51
|
Jones EM, Lubock NB, Venkatakrishnan AJ, Wang J, Tseng AM, Paggi JM, Latorraca NR, Cancilla D, Satyadi M, Davis JE, Babu MM, Dror RO, Kosuri S. Structural and functional characterization of G protein-coupled receptors with deep mutational scanning. eLife 2020; 9:54895. [PMID: 33084570 PMCID: PMC7707821 DOI: 10.7554/elife.54895] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 10/16/2020] [Indexed: 01/14/2023] Open
Abstract
The >800 human G protein–coupled receptors (GPCRs) are responsible for transducing diverse chemical stimuli to alter cell state- and are the largest class of drug targets. Their myriad structural conformations and various modes of signaling make it challenging to understand their structure and function. Here, we developed a platform to characterize large libraries of GPCR variants in human cell lines with a barcoded transcriptional reporter of G protein signal transduction. We tested 7800 of 7828 possible single amino acid substitutions to the beta-2 adrenergic receptor (β2AR) at four concentrations of the agonist isoproterenol. We identified residues specifically important for β2AR signaling, mutations in the human population that are potentially loss of function, and residues that modulate basal activity. Using unsupervised learning, we identify residues critical for signaling, including all major structural motifs and molecular interfaces. We also find a previously uncharacterized structural latch spanning the first two extracellular loops that is highly conserved across Class A GPCRs and is conformationally rigid in both the inactive and active states of the receptor. More broadly, by linking deep mutational scanning with engineered transcriptional reporters, we establish a generalizable method for exploring pharmacogenomics, structure and function across broad classes of drug receptors.
Collapse
Affiliation(s)
- Eric M Jones
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, United States
| | - Nathan B Lubock
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, United States
| | - A J Venkatakrishnan
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Computer Science, Stanford University, Department of Computer Science, Institute for Computational and Mathematical Engineering, Stanford University, Department of Computer Science, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Department of Computer Science, Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Jeffrey Wang
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, United States
| | - Alex M Tseng
- Department of Computer Science, Stanford University, Department of Computer Science, Institute for Computational and Mathematical Engineering, Stanford University, Department of Computer Science, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Department of Computer Science, Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Joseph M Paggi
- Department of Computer Science, Stanford University, Department of Computer Science, Institute for Computational and Mathematical Engineering, Stanford University, Department of Computer Science, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Department of Computer Science, Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Naomi R Latorraca
- Department of Computer Science, Stanford University, Department of Computer Science, Institute for Computational and Mathematical Engineering, Stanford University, Department of Computer Science, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Department of Computer Science, Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Daniel Cancilla
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, United States
| | - Megan Satyadi
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, United States
| | - Jessica E Davis
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, United States
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ron O Dror
- Department of Computer Science, Stanford University, Department of Computer Science, Institute for Computational and Mathematical Engineering, Stanford University, Department of Computer Science, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Department of Computer Science, Department of Structural Biology, Stanford University School of Medicine, Stanford, United States
| | - Sriram Kosuri
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Molecular Biology Institute, Quantitative and Computational Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, United States
| |
Collapse
|
52
|
Kumar P, Caruthers MH. DNA Analogues Modified at the Nonlinking Positions of Phosphorus. Acc Chem Res 2020; 53:2152-2166. [PMID: 32885957 DOI: 10.1021/acs.accounts.0c00078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemically modified oligonucleotides are being developed as a new class of medicines for curing conditions that previously remained untreatable. Three primary classes of therapeutic oligonucleotides are single-stranded antisense oligonucleotides (ASOs), double stranded small interfering RNAs (siRNAs), and oligonucleotides that induce exon skipping. Recently, ASOs, siRNAs, and exon skipping oligonucleotides have been approved for patients with unmet medical needs, and many other candidates are being tested in late stage clinical trials. In coming years, therapeutic oligonucleotides may match the promise of small molecules and antibodies. Interestingly, in the 1980s when we developed chemical methods for synthesizing oligonucleotides, no one would have imagined that these highly charged macromolecules could become future medicines. Indeed, the anionic nature and poor metabolic stability of the natural phosphodiester backbone provided a major challenge for the use of oligonucleotides as therapeutic drugs. Thus, chemical modifications of oligonucleotides were essential in order to improve their pharmacokinetic properties. Keeping this view in mind, my laboratory has developed a series of novel oligonucleotides where one or both nonbridging oxygens in the phosphodiester backbone are replaced with an atom or molecule that introduces molecular properties that enhance biological activity. We followed two complementary approaches. One was the use of phosphoramidites that could act directly as synthons for the solid phase synthesis of oligonucleotide analogues. This approach sometimes was not feasible due to instability of various synthons toward the reagents used during synthesis of oligonucleotides. Therefore, using a complementary approach, we developed phosphoramidite synthons that can be incorporated into oligonucleotides with minimum changes in the solid phase DNA synthesis protocols but contain a handle for generating appropriate analogues postsynthetically.This Account summarizes our efforts toward preparing these types of analogues over the past three decades and discusses synthesis and properties of backbone modified oligonucleotides that originated from the Caruthers' laboratory. For example, by replacing one of the internucleotide oxygens with an acetate group, we obtained so-called phosphonoacetate oligonucleotides that were stable to nucleases and, when delivered as esters, entered into cells unaided. Alternatively oligonucleotides bearing borane phosphonate linkages were found to be RNase H active and compatible with the endogenous RNA induced silencing complex (RISC). Oligonucleotides containing an alkyne group directly linked to phosphorus in the backbone were prepared as well and used to attach molecules such as amino acids and peptides.
Collapse
Affiliation(s)
- Pawan Kumar
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main Street, Cambridge, Massachusetts 02142, United States
| | - Marvin H. Caruthers
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
53
|
Lee H, Wiegand DJ, Griswold K, Punthambaker S, Chun H, Kohman RE, Church GM. Photon-directed multiplexed enzymatic DNA synthesis for molecular digital data storage. Nat Commun 2020; 11:5246. [PMID: 33067441 PMCID: PMC7567835 DOI: 10.1038/s41467-020-18681-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
New storage technologies are needed to keep up with the global demands of data generation. DNA is an ideal storage medium due to its stability, information density and ease-of-readout with advanced sequencing techniques. However, progress in writing DNA is stifled by the continued reliance on chemical synthesis methods. The enzymatic synthesis of DNA is a promising alternative, but thus far has not been well demonstrated in a parallelized manner. Here, we report a multiplexed enzymatic DNA synthesis method using maskless photolithography. Rapid uncaging of Co2+ ions by patterned UV light activates Terminal deoxynucleotidyl Transferase (TdT) for spatially-selective synthesis on an array surface. Spontaneous quenching of reactions by the diffusion of excess caging molecules confines synthesis to light patterns and controls the extension length. We show that our multiplexed synthesis method can be used to store digital data by encoding 12 unique DNA oligonucleotide sequences with video game music, which is equivalent to 84 trits or 110 bits of data.
Collapse
Affiliation(s)
- Howon Lee
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Daniel J Wiegand
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Kettner Griswold
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Charles Stark Draper Laboratory, Cambridge, MA, 02139, USA
| | - Sukanya Punthambaker
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Honggu Chun
- Department of Biomedical Engineering, Korea University, 466 Hana Science Hall, 145 Anamro, Seongbukgu, 02841, Seoul, South Korea
| | - Richie E Kohman
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA.
| |
Collapse
|
54
|
Sarkar J, Kumar A. Recent Advances in Biomaterial-Based High-Throughput Platforms. Biotechnol J 2020; 16:e2000288. [PMID: 32914497 DOI: 10.1002/biot.202000288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/30/2020] [Indexed: 12/15/2022]
Abstract
High-throughput systems allow screening and analysis of large number of samples simultaneously under same conditions. Over recent years, high-throughput systems have found applications in fields other than drug discovery like bioprocess industries, pollutant detection, material microarrays, etc. With the introduction of materials in such HT platforms, the screening system has been enabled for solid phases apart from conventional solution phase. The use of biomaterials has further facilitated cell-based assays in such platforms. Here, the authors have focused on the recent developments in biomaterial-based platforms including the fabricationusing contact and non-contact methods and utilization of such platforms for discovery of novel biomaterials exploiting interaction of biological entities with surface and bulk properties. Finally, the authors have elaborated on the application of the biomaterial-based high-throughput platforms in tissue engineering and regenerative medicine, cancer and stem cell studies. The studies show encouraging applications of biomaterial microarrays. However, success in clinical applicability still seems to be a far off task majorly due to absence of robust characterization and analysis techniques. Extensive focus is required for developing personalized medicine, analytical tools and storage/shelf-life of cell laden microarrays.
