor prognosis of patients with LUAD. Finally, we demonstrated that upregulation of HCP5 increases the expression of Snail and Slug by sponging the microRNA-203 (miR-203) and promoting epithelial-mesenchymal transition (EMT) in LUAD cells. Conclusions: Our work demonstrates that the lncRNA HCP5 is transcriptionally regulated by SMAD3 and acts as a new regulator in the TGFβ/SMAD signaling pathway. Therefore, HCP5 can serve as a potential therapeutic target in LUAD.
Collapse
|
54
|
Emamjomeh A, Choobineh D, Hajieghrari B, MahdiNezhad N, Khodavirdipour A. DNA-protein interaction: identification, prediction and data analysis. Mol Biol Rep 2019; 46:3571-3596. [PMID: 30915687 DOI: 10.1007/s11033-019-04763-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022]
Abstract
Life in living organisms is dependent on specific and purposeful interaction between other molecules. Such purposeful interactions make the various processes inside the cells and the bodies of living organisms possible. DNA-protein interactions, among all the types of interactions between different molecules, are of considerable importance. Currently, with the development of numerous experimental techniques, diverse methods are convenient for recognition and investigating such interactions. While the traditional experimental techniques to identify DNA-protein complexes are time-consuming and are unsuitable for genome-scale studies, the current high throughput approaches are more efficient in determining such interaction at a large-scale, but they are clearly too costly to be practice for daily applications. Hence, according to the availability of much information related to different biological sequences and clearing different dimensions of conditions in which such interactions are formed, with the developments related to the computer, mathematics, and statistics motivate scientists to develop bioinformatics tools for prediction the interaction site(s). Until now, there has been much progress in this field. In this review, the factors and conditions governing the interaction and the laboratory techniques for examining such interactions are addressed. In addition, developed bioinformatics tools are introduced and compared for this reason and, in the end, several suggestions are offered for the promotion of such tools in prediction with much more precision.
Collapse
Affiliation(s)
- Abbasali Emamjomeh
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), University of Zabol, Zabol, 98615-538, Iran.
| | - Darush Choobineh
- Agricultural Biotechnology, Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, 74135-111, Iran.
| | - Nafiseh MahdiNezhad
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), University of Zabol, Zabol, 98615-538, Iran
| | - Amir Khodavirdipour
- Division of Human Genetics, Department of Anatomy, St. John's hospital, Bangalore, India
| |
Collapse
|
55
|
Siebenthall KT, Miller CP, Vierstra JD, Mathieu J, Tretiakova M, Reynolds A, Sandstrom R, Rynes E, Haugen E, Johnson A, Nelson J, Bates D, Diegel M, Dunn D, Frerker M, Buckley M, Kaul R, Zheng Y, Himmelfarb J, Ruohola-Baker H, Akilesh S. Integrated epigenomic profiling reveals endogenous retrovirus reactivation in renal cell carcinoma. EBioMedicine 2019; 41:427-442. [PMID: 30827930 PMCID: PMC6441874 DOI: 10.1016/j.ebiom.2019.01.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Transcriptional dysregulation drives cancer formation but the underlying mechanisms are still poorly understood. Renal cell carcinoma (RCC) is the most common malignant kidney tumor which canonically activates the hypoxia-inducible transcription factor (HIF) pathway. Despite intensive study, novel therapeutic strategies to target RCC have been difficult to develop. Since the RCC epigenome is relatively understudied, we sought to elucidate key mechanisms underpinning the tumor phenotype and its clinical behavior. METHODS We performed genome-wide chromatin accessibility (DNase-seq) and transcriptome profiling (RNA-seq) on paired tumor/normal samples from 3 patients undergoing nephrectomy for removal of RCC. We incorporated publicly available data on HIF binding (ChIP-seq) in a RCC cell line. We performed integrated analyses of these high-resolution, genome-scale datasets together with larger transcriptomic data available through The Cancer Genome Atlas (TCGA). FINDINGS Though HIF transcription factors play a cardinal role in RCC oncogenesis, we found that numerous transcription factors with a RCC-selective expression pattern also demonstrated evidence of HIF binding near their gene body. Examination of chromatin accessibility profiles revealed that some of these transcription factors influenced the tumor's regulatory landscape, notably the stem cell transcription factor POU5F1 (OCT4). Elevated POU5F1 transcript levels were correlated with advanced tumor stage and poorer overall survival in RCC patients. Unexpectedly, we discovered a HIF-pathway-responsive promoter embedded within a endogenous retroviral long terminal repeat (LTR) element at the transcriptional start site of the PSOR1C3 long non-coding RNA gene upstream of POU5F1. RNA transcripts are induced from this promoter and read through PSOR1C3 into POU5F1 producing a novel POU5F1 transcript isoform. Rather than being unique to the POU5F1 locus, we found that HIF binds to several other transcriptionally active LTR elements genome-wide correlating with broad gene expression changes in RCC. INTERPRETATION Integrated transcriptomic and epigenomic analysis of matched tumor and normal tissues from even a small number of primary patient samples revealed remarkably convergent shared regulatory landscapes. Several transcription factors appear to act downstream of HIF including the potent stem cell transcription factor POU5F1. Dysregulated expression of POU5F1 is part of a larger pattern of gene expression changes in RCC that may be induced by HIF-dependent reactivation of dormant promoters embedded within endogenous retroviral LTRs.
Collapse
Affiliation(s)
- Kyle T Siebenthall
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Chris P Miller
- Department of Pathology, University of Washington, Seattle, WA 98195, United States
| | - Jeff D Vierstra
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98109, United States; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, United States
| | - Maria Tretiakova
- Department of Pathology, University of Washington, Seattle, WA 98195, United States
| | - Alex Reynolds
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Richard Sandstrom
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Eric Rynes
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Eric Haugen
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Audra Johnson
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Jemma Nelson
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Daniel Bates
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Morgan Diegel
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Douglass Dunn
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Mark Frerker
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Michael Buckley
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Rajinder Kaul
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, United States
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, United States; Kidney Research Institute, Seattle, WA 98104, United States
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA 98195, United States; Kidney Research Institute, Seattle, WA 98104, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98109, United States
| | - Shreeram Akilesh
- Department of Pathology, University of Washington, Seattle, WA 98195, United States; Kidney Research Institute, Seattle, WA 98104, United States.
| |
Collapse
|
56
|
Sieber KB, Batorsky A, Siebenthall K, Hudkins KL, Vierstra JD, Sullivan S, Sur A, McNulty M, Sandstrom R, Reynolds A, Bates D, Diegel M, Dunn D, Nelson J, Buckley M, Kaul R, Sampson MG, Himmelfarb J, Alpers CE, Waterworth D, Akilesh S. Integrated Functional Genomic Analysis Enables Annotation of Kidney Genome-Wide Association Study Loci. J Am Soc Nephrol 2019; 30:421-441. [PMID: 30760496 PMCID: PMC6405142 DOI: 10.1681/asn.2018030309] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 12/26/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Linking genetic risk loci identified by genome-wide association studies (GWAS) to their causal genes remains a major challenge. Disease-associated genetic variants are concentrated in regions containing regulatory DNA elements, such as promoters and enhancers. Although researchers have previously published DNA maps of these regulatory regions for kidney tubule cells and glomerular endothelial cells, maps for podocytes and mesangial cells have not been available. METHODS We generated regulatory DNA maps (DNase-seq) and paired gene expression profiles (RNA-seq) from primary outgrowth cultures of human glomeruli that were composed mainly of podocytes and mesangial cells. We generated similar datasets from renal cortex cultures, to compare with those of the glomerular cultures. Because regulatory DNA elements can act on target genes across large genomic distances, we also generated a chromatin conformation map from freshly isolated human glomeruli. RESULTS We identified thousands of unique regulatory DNA elements, many located close to transcription factor genes, which the glomerular and cortex samples expressed at different levels. We found that genetic variants associated with kidney diseases (GWAS) and kidney expression quantitative trait loci were enriched in regulatory DNA regions. By combining GWAS, epigenomic, and chromatin conformation data, we functionally annotated 46 kidney disease genes. CONCLUSIONS We demonstrate a powerful approach to functionally connect kidney disease-/trait-associated loci to their target genes by leveraging unique regulatory DNA maps and integrated epigenomic and genetic analysis. This process can be applied to other kidney cell types and will enhance our understanding of genome regulation and its effects on gene expression in kidney disease.
Collapse
Affiliation(s)
| | - Anna Batorsky
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | | | | | - Jeff D Vierstra
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | | | - Aakash Sur
- Phase Genomics Inc., Seattle, Washington
- Department of Biomedical and Health Informatics, and
| | - Michelle McNulty
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | | | - Alex Reynolds
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Daniel Bates
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Morgan Diegel
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Douglass Dunn
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Jemma Nelson
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Michael Buckley
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Rajinder Kaul
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
- Kidney Research Institute, Seattle, Washington
| | - Charles E Alpers
- Department of Anatomic Pathology
- Kidney Research Institute, Seattle, Washington
| | | | - Shreeram Akilesh
- Department of Anatomic Pathology,
- Kidney Research Institute, Seattle, Washington
| |
Collapse
|
57
|
Henriksson J, Chen X, Gomes T, Ullah U, Meyer KB, Miragaia R, Duddy G, Pramanik J, Yusa K, Lahesmaa R, Teichmann SA. Genome-wide CRISPR Screens in T Helper Cells Reveal Pervasive Crosstalk between Activation and Differentiation. Cell 2019; 176:882-896.e18. [PMID: 30639098 PMCID: PMC6370901 DOI: 10.1016/j.cell.2018.11.044] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/19/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022]
Abstract
T helper type 2 (Th2) cells are important regulators of mammalian adaptive immunity and have relevance for infection, autoimmunity, and tumor immunology. Using a newly developed, genome-wide retroviral CRISPR knockout (KO) library, combined with RNA-seq, ATAC-seq, and ChIP-seq, we have dissected the regulatory circuitry governing activation and differentiation of these cells. Our experiments distinguish cell activation versus differentiation in a quantitative framework. We demonstrate that these two processes are tightly coupled and are jointly controlled by many transcription factors, metabolic genes, and cytokine/receptor pairs. There are only a small number of genes regulating differentiation without any role in activation. By combining biochemical and genetic data, we provide an atlas for Th2 differentiation, validating known regulators and identifying factors, such as Pparg and Bhlhe40, as part of the core regulatory network governing Th2 helper cell fates.