Collapse
Affiliation(s)
- Joyita Sarkar
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna, BT-6/7, Biotechnology Park, Additional MIDC Area, Aurangabad Road, Jalna, Maharashtra, 43120, India.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
55
|
Glazier DA, Liao J, Roberts BL, Li X, Yang K, Stevens CM, Tang W. Chemical Synthesis and Biological Application of Modified Oligonucleotides. Bioconjug Chem 2020; 31:1213-1233. [PMID: 32227878 DOI: 10.1021/acs.bioconjchem.0c00060] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RNA plays a myriad of roles in the body including the coding, decoding, regulation, and expression of genes. RNA oligonucleotides have garnered significant interest as therapeutics via antisense oligonucleotides or small interfering RNA strategies for the treatment of diseases ranging from hyperlipidemia, HCV, and others. Additionally, the recently developed CRISPR-Cas9 mediated gene editing strategy also relies on Cas9-associated RNA strands. However, RNA presents numerous challenges as both a synthetic target and a potential therapeutic. RNA is inherently unstable, difficult to deliver into cells, and potentially immunogenic by itself or upon modification. Despite these challenges, with the help of chemically modified oligonucleotides, multiple RNA-based drugs have been approved by the FDA. The progress is made possible due to the nature of chemically modified oligonucleotides bearing advantages of nuclease stability, stronger binding affinity, and some other unique properties. This review will focus on the chemical synthesis of RNA and its modified versions. How chemical modifications of the ribose units and of the phosphatediester backbone address the inherent issues with using native RNA for biological applications will be discussed along the way.
Collapse
Affiliation(s)
- Daniel A Glazier
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Junzhuo Liao
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Brett L Roberts
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xiaolei Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ka Yang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Christopher M Stevens
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
56
|
Coyote-Maestas W, Nedrud D, Okorafor S, He Y, Schmidt D. Targeted insertional mutagenesis libraries for deep domain insertion profiling. Nucleic Acids Res 2020; 48:e11. [PMID: 31745561 PMCID: PMC6954442 DOI: 10.1093/nar/gkz1110] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/22/2019] [Accepted: 11/08/2019] [Indexed: 11/21/2022] Open
Abstract
Domain recombination is a key principle in protein evolution and protein engineering, but inserting a donor domain into every position of a target protein is not easily experimentally accessible. Most contemporary domain insertion profiling approaches rely on DNA transposons, which are constrained by sequence bias. Here, we establish Saturated Programmable Insertion Engineering (SPINE), an unbiased, comprehensive, and targeted domain insertion library generation technique using oligo library synthesis and multi-step Golden Gate cloning. Through benchmarking to MuA transposon-mediated library generation on four ion channel genes, we demonstrate that SPINE-generated libraries are enriched for in-frame insertions, have drastically reduced sequence bias as well as near-complete and highly-redundant coverage. Unlike transposon-mediated domain insertion that was severely biased and sparse for some genes, SPINE generated high-quality libraries for all genes tested. Using the Inward Rectifier K+ channel Kir2.1, we validate the practical utility of SPINE by constructing and comparing domain insertion permissibility maps. SPINE is the first technology to enable saturated domain insertion profiling. SPINE could help explore the relationship between domain insertions and protein function, and how this relationship is shaped by evolutionary forces and can be engineered for biomedical applications.
Collapse
Affiliation(s)
- Willow Coyote-Maestas
- Dept. of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Nedrud
- Dept. of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Steffan Okorafor
- Dept. of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yungui He
- Dept. of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Schmidt
- Dept. of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
57
|
Ryan GE, Farley EK. Functional genomic approaches to elucidate the role of enhancers during development. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1467. [PMID: 31808313 PMCID: PMC7027484 DOI: 10.1002/wsbm.1467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
Abstract
Successful development depends on the precise tissue-specific regulation of genes by enhancers, genetic elements that act as switches to control when and where genes are expressed. Because enhancers are critical for development, and the majority of disease-associated mutations reside within enhancers, it is essential to understand which sequences within enhancers are important for function. Advances in sequencing technology have enabled the rapid generation of genomic data that predict putative active enhancers, but functionally validating these sequences at scale remains a fundamental challenge. Herein, we discuss the power of genome-wide strategies used to identify candidate enhancers, and also highlight limitations and misconceptions that have arisen from these data. We discuss the use of massively parallel reporter assays to test enhancers for function at scale. We also review recent advances in our ability to study gene regulation during development, including CRISPR-based tools to manipulate genomes and single-cell transcriptomics to finely map gene expression. Finally, we look ahead to a synthesis of complementary genomic approaches that will advance our understanding of enhancer function during development. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Laboratory Methods and Technologies > Genetic/Genomic Methods.
Collapse
Affiliation(s)
- Genevieve E. Ryan
- Department of MedicineUniversity of CaliforniaSan DiegoCalifornia
- Division of Biological Sciences, Department of MedicineUniversity of CaliforniaSan DiegoCalifornia
| | - Emma K. Farley
- Department of MedicineUniversity of CaliforniaSan DiegoCalifornia
- Division of Biological Sciences, Department of MedicineUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
58
|
Ding Y, Vara Prasad CVNS, Wang B. Glycosylation on Unprotected or Partially Protected Acceptors. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yili Ding
- Life Science Department; Foshan University; 528000 Foshan Guangdong China
| | | | - Bingyun Wang
- Life Science Department; Foshan University; 528000 Foshan Guangdong China
| |
Collapse
|
59
|
Dong Y, Sun F, Ping Z, Ouyang Q, Qian L. DNA storage: research landscape and future prospects. Natl Sci Rev 2020; 7:1092-1107. [PMID: 34692128 PMCID: PMC8288837 DOI: 10.1093/nsr/nwaa007] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/06/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
The global demand for data storage is currently outpacing the world's storage capabilities. DNA, the carrier of natural genetic information, offers a stable, resource- and energy-efficient and sustainable data storage solution. In this review, we summarize the fundamental theory, research history, and technical challenges of DNA storage. From a quantitative perspective, we evaluate the prospect of DNA, and organic polymers in general, as a novel class of data storage medium.
Collapse
Affiliation(s)
- Yiming Dong
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Fajia Sun
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhi Ping
- Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Qi Ouyang
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Long Qian
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
60
|
Hao M, Qiao J, Qi H. Current and Emerging Methods for the Synthesis of Single-Stranded DNA. Genes (Basel) 2020; 11:E116. [PMID: 31973021 PMCID: PMC7073533 DOI: 10.3390/genes11020116] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/21/2022] Open
Abstract
Methods for synthesizing arbitrary single-strand DNA (ssDNA) fragments are rapidly becoming fundamental tools for gene editing, DNA origami, DNA storage, and other applications. To meet the rising application requirements, numerous methods have been developed to produce ssDNA. Some approaches allow the synthesis of freely chosen user-defined ssDNA sequences to overcome the restrictions and limitations of different length, purity, and yield. In this perspective, we provide an overview of the representative ssDNA production strategies and their most significant challenges to enable the readers to make informed choices of synthesis methods and enhance the availability of increasingly inexpensive synthetic ssDNA. We also aim to stimulate a broader interest in the continued development of efficient ssDNA synthesis techniques and improve their applications in future research.
Collapse
Affiliation(s)
- Min Hao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (M.H.); (J.Q.)
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
61
|
Abstract
Because of its longevity and enormous information density, DNA is considered a promising data storage medium. In this work, we provide instructions for archiving digital information in the form of DNA and for subsequently retrieving it from the DNA. In principle, information can be represented in DNA by simply mapping the digital information to DNA and synthesizing it. However, imperfections in synthesis, sequencing, storage and handling of the DNA induce errors within the molecules, making error-free information storage challenging. The procedure discussed here enables error-free storage by protecting the information using error-correcting codes. Specifically, in this protocol, we provide the technical details and precise instructions for translating digital information to DNA sequences, physically handling the biomolecules, storing them and subsequently re-obtaining the information by sequencing the DNA. Along with the protocol, we provide computer code that automatically encodes digital information to DNA sequences and decodes the information back from DNA to a digital file. The required software is provided on a Github repository. The protocol relies on commercial DNA synthesis and DNA sequencing via Illumina dye sequencing, and requires 1-2 h of preparation time, 1/2 d for sequencing preparation and 2-4 h for data analysis. This protocol focuses on storage scales of ~100 kB to 15 MB, offering an ideal starting point for small experiments. It can be augmented to enable higher data volumes and random access to the data and also allows for future sequencing and synthesis technologies, by changing the parameters of the encoder/decoder to account for the corresponding error rates.
Collapse
|
62
|
Hölz K, Pavlic A, Lietard J, Somoza MM. Specificity and Efficiency of the Uracil DNA Glycosylase-Mediated Strand Cleavage Surveyed on Large Sequence Libraries. Sci Rep 2019; 9:17822. [PMID: 31780717 PMCID: PMC6883067 DOI: 10.1038/s41598-019-54044-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
Uracil-DNA glycosylase (UDG) is a critical DNA repair enzyme that is well conserved and ubiquitous in nearly all life forms. UDG protects genomic information integrity by catalyzing the excision from DNA of uracil nucleobases resulting from misincorporation or spontaneous cytosine deamination. UDG-mediated strand cleavage is also an important tool in molecular biotechnology, allowing for controlled and location-specific cleavage of single- and double DNA chemically or enzymatically synthesized with single or multiple incorporations of deoxyuridine. Although the cleavage mechanism is well-understood, detailed knowledge of efficiency and sequence specificity, in both single and double-stranded DNA contexts, has so far remained incomplete. Here we use an experimental approach based on the large-scale photolithographic synthesis of uracil-containing DNA oligonucleotides to comprehensively probe the context-dependent uracil excision efficiency of UDG.
Collapse
Affiliation(s)
- Kathrin Hölz
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Angelina Pavlic
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Chair of Food Chemistry and Molecular and Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354, Freising, Germany.
| |
Collapse
|
63
|
Huertas CS, Bonnal S, Soler M, Escuela AM, Valcárcel J, Lechuga LM. Site-Specific mRNA Cleavage for Selective and Quantitative Profiling of Alternative Splicing with Label-Free Optical Biosensors. Anal Chem 2019; 91:15138-15146. [DOI: 10.1021/acs.analchem.9b03898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cesar S. Huertas
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
- Integrated Photonics and Applications Centre, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Sophie Bonnal
- Centre de Regulació Genòmica and BIST, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Maria Soler
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Alfonso M. Escuela
- Institute for Applied Microelectronics (IUMA). University of Las Palmas de Gran Canaria, E-35017 Las Palmas, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica and BIST, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Laura M. Lechuga
- Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
64
|
Data storage in DNA with fewer synthesis cycles using composite DNA letters. Nat Biotechnol 2019; 37:1229-1236. [PMID: 31501560 DOI: 10.1038/s41587-019-0240-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 07/25/2019] [Indexed: 12/24/2022]
Abstract
The density and long-term stability of DNA make it an appealing storage medium, particularly for long-term data archiving. Existing DNA storage technologies involve the synthesis and sequencing of multiple nominally identical molecules in parallel, resulting in information redundancy. We report the development of encoding and decoding methods that exploit this redundancy using composite DNA letters. A composite DNA letter is a representation of a position in a sequence that consists of a mixture of all four DNA nucleotides in a predetermined ratio. Our methods encode data using fewer synthesis cycles. We encode 6.4 MB into composite DNA, with distinguishable composition medians, using 20% fewer synthesis cycles per unit of data, as compared to previous reports. We also simulate encoding with larger composite alphabets, with distinguishable composition deciles, to show that 75% fewer synthesis cycles are potentially sufficient. We describe applicable error-correcting codes and inference methods, and investigate error patterns in the context of composite DNA letters.
Collapse
|
65
|
Costa JA, Dentinger PM, McGall GH, Crnogorac F, Zhou W. Fabrication of Inverted High-Density DNA Microarrays in a Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30534-30541. [PMID: 31389236 DOI: 10.1021/acsami.9b07755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Current techniques for making high-resolution, photolithographic DNA microarrays suffer from the limitation that the 3' end of each sequence is anchored to a hard substrate and hence is unavailable for many potential enzymatic reactions. Here, we demonstrate a technique that inverts the entire microarray into a hydrogel. This method preserves the spatial fidelity of the original pattern while simultaneously removing incorrectly synthesized oligomers that are inherent to all other microarray fabrication strategies. First, a standard 5'-up microarray on a donor wafer is synthesized, in which each oligo is anchored with a cleavable linker at the 3' end and an Acrydite phosphoramidite at the 5' end. Following the synthesis of the array, an acrylamide monomer solution is applied to the donor wafer, and an acrylamide-silanized acceptor wafer is placed on top. As the polyacrylamide hydrogel forms between the two wafers, it covalently incorporates the acrydite-terminated sequences into the matrix. Finally, the oligos are released from the donor wafer upon immersing in an ammonia solution that cleaves the 3'-linkers, thus freeing the oligos at the 3' end. The array is now presented 3'-up on the surface of the gel-coated acceptor wafer. Various types of on-gel enzymatic reactions demonstrate a versatile and robust platform that can easily be constructed with far more molecular complexity than traditional photolithographic arrays by endowing the system with multiple enzymatic substrates. We produce a new generation of microarrays where highly ordered, purified oligos are inverted 3'-up, in a biocompatible soft hydrogel, and functional with respect to a wide variety of programable enzymatic reactions.
Collapse
Affiliation(s)
- Justin A Costa
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Paul M Dentinger
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Glenn H McGall
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Filip Crnogorac
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| | - Wei Zhou
- Centrillion Technologies , 2500 Faber Place , Palo Alto , California 94303 , United States
| |
Collapse
|
66
|
Sui Z, Liu M, Wang W, Chen H, Wang G, An R, Liang X, Komiyama M. Efficient Preparation of Large-Sized Rings of Single-Stranded DNA through One-Pot Ligation of Multiple Fragments. Chem Asian J 2019; 14:3251-3254. [PMID: 31400067 DOI: 10.1002/asia.201900963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/07/2019] [Indexed: 12/26/2022]
Abstract
Circular single-stranded DNA (c-ssDNA) has significant applications in DNA detection, the development of nucleic acid medicine, and DNA nanotechnology because it shows highly unique features in mobility, dynamics, and topology. However, in most cases, the efficiency of c-ssDNA preparation is very low because polymeric byproducts are easily formed due to intermolecular reaction. Herein, we report a one-pot ligation method to efficiently prepare large c-ssDNA. By ligating several short fragments of linear single-stranded DNA (l-ssDNA) in one-pot by using T4 DNA ligase, longer l-ssDNAs intermediates are formed and then rapidly consumed by the cyclization. Since the intramolecular cyclization reaction is much faster than intermolecular polymerization, the formation of polymeric products is suppressed and the dominance of intramolecular cyclization is promoted. With this simple approach, large-sized single-stranded c-ssDNAs (e.g., 200-nt) were successfully synthesized in high selectivity and yield.
Collapse
Affiliation(s)
- Zhe Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Mengqing Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Weinan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
67
|
Wolfrum M, Schwarz RJ, Schwarz M, Kramer M, Richert C. Stabilizing DNA nanostructures through reversible disulfide crosslinking. NANOSCALE 2019; 11:14921-14928. [PMID: 31360975 DOI: 10.1039/c9nr05143k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designed DNA nanostructures can be generated in a wide range of sizes and shapes and have the potential to become exciting tools in material sciences, catalysis and medicine. However, DNA nanostructures are thermally labile assemblies of delicate biomacromolecules, and the lability hampers the use in many applications. Disulfide crosslinking is nature's successful approach to stabilize folded proteins against denaturation. It is therefore interesting to ask whether similar approaches can be used to stabilize DNA nanostructures. Here we report the synthesis of two 2'-deoxynucleoside phosphoramidites and two nucleosides linked to controlled pore glass that can be used to prepare oligodeoxynucleotides with protected thiol groups via automated DNA synthesis. Strands with one, two, three or four thiol-bearing nucleotides were prepared. One nicked duplex and three different nanostructures were assembled, the protected thiols were liberated under non-denaturing conditions, and disulfide crosslinking was induced with oxygen. Up to 19 crosslinks were thus placed in folded DNA structures up to 1456 nucleotides in size. The crosslinked structures had increased thermal stability, with UV-melting points 9-50 °C above that of the control structure. Disulfides were converted back to free thiols under reducing conditions. The redox-dependent increase in stability makes crosslinked DNA nanostructures attractive for the construction of responsive materials and biomedical applications.
Collapse
Affiliation(s)
- Manpreet Wolfrum
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
68
|
Yim SS, Johns NI, Park J, Gomes ALC, McBee RM, Richardson M, Ronda C, Chen SP, Garenne D, Noireaux V, Wang HH. Multiplex transcriptional characterizations across diverse bacterial species using cell-free systems. Mol Syst Biol 2019; 15:e8875. [PMID: 31464371 PMCID: PMC6692573 DOI: 10.15252/msb.20198875] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cell-free expression systems enable rapid prototyping of genetic programs in vitro. However, current throughput of cell-free measurements is limited by the use of channel-limited fluorescent readouts. Here, we describe DNA Regulatory element Analysis by cell-Free Transcription and Sequencing (DRAFTS), a rapid and robust in vitro approach for multiplexed measurement of transcriptional activities from thousands of regulatory sequences in a single reaction. We employ this method in active cell lysates developed from ten diverse bacterial species. Interspecies analysis of transcriptional profiles from > 1,000 diverse regulatory sequences reveals functional differences in promoter activity that can be quantitatively modeled, providing a rich resource for tuning gene expression in diverse bacterial species. Finally, we examine the transcriptional capacities of dual-species hybrid lysates that can simultaneously harness gene expression properties of multiple organisms. We expect that this cell-free multiplex transcriptional measurement approach will improve genetic part prototyping in new bacterial chassis for synthetic biology.