Collapse
Affiliation(s)
- Johan Henriksson
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK; Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden
| | - Xi Chen
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Tomás Gomes
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ubaid Ullah
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6 FI-20520, Turku, Finland
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ricardo Miragaia
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Graham Duddy
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jhuma Pramanik
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kosuke Yusa
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Tykistökatu 6 FI-20520, Turku, Finland
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK; EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK; Theory of Condensed Matter, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge CB3 0HE, UK.
| |
Collapse
|
58
|
Mehrotra R, Loake G, Mehrotra S. Promoter choice: Selection vs. rejection. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
59
|
Martynova E, Bouchard M, Musil LS, Cvekl A. Identification of Novel Gata3 Distal Enhancers Active in Mouse Embryonic Lens. Dev Dyn 2018; 247:1186-1198. [PMID: 30295986 PMCID: PMC6246825 DOI: 10.1002/dvdy.24677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The tissue-specific transcriptional programs during normal development require tight control by distal cis-regulatory elements, such as enhancers, with specific DNA sequences recognized by transcription factors, coactivators, and chromatin remodeling enzymes. Gata3 is a sequence-specific DNA-binding transcription factor that regulates formation of multiple tissues and organs, including inner ear, lens, mammary gland, T-cells, urogenital system, and thyroid gland. In the eye, Gata3 has a highly restricted expression domain in the posterior part of the lens vesicle; however, the underlying regulatory mechanisms are unknown. RESULTS Here we describe the identification of a novel bipartite Gata3 lens-specific enhancer located ∼18 kb upstream from its transcriptional start site. We also found that a 5-kb Gata3 promoter possesses low activity in the lens. The bipartite enhancer contains arrays of AP-1, Ets-, and Smad1/5-binding sites as well as binding sites for lens-associated DNA-binding factors. Transient transfection studies of the promoter with the bipartite enhancer showed enhanced activation by BMP4 and FGF2. CONCLUSIONS These studies identify a novel distal enhancer of Gata3 with high activity in lens and indicate that BMP and FGF signaling can up-regulate expression of Gata3 in differentiating lens fiber cells through the identified Gata3 enhancer and promoter elements. Developmental Dynamics 247:1186-1198, 2018. © 2018 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Elena Martynova
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Linda S Musil
- Department of Biochemistry and Molecular Biology, Oregon Health Science University, Portland, Oregon
| | - Ales Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
60
|
Maeoka Y, Wu Y, Okamoto T, Kanemoto S, Guo XP, Saito A, Asada R, Matsuhisa K, Masaki T, Imaizumi K, Kaneko M. NFAT5 up-regulates expression of the kidney-specific ubiquitin ligase gene Rnf183 under hypertonic conditions in inner-medullary collecting duct cells. J Biol Chem 2018; 294:101-115. [PMID: 30413537 DOI: 10.1074/jbc.ra118.002896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 11/07/2018] [Indexed: 01/05/2023] Open
Abstract
We previously reported that among the 37 RING finger protein (RNF) family members, RNF183 mRNA is specifically expressed in the kidney under normal conditions. However, the mechanism supporting its kidney-specific expression pattern remains unclear. In this study, we elucidated the mechanism of the transcriptional activation of murine Rnf183 in inner-medullary collecting duct cells. Experiments with anti-RNF183 antibody revealed that RNF183 is predominantly expressed in the renal medulla. Among the 37 RNF family members, Rnf183 mRNA expression was specifically increased in hypertonic conditions, a hallmark of the renal medulla. RNF183 up-regulation was consistent with the activation of nuclear factor of activated T cells 5 (NFAT5), a transcription factor essential for adaptation to hypertonic conditions. Accordingly, siRNA-mediated knockdown of NFAT5 down-regulated RNF183 expression. Furthermore, the -3,466 to -3,136-bp region upstream of the mouse Rnf183 promoter containing the NFAT5-binding motif is conserved among mammals. A luciferase-based reporter vector containing the NFAT5-binding site was activated in response to hypertonic stress, but was inhibited by a mutation at the NFAT5-binding site. ChIP assays revealed that the binding of NFAT5 to this DNA site is enhanced by hypertonic stress. Of note, siRNA-mediated RNF183 knockdown increased hypertonicity-induced caspase-3 activation and decreased viability of mIMCD-3 cells. These results indicate that (i) RNF183 is predominantly expressed in the normal renal medulla, (ii) NFAT5 stimulates transcriptional activation of Rnf183 by binding to its cognate binding motif in the Rnf183 promoter, and (iii) RNF183 protects renal medullary cells from hypertonicity-induced apoptosis.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yan Wu
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takumi Okamoto
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Soshi Kanemoto
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, 2-1-1-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Xiao Peng Guo
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Atsushi Saito
- Department of Stress Protein Processing, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Rie Asada
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Koji Matsuhisa
- Department of Stress Protein Processing, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Masayuki Kaneko
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| |
Collapse
|
61
|
Nagy O, Nuez I, Savisaar R, Peluffo AE, Yassin A, Lang M, Stern DL, Matute DR, David JR, Courtier-Orgogozo V. Correlated Evolution of Two Copulatory Organs via a Single cis-Regulatory Nucleotide Change. Curr Biol 2018; 28:3450-3457.e13. [PMID: 30344115 DOI: 10.1016/j.cub.2018.08.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/12/2018] [Accepted: 08/21/2018] [Indexed: 01/25/2023]
Abstract
Diverse traits often covary between species [1-3]. The possibility that a single mutation could contribute to the evolution of several characters between species [3] is rarely investigated as relatively few cases are dissected at the nucleotide level. Drosophila santomea has evolved additional sex comb sensory teeth on its legs and has lost two sensory bristles on its genitalia. We present evidence that a single nucleotide substitution in an enhancer of the scute gene contributes to both changes. The mutation alters a binding site for the Hox protein Abdominal-B in the developing genitalia, leading to bristle loss, and for another factor in the developing leg, leading to bristle gain. Our study suggests that morphological evolution between species can occur through a single nucleotide change affecting several sexually dimorphic traits. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Olga Nagy
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Isabelle Nuez
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Rosina Savisaar
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Alexandre E Peluffo
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Amir Yassin
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de Recherche Scientifique, MNHN, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Michael Lang
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - David L Stern
- Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Jean R David
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de Recherche Scientifique, MNHN, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France; Laboratoire Evolution, Génomes, Comportement, Biodiversité (EGCE), CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
62
|
Navarro-Sánchez L, Águeda-Gómez B, Aparicio S, Pérez-Tur J. Epigenetic Study in Parkinson's Disease: A Pilot Analysis of DNA Methylation in Candidate Genes in Brain. Cells 2018; 7:cells7100150. [PMID: 30261625 PMCID: PMC6210421 DOI: 10.3390/cells7100150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/15/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
Efforts have been made to understand the pathophysiology of Parkinson’s disease (PD). A significant number of studies have focused on genetics, despite the fact that the described pathogenic mutations have been observed only in around 10% of patients; this observation supports the fact that PD is a multifactorial disorder. Lately, differences in miRNA expression, histone modification, and DNA methylation levels have been described, highlighting the importance of epigenetic factors in PD etiology. Taking all this into consideration, we hypothesized that an alteration in the level of methylation in PD-related genes could be related to disease pathogenesis, possibly due to alterations in gene expression. After analysing promoter regions of five PD-related genes in three brain regions by pyrosequencing, we observed some differences in DNA methylation levels (hypo and hypermethylation) in substantia nigra in some CpG dinucleotides that, possibly through an alteration in Sp1 binding, could alter their expression.
Collapse
Affiliation(s)
- Luis Navarro-Sánchez
- Unitat de Genètica Molecular, Instituto de Biomedicina de Valencia, CSIC, 46010 València, Spain.
| | - Beatriz Águeda-Gómez
- Unitat de Genètica Molecular, Instituto de Biomedicina de Valencia, CSIC, 46010 València, Spain.
| | - Silvia Aparicio
- Unitat de Genètica Molecular, Instituto de Biomedicina de Valencia, CSIC, 46010 València, Spain.
| | - Jordi Pérez-Tur
- Unitat de Genètica Molecular, Instituto de Biomedicina de Valencia, CSIC, 46010 València, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 46010 València, Spain.
- Unidad Mixta de Genética y Neurología, Instituto de Investigación Sanitaria La Fe, 46026 València, Spain.
| |
Collapse
|
63
|
Zhang C, Morimoto LM, de Smith AJ, Hansen HM, Gonzalez-Maya J, Endicott AA, Smirnov IV, Metayer C, Wei Q, Eward WC, Wiemels JL, Walsh KM. Genetic determinants of childhood and adult height associated with osteosarcoma risk. Cancer 2018; 124:3742-3752. [PMID: 30311632 PMCID: PMC6214707 DOI: 10.1002/cncr.31645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 06/06/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Although increased height has been associated with osteosarcoma risk in previous epidemiologic studies, to the authors' knowledge the relative contribution of stature during different developmental timepoints remains unclear. Furthermore, the question of how genetic determinants of height impact osteosarcoma etiology remains unexplored. Genetic variants associated with stature in previous genome-wide association studies may be biomarkers of osteosarcoma risk. METHODS The authors tested the associations between osteosarcoma risk and polygenic scores for adult height (416 variants), childhood height (6 variants), and birth length (5 variants) in 864 osteosarcoma cases and 1879 controls of European ancestry. RESULTS Each standard deviation increase in the polygenic score for adult height, corresponding to a 1.7-cm increase in stature, was found to be associated with a 1.10-fold increase in the risk of osteosarcoma (95% confidence interval [95% CI], 1.01-1.19; P =.027). Each standard deviation increase in the polygenic score for childhood height, corresponding to a 0.5-cm increase in stature, was associated with a 1.10-fold increase in the risk of osteosarcoma (95% CI, 1.01-1.20; P =.023). The polygenic score for birth length was not found to be associated with osteosarcoma risk (P =.11). When adult and childhood height scores were modeled together, they were found to be independently associated with osteosarcoma risk (P =.037 and P = .043, respectively). An expression quantitative trait locus for cartilage intermediate layer protein 2 (CILP2), rs8103992, was significantly associated with osteosarcoma risk after adjustment for multiple comparisons (odds ratio, 1.35; 95% CI, 1.16-1.56 [P = 7.93×10-5 and Padjusted =.034]). CONCLUSIONS A genetic propensity for taller adult and childhood height attainments contributed independently to osteosarcoma risk in the current study data. These results suggest that the biological pathways affecting normal bone growth may be involved in osteosarcoma etiology.
Collapse
Affiliation(s)
- Chenan Zhang
- Department of Epidemiology and Biostatistics, UCSF
| | | | | | | | | | | | | | | | - Qingyi Wei
- Department of Population Health Sciences, Duke University
| | | | - Joseph L. Wiemels
- Department of Epidemiology and Biostatistics, UCSF
- Center for Genetic Epidemiology, University of Southern California
| | - Kyle M. Walsh
- Department of Epidemiology and Biostatistics, UCSF
- Department of Neurosurgery, Duke University
- Children’s Health and Discovery Institute, Duke University
| |
Collapse
|
64
|
Timmons JA, Atherton PJ, Larsson O, Sood S, Blokhin IO, Brogan RJ, Volmar CH, Josse AR, Slentz C, Wahlestedt C, Phillips SM, Phillips BE, Gallagher IJ, Kraus WE. A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease. Nucleic Acids Res 2018; 46:7772-7792. [PMID: 29986096 PMCID: PMC6125682 DOI: 10.1093/nar/gky570] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 05/23/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies (GWAS), relying on hundreds of thousands of individuals, have revealed >200 genomic loci linked to metabolic disease (MD). Loss of insulin sensitivity (IS) is a key component of MD and we hypothesized that discovery of a robust IS transcriptome would help reveal the underlying genomic structure of MD. Using 1,012 human skeletal muscle samples, detailed physiology and a tissue-optimized approach for the quantification of coding (>18,000) and non-coding (>15,000) RNA (ncRNA), we identified 332 fasting IS-related genes (CORE-IS). Over 200 had a proven role in the biochemistry of insulin and/or metabolism or were located at GWAS MD loci. Over 50% of the CORE-IS genes responded to clinical treatment; 16 quantitatively tracking changes in IS across four independent studies (P = 0.0000053: negatively: AGL, G0S2, KPNA2, PGM2, RND3 and TSPAN9 and positively: ALDH6A1, DHTKD1, ECHDC3, MCCC1, OARD1, PCYT2, PRRX1, SGCG, SLC43A1 and SMIM8). A network of ncRNA positively related to IS and interacted with RNA coding for viral response proteins (P < 1 × 10-48), while reduced amino acid catabolic gene expression occurred without a change in expression of oxidative-phosphorylation genes. We illustrate that combining in-depth physiological phenotyping with robust RNA profiling methods, identifies molecular networks which are highly consistent with the genetics and biochemistry of human metabolic disease.