Collapse
Affiliation(s)
- Sung Sun Yim
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
| | - Nathan I Johns
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Integrated Program in Cellular, Molecular, and Biomedical StudiesColumbia UniversityNew YorkNYUSA
- Present address:
Department of BioengineeringStanford UniversityStanfordCAUSA
| | - Jimin Park
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Integrated Program in Cellular, Molecular, and Biomedical StudiesColumbia UniversityNew YorkNYUSA
| | - Antonio LC Gomes
- Department of ImmunologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Ross M McBee
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Miles Richardson
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Integrated Program in Cellular, Molecular, and Biomedical StudiesColumbia UniversityNew YorkNYUSA
| | - Carlotta Ronda
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
| | - Sway P Chen
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Integrated Program in Cellular, Molecular, and Biomedical StudiesColumbia UniversityNew YorkNYUSA
| | - David Garenne
- School of Physics and AstronomyUniversity of MinnesotaMinneapolisMNUSA
| | - Vincent Noireaux
- School of Physics and AstronomyUniversity of MinnesotaMinneapolisMNUSA
| | - Harris H Wang
- Department of Systems BiologyColumbia UniversityNew YorkNYUSA
- Department of Pathology and Cell BiologyColumbia UniversityNew YorkNYUSA
| |
Collapse
|
69
|
Heckel R, Mikutis G, Grass RN. A Characterization of the DNA Data Storage Channel. Sci Rep 2019; 9:9663. [PMID: 31273225 PMCID: PMC6609604 DOI: 10.1038/s41598-019-45832-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/04/2019] [Indexed: 11/09/2022] Open
Abstract
Owing to its longevity and enormous information density, DNA, the molecule encoding biological information, has emerged as a promising archival storage medium. However, due to technological constraints, data can only be written onto many short DNA molecules that are stored in an unordered way, and can only be read by sampling from this DNA pool. Moreover, imperfections in writing (synthesis), reading (sequencing), storage, and handling of the DNA, in particular amplification via PCR, lead to a loss of DNA molecules and induce errors within the molecules. In order to design DNA storage systems, a qualitative and quantitative understanding of the errors and the loss of molecules is crucial. In this paper, we characterize those error probabilities by analyzing data from our own experiments as well as from experiments of two different groups. We find that errors within molecules are mainly due to synthesis and sequencing, while imperfections in handling and storage lead to a significant loss of sequences. The aim of our study is to help guide the design of future DNA data storage systems by providing a quantitative and qualitative understanding of the DNA data storage channel.
Collapse
Affiliation(s)
- Reinhard Heckel
- Rice University, Department of Electrical and Computer Engineering, Houston, 77005, Texas, USA.
| | - Gediminas Mikutis
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, 8093, Switzerland
| | - Robert N Grass
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, 8093, Switzerland
| |
Collapse
|
70
|
Lietard J, Somoza MM. Spotting, Transcription and In Situ Synthesis: Three Routes for the Fabrication of RNA Microarrays. Comput Struct Biotechnol J 2019; 17:862-868. [PMID: 31321002 PMCID: PMC6612525 DOI: 10.1016/j.csbj.2019.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022] Open
Abstract
DNA microarrays have become commonplace in the last two decades, but the synthesis of other nucleic acids biochips, most importantly RNA, has only recently been developed to a similar extent. RNA microarrays can be seen as organized surfaces displaying a potentially very large number of unique sequences and are of invaluable help in understanding the complexity of RNA structure and function as they allow the probing and treatment of each of the many different sequences simultaneously. Three approaches have emerged for the fabrication of RNA microarrays. The earliest examples used a direct, manual or mechanical, deposition of pre-synthesized, purified RNA oligonucleotides onto the surface in a process called spotting. In a second approach, pre-spotted or in situ-synthesized DNA microarrays are employed as templates for the transcription of RNA, subsequently or immediately captured on the surface. Finally, a third approach attempts to mirror the phosphoramidite-based protocols for in situ synthesis of high-density DNA arrays in order to produce in situ synthesized RNA microarrays. In this mini-review, we describe the chemistry and the engineering behind the fabrications methods, underlining the advantages and shortcomings of each, and illustrate how versatile these platforms can be by presenting some of their applications.
Collapse
|
71
|
Lee HH, Kalhor R, Goela N, Bolot J, Church GM. Terminator-free template-independent enzymatic DNA synthesis for digital information storage. Nat Commun 2019; 10:2383. [PMID: 31160595 PMCID: PMC6546792 DOI: 10.1038/s41467-019-10258-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/01/2019] [Indexed: 11/09/2022] Open
Abstract
DNA is an emerging medium for digital data and its adoption can be accelerated by synthesis processes specialized for storage applications. Here, we describe a de novo enzymatic synthesis strategy designed for data storage which harnesses the template-independent polymerase terminal deoxynucleotidyl transferase (TdT) in kinetically controlled conditions. Information is stored in transitions between non-identical nucleotides of DNA strands. To produce strands representing user-defined content, nucleotide substrates are added iteratively, yielding short homopolymeric extensions whose lengths are controlled by apyrase-mediated substrate degradation. With this scheme, we synthesize DNA strands carrying 144 bits, including addressing, and demonstrate retrieval with streaming nanopore sequencing. We further devise a digital codec to reduce requirements for synthesis accuracy and sequencing coverage, and experimentally show robust data retrieval from imperfectly synthesized strands. This work provides distributive enzymatic synthesis and information-theoretic approaches to advance digital information storage in DNA. Adoption of DNA as a data storage medium could be accelerated with specialized synthesis processes and codecs. The authors describe TdT-mediated DNA synthesis in which data is stored in transitions between non-identical nucleotides and the use of synchronization markers to provide error tolerance.
Collapse
Affiliation(s)
- Henry H Lee
- Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA. .,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, 02115, MA, USA.
| | - Reza Kalhor
- Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, 02115, MA, USA
| | - Naveen Goela
- Technicolor Research & Innovation Lab, Palo Alto, 94306, CA, USA
| | - Jean Bolot
- Technicolor Research & Innovation Lab, Palo Alto, 94306, CA, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA. .,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, 02115, MA, USA.
| |
Collapse
|
72
|
High information capacity DNA-based data storage with augmented encoding characters using degenerate bases. Sci Rep 2019; 9:6582. [PMID: 31036920 PMCID: PMC6488701 DOI: 10.1038/s41598-019-43105-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
DNA-based data storage has emerged as a promising method to satisfy the exponentially increasing demand for information storage. However, practical implementation of DNA-based data storage remains a challenge because of the high cost of data writing through DNA synthesis. Here, we propose the use of degenerate bases as encoding characters in addition to A, C, G, and T, which augments the amount of data that can be stored per length of DNA sequence designed (information capacity) and lowering the amount of DNA synthesis per storing unit data. Using the proposed method, we experimentally achieved an information capacity of 3.37 bits/character. The demonstrated information capacity is more than twice when compared to the highest information capacity previously achieved. The proposed method can be integrated with synthetic technologies in the future to reduce the cost of DNA-based data storage by 50%.
Collapse
|
73
|
Qiu C, Kaplan CD. Functional assays for transcription mechanisms in high-throughput. Methods 2019; 159-160:115-123. [PMID: 30797033 PMCID: PMC6589137 DOI: 10.1016/j.ymeth.2019.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023] Open
Abstract
Dramatic increases in the scale of programmed synthesis of nucleic acid libraries coupled with deep sequencing have powered advances in understanding nucleic acid and protein biology. Biological systems centering on nucleic acids or encoded proteins greatly benefit from such high-throughput studies, given that large DNA variant pools can be synthesized and DNA, or RNA products of transcription, can be easily analyzed by deep sequencing. Here we review the scope of various high-throughput functional assays for studies of nucleic acids and proteins in general, followed by discussion of how these types of study have yielded insights into the RNA Polymerase II (Pol II) active site as an example. We discuss methodological considerations in the design and execution of these experiments that should be valuable to studies in any system.
Collapse
Affiliation(s)
- Chenxi Qiu
- Department of Medicine, Division of Translational Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
74
|
A Simple and Efficient Microfluidic System for Reverse Chemical Synthesis (5′-3′) of a Short-Chain Oligonucleotide Without Inert Atmosphere. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reverse DNA synthesis (5′-3′) plays diverse functional roles in cellular biology, biotechnology, and nanotechnology. However, current microfluidic systems for synthesizing single-stranded DNAs at a laboratory scale are limited. In this work, we develop a simple and efficient polydimethylsiloxane- (PDMS-) based microfluidic system for the reverse chemical synthesis of short-chain oligonucleotides (in the 5′-3′ direction) under ambient conditions. The use of a microfluidics device and anhydrous conditions effectively surpass the problem of moisture sensitivity during oligonucleotide synthesis. With optimized microfluidic synthesis conditions, the system is able to synthesize up to 21 bases-long oligonucleotides in air atmosphere. The as-synthesized oligonucleotides, without further purification, are characterized using matrix-assisted laser desorption ionization–time of flight (MALDI-TOF/TOF) mass spectroscopy (MS) supported by the denatured polyacrylamide gel electrophoresis (PAGE) analysis. This developed system is highly promising for producing the desired sequence at the nanomolar scale on-chip and on-demand in the near future.
Collapse
|
75
|
Takahashi CN, Nguyen BH, Strauss K, Ceze L. Demonstration of End-to-End Automation of DNA Data Storage. Sci Rep 2019; 9:4998. [PMID: 30899031 PMCID: PMC6428863 DOI: 10.1038/s41598-019-41228-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/05/2019] [Indexed: 11/29/2022] Open
Abstract
Synthetic DNA has emerged as a novel substrate to encode computer data with the potential to be orders of magnitude denser than contemporary cutting edge techniques. However, even with the help of automated synthesis and sequencing devices, many intermediate steps still require expert laboratory technicians to execute. We have developed an automated end-to-end DNA data storage device to explore the challenges of automation within the constraints of this unique application. Our device encodes data into a DNA sequence, which is then written to a DNA oligonucleotide using a custom DNA synthesizer, pooled for liquid storage, and read using a nanopore sequencer and a novel, minimal preparation protocol. We demonstrate an automated 5-byte write, store, and read cycle with a modular design enabling expansion as new technology becomes available.
Collapse
Affiliation(s)
- Christopher N Takahashi
- School of Computer Science and Engineering, University of Washington, Seattle, Washington, USA.
| | - Bichlien H Nguyen
- School of Computer Science and Engineering, University of Washington, Seattle, Washington, USA.,Microsoft Research, Redmond, Washington, USA
| | - Karin Strauss
- School of Computer Science and Engineering, University of Washington, Seattle, Washington, USA.,Microsoft Research, Redmond, Washington, USA
| | - Luis Ceze
- School of Computer Science and Engineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
76
|
Porter SN, Levine RM, Pruett-Miller SM. A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. Compr Physiol 2019; 9:665-714. [PMID: 30873595 DOI: 10.1002/cphy.c180022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome engineering using programmable nucleases is a rapidly evolving technique that enables precise genetic manipulations within complex genomes. Although this technology first surfaced with the creation of meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, CRISPR-Cas9 has been the most widely adopted platform because of its ease of use. This comprehensive review presents a basic overview of genome engineering and discusses the major technological advances in the field. In addition to nucleases, we discuss CRISPR-derived base editors and epigenetic modifiers. We also delve into practical applications of these tools, including creating custom-edited cell and animal models as well as performing genetic screens. Finally, we discuss the potential for therapeutic applications and ethical considerations related to employing this technology in humans. © 2019 American Physiological Society. Compr Physiol 9:665-714, 2019.
Collapse
Affiliation(s)
- Shaina N Porter
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
77
|
Kotler E, Shani O, Goldfeld G, Lotan-Pompan M, Tarcic O, Gershoni A, Hopf TA, Marks DS, Oren M, Segal E. A Systematic p53 Mutation Library Links Differential Functional Impact to Cancer Mutation Pattern and Evolutionary Conservation. Mol Cell 2019; 71:178-190.e8. [PMID: 29979965 DOI: 10.1016/j.molcel.2018.06.012] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/23/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
The TP53 gene is frequently mutated in human cancer. Research has focused predominantly on six major "hotspot" codons, which account for only ∼30% of cancer-associated p53 mutations. To comprehensively characterize the consequences of the p53 mutation spectrum, we created a synthetically designed library and measured the functional impact of ∼10,000 DNA-binding domain (DBD) p53 variants in human cells in culture and in vivo. Our results highlight the differential outcome of distinct p53 mutations in human patients and elucidate the selective pressure driving p53 conservation throughout evolution. Furthermore, while loss of anti-proliferative functionality largely correlates with the occurrence of cancer-associated p53 mutations, we observe that selective gain-of-function may further favor particular mutants in vivo. Finally, when combined with additional acquired p53 mutations, seemingly neutral TP53 SNPs may modulate phenotypic outcome and, presumably, tumor progression.
Collapse
Affiliation(s)
- Eran Kotler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Odem Shani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Guy Goldfeld
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ohad Tarcic
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Gershoni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas A Hopf
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Eran Segal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
78
|
Huy Le B, Nguyen VT, Seo YJ. Site-specific incorporation of multiple units of functional nucleotides into DNA using a step-wise approach with polymerase and its application to monitoring DNA structural changes. Chem Commun (Camb) 2019; 55:2158-2161. [PMID: 30675606 DOI: 10.1039/c8cc09444f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have developed a new method, a step-wise approach with polymerase, for site-specific incorporation of multiple units of functional nucleotides into DNA to form hairpin secondary structures. The fluorescence of the resulting DNA incorporating the functional nucleotides varied upon transitioning from single-strand to hairpin and duplex structures.
Collapse
Affiliation(s)
- Binh Huy Le
- Department of Bioactive Material Sciences, Chonbuk National University, South Korea
| | | | | |
Collapse
|
79
|
Ford K, McDonald D, Mali P. Functional Genomics via CRISPR-Cas. J Mol Biol 2019; 431:48-65. [PMID: 29959923 PMCID: PMC6309720 DOI: 10.1016/j.jmb.2018.06.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/02/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas proteins have recently emerged as versatile tools to investigate and engineer the genome. The programmability of CRISPR-Cas has proven especially useful for probing genomic function in high-throughput. Facile single-guide RNA library synthesis allows CRISPR-Cas screening to rapidly investigate the functional consequences of genomic, transcriptomic, and epigenomic perturbations. Furthermore, by combining CRISPR-Cas perturbations with downstream single-cell analyses (flow cytometry, expression profiling, etc.), forward screens can generate robust data sets linking genotypes to complex cellular phenotypes. In the following review, we highlight recent advances in CRISPR-Cas genomic screening while outlining protocols and pitfalls associated with screen implementation. Finally, we describe current challenges limiting the utility of CRISPR-Cas screening as well as future research needed to resolve these impediments. As CRISPR-Cas technologies develop, so too will their clinical applications. Looking ahead, patient centric functional screening in primary cells will likely play a greater role in disease management and therapeutic development.
Collapse
Affiliation(s)
- Kyle Ford
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Daniella McDonald
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA 92093, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
80
|
Whole genome engineering by synthesis. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1515-1527. [PMID: 30465231 DOI: 10.1007/s11427-018-9403-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/31/2018] [Indexed: 01/12/2023]
Abstract
Whole genome engineering is now feasible with the aid of genome editing and synthesis tools. Synthesizing a genome from scratch allows modifications of the genomic structure and function to an extent that was hitherto not possible, which will finally lead to new insights into the basic principles of life and enable valuable applications. With several recent genome synthesis projects as examples, the technical details to synthesize a genome and applications of synthetic genome are addressed in this perspective. A series of ongoing or future synthetic genomics projects, including the different genomes to be synthesized in GP-write, synthetic minimal genome, massively recoded genome, chimeric genome and synthetic genome with expanded genetic alphabet, are also discussed here with a special focus on theoretical and technical impediments in the design and synthesis process. Synthetic genomics will become a commonplace to engineer pathways and genomes according to arbitrary sets of design principles with the development of high-efficient, low-cost genome synthesis and assembly technologies.