Collapse
Affiliation(s)
- James A Timmons
- Division of Genetics and Molecular Medicine, King's College London, London, UK
- Scion House, Stirling University Innovation Park, Stirling, UK
| | | | - Ola Larsson
- Department of Oncology-Pathology, Science For Life Laboratory, Stockholm, Sweden
| | - Sanjana Sood
- Division of Genetics and Molecular Medicine, King's College London, London, UK
| | | | - Robert J Brogan
- Scion House, Stirling University Innovation Park, Stirling, UK
| | | | | | - Cris Slentz
- Duke University School of Medicine, Durham, USA
| | - Claes Wahlestedt
- Department of Oncology-Pathology, Science For Life Laboratory, Stockholm, Sweden
| | | | | | - Iain J Gallagher
- Scion House, Stirling University Innovation Park, Stirling, UK
- School of Health Sciences and Sport, University of Stirling, Stirling, UK
| | | |
Collapse
|
65
|
Zhou X, Xian W, Zhang J, Zhu Y, Shao X, Han Y, Qi Y, Ding X, Wang X. YY1 binds to the E3' enhancer and inhibits the expression of the immunoglobulin κ gene via epigenetic modifications. Immunology 2018; 155:491-498. [PMID: 30098214 DOI: 10.1111/imm.12990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 06/08/2018] [Accepted: 06/22/2018] [Indexed: 01/11/2023] Open
Abstract
The rearrangement and expression of immunoglobulin genes are regulated by enhancers and their binding transcriptional factors that activate or suppress the activities of the enhancers. The immunoglobulin κ (Igκ) gene locus has three important enhancers: the intrinsic enhancer (Ei), 3' enhancer (E3'), and distal enhancer (Ed). Ei and E3' are both required for Igκ gene rearrangement during early stages of B-cell development, whereas optimal expression of the rearranged Igκ gene relies on both E3' and Ed. The transcription factor YY1 affects the expression of many genes involved in B-cell development, probably by mediating interactions between their enhancers and promoters. Herein, we found that YY1 binds to the E3' enhancer and suppresses Igκ expression in B lymphoma cells by epigenetically modifying the enhancer. Knocking down YY1 enhanced Igκ expression, which was associated with increased levels of E2A (encoded by the TCF3 gene) and its binding to the E3' enhancer. Moreover, in germinal centre B cells and plasma cells, YY1 expression was reversely associated with Igκ levels, implying that YY1 might facilitate antibody affinity maturation in germinal centre B cells through the transient attenuation of Igκ expression.
Collapse
Affiliation(s)
- Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Weiwei Xian
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yiqing Zhu
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Xiaoyi Shao
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yu Han
- Department of Occupational Medicine and Environmental Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yue Qi
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Xiaoling Ding
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaoying Wang
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
66
|
Liu ZP. Towards precise reconstruction of gene regulatory networks by data integration. QUANTITATIVE BIOLOGY 2018. [DOI: 10.1007/s40484-018-0139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
67
|
Mitra S, Biswas A, Narlikar L. DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP. PLoS Comput Biol 2018; 14:e1006090. [PMID: 29684008 PMCID: PMC5933800 DOI: 10.1371/journal.pcbi.1006090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 05/03/2018] [Accepted: 03/14/2018] [Indexed: 12/27/2022] Open
Abstract
Genome-wide in vivo protein-DNA interactions are routinely mapped using high-throughput chromatin immunoprecipitation (ChIP). ChIP-reported regions are typically investigated for enriched sequence-motifs, which are likely to model the DNA-binding specificity of the profiled protein and/or of co-occurring proteins. However, simple enrichment analyses can miss insights into the binding-activity of the protein. Note that ChIP reports regions making direct contact with the protein as well as those binding through intermediaries. For example, consider a ChIP experiment targeting protein X, which binds DNA at its cognate sites, but simultaneously interacts with four other proteins. Each of these proteins also binds to its own specific cognate sites along distant parts of the genome, a scenario consistent with the current view of transcriptional hubs and chromatin loops. Since ChIP will pull down all X-associated regions, the final reported data will be a union of five distinct sets of regions, each containing binding sites of one of the five proteins, respectively. Characterizing all five different motifs and the corresponding sets is important to interpret the ChIP experiment and ultimately, the role of X in regulation. We present diversity which attempts exactly this: it partitions the data so that each partition can be characterized with its own de novo motif. Diversity uses a Bayesian approach to identify the optimal number of motifs and the associated partitions, which together explain the entire dataset. This is in contrast to standard motif finders, which report motifs individually enriched in the data, but do not necessarily explain all reported regions. We show that the different motifs and associated regions identified by diversity give insights into the various complexes that may be forming along the chromatin, something that has so far not been attempted from ChIP data. Webserver at http://diversity.ncl.res.in/; standalone (Mac OS X/Linux) from https://github.com/NarlikarLab/DIVERSITY/releases/tag/v1.0.0. A high-throughput chromatin immunoprecipitation (ChIP) experiment identifies genomic regions bound by a protein in vivo. Current motif-discovery approaches seek an enriched motif signature in the reported regions, which they can attribute to the protein’s binding preferences. However, Diversity models the fact that since a ChIP experiment pulls down regions participating in all complexes involving the profiled protein, the reported regions are in all likelihood, a collection of different types of protein-DNA contacts. Diversity asks a different question: what sequence component caused a specific region to be reported in a ChIP experiment? The answer, in combination with additional data such as sequence conservation, SNPs, chromatin structure, downstream gene-expression, etc. can yield insights into the diverse regulatory mechanisms at play. The added benefits of a webserver and a standalone parallel version make diversity a practical tool for discovering new biology from ChIP experiments.
Collapse
Affiliation(s)
- Sneha Mitra
- Department of Chemical Engineering, CSIR-National Chemical Laboratory, Pune, India
| | - Anushua Biswas
- Department of Chemical Engineering, CSIR-National Chemical Laboratory, Pune, India
| | - Leelavati Narlikar
- Department of Chemical Engineering, CSIR-National Chemical Laboratory, Pune, India
- * E-mail:
| |
Collapse
|
68
|
Lee KS, Chatterjee P, Choi EY, Sung MK, Oh J, Won H, Park SM, Kim YJ, Yi SV, Choi JK. Selection on the regulation of sympathetic nervous activity in humans and chimpanzees. PLoS Genet 2018; 14:e1007311. [PMID: 29672586 PMCID: PMC5908061 DOI: 10.1371/journal.pgen.1007311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/17/2018] [Indexed: 12/31/2022] Open
Abstract
Adrenergic α2C receptor (ADRA2C) is an inhibitory modulator of the sympathetic nervous system. Knockout mice for this gene show physiological and behavioural alterations that are associated with the fight-or-flight response. There is evidence of positive selection on the regulation of this gene during chicken domestication. Here, we find that the neuronal expression of ADRA2C is lower in human and chimpanzee than in other primates. On the basis of three-dimensional chromatin structure, we identified a cis-regulatory region whose DNA sequences have been significantly accelerated in human and chimpanzee. Active histone modification marks this region in rhesus macaque but not in human and chimpanzee; instead, repressive marks are enriched in various human brain samples. This region contains two neuron-restrictive silencer factor (NRSF) binding motifs, each of which harbours a polymorphism. Our genotyping and analysis of population genome data indicate that at both polymorphic sites, the derived allele has reached fixation in humans and chimpanzees but not in bonobos, whereas only the ancestral allele is present among macaques. Our CRISPR/Cas9 genome editing and reporter assays show that both derived nucleotides repress ADRA2C, most likely by increasing NRSF binding. In addition, we detected signatures of recent positive selection for lower neuronal ADRA2C expression in humans. Our findings indicate that there has been selective pressure for enhanced sympathetic nervous activity in the evolution of humans and chimpanzees.
Collapse
Affiliation(s)
- Kang Seon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Paramita Chatterjee
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Eun-Young Choi
- Specific Organs Cancer Branch, Research Institute, National Cancer Center, Ilsan, Gyeonggi, Republic of Korea
| | - Min Kyung Sung
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Jaeho Oh
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Hyejung Won
- Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Seong-Min Park
- Specific Organs Cancer Branch, Research Institute, National Cancer Center, Ilsan, Gyeonggi, Republic of Korea
| | - Youn-Jae Kim
- Specific Organs Cancer Branch, Research Institute, National Cancer Center, Ilsan, Gyeonggi, Republic of Korea
| | - Soojin V. Yi
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
69
|
Ding CH, Yin C, Chen SJ, Wen LZ, Ding K, Lei SJ, Liu JP, Wang J, Chen KX, Jiang HL, Zhang X, Luo C, Xie WF. The HNF1α-regulated lncRNA HNF1A-AS1 reverses the malignancy of hepatocellular carcinoma by enhancing the phosphatase activity of SHP-1. Mol Cancer 2018; 17:63. [PMID: 29466992 PMCID: PMC5822613 DOI: 10.1186/s12943-018-0813-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/08/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Our previous study has demonstrated that hepatocyte nuclear factor 1α (HNF1α) exerts potent therapeutic effects on hepatocellular carcinoma (HCC). However, the molecular mechanisms by which HNF1α reverses HCC malignancy need to be further elucidated. METHODS lncRNA microarray was performed to identify the long noncoding RNAs (lncRNAs) regulated by HNF1α. Chromatin immunoprecipitation and luciferase reporter assays were applied to clarify the mechanism of the transcriptional regulation of HNF1α to HNF1A antisense RNA 1 (HNF1A-AS1). The effect of HNF1A-AS1 on HCC malignancy was evaluated in vitro and in vivo. RNA pulldown, RNA-binding protein immunoprecipitation and the Bio-Layer Interferometry assay were used to validate the interaction of HNF1A-AS1 and Src homology region 2 domain-containing phosphatase 1 (SHP-1). RESULTS HNF1α regulated the expression of a subset of lncRNAs in HCC cells. Among these lncRNAs, the expression levels of HNF1A-AS1 were notably correlated with HNF1α levels in HCC cells and human HCC tissues. HNF1α activated the transcription of HNF1A-AS1 by directly binding to its promoter region. HNF1A-AS1 inhibited the growth and the metastasis of HCC cells in vitro and in vivo. Moreover, knockdown of HNF1A-AS1 reversed the suppressive effects of HNF1α on the migration and invasion of HCC cells. Importantly, HNF1A-AS1 directly bound to the C-terminal of SHP-1 with a high binding affinity (KD = 59.57 ± 14.29 nM) and increased the phosphatase activity of SHP-1. Inhibition of SHP-1 enzymatic activity substantially reversed the HNF1α- or HNF1A-AS1-induced reduction on the metastatic property of HCC cells. CONCLUSIONS Our data revealed that HNF1A-AS1 is a direct transactivation target of HNF1α in HCC cells and involved in the anti-HCC effect of HNF1α. HNF1A-AS1 functions as phosphatase activator through the direct interaction with SHP-1. These findings suggest that regulation of the HNF1α/HNF1A-AS1/SHP-1 axis may have beneficial effects in the treatment of HCC.
Collapse
Affiliation(s)
- Chen-Hong Ding
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Chuan Yin
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Shi-Jie Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Liang-Zhi Wen
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.,Present address: Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Kai Ding
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Shu-Juan Lei
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Jin-Pei Liu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Jian Wang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Kai-Xian Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Hua-Liang Jiang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
70
|
Chaudhari HG, Cohen BA. Local sequence features that influence AP-1 cis-regulatory activity. Genome Res 2018; 28:171-181. [PMID: 29305491 PMCID: PMC5793781 DOI: 10.1101/gr.226530.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/22/2017] [Indexed: 01/05/2023]
Abstract
In the genome, most occurrences of transcription factor binding sites (TFBS) have no cis-regulatory activity, which suggests that flanking sequences contain information that distinguishes functional from nonfunctional TFBS. We interrogated the role of flanking sequences near Activator Protein 1 (AP-1) binding sites that reside in DNase I Hypersensitive Sites (DHS) and regions annotated as Enhancers. In these regions, we found that sequence features directly adjacent to the core motif distinguish high from low activity AP-1 sites. Some nearby features are motifs for other TFs that genetically interact with the AP-1 site. Other features are extensions of the AP-1 core motif, which cause the extended sites to match motifs of multiple AP-1 binding proteins. Computational models trained on these data distinguish between sequences with high and low activity AP-1 sites and also predict changes in cis-regulatory activity due to mutations in AP-1 core sites and their flanking sequences. Our results suggest that extended AP-1 binding sites, together with adjacent binding sites for additional TFs, encode part of the information that governs TFBS activity in the genome.
Collapse
Affiliation(s)
- Hemangi G Chaudhari
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.,Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Barak A Cohen
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.,Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| |
Collapse
|
71
|
Newman V, Moore B, Sparrow H, Perry E. The Ensembl Genome Browser: Strategies for Accessing Eukaryotic Genome Data. Methods Mol Biol 2018; 1757:115-139. [PMID: 29761458 DOI: 10.1007/978-1-4939-7737-6_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Ensembl Genome Browser provides a wealth of freely available genomic data that can be accessed for many purposes by genetics, genomics, and molecular biology researchers. Herein we present two protocols for exploring different aspects of these data: a phenotype and its associated variants and genes, and a promoter and the epigenetic marks and protein-binding activity associated with it. These workflows illustrate a subset of the data types available through the Ensembl Browser, and can be considered a springboard for further exploration.
Collapse
Affiliation(s)
- Victoria Newman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Benjamin Moore
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Helen Sparrow
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Emily Perry
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK.
| |
Collapse
|
72
|
Apoptosis signal-regulating kinase 1 mediates the inhibitory effect of hepatocyte nuclear factor-4α on hepatocellular carcinoma. Oncotarget 2017; 7:27408-21. [PMID: 27050273 PMCID: PMC5053659 DOI: 10.18632/oncotarget.8478] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/16/2016] [Indexed: 12/24/2022] Open
Abstract
Previous studies provided substantial evidence of a striking suppressive effect of hepatocyte nuclear factor 4α (HNF4α) on hepatocellular carcinoma (HCC). Apoptosis signal-regulating kinase 1 (ASK1) is involved in death receptor-mediated apoptosis and may acts as a tumor suppressor in hepatocarcinogenesis. However, the status and function of ASK1 during HCC progression are unclear. In this study, we found that HNF4α increased ASK1 expression by directly binding to its promoter. ASK1 expression was dramatically suppressed and correlated with HNF4α levels in HCC tissues. Reduced ASK1 expression was associated with aggressive tumors and poor prognosis for human HCC. Moreover, ASK1 inhibited the malignant phenotype of HCC cells in vitro. Intratumoral ASK1 injection significantly suppressed the growth of subcutaneous HCC xenografts in nude mice. More interestingly, systemic ASK1 delivery strikingly inhibited the growth of orthotopic HCC nodules in NOD/SCID mice. In addition, inhibition of endogenous ASK1 partially reversed the suppressive effects of HNF4α on HCC. Collectively, this study highlights the suppressive effect of ASK1 on HCC and its biological significance in HCC development. These outcomes broaden the knowledge of ASK1 function in HCC progression, and provide a novel potential prognostic biomarker and therapeutic target for advanced HCC.
Collapse
|
73
|
Majewska M, Wysokińska H, Kuźma Ł, Szymczyk P. Eukaryotic and prokaryotic promoter databases as valuable tools in exploring the regulation of gene transcription: a comprehensive overview. Gene 2017; 644:38-48. [PMID: 29104165 DOI: 10.1016/j.gene.2017.10.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/26/2017] [Accepted: 10/27/2017] [Indexed: 01/02/2023]
Abstract
The complete exploration of the regulation of gene expression remains one of the top-priority goals for researchers. As the regulation is mainly controlled at the level of transcription by promoters, study on promoters and findings are of great importance. This review summarizes forty selected databases that centralize experimental and theoretical knowledge regarding the organization of promoters, interacting transcription factors (TFs) and microRNAs (miRNAs) in many eukaryotic and prokaryotic species. The presented databases offer researchers valuable support in elucidating the regulation of gene transcription.
Collapse
Affiliation(s)
- Małgorzata Majewska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland.
| | - Halina Wysokińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| | - Łukasz Kuźma
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| | - Piotr Szymczyk
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
74
|
Prija F, Srinivasan P, Das S, Kattusamy K, Prasad R. DnrI of Streptomyces peucetius binds to the resistance genes, drrAB and drrC but is activated by daunorubicin. J Basic Microbiol 2017; 57:862-872. [PMID: 28745822 DOI: 10.1002/jobm.201700162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/31/2017] [Accepted: 06/10/2017] [Indexed: 02/02/2023]
Abstract
The master regulator, DnrI of Streptomyces peucetius is a member of the family of transcriptional activator, Streptomyces antibiotic regulatory proteins (SARP), which controls the biosynthesis of antitumor anthracycline, daunorubicin (DNR) and doxorubicin (DXR). The binding of DnrI to the heptameric repeat sequence found within the -35 promoter region of biosynthetic gene, dpsE activates it. To combat the increased level of intracellular DNR, the cell has developed self resistance mechanism mediated by drrAB and drrC genes which are regulated by regulatory genes. We find that a drug non-producing mutant, ΔdpsA, showed sensitive phenotype in plate assay along with an increased level of dnrI transcript. Whereas the mutant grown in the presence of DNR showed a resistant phenotype with a six and eight folds increase in drrAB and drrC transcripts respectively. Computational studies followed by molecular docking showed that DnrI bound as a monomer to a slightly modified heptameric DNA motif, 5'-ACACGCA in drrA and 5'-ACAACCT in drrC which was also proved by electrophoretic mobility shift assay. These findings confirm that DnrI belongs to winged helix-turn-helix DNA-binding protein with Tetratricopeptide Repeat domain. The transcriptional regulator DnrI binds to the resistance genes at specific sites but they are activated only when an increased load of intracellular DNR is sensed.
Collapse
Affiliation(s)
- Francis Prija
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Padmanabhan Srinivasan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India.,Departments of Medicine, Physiology and Biophysics, University of California, Irvine, California, USA
| | - Subhadeep Das
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India.,IITB Monash Research Academy, IIT Bombay, Powai, Mumbai, Maharashtra, India
| | - Karuppasamy Kattusamy
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Ranjan Prasad
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
75
|
Jiang L, Xiong J, Zhan J, Yuan F, Tang M, Zhang C, Cao Z, Chen Y, Lu X, Li Y, Wang H, Wang L, Wang J, Zhu WG, Wang H. Ubiquitin-specific peptidase 7 (USP7)-mediated deubiquitination of the histone deacetylase SIRT7 regulates gluconeogenesis. J Biol Chem 2017; 292:13296-13311. [PMID: 28655758 DOI: 10.1074/jbc.m117.780130] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Sirtuin 7 (SIRT7), a member of the NAD+-dependent class III histone deacetylases, is involved in the regulation of various cellular processes and in resisting various stresses, such as hypoxia, low glucose levels, and DNA damage. Interestingly, SIRT7 is linked to the control of glycolysis, suggesting a role in glucose metabolism. Given the important roles of SIRT7, it is critical to clarify how SIRT7 activity is potentially regulated. It has been reported that some transcriptional and post-transcriptional regulatory mechanisms are involved. However, little is known how SIRT7 is regulated by the post-translational modifications. Here, we identified ubiquitin-specific peptidase 7 (USP7), a deubiquitinase, as a negative regulator of SIRT7. We showed that USP7 interacts with SIRT7 both in vitro and in vivo, and we further demonstrated that SIRT7 undergoes endogenous Lys-63-linked polyubiquitination, which is removed by USP7. Although the USP7-mediated deubiquitination of SIRT7 had no effect on its stability, the deubiquitination repressed its enzymatic activity. We also showed that USP7 coordinates with SIRT7 to regulate the expression of glucose-6-phosphatase catalytic subunit (G6PC), a gluconeogenic gene. USP7 depletion by RNA interference increased both G6PC expression and SIRT7 enzymatic activity. Moreover, SIRT7 targeted the G6PC promoter through the transcription factor ELK4 but not through forkhead box O1 (FoxO1). In summary, SIRT7 is a USP7 substrate and has a novel role as a regulator of gluconeogenesis. Our study may provide the basis for new clinical approaches to treat metabolic disorders related to glucose metabolism.
Collapse
Affiliation(s)
- Lu Jiang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Jiannan Xiong
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Junsi Zhan
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Fengjie Yuan
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Ming Tang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Chaohua Zhang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Ziyang Cao
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Yongcan Chen
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Xiaopeng Lu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Yinglu Li
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Hui Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Lina Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Jiadong Wang
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191 and
| | - Wei-Guo Zhu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, .,Peking-Tsinghua University Center for Life Science, and.,the Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Haiying Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center,
| |
Collapse
|
76
|
Axelsson AS, Mahdi T, Nenonen HA, Singh T, Hänzelmann S, Wendt A, Bagge A, Reinbothe TM, Millstein J, Yang X, Zhang B, Gusmao EG, Shu L, Szabat M, Tang Y, Wang J, Salö S, Eliasson L, Artner I, Fex M, Johnson JD, Wollheim CB, Derry JMJ, Mecham B, Spégel P, Mulder H, Costa IG, Zhang E, Rosengren AH. Sox5 regulates beta-cell phenotype and is reduced in type 2 diabetes. Nat Commun 2017; 8:15652. [PMID: 28585545 PMCID: PMC5467166 DOI: 10.1038/ncomms15652] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/10/2017] [Indexed: 01/09/2023] Open
Abstract
Type 2 diabetes (T2D) is characterized by insulin resistance and impaired insulin secretion, but the mechanisms underlying insulin secretion failure are not completely understood. Here, we show that a set of co-expressed genes, which is enriched for genes with islet-selective open chromatin, is associated with T2D. These genes are perturbed in T2D and have a similar expression pattern to that of dedifferentiated islets. We identify Sox5 as a regulator of the module. Sox5 knockdown induces gene expression changes similar to those observed in T2D and diabetic animals and has profound effects on insulin secretion, including reduced depolarization-evoked Ca2+-influx and β-cell exocytosis. SOX5 overexpression reverses the expression perturbations observed in a mouse model of T2D, increases the expression of key β-cell genes and improves glucose-stimulated insulin secretion in human islets from donors with T2D. We suggest that human islets in T2D display changes reminiscent of dedifferentiation and highlight SOX5 as a regulator of β-cell phenotype and function.