Collapse
|
81
|
Lietard J, Ameur D, Damha MJ, Somoza MM. High-Density RNA Microarrays Synthesized In Situ by Photolithography. Angew Chem Int Ed Engl 2018; 57:15257-15261. [PMID: 30187993 PMCID: PMC6237118 DOI: 10.1002/anie.201806895] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 02/03/2023]
Abstract
While high-density DNA microarrays have been available for over three decades, the synthesis of equivalent RNA microarrays has proven intractable until now. Herein we describe the first in situ synthesis of mixed-based, high-density RNA microarrays using photolithography and light-sensitive RNA phosphoramidites. With coupling efficiencies comparable to those of DNA monomers, RNA oligonucleotides at least 30 nucleotides long can now efficiently be prepared using modified phosphoramidite chemistry. A two-step deprotection route unmasks the phosphodiester, the exocyclic amines and the 2' hydroxyl. Hybridization and enzymatic assays validate the quality and the identity of the surface-bound RNA. We show that high-density is feasible by synthesizing a complex RNA permutation library with 262144 unique sequences. We also introduce DNA/RNA chimeric microarrays and explore their applications by mapping the sequence specificity of RNase HII.
Collapse
Affiliation(s)
- Jory Lietard
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaAlthanstraße 14, UZA II1090ViennaAustria
| | - Dominik Ameur
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaAlthanstraße 14, UZA II1090ViennaAustria
| | - Masad J. Damha
- Department of ChemistryMcGill University801 Rue Sherbrooke OMontréalQC H3A 0B8Canada
| | - Mark M. Somoza
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of ViennaAlthanstraße 14, UZA II1090ViennaAustria
| |
Collapse
|
82
|
Lietard J, Ameur D, Damha MJ, Somoza MM. In‐situ‐Synthese von hochdichten RNA‐Mikroarrays mittels Photolithographie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jory Lietard
- Institute für Anorganische ChemieFakultät für ChemieUniversität Wien Althanstraße 14, UZA II 1090 Wien Österreich
| | - Dominik Ameur
- Institute für Anorganische ChemieFakultät für ChemieUniversität Wien Althanstraße 14, UZA II 1090 Wien Österreich
| | - Masad J. Damha
- Department of ChemistryMcGill University 801 Rue Sherbrooke O Montréal QC H3A 0B8 Kanada
| | - Mark M. Somoza
- Institute für Anorganische ChemieFakultät für ChemieUniversität Wien Althanstraße 14, UZA II 1090 Wien Österreich
| |
Collapse
|
83
|
Hölz K, Hoi JK, Schaudy E, Somoza V, Lietard J, Somoza MM. High-Efficiency Reverse (5'→3') Synthesis of Complex DNA Microarrays. Sci Rep 2018; 8:15099. [PMID: 30305718 PMCID: PMC6180089 DOI: 10.1038/s41598-018-33311-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022] Open
Abstract
DNA microarrays are important analytical tools in genetics and have recently found multiple new biotechnological roles in applications requiring free 3' terminal hydroxyl groups, particularly as a starting point for enzymatic extension via DNA or RNA polymerases. Here we demonstrate the highly efficient reverse synthesis of complex DNA arrays using a photolithographic approach. The method is analogous to conventional solid phase synthesis but makes use of phosphoramidites with the benzoyl-2-(2-nitrophenyl)-propoxycarbonyl (BzNPPOC) photolabile protecting group on the 3'-hydroxyl group. The use of BzNPPOC, with more than twice the photolytic efficiency of the 2-(2-nitrophenyl)-propoxycarbonyl (NPPOC) previously used for 5'→3' synthesis, combined with additional optimizations to the coupling and oxidation reactions results in an approximately 3-fold improvement in the reverse synthesis efficiency of complex arrays of DNA oligonucleotides. The coupling efficiencies of the reverse phosphoramidites are as good as those of regular phosphoramidites, resulting in comparable yields. Microarrays of DNA surface tethered on the 5' end and with free 3' hydroxyl termini can be synthesized quickly and with similarly high stepwise coupling efficiency as microarrays using conventional 3'→5' synthesis.
Collapse
Affiliation(s)
- Kathrin Hölz
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Julia K Hoi
- Department of Physiological Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Erika Schaudy
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Veronika Somoza
- Department of Physiological Chemistry, Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jory Lietard
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| | - Mark M Somoza
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
84
|
Fraccari RL, Carminati M, Piantanida G, Leontidou T, Ferrari G, Albrecht T. High-bandwidth detection of short DNA in nanopipettes. Faraday Discuss 2018; 193:459-470. [PMID: 27711887 DOI: 10.1039/c6fd00109b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glass or quartz nanopipettes have found increasing use as tools for studying the biophysical properties of DNA and proteins, and as sensor devices. The ease of fabrication, favourable wetting properties and low capacitance are some of the inherent advantages, for example compared to more conventional, silicon-based nanopore chips. Recently, we have demonstrated high-bandwidth detection of double-stranded (ds) DNA with microsecond time resolution in nanopipettes, using custom-designed electronics. The electronics design has now been refined to include more sophisticated control features, such as integrated bias reversal and other features. Here, we exploit these capabilities and probe the translocation of short dsDNA in the 100 bp range, in different electrolytes. Single-stranded (ss) DNA of similar length are in use as capture probes, so label-free detection of their ds counterparts could therefore be of relevance in disease diagnostics.
Collapse
Affiliation(s)
- Raquel L Fraccari
- Imperial College London, Department of Chemistry, Exhibition, Road, London SW7 2AZ, UK.
| | - Marco Carminati
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, P.za, Leonardo da Vinci 32, Milano, Italy
| | - Giacomo Piantanida
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, P.za, Leonardo da Vinci 32, Milano, Italy
| | - Tina Leontidou
- Imperial College London, Department of Chemistry, Exhibition, Road, London SW7 2AZ, UK.
| | - Giorgio Ferrari
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, P.za, Leonardo da Vinci 32, Milano, Italy
| | - Tim Albrecht
- Imperial College London, Department of Chemistry, Exhibition, Road, London SW7 2AZ, UK.
| |
Collapse
|
85
|
Öling D, Lawenius L, Shaw W, Clark S, Kettleborough R, Ellis T, Larsson N, Wigglesworth M. Large Scale Synthetic Site Saturation GPCR Libraries Reveal Novel Mutations That Alter Glucose Signaling. ACS Synth Biol 2018; 7:2317-2321. [PMID: 30114904 DOI: 10.1021/acssynbio.8b00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site saturation mutagenesis (SSM) is a powerful mutagenesis strategy for protein engineering and directed evolution experiments. However, limiting factors using this method are either biased representation of variants, or limiting library size. To overcome these hurdles, we generated large scale targeted synthetic SSM libraries using massively parallel oligonucleotide synthesis and benchmarked this against an error-prone (epPCR) library. The yeast glucose activated GPCR-Gpr1 was chosen as a prototype to evolve novel glucose sensors. We demonstrate superior variant representation and several unique hits in the synthetic library compared to the PCR generated library. Application of this mutational approach further builds the possibilities of synthetic biology in tuning of a response to known ligands and in generating biosensors for novel ligands.
Collapse
Affiliation(s)
- David Öling
- Discovery Biology, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D, 431 50 Mölndal, Sweden
| | - Lina Lawenius
- Discovery Biology, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D, 431 50 Mölndal, Sweden
| | - William Shaw
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Sonya Clark
- Twist Bioscience, San Francisco, California 94158, United States
| | | | - Tom Ellis
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Niklas Larsson
- Discovery Biology, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D, 431 50 Mölndal, Sweden
| | - Mark Wigglesworth
- Hit Identification, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D, Macclesfield SK10 2NA, U.K
| |
Collapse
|
86
|
Domljanovic I, Hansen AH, Hansen LH, Klitgaard JK, Taskova M, Astakhova K. Studies of Impending Oligonucleotide Therapeutics in Simulated Biofluids. Nucleic Acid Ther 2018; 28:348-356. [PMID: 30106665 DOI: 10.1089/nat.2017.0704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthetic oligonucleotides, their complexes and conjugates with other biomolecules represent valuable research tools and therapeutic agents. In spite of growing applications in basic research and clinical science, only few studies have addressed the issue of such compounds' stability in biological media. Herein, we studied the stability of two therapeutically relevant oligonucleotide probes in simulated biofluids; the 21 nucleotide-long DNA/locked nucleic acid oligonucleotide ON targeted toward cancer-associated BRAF V600E mutation, and a longer DNA analog (TTC) originating from BRAF gene. We found that stability of peptide-oligonucleotide conjugates (POCs) in human serum (HS) was superior compared with the naked or complexed 21mer oligonucleotide, whereas stability of POCs in simulated gastric juice (GJ) was dependent on the peptide sequence. Addition of pepstatin A in general increased the stability of oligonucleotides after 24 h digestion in HS and simulated GJ. Similarly, complexation with optimal amounts of histone proteins was found to rescue oligonucleotide stability after 24 h digestion in hydrochloric acid.