Collapse
Affiliation(s)
- A S Axelsson
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden
| | - T Mahdi
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.,Medical Research Center, Hawler Medical University, 44001 Erbil, Iraq
| | - H A Nenonen
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden
| | - T Singh
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden
| | - S Hänzelmann
- Institute of Biomedical Engineering, RWTH Aachen University Hospital, Pauwelstr 19, 52074 Aachen, Germany
| | - A Wendt
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden
| | - A Bagge
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden
| | - T M Reinbothe
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden
| | - J Millstein
- Sage Bionetworks, 1100 Fairview Avenue N, Seattle, Washington 98109, USA
| | - X Yang
- Sage Bionetworks, 1100 Fairview Avenue N, Seattle, Washington 98109, USA.,Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Dr East, Los Angeles, California 90095, USA
| | - B Zhang
- Sage Bionetworks, 1100 Fairview Avenue N, Seattle, Washington 98109, USA.,Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, New York 10029, USA
| | - E G Gusmao
- Institute of Biomedical Engineering, RWTH Aachen University Hospital, Pauwelstr 19, 52074 Aachen, Germany
| | - L Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Dr East, Los Angeles, California 90095, USA
| | - M Szabat
- Diabetes Research Group, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 5358-2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Y Tang
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.,Key Lab of Hormones and Development, Ministry of Health, Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
| | - J Wang
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.,Department of Emergency, Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, China
| | - S Salö
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden
| | - L Eliasson
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden
| | - I Artner
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden
| | - M Fex
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden
| | - J D Johnson
- Diabetes Research Group, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 5358-2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - C B Wollheim
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.,Department of Cell Physiology and Metabolism, University Medical Center, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - J M J Derry
- Sage Bionetworks, 1100 Fairview Avenue N, Seattle, Washington 98109, USA
| | - B Mecham
- Trialomics, 6310 12th Avenue NE, Seattle, Washington 98115, USA
| | - P Spégel
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.,Centre for Analysis and Synthesis, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - H Mulder
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden
| | - I G Costa
- Institute of Biomedical Engineering, RWTH Aachen University Hospital, Pauwelstr 19, 52074 Aachen, Germany
| | - E Zhang
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden
| | - A H Rosengren
- Lund University Diabetes Center, CRC 91-11 SUS, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.,Sage Bionetworks, 1100 Fairview Avenue N, Seattle, Washington 98109, USA.,Department of Neuroscience and Physiology, University of Gothenburg, Box 100, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
77
|
Little EC, Kubic JD, Salgia R, Grippo PJ, Lang D. Canonical and alternative transcript expression of PAX6 and CXCR4 in pancreatic cancer. Oncol Lett 2017; 13:4027-4034. [PMID: 28588695 PMCID: PMC5452919 DOI: 10.3892/ol.2017.5956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/06/2017] [Indexed: 01/15/2023] Open
Abstract
Pancreatic cancer is a lethal disease with a propensity for invading and metastasizing into the surrounding tissues, including the liver and intestines. A number of factors are aberrantly overexpressed in this tumor type and actively promote cancer progression and metastasis. The present study demonstrates that paired box transcription factor 6 (PAX6) and C-X-C chemokine receptor 4 (CXCR4) are frequently co-expressed in primary pancreatic adenocarcinoma tumors and established cell lines. Expression analysis methods used in the present study included evaluation of protein expression by western blot analysis and immunofluorescence, transcript expression levels by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and luciferase assays utilizing regulatory elements from the CXCR4 gene locus. Canonical PAX6 and alternative splice variant PAX6(5a) proteins are expressed in pancreatic cancer and can drive gene expression through a conserved enhancer element within the first intron of the CXCR4 gene. As demonstrated by the introduction of an exogenous reporter construct with or without the intronic enhancer, loss of this element inhibited gene expression within numerous pancreatic cancer cell lines including Panc1, MIA-PaCa2 and BxPC3. All of the pancreatic cancer cell lines expressed the canonical CXCR4B transcript in addition to the alternatively spliced variant CXCR4A as determined by RT-qPCR experiments. The discovery of variant transcripts in pancreatic cancer cells may provide new candidates for future targeted therapies.
Collapse
Affiliation(s)
- Elizabeth C Little
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer D Kubic
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA 91010, USA
| | - Paul J Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Deborah Lang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
78
|
Lowdon RF, Wang T. Epigenomic annotation of noncoding mutations identifies mutated pathways in primary liver cancer. PLoS One 2017; 12:e0174032. [PMID: 28333948 PMCID: PMC5363827 DOI: 10.1371/journal.pone.0174032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/02/2017] [Indexed: 11/19/2022] Open
Abstract
Evidence that noncoding mutation can result in cancer driver events is mounting. However, it is more difficult to assign molecular biological consequences to noncoding mutations than to coding mutations, and a typical cancer genome contains many more noncoding mutations than protein-coding mutations. Accordingly, parsing functional noncoding mutation signal from noise remains an important challenge. Here we use an empirical approach to identify putatively functional noncoding somatic single nucleotide variants (SNVs) from liver cancer genomes. Annotation of candidate variants by publicly available epigenome datasets finds that 40.5% of SNVs fall in regulatory elements. When assigned to specific regulatory elements, we find that the distribution of regulatory element mutation mirrors that of nonsynonymous coding mutation, where few regulatory elements are recurrently mutated in a patient population but many are singly mutated. We find potential gain-of-binding site events among candidate SNVs, suggesting a mechanism of action for these variants. When aggregating noncoding somatic mutation in promoters, we find that genes in the ERBB signaling and MAPK signaling pathways are significantly enriched for promoter mutations. Altogether, our results suggest that functional somatic SNVs in cancer are sporadic, but occasionally occur in regulatory elements and may affect phenotype by creating binding sites for transcriptional regulators. Accordingly, we propose that noncoding mutation should be formally accounted for when determining gene- and pathway-mutation burden in cancer.
Collapse
Affiliation(s)
- Rebecca F. Lowdon
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis, Saint Louis, Missouri, United States of America
| | - Ting Wang
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University in St. Louis, Saint Louis, Missouri, United States of America
| |
Collapse
|
79
|
Gui S, Rice AP, Chen R, Wu L, Liu J, Miao H. A scalable algorithm for structure identification of complex gene regulatory network from temporal expression data. BMC Bioinformatics 2017; 18:74. [PMID: 28143596 PMCID: PMC5294888 DOI: 10.1186/s12859-017-1489-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/20/2017] [Indexed: 12/31/2022] Open
Abstract
Background Gene regulatory interactions are of fundamental importance to various biological functions and processes. However, only a few previous computational studies have claimed success in revealing genome-wide regulatory landscapes from temporal gene expression data, especially for complex eukaryotes like human. Moreover, recent work suggests that these methods still suffer from the curse of dimensionality if a network size increases to 100 or higher. Results Here we present a novel scalable algorithm for identifying genome-wide gene regulatory network (GRN) structures, and we have verified the algorithm performances by extensive simulation studies based on the DREAM challenge benchmark data. The highlight of our method is that its superior performance does not degenerate even for a network size on the order of 104, and is thus readily applicable to large-scale complex networks. Such a breakthrough is achieved by considering both prior biological knowledge and multiple topological properties (i.e., sparsity and hub gene structure) of complex networks in the regularized formulation. We also validate and illustrate the application of our algorithm in practice using the time-course gene expression data from a study on human respiratory epithelial cells in response to influenza A virus (IAV) infection, as well as the CHIP-seq data from ENCODE on transcription factor (TF) and target gene interactions. An interesting finding, owing to the proposed algorithm, is that the biggest hub structures (e.g., top ten) in the GRN all center at some transcription factors in the context of epithelial cell infection by IAV. Conclusions The proposed algorithm is the first scalable method for large complex network structure identification. The GRN structure identified by our algorithm could reveal possible biological links and help researchers to choose which gene functions to investigate in a biological event. The algorithm described in this article is implemented in MATLAB Ⓡ, and the source code is freely available from https://github.com/Hongyu-Miao/DMI.git. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1489-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shupeng Gui
- Department of Computer Science, University of Rochester, Rochester, 14620, NY, USA
| | - Andrew P Rice
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, 77030, TX, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, 77030, TX, USA
| | - Liang Wu
- Department of Biostatistics, University of Texas Health Science Center, Houston, 77030, TX, USA
| | - Ji Liu
- Department of Computer Science, University of Rochester, Rochester, 14620, NY, USA.,Goergen Institute for Data Science, University of Rochester, Rochester, 14620, NY, USA
| | - Hongyu Miao
- Department of Biostatistics, University of Texas Health Science Center, Houston, 77030, TX, USA.
| |
Collapse
|
80
|
Doane AS, Elemento O. Regulatory elements in molecular networks. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28093886 DOI: 10.1002/wsbm.1374] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/06/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022]
Abstract
Regulatory elements determine the connectivity of molecular networks and mediate a variety of regulatory processes ranging from DNA looping to transcriptional, posttranscriptional, and posttranslational regulation. This review highlights our current understanding of the different types of regulatory elements found in molecular networks with a focus on DNA regulatory elements. We highlight technical advances and current challenges for the mapping of regulatory elements at the genome-wide scale, and describe new computational methods to uncover these elements via reconstructing regulatory networks from large genomic datasets. WIREs Syst Biol Med 2017, 9:e1374. doi: 10.1002/wsbm.1374 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ashley S Doane
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
81
|
Maatouk DM, Natarajan A, Shibata Y, Song L, Crawford GE, Ohler U, Capel B. Genome-wide identification of regulatory elements in Sertoli cells. Development 2017; 144:720-730. [PMID: 28087634 DOI: 10.1242/dev.142554] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/30/2016] [Indexed: 01/22/2023]
Abstract
A current goal of molecular biology is to identify transcriptional networks that regulate cell differentiation. However, identifying functional gene regulatory elements has been challenging in the context of developing tissues where material is limited and cell types are mixed. To identify regulatory sites during sex determination, we subjected Sertoli cells from mouse fetal testes to DNaseI-seq and ChIP-seq for H3K27ac. DNaseI-seq identified putative regulatory sites around genes enriched in Sertoli and pregranulosa cells; however, active enhancers marked by H3K27ac were enriched proximal to only Sertoli-enriched genes. Sequence analysis identified putative binding sites of known and novel transcription factors likely controlling Sertoli cell differentiation. As a validation of this approach, we identified a novel Sertoli cell enhancer upstream of Wt1, and used it to drive expression of a transgenic reporter in Sertoli cells. This work furthers our understanding of the complex genetic network that underlies sex determination and identifies regions that potentially harbor non-coding mutations underlying disorders of sexual development.
Collapse
Affiliation(s)
- Danielle M Maatouk
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.,Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA
| | - Anirudh Natarajan
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Yoichiro Shibata
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27708, USA
| | - Uwe Ohler
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA.,Max Delbruck Center for Molecular Medicine, Berlin 13125, Germany
| | - Blanche Capel
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
82
|
Leach DA, Panagopoulos V, Nash C, Bevan C, Thomson AA, Selth LA, Buchanan G. Cell-lineage specificity and role of AP-1 in the prostate fibroblast androgen receptor cistrome. Mol Cell Endocrinol 2017; 439:261-272. [PMID: 27634452 DOI: 10.1016/j.mce.2016.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022]
Abstract
Androgen receptor (AR) signalling in fibroblasts is important in prostate development and carcinogenesis, and is inversely related to prostate cancer mortality. However, the molecular mechanisms of AR action in fibroblasts and other non-epithelial cell types are largely unknown. The genome-wide DNA binding profile of AR in human prostate fibroblasts was identified by chromatin immunoprecipitation sequencing (ChIP-Seq), and found to be common to other fibroblast lines but disparate from AR cistromes of prostate cancer cells and tissue. Although AR binding sites specific to fibroblasts were less well conserved evolutionarily than those shared with cancer epithelia, they were likewise correlated with androgen regulation of fibroblast gene expression. Whereas FOXA1 is the key pioneer factor of AR in cancer epithelia, our data indicated that AP-1 likely plays a more important role in the AR cistrome in fibroblasts. The specificity of AP-1 and FOXA1 to binding in these cells is demonstrated using immunoblot and immunohistochemistry. Importantly, we find the fibroblast cistrome is represented in whole tissue/in vivo ChIP-seq studies at both genomic and resulting protein levels, highlighting the importance of the stroma in whole tissue -omic studies. This is the first nuclear receptor ChIP-seq study in prostatic fibroblasts, and provides novel insight into the action of fibroblast AR in prostate cancer.
Collapse
Affiliation(s)
- Damien A Leach
- The Basil Hetzel Institute for Translational Health Research, The University of Adelaide, SA, Australia; Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Vasilios Panagopoulos
- The Basil Hetzel Institute for Translational Health Research, The University of Adelaide, SA, Australia
| | - Claire Nash
- Division of Urology, Department of Surgery, McGill University Health Centre, Montreal, Canada
| | - Charlotte Bevan
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Axel A Thomson
- Division of Urology, Department of Surgery, McGill University Health Centre, Montreal, Canada
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, School of Medicine, The University of Adelaide, Adelaide, SA, Australia; Freemasons Foundation Centre for Mens' Health, School of Medicine, The University of Adelaide, Adelaide, SA, Australia.
| | - Grant Buchanan
- The Basil Hetzel Institute for Translational Health Research, The University of Adelaide, SA, Australia.
| |
Collapse
|
83
|
Abstract
Dysregulation of the normal gene expression program is the cause of a broad range of diseases, including cancer. Detecting the specific perturbed regulators that have an effect on the generation and the development of the disease is crucial for understanding the disease mechanism and for taking decisions on efficient preventive and curative therapies. Moreover, detecting such perturbations at the patient level is even more important from the perspective of personalized medicine. We applied the Transcription Factor Target Enrichment Analysis, a method that detects the activity of transcription factors based on the quantification of the collective transcriptional activation of their targets, to a large collection of 5607 cancer samples covering eleven cancer types. We produced for the first time a comprehensive catalogue of altered transcription factor activities in cancer, a considerable number of them significantly associated to patient’s survival. Moreover, we described several interesting TFs whose activity do not change substantially in the cancer with respect to the normal tissue but ultimately play an important role in patient prognostic determination, which suggest they might be promising therapeutic targets. An additional advantage of this method is that it allows obtaining personalized TF activity estimations for individual patients.
Collapse
|
84
|
Acevedo-Luna N, Mariño-Ramírez L, Halbert A, Hansen U, Landsman D, Spouge JL. Most of the tight positional conservation of transcription factor binding sites near the transcription start site reflects their co-localization within regulatory modules. BMC Bioinformatics 2016; 17:479. [PMID: 27871221 PMCID: PMC5117513 DOI: 10.1186/s12859-016-1354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/11/2016] [Indexed: 11/24/2022] Open
Abstract
Background Transcription factors (TFs) form complexes that bind regulatory modules (RMs) within DNA, to control specific sets of genes. Some transcription factor binding sites (TFBSs) near the transcription start site (TSS) display tight positional preferences relative to the TSS. Furthermore, near the TSS, RMs can co-localize TFBSs with each other and the TSS. The proportion of TFBS positional preferences due to TFBS co-localization within RMs is unknown, however. ChIP experiments confirm co-localization of some TFBSs genome-wide, including near the TSS, but they typically examine only a few TFs at a time, using non-physiological conditions that can vary from lab to lab. In contrast, sequence analysis can examine many TFs uniformly and methodically, broadly surveying the co-localization of TFBSs with tight positional preferences relative to the TSS. Results Our statistics found 43 significant sets of human motifs in the JASPAR TF Database with positional preferences relative to the TSS, with 38 preferences tight (±5 bp). Each set of motifs corresponded to a gene group of 135 to 3304 genes, with 42/43 (98%) gene groups independently validated by DAVID, a gene ontology database, with FDR < 0.05. Motifs corresponding to two TFBSs in a RM should co-occur more than by chance alone, enriching the intersection of the gene groups corresponding to the two TFs. Thus, a gene-group intersection systematically enriched beyond chance alone provides evidence that the two TFs participate in an RM. Of the 903 = 43*42/2 intersections of the 43 significant gene groups, we found 768/903 (85%) pairs of gene groups with significantly enriched intersections, with 564/768 (73%) intersections independently validated by DAVID with FDR < 0.05. A user-friendly web site at http://go.usa.gov/3kjsH permits biologists to explore the interaction network of our TFBSs to identify candidate subunit RMs. Conclusions Gene duplication and convergent evolution within a genome provide obvious biological mechanisms for replicating an RM near the TSS that binds a particular TF subunit. Of all intersections of our 43 significant gene groups, 85% were significantly enriched, with 73% of the significant enrichments independently validated by gene ontology. The co-localization of TFBSs within RMs therefore likely explains much of the tight TFBS positional preferences near the TSS. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1354-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia Acevedo-Luna
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Leonardo Mariño-Ramírez
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Armand Halbert
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Ulla Hansen
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - John L Spouge
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
85
|
Buroker NE. Identifying changes in punitive transcriptional factor binding sites from regulatory single nucleotide polymorphisms that are significantly associated with disease or sickness. World J Hematol 2016; 5:75-87. [DOI: 10.5315/wjh.v5.i4.75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/14/2016] [Accepted: 08/15/2016] [Indexed: 02/05/2023] Open
Abstract
AIM To identify punitive transcriptional factor binding sites (TFBS) from regulatory single nucleotide polymorphisms (rSNPs) that are significantly associated with disease.
METHODS The genome-wide association studies have provided us with nearly 6500 disease or trait-predisposing SNPs where 93% are located within non-coding regions such as gene regulatory or intergenic areas of the genome. In the regulatory region of a gene, a SNP can change the DNA sequence of a transcriptional factor (TF) motif and in turn may affect the process of gene regulation. SNP changes that affect gene expression and impact gene regulatory sequences such as promoters, enhancers, and silencers are known as rSNPs. Computational tools can be used to identify unique punitive TFBS created by rSNPs that are associated with disease or sickness. Computational analysis was used to identify punitive TFBS generated by the alleles of these rSNPs.
RESULTS rSNPs within nine genes that have been significantly associated with disease or sickness were used to illustrate the tremendous diversity of punitive unique TFBS that can be generated by their alleles. The genes studied are the adrenergic, beta, receptor kinase 1, the v-akt murine thymoma viral oncogene homolog 3, the activating transcription factor 3, the type 2 demodkinase gene, the endothetal Per-Arnt-Sim domain protein 1, the lysosomal acid lipase A, the signal Transducer and Activator of Transcription 4, the thromboxane A2 receptor and the vascular endothelial growth factor A. From this sampling of SNPs among the nine genes, there are 73 potential unique TFBS generated by the common alleles compared to 124 generated by the minor alleles indicating the tremendous diversity of potential TFs that are capable of regulating these genes.
CONCLUSION From the diversity of unique punitive binding sites for TFs, it was found that some TFs play a role in the disease or sickness being studied.
Collapse
|
86
|
Zheng G, Zhang P, Wu Z, Dong D. Understanding the combinatorial action of transcription factors and microRNA regulation from regions of open chromatin. MOLECULAR BIOSYSTEMS 2016; 12:371-8. [PMID: 26661887 DOI: 10.1039/c5mb00702j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transcriptional regulatory cascades are always triggered through the combinatorial interplay between transcription factors (TFs) and microRNAs (miRNAs) in eukaryotes. However, it is still a very substantial undertaking to dynamically profile their coordinated actions. In this work, we compared the differences in TFBS numbers between miRNA targets and non-targets, and found that miRNA targets tend to have more TFBS numbers. With the attempt to comprehensively understand the combinatorial action of TF and miRNA regulation from regions of open chromatin, we retrieved recently published DNase I hypersensitive sites (DHSs) across different human cell lines. The result showed that the differences are more statistically significant in DHS regions than non-DHS regions. Next, we trained classifiers for miRNA targets and non-targets. The result showed that TFBSs located in DHS regions achieved a competitive performance when discriminating miRNA targets and non-targets, whereas the performance of classifiers using TFBSs located in non-DHS regions is close to that of a random classifier. After the DHSs were divided into intergenic, transcription start sites (TSSs) and gene body DHS regions based on their genomic locations, only TFBSs located in TSS DHS regions provided a competitive performance. Our results provide us a clue that the coordinated activity of miRNAs and TFs describing the mechanism of gene expression control should be examined in a dynamic perspective.
Collapse
Affiliation(s)
- Guantao Zheng
- Laboratory of Molecular Ecology and Evolution, Institute of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, P. R. China
| | - Pan Zhang
- Laboratory of Molecular Ecology and Evolution, Institute of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, P. R. China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, No. 1 Shuaifuyuan, Beijing, 100730, P. R. China. and Central laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing, 100730, P. R. China
| | - Dong Dong
- Laboratory of Molecular Ecology and Evolution, Institute of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, P. R. China and Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, No. 1 Shuaifuyuan, Beijing, 100730, P. R. China.
| |
Collapse
|
87
|
Bobola N, Merabet S. Homeodomain proteins in action: similar DNA binding preferences, highly variable connectivity. Curr Opin Genet Dev 2016; 43:1-8. [PMID: 27768937 DOI: 10.1016/j.gde.2016.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Homeodomain proteins are evolutionary conserved proteins present in the entire eukaryote kingdom. They execute functions that are essential for life, both in developing and adult organisms. Most homeodomain proteins act as transcription factors and bind DNA to control the activity of other genes. In contrast to their similar DNA binding specificity, homeodomain proteins execute highly diverse and context-dependent functions. Several factors, including genome accessibility, DNA shape, combinatorial binding and the ability to interact with many transcriptional partners, diversify the activity of homeodomain proteins and culminate in the activation of highly dynamic, context-specific transcriptional programs. Clarifying how homeodomain transcription factors work is central to our understanding of development, disease and evolution.
Collapse
Affiliation(s)
- Nicoletta Bobola
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, Centre National de Recherche Scientifique, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
88
|
Marques H, Freitas J, Medeiros R, Longatto-Filho A. Methodology for single nucleotide polymorphism selection in promoter regions for clinical use. An example of its applicability. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2016; 7:126-136. [PMID: 27766139 PMCID: PMC5069276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Genetic variability in humans can explain many differences in disease risk factors. Polymorphism-related studies focus mainly on the single nucleotide polymorphisms (SNPs) of coding regions of the genes. SNPs on DNA binding motifs of the promoter region have been less explored. On a recent study of SNPs in patients with non-Hodgkin lymphomas we faced the problem of SNP selection from promoter regions and developed a practical methodology for clinical studies. The process consists in identifying SNPs in the coding and promoter regions of the antigen-processing system using the 'dbSNP' database. With the 'HapMap' program, we select SNPs with frequencies >20% in Caucasian populations. For coding regions, we sought biologically and clinically relevant SNPs described in the literature. For the promoter regions, we determined their chromosomal location on 'QiagenSABioscience' site database. The nucleotide sequence of ancestral and variant alleles is available in the 'dbSNP'. These sequences were used in 'Promoter TESS' to determine binding differences of transcription factors. Each sequence may have affinity to different TFs. Thus, SNP selection on the promoter regions was based in the differences on TF binding pattern between the old and the new allele. The potential clinical relevance of the new TFs was also evaluated before the final selection. With this approach, we found that almost half of the relevant SNP fall within the promoter region. In conclusion, we were able to develop a methodology of oriented selection of promoter regions of human genes, comparing the TF with affinity to the ancestral allele with the TF to a variant allele. We selected those SNPs that change the TF's affinity to a pattern with functional significance.