Collapse
Affiliation(s)
- Ivana Domljanovic
- 1 Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Lykke H Hansen
- 2 Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Janne Kudsk Klitgaard
- 2 Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,3 Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Maria Taskova
- 1 Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kira Astakhova
- 1 Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
87
|
Shevelev GY, Pyshnyi DV. Modern approaches to artificial gene synthesis: aspects of oligonucleotide synthesis, enzymatic assembly, sequence verification and error correction. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
88
|
Jun S, Lim H, Jang H, Lee W, Ahn J, Lee JH, Bang D. Straightforward Delivery of Linearized Double-Stranded DNA Encoding sgRNA and Donor DNA for the Generation of Single Nucleotide Variants Based on the CRISPR/Cas9 System. ACS Synth Biol 2018; 7:1651-1659. [PMID: 29924933 DOI: 10.1021/acssynbio.7b00345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CRISPR/Cas9 for genome editing requires delivery of a guide RNA sequence and donor DNA for targeted homologous recombination. Typically, single-stranded oligodeoxynucleotide, serving as the donor template, and a plasmid encoding guide RNA are delivered as two separate components. However, in the multiplexed generation of single nucleotide variants, this two-component delivery system is limited by difficulty of delivering a matched pair of sgRNA and donor DNA to the target cell. Here, we describe a novel codelivery system called "sgR-DNA" that uses a linearized double-stranded DNA consisting of donor DNA component and a component encoding sgRNA. Our sgR-DNA-based method is simple to implement because it does not require cloning steps. We also report the potential of our delivery system to generate multiplex genomic substitutions in Escherichia coli and human cells.
Collapse
Affiliation(s)
- Soyeong Jun
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyeonseob Lim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hoon Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Wookjae Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jinwoo Ahn
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
89
|
Gaytán P, Roldán-Salgado A, Yáñez JA, Morales-Arrieta S, Juárez-González VR. CiPerGenesis, A Mutagenesis Approach that Produces Small Libraries of Circularly Permuted Proteins Randomly Opened at a Focused Region: Testing on the Green Fluorescent Protein. ACS COMBINATORIAL SCIENCE 2018; 20:400-413. [PMID: 29812897 DOI: 10.1021/acscombsci.7b00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Circularly permuted proteins (cpPs) represent a novel type of mutant proteins with original termini that are covalently linked through a peptide connector and opened at any other place of the polypeptide backbone to create new ends. cpPs are finding wide applications in biotechnology because their properties may be quite different from those of the parental protein. However, the actual challenge for the creation of successful cpPs is to identify those peptide bonds that can be broken to create new termini and ensure functional and well-folded cpPs. Herein, we describe CiPerGenesis, a combinatorial mutagenesis approach that uses two oligonucleotide libraries to amplify a circularized gene by PCR, starting and ending from a focused target region. This approach creates small libraries of circularly permuted genes that are easily cloned in the correct direction and frame using two different restriction sites encoded in the oligonucleotides. Once expressed, the protein libraries exhibit a unique sequence diversity, comprising cpPs that exhibit ordinary breakpoints between adjacent amino acids localized at the target region as well as cpPs with new termini containing user-defined truncations and repeats of some amino acids. CiPerGenesis was tested at the lid region G134-H148 of green fluorescent protein (GFP), revealing that the most fluorescent variants were those starting at Leu141 and ending at amino acids Tyr145, Tyr143, Glu142, Leu141, Lys140, and H139. Purification and biochemical characterization of some variants suggested a differential expression, solubility and maturation extent of the mutant proteins as the likely cause for the variability in fluorescence intensity observed in colonies.
Collapse
Affiliation(s)
- Paul Gaytán
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Abigail Roldán-Salgado
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Jorge A. Yáñez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Sandra Morales-Arrieta
- Departamento de Ingeniería en Biotecnología, Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566, Col. Lomas del Texcal, Jiutepec, Morelos 62550, México
| | - Víctor R. Juárez-González
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| |
Collapse
|
90
|
Katz L, Chen YY, Gonzalez R, Peterson TC, Zhao H, Baltz RH. Synthetic biology advances and applications in the biotechnology industry: a perspective. ACTA ACUST UNITED AC 2018; 45:449-461. [DOI: 10.1007/s10295-018-2056-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
Abstract
Abstract
Synthetic biology is a logical extension of what has been called recombinant DNA (rDNA) technology or genetic engineering since the 1970s. As rDNA technology has been the driver for the development of a thriving biotechnology industry today, starting with the commercialization of biosynthetic human insulin in the early 1980s, synthetic biology has the potential to take the industry to new heights in the coming years. Synthetic biology advances have been driven by dramatic cost reductions in DNA sequencing and DNA synthesis; by the development of sophisticated tools for genome editing, such as CRISPR/Cas9; and by advances in informatics, computational tools, and infrastructure to facilitate and scale analysis and design. Synthetic biology approaches have already been applied to the metabolic engineering of microorganisms for the production of industrially important chemicals and for the engineering of human cells to treat medical disorders. It also shows great promise to accelerate the discovery and development of novel secondary metabolites from microorganisms through traditional, engineered, and combinatorial biosynthesis. We anticipate that synthetic biology will continue to have broadening impacts on the biotechnology industry to address ongoing issues of human health, world food supply, renewable energy, and industrial chemicals and enzymes.
Collapse
Affiliation(s)
- Leonard Katz
- 0000 0001 2181 7878 grid.47840.3f QB3 Institute University of California-Berkeley 5885 Hollis St., 4th Floor 94608 Emeryville CA USA
| | - Yvonne Y Chen
- 0000 0000 9632 6718 grid.19006.3e Department of Chemical and Biomolecular Engineering University of California-Los Angeles 420 Westwood Plaza, Boelter Hall 5531 90095 Los Angeles CA USA
| | - Ramon Gonzalez
- 0000 0004 1936 8278 grid.21940.3e Departments of Chemical and Biomolecular Engineering and Bioengineering Rice University 6100 Main Street 77005 Houston TX USA
| | - Todd C Peterson
- grid.427368.c Synthetic Genomics, Inc. 11149 North Torrey Pines Road 92037 La Jolla CA USA
| | - Huimin Zhao
- 0000 0004 1936 9991 grid.35403.31 Department of Chemical and Biomolecular Engineering University of Illinois 600 South Mathews Avenue 61801 Urbana IL USA
| | - Richard H Baltz
- CognoGen Biotechnology Consulting 7636 Andora Drive 34238 Sarasota FL USA
| |
Collapse
|
91
|
Encoding human serine phosphopeptides in bacteria for proteome-wide identification of phosphorylation-dependent interactions. Nat Biotechnol 2018; 36:638-644. [PMID: 29889213 PMCID: PMC6590076 DOI: 10.1038/nbt.4150] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 04/04/2018] [Indexed: 11/19/2022]
|
92
|
Xie Y, Yang YT, Shi W, Ai X, Xi XG. Construction, expression, and characterization of AG1 1-843 and AG1 1-1581. Protein Expr Purif 2018; 152:71-76. [PMID: 29870801 DOI: 10.1016/j.pep.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
AG1, a member of the DUF1220 protein family, exhibits the most extreme human lineage-specific copy number expansion of any protein-coding sequence in the genome. These variations in copy number have been linked to both brain evolution among primates and brain size in humans. Unfortunately, our current understanding of the structure and function of these proteins is limited because current cloning and expression techniques fail to consistently produce recombinant protein for in vitro studies. The present work describes a method for amino acid and DNA sequence optimization and synthesis, recombinant protein expression and analysis of two AG1 fragments, AG11-843 and AG11-1581. It was first necessary to modify the nucleotide sequence, while holding the GC content at 52.9%. The genes were then sectionally synthesized by overlap PCR. The resulting segments were cloned into the pET-15 b-sumo expression vector and subsequently transformed into BL21 (DE3) cells. After inducing their expression, the AG11-843 and AG11-1581 proteins were isolated and purified. Furthermore, using dynamic light scattering and gel filtration analysis, AG11-843 and AG11-1581 were shown to be present in tetrameric and dimeric forms in solution. To our knowledge, this is the first study to synthesize and express fragments of the DUF1220 protein family for in vitro analysis. Taken together, the proven utility and versatility of this method indicate that it can be used as an effective technique to construct and express other proteins with complicated sequences, thus providing the means to study their function and structure in vitro.