Collapse
Affiliation(s)
- Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B’s-PT Government Associate LaboratoryBraga/Guimarães, Portugal
- Department of Oncology, Hospital de BragaBraga, Portugal
| | - José Freitas
- Nova Medical School, New University of LisbonLisbon, Portugal
| | - Rui Medeiros
- Molecular Oncology Group & Virology LB-CI, Portuguese Institute of Oncology, Porto, Portugal; ICBAS, Abel Salazar Institute for the Biomedical Sciences, University of Porto, Porto, Portugal; CEBIMED, Faculty of Health Sciences of Fernando Pessoa University, Porto, Portugal; PCC, Research Department-Portuguese League Against Cancer (NRNorte)Porto, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B’s-PT Government Associate LaboratoryBraga/Guimarães, Portugal
- Laboratory of Medical Investigation (LIM) 14, Faculty of Medicine, University of São PauloSão Paulo, Brazil
| |
Collapse
|
89
|
Tombácz D, Csabai Z, Oláh P, Balázs Z, Likó I, Zsigmond L, Sharon D, Snyder M, Boldogkői Z. Full-Length Isoform Sequencing Reveals Novel Transcripts and Substantial Transcriptional Overlaps in a Herpesvirus. PLoS One 2016; 11:e0162868. [PMID: 27685795 PMCID: PMC5042381 DOI: 10.1371/journal.pone.0162868] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022] Open
Abstract
Whole transcriptome studies have become essential for understanding the complexity of genetic regulation. However, the conventionally applied short-read sequencing platforms cannot be used to reliably distinguish between many transcript isoforms. The Pacific Biosciences (PacBio) RS II platform is capable of reading long nucleic acid stretches in a single sequencing run. The pseudorabies virus (PRV) is an excellent system to study herpesvirus gene expression and potential interactions between the transcriptional units. In this work, non-amplified and amplified isoform sequencing protocols were used to characterize the poly(A+) fraction of the lytic transcriptome of PRV, with the aim of a complete transcriptional annotation of the viral genes. The analyses revealed a previously unrecognized complexity of the PRV transcriptome including the discovery of novel protein-coding and non-coding genes, novel mono- and polycistronic transcription units, as well as extensive transcriptional overlaps between neighboring and distal genes. This study identified non-coding transcripts overlapping all three replication origins of the PRV, which might play a role in the control of DNA synthesis. We additionally established the relative expression levels of gene products. Our investigations revealed that the whole PRV genome is utilized for transcription, including both DNA strands in all coding and intergenic regions. The genome-wide occurrence of transcript overlaps suggests a crosstalk between genes through a network formed by interacting transcriptional machineries with a potential function in the control of gene expression.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Department of Genetics, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Péter Oláh
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balázs
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - István Likó
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Laura Zsigmond
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Donald Sharon
- Department of Genetics, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- * E-mail:
| |
Collapse
|
90
|
Chatterjee S, Kapoor A, Akiyama JA, Auer DR, Lee D, Gabriel S, Berrios C, Pennacchio LA, Chakravarti A. Enhancer Variants Synergistically Drive Dysfunction of a Gene Regulatory Network In Hirschsprung Disease. Cell 2016; 167:355-368.e10. [PMID: 27693352 DOI: 10.1016/j.cell.2016.09.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022]
Abstract
Common sequence variants in cis-regulatory elements (CREs) are suspected etiological causes of complex disorders. We previously identified an intronic enhancer variant in the RET gene disrupting SOX10 binding and increasing Hirschsprung disease (HSCR) risk 4-fold. We now show that two other functionally independent CRE variants, one binding Gata2 and the other binding Rarb, also reduce Ret expression and increase risk 2- and 1.7-fold. By studying human and mouse fetal gut tissues and cell lines, we demonstrate that reduced RET expression propagates throughout its gene regulatory network, exerting effects on both its positive and negative feedback components. We also provide evidence that the presence of a combination of CRE variants synergistically reduces RET expression and its effects throughout the GRN. These studies show how the effects of functionally independent non-coding variants in a coordinated gene regulatory network amplify their individually small effects, providing a model for complex disorders.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ashish Kapoor
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer A Akiyama
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dallas R Auer
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dongwon Lee
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Courtney Berrios
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Len A Pennacchio
- Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
91
|
Doyle CE, Kitty Cheung H, Spence KL, Saville BJ. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis. Fungal Genet Biol 2016; 94:54-68. [DOI: 10.1016/j.fgb.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
|
92
|
Sung MK, Jang J, Lee KS, Ghim CM, Choi JK. Selected heterozygosity at cis-regulatory sequences increases the expression homogeneity of a cell population in humans. Genome Biol 2016; 17:164. [PMID: 27468897 PMCID: PMC4964047 DOI: 10.1186/s13059-016-1027-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/13/2016] [Indexed: 12/28/2022] Open
Abstract
Background Examples of heterozygote advantage in humans are scarce and limited to protein-coding sequences. Here, we attempt a genome-wide functional inference of advantageous heterozygosity at cis-regulatory regions. Results The single-nucleotide polymorphisms bearing the signatures of balancing selection are enriched in active cis-regulatory regions of immune cells and epithelial cells, the latter of which provide barrier function and innate immunity. Examples associated with ancient trans-specific balancing selection are also discovered. Allelic imbalance in chromatin accessibility and divergence in transcription factor motif sequences indicate that these balanced polymorphisms cause distinct regulatory variation. However, a majority of these variants show no association with the expression level of the target gene. Instead, single-cell experimental data for gene expression and chromatin accessibility demonstrate that heterozygous sequences can lower cell-to-cell variability in proportion to selection strengths. This negative correlation is more pronounced for highly expressed genes and consistently observed when using different data and methods. Based on mathematical modeling, we hypothesize that extrinsic noise from fluctuations in transcription factor activity may be amplified in homozygotes, whereas it is buffered in heterozygotes. While high expression levels are coupled with intrinsic noise reduction, regulatory heterozygosity can contribute to the suppression of extrinsic noise. Conclusions This mechanism may confer a selective advantage by increasing cell population homogeneity and thereby enhancing the collective action of the cells, especially of those involved in the defense systems in humans. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1027-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Kyung Sung
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Juneil Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Kang Seon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Cheol-Min Ghim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.,Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.,Mathematical Bioscience Institute, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
93
|
Grunin M, Hagbi-Levi S, Rinsky B, Smith Y, Chowers I. Transcriptome Analysis on Monocytes from Patients with Neovascular Age-Related Macular Degeneration. Sci Rep 2016; 6:29046. [PMID: 27374485 PMCID: PMC4931446 DOI: 10.1038/srep29046] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/10/2016] [Indexed: 01/09/2023] Open
Abstract
Mononuclear phagocytes (MPs), including monocytes/macrophages, play complex roles in age-related macular degeneration (AMD) pathogenesis. We reported altered gene-expression signature in peripheral blood mononuclear cells from AMD patients, and a chemokine receptor signature on AMD monocytes. To obtain comprehensive understanding of MP involvement, particularly in peripheral circulation in AMD, we performed global gene expression analysis in monocytes. We separated monocytes from treatment-naïve neovascular AMD (nvAMD) patients (n = 14) and age-matched controls (n = 15), and performed microarray and bioinformatics analysis. Quantitative real-time PCR was performed on other sets of nvAMD (n = 25), atrophic AMD (n = 21), and controls (n = 28) for validation. This validated microarray genes (like TMEM176A/B and FOSB) tested, including differences between nvAMD and atrophic AMD. We identified 2,165 differentially-expressed genes (P < 0.05), including 79 genes with log2 fold change ≥1.5 between nvAMD and controls. Functional annotation using DAVID and TANGO demonstrated immune response alterations in AMD monocytes (FDR-P <0.05), validated by randomized data comparison (P < 0.0001). GSEA, ISMARA, and MEME analysis found immune enrichment and specific involved microRNAs. Enrichment of differentially-expressed genes in monocytes was found in retina via SAGE data-mining. These genes were enriched in non-classical vs. classical monocyte subsets (P < 0.05). Therefore, global gene expression analysis in AMD monocytes reveals an altered immune-related signature, further implicating systemic MP activation in AMD.
Collapse
Affiliation(s)
- Michelle Grunin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shira- Hagbi-Levi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Batya Rinsky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yoav Smith
- Genomic Data Analysis Unit, Hebrew University, Jerusalem, Israel
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
94
|
Wang M, Liu Z, Liu C, Wu T, Cai F, Wang Q, Su X, Shi Y. PU.1 is involved in the immune response to Aspergillus fumigatus through upregulating Dectin-1 expression. BMC Infect Dis 2016; 16:297. [PMID: 27306059 PMCID: PMC4910222 DOI: 10.1186/s12879-016-1632-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023] Open
Abstract
Background Invasive aspergillosis is a life-threatening disease, and its incidence has increased in the recent past. Dectin-1 recognizes β-glucans and mediates innate immune responses to Aspergillus fumigatus. Transcription factor PU.1 has been the focus of recent research due to its role in inflammation and infection. However, its role in Dectin-1 regulation during A. fumigatus infection remains to be elucidated. Methods THP-1 cells were stimulated with A. fumigatus conidia. We then used real-time RT-PCR, Western blot, and immunofluorescence assays to analyze the mRNA and protein levels and cellular distribution, respectively, of Dectin-1 and PU.1 in stimulated THP-1 cells. Additionally, we used the luciferase reporter assays, chromatin immunoprecipitation (ChIP) assays, electrophoretic mobility shift assays (EMSA), and RNA interference experiments to investigate the role of PU.1 in Dectin-1 regulation. Results Our results revealed that Dectin-1 mRNA and protein levels as well as the PU.1 protein level were increased in THP-1 cells stimulated with A. fumigatus conidia, while the mRNA expression level did not significantly change between the stimulated and control groups. We also observed that PU.1 translocated into the nucleus in stimulated THP-1 cells. The results of the luciferase reporter assay showed that PU.1 promoted human Dectin-1 (hDectin-1) gene activity. ChIP and EMSA indicated that PU.1 could bind with hDectin-1 gene promoter at three potential transcription factor-binding sites (TFBSs). In addition, knockdown of PU.1 significantly decreased Dectin-1 expression. Conclusions This study demonstrated the novel role of PU.1 in the immune response to A. fumigatus through upregulation of Dectin-1 expression and its translocation to the nucleus in A. fumigatus-stimulated THP-1 cells.
Collapse
Affiliation(s)
- Min Wang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, China
| | | | | | - Ting Wu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, China
| | - Feng Cai
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, China
| | - Quan Wang
- Department of Respiratory Medicine, BenQ Medical Center, Nanjing, China
| | - Xin Su
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, China.
| | - Yi Shi
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, China.
| |
Collapse
|
95
|
Chaitankar V, Karakülah G, Ratnapriya R, Giuste FO, Brooks MJ, Swaroop A. Next generation sequencing technology and genomewide data analysis: Perspectives for retinal research. Prog Retin Eye Res 2016; 55:1-31. [PMID: 27297499 DOI: 10.1016/j.preteyeres.2016.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 02/08/2023]
Abstract
The advent of high throughput next generation sequencing (NGS) has accelerated the pace of discovery of disease-associated genetic variants and genomewide profiling of expressed sequences and epigenetic marks, thereby permitting systems-based analyses of ocular development and disease. Rapid evolution of NGS and associated methodologies presents significant challenges in acquisition, management, and analysis of large data sets and for extracting biologically or clinically relevant information. Here we illustrate the basic design of commonly used NGS-based methods, specifically whole exome sequencing, transcriptome, and epigenome profiling, and provide recommendations for data analyses. We briefly discuss systems biology approaches for integrating multiple data sets to elucidate gene regulatory or disease networks. While we provide examples from the retina, the NGS guidelines reviewed here are applicable to other tissues/cell types as well.
Collapse
Affiliation(s)
- Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA
| | - Gökhan Karakülah
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA
| | - Felipe O Giuste
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA
| | - Matthew J Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD, 20892-0610, USA.
| |
Collapse
|
96
|
Whitington T, Gao P, Song W, Ross-Adams H, Lamb AD, Yang Y, Svezia I, Klevebring D, Mills IG, Karlsson R, Halim S, Dunning MJ, Egevad L, Warren AY, Neal DE, Grönberg H, Lindberg J, Wei GH, Wiklund F. Gene regulatory mechanisms underpinning prostate cancer susceptibility. Nat Genet 2016; 48:387-97. [PMID: 26950096 DOI: 10.1038/ng.3523] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/08/2016] [Indexed: 12/29/2022]
Abstract
Molecular characterization of genome-wide association study (GWAS) loci can uncover key genes and biological mechanisms underpinning complex traits and diseases. Here we present deep, high-throughput characterization of gene regulatory mechanisms underlying prostate cancer risk loci. Our methodology integrates data from 295 prostate cancer chromatin immunoprecipitation and sequencing experiments with genotype and gene expression data from 602 prostate tumor samples. The analysis identifies new gene regulatory mechanisms affected by risk locus SNPs, including widespread disruption of ternary androgen receptor (AR)-FOXA1 and AR-HOXB13 complexes and competitive binding mechanisms. We identify 57 expression quantitative trait loci at 35 risk loci, which we validate through analysis of allele-specific expression. We further validate predicted regulatory SNPs and target genes in prostate cancer cell line models. Finally, our integrated analysis can be accessed through an interactive visualization tool. This analysis elucidates how genome sequence variation affects disease predisposition via gene regulatory mechanisms and identifies relevant genes for downstream biomarker and drug development.
Collapse
Affiliation(s)
- Thomas Whitington
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ping Gao
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Wei Song
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Helen Ross-Adams
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Alastair D Lamb
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.,Department of Urology, Addenbrooke's Hospital, Cambridge, UK
| | - Yuehong Yang
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ilaria Svezia
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Daniel Klevebring
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ian G Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Molecular Oncology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway.,Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Halim
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.,Cancer Research UK Beatson Institute, Glasgow, UK
| | - Mark J Dunning
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Lars Egevad
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anne Y Warren
- Department of Pathology, Addenbrooke's Hospital, Cambridge, UK
| | - David E Neal
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gong-Hong Wei
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
97
|
Sato MP, Makino T, Kawata M. Natural selection in a population of Drosophila melanogaster explained by changes in gene expression caused by sequence variation in core promoter regions. BMC Evol Biol 2016; 16:35. [PMID: 26860869 PMCID: PMC4748610 DOI: 10.1186/s12862-016-0606-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/29/2016] [Indexed: 11/29/2022] Open
Abstract
Background Understanding the evolutionary forces that influence variation in gene regulatory regions in natural populations is an important challenge for evolutionary biology because natural selection for such variations could promote adaptive phenotypic evolution. Recently, whole-genome sequence analyses have identified regulatory regions subject to natural selection. However, these studies could not identify the relationship between sequence variation in the detected regions and change in gene expression levels. We analyzed sequence variations in core promoter regions, which are critical regions for gene regulation in higher eukaryotes, in a natural population of Drosophila melanogaster, and identified core promoter sequence variations associated with differences in gene expression levels subjected to natural selection. Results Among the core promoter regions whose sequence variation could change transcription factor binding sites and explain differences in expression levels, three core promoter regions were detected as candidates associated with purifying selection or selective sweep and seven as candidates associated with balancing selection, excluding the possibility of linkage between these regions and core promoter regions. CHKov1, which confers resistance to the sigma virus and related insecticides, was identified as core promoter regions that has been subject to selective sweep, although it could not be denied that selection for variation in core promoter regions was due to linked single nucleotide polymorphisms in the regulatory region outside core promoter regions. Nucleotide changes in core promoter regions of CHKov1 caused the loss of two basal transcription factor binding sites and acquisition of one transcription factor binding site, resulting in decreased gene expression levels. Of nine core promoter regions regions associated with balancing selection, brat, and CG9044 are associated with neuromuscular junction development, and Nmda1 are associated with learning, behavioral plasticity, and memory. Diversity of neural and behavioral traits may have been maintained by balancing selection. Conclusions Our results revealed the evolutionary process occurring by natural selection for differences in gene expression levels caused by sequence variation in core promoter regions in a natural population. The sequences of core promoter regions were diverse even within the population, possibly providing a source for natural selection. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0606-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mitsuhiko P Sato
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| | - Masakado Kawata
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, 6-3, Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
98
|
Schirmer MA, Lüske CM, Roppel S, Schaudinn A, Zimmer C, Pflüger R, Haubrock M, Rapp J, Güngör C, Bockhorn M, Hackert T, Hank T, Strobel O, Werner J, Izbicki JR, Johnsen SA, Gaedcke J, Brockmöller J, Ghadimi BM. Relevance of Sp Binding Site Polymorphism in WWOX for Treatment Outcome in Pancreatic Cancer. J Natl Cancer Inst 2016; 108:djv387. [PMID: 26857392 PMCID: PMC4859408 DOI: 10.1093/jnci/djv387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/16/2015] [Indexed: 01/05/2023] Open
Abstract
Background: A genome-wide association study (GWAS) suggested inherited genetic single-nucleotide polymorphisms (SNPs) affecting overall survival (OS) in advanced pancreatic cancer. To identify robust clinical biomarkers, we tested the strongest reported candidate loci in an independent patient cohort, assessed cellular drug sensitivity, and evaluated molecular effects. Methods: This study comprised 381 patients with histologically verified pancreatic ductal adenocarcinoma treated with gemcitabine-based chemotherapy. The primary outcome was the relationship between germline polymorphisms and OS. Functional assays addressed pharmacological dose-response effects in lymphoblastoid cell lines (LCLs) and pancreatic cancer cell lines (including upon RNAi), gene expression analyses, and allele-specific transcription factor binding. All statistical tests were two-sided. Results: The A allele (26% in Caucasians) at SNP rs11644322 in the putative tumor suppressor gene WWOX conferred worse prognosis. Median OS was 14 months (95% confidence interval [CI] = 12 to 15 months), 13 months (95% CI = 11 to 15 months), and nine months (95% CI = 7 to 12 months) for the GG, GA, and AA genotypes, respectively (Ptrend < .001 for trend in univariate log-rank assuming a codominant mode of inheritance; advanced disease subgroup Ptrend < .001). Mean OS was 25 months (95% CI = 21 to 29 months), 19 months (95% CI = 15 to 22 months), and 13 months (95% CI = 10 to 16 months), respectively. This effect held true after adjustment for age, performance status according to Eastern Cooperative Oncology Group classification, TNM, grading, and resection status and was comparable with the strongest established prognostic factors in multivariable analysis. Consistently, reduced responsiveness to gemcitabine, but not 5-fluorouracil, along with lower WWOX expression was demonstrated in LCLs harboring the AA genotype. Likewise, RNAi-mediated WWOX knockdown in pancreatic cancer cells confirmed differential cytostatic drug sensitivity. In electrophoretic mobility shift assays, the A allele exhibited weaker binding of Sp family members Sp1/Sp3. Conclusions: WWOX rs11644322 represents a major predictive factor in gemcitabine-treated pancreatic cancer. Decreased WWOX expression may interfere with gemcitabine sensitivity, and allele-specific binding at rs11644332 might be a causative molecular mechanism behind the observed clinical associations.
Collapse
Affiliation(s)
- Markus A Schirmer
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Claudia M Lüske
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Sebastian Roppel
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Alexander Schaudinn
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Christian Zimmer
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Ruben Pflüger
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Martin Haubrock
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Jacobe Rapp
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Cenap Güngör
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Maximilian Bockhorn
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Thilo Hackert
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Thomas Hank
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Oliver Strobel
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Jens Werner
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Jakob R Izbicki
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Steven A Johnsen
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Jochen Gaedcke
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - Jürgen Brockmöller
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| | - B Michael Ghadimi
- Affiliations of authors:Institute of Clinical Pharmacology (MAS, CML, SR, AS, CZ, RP, JB), Institute of Bioinformatics (MH), Clinic of General and Visceral Surgery (CML, SR, JR, SAJ, JG, BMG), and Clinic of Radiotherapy and Radiation Oncology (MAS), University Medical Center Göttingen , Göttingen , Germany ; Department of General, Visceral, and Thoracic Surgery, University Hospital Hamburg-Eppendorf , Hamburg , Germany (CG, MB, JRI); Department of General, Visceral, and Transplantation Surgery, University of Heidelberg , Heidelberg , Germany (THac, THan, OS, JW)
| |
Collapse
|
99
|
Erosion of Conserved Binding Sites in Personal Genomes Points to Medical Histories. PLoS Comput Biol 2016; 12:e1004711. [PMID: 26845687 PMCID: PMC4742230 DOI: 10.1371/journal.pcbi.1004711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/16/2015] [Indexed: 01/02/2023] Open
Abstract
Although many human diseases have a genetic component involving many loci, the majority of studies are statistically underpowered to isolate the many contributing variants, raising the question of the existence of alternate processes to identify disease mutations. To address this question, we collect ancestral transcription factor binding sites disrupted by an individual's variants and then look for their most significant congregation next to a group of functionally related genes. Strikingly, when the method is applied to five different full human genomes, the top enriched function for each is invariably reflective of their very different medical histories. For example, our method implicates "abnormal cardiac output" for a patient with a longstanding family history of heart disease, "decreased circulating sodium level" for an individual with hypertension, and other biologically appealing links for medical histories spanning narcolepsy to axonal neuropathy. Our results suggest that erosion of gene regulation by mutation load significantly contributes to observed heritable phenotypes that manifest in the medical history. The test we developed exposes a hitherto hidden layer of personal variants that promise to shed new light on human disease penetrance, expressivity and the sensitivity with which we can detect them.
Collapse
|
100
|
Megraw M, Cumbie JS, Ivanchenko MG, Filichkin SA. Small Genetic Circuits and MicroRNAs: Big Players in Polymerase II Transcriptional Control in Plants. THE PLANT CELL 2016; 28:286-303. [PMID: 26869700 PMCID: PMC4790873 DOI: 10.1105/tpc.15.00852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/10/2016] [Indexed: 05/11/2023]
Abstract
RNA Polymerase II (Pol II) regulatory cascades involving transcription factors (TFs) and their targets orchestrate the genetic circuitry of every eukaryotic organism. In order to understand how these cascades function, they can be dissected into small genetic networks, each containing just a few Pol II transcribed genes, that generate specific signal-processing outcomes. Small RNA regulatory circuits involve direct regulation of a small RNA by a TF and/or direct regulation of a TF by a small RNA and have been shown to play unique roles in many organisms. Here, we will focus on small RNA regulatory circuits containing Pol II transcribed microRNAs (miRNAs). While the role of miRNA-containing regulatory circuits as modular building blocks for the function of complex networks has long been on the forefront of studies in the animal kingdom, plant studies are poised to take a lead role in this area because of their advantages in probing transcriptional and posttranscriptional control of Pol II genes. The relative simplicity of tissue- and cell-type organization, miRNA targeting, and genomic structure make the Arabidopsis thaliana plant model uniquely amenable for small RNA regulatory circuit studies in a multicellular organism. In this Review, we cover analysis, tools, and validation methods for probing the component interactions in miRNA-containing regulatory circuits. We then review the important roles that plant miRNAs are playing in these circuits and summarize methods for the identification of small genetic circuits that strongly influence plant function. We conclude by noting areas of opportunity where new plant studies are imminently needed.
Collapse
Affiliation(s)
- Molly Megraw
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| | - Jason S Cumbie
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Maria G Ivanchenko
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Sergei A Filichkin
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|