Collapse
Affiliation(s)
- Yan Xie
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan-Tao Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xia Ai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normals Supérieure de Cachan, CNRS, 61 Avenue du Président Wilson, 94235, Cachan, France.
| |
Collapse
|
93
|
Terui Y, Yoshida T, Sakamoto A, Saito D, Oshima T, Kawazoe M, Yokoyama S, Igarashi K, Kashiwagi K. Polyamines protect nucleic acids against depurination. Int J Biochem Cell Biol 2018; 99:147-153. [PMID: 29649565 DOI: 10.1016/j.biocel.2018.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022]
Abstract
Depurination is accelerated by heat and reactive oxygen species under physiological conditions. We previously reported that polyamines are involved in mitigation of heat shock and oxidative stresses through stimulation of the synthesis of heat shock and antioxidant proteins. This time, we investigated whether polyamines are directly involved in protecting nucleic acids from thermal depurination induced by high temperature. The suppressing efficiencies of depurination of DNA by spermine, caldopentamine and caldohexamine in the presence of 1 mM Mg2+, were approximately 50%, 60% and 80%, respectively. Mg2+ also protected nucleic acids against depurination but to a lesser degree than polyamines. Longer unusual polyamines were more effective at protecting DNA against depurination compared to standard polyamines. The tRNA depurination suppressing efficiencies of spermine, caldopentamine and caldohexamine in the presence of 1 mM Mg2+, were approximately 60%, 70% and 80%, respectively. Standard polyamines protected tRNA and ribosomes more effectively than DNA against thermal depurination. Branched polyamines such as mitsubishine and tetrakis(3-aminopropyl)ammonium also protected RNA more effectively than DNA against depurination. These results suggest that the suppressing effect of depurination of nucleic acids (DNA and RNA) depends on the types of polyamines: i.e. to maintain functional conformation of nucleic acids at high temperature, longer and branched polyamines play important roles in protecting nucleic acids from depurination compared to standard polyamines and Mg2+.
Collapse
Affiliation(s)
- Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan.
| | - Taketo Yoshida
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | | | - Tairo Oshima
- Institute of Environmental Biology, Kyowa-Kako, Machida, Tokyo, Japan
| | | | | | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan.
| |
Collapse
|
94
|
Metagenomic mining of regulatory elements enables programmable species-selective gene expression. Nat Methods 2018; 15:323-329. [PMID: 30052624 PMCID: PMC6065261 DOI: 10.1038/nmeth.4633] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 01/21/2023]
Abstract
Robust and predictably performing synthetic circuits rely on the use of well-characterized regulatory parts across different genetic backgrounds and environmental contexts. Here we report the large-scale metagenomic mining of thousands of natural 5' regulatory sequences from diverse bacteria, and their multiplexed gene expression characterization in industrially relevant microbes. We identified sequences with broad and host-specific expression properties that are robust in various growth conditions. We also observed substantial differences between species in terms of their capacity to utilize exogenous regulatory sequences. Finally, we demonstrate programmable species-selective gene expression that produces distinct and diverse output patterns in different microbes. Together, these findings provide a rich resource of characterized natural regulatory sequences and a framework that can be used to engineer synthetic gene circuits with unique and tunable cross-species functionality and properties, and also suggest the prospect of ultimately engineering complex behaviors at the community level.
Collapse
|
95
|
Unraveling the determinants of microRNA mediated regulation using a massively parallel reporter assay. Nat Commun 2018; 9:529. [PMID: 29410437 PMCID: PMC5802814 DOI: 10.1038/s41467-018-02980-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/11/2018] [Indexed: 12/16/2022] Open
Abstract
Despite extensive research, the sequence features affecting microRNA-mediated regulation are not well understood, limiting our ability to predict gene expression levels in both native and synthetic sequences. Here we employed a massively parallel reporter assay to investigate the effect of over 14,000 rationally designed 3′ UTR sequences on reporter construct repression. We found that multiple factors, including microRNA identity, hybridization energy, target accessibility, and target multiplicity, can be manipulated to achieve a predictable, up to 57-fold, change in protein repression. Moreover, we predict protein repression and RNA levels with high accuracy (R = 0.84 and R = 0.80, respectively) using only 3′ UTR sequence, as well as the effect of mutation in native 3′ UTRs on protein repression (R = 0.63). Taken together, our results elucidate the effect of different sequence features on miRNA-mediated regulation and demonstrate the predictability of their effect on gene expression with applications in regulatory genomics and synthetic biology. MiRNAs are known regulators of gene expression. Here the authors perform a large-scale massively parallel reporter assay to investigate the effect of a large number of designed 3′ UTR sequences on reporter expression and asses how miRNA regulatory elements features affect miRNA mediated repression.
Collapse
|
96
|
Li J, Green AA, Yan H, Fan C. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat Chem 2017; 9:1056-1067. [PMID: 29064489 PMCID: PMC11421837 DOI: 10.1038/nchem.2852] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022]
Abstract
Nucleic acids have attracted widespread attention due to the simplicity with which they can be designed to form discrete structures and programmed to perform specific functions at the nanoscale. The advantages of DNA/RNA nanotechnology offer numerous opportunities for in-cell and in-vivo applications, and the technology holds great promise to advance the growing field of synthetic biology. Many elegant examples have revealed the potential in integrating nucleic acid nanostructures in cells and in vivo where they can perform important physiological functions. In this Review, we summarize the current abilities of DNA/RNA nanotechnology to realize applications in live cells and then discuss the key problems that must be solved to fully exploit the useful properties of nanostructures. Finally, we provide viewpoints on how to integrate the tools provided by DNA/RNA nanotechnology and related new technologies to construct nucleic acid nanostructure-based molecular circuitry for synthetic biology.
Collapse
Affiliation(s)
- Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Alexander A Green
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
97
|
Higgins SA, Savage DF. Protein Science by DNA Sequencing: How Advances in Molecular Biology Are Accelerating Biochemistry. Biochemistry 2017; 57:38-46. [DOI: 10.1021/acs.biochem.7b00886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sean A. Higgins
- Department
of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - David F. Savage
- Department
of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
98
|
Al Ouahabi A, Amalian JA, Charles L, Lutz JF. Mass spectrometry sequencing of long digital polymers facilitated by programmed inter-byte fragmentation. Nat Commun 2017; 8:967. [PMID: 29042552 PMCID: PMC5645402 DOI: 10.1038/s41467-017-01104-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/18/2017] [Indexed: 11/08/2022] Open
Abstract
In the context of data storage miniaturization, it was recently shown that digital information can be stored in the monomer sequences of non-natural macromolecules. However, the sequencing of such digital polymers is currently limited to short chains. Here, we report that intact multi-byte digital polymers can be sequenced in a moderate resolution mass spectrometer and that full sequence coverage can be attained without requiring pre-analysis digestion or the help of sequence databases. In order to do so, the polymers are designed to undergo controlled fragmentations in collision-induced dissociation conditions. Each byte of the sequence is labeled by an identification tag and a weak alkoxyamine group is placed between 2 bytes. As a consequence of this design, the NO-C bonds break first upon collisional activation, thus leading to a pattern of mass tag-shifted intact bytes. Afterwards, each byte is individually sequenced in pseudo-MS3 conditions and the whole sequence is found.Digital information can be stored in monomer sequences of non-natural macromolecules, but only short chains can be read. Here the authors show long multi-byte digital polymers sequenced in a moderate resolution mass spectrometer. Full sequence coverage can be attained without pre-analysis digestion or the help from sequence databases.
Collapse
Affiliation(s)
- Abdelaziz Al Ouahabi
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg, France
| | - Jean-Arthur Amalian
- Aix-Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille, France
| | - Laurence Charles
- Aix-Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille, France.
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg, France.
| |
Collapse
|
99
|
Gach PC, Iwai K, Kim PW, Hillson NJ, Singh AK. Droplet microfluidics for synthetic biology. LAB ON A CHIP 2017; 17:3388-3400. [PMID: 28820204 DOI: 10.1039/c7lc00576h] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to most researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.
Collapse
Affiliation(s)
- Philip C Gach
- Technology Division, DOE Joint BioEnergy Institute, Emeryville, California 94608, USA
| | | | | | | | | |
Collapse
|
100
|
Kukwikila M, Gale N, El-Sagheer AH, Brown T, Tavassoli A. Assembly of a biocompatible triazole-linked gene by one-pot click-DNA ligation. Nat Chem 2017; 9:1089-1098. [PMID: 29064492 DOI: 10.1038/nchem.2850] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/25/2017] [Indexed: 11/09/2022]
Abstract
The chemical synthesis of oligonucleotides and their enzyme-mediated assembly into genes and genomes has significantly advanced multiple scientific disciplines. However, these approaches are not without their shortcomings; enzymatic amplification and ligation of oligonucleotides into genes and genomes makes automation challenging, and site-specific incorporation of epigenetic information and/or modified bases into large constructs is not feasible. Here we present a fully chemical one-pot method for the assembly of oligonucleotides into a gene by click-DNA ligation. We synthesize the 335 base-pair gene that encodes the green fluorescent protein iLOV from ten functionalized oligonucleotides that contain 5'-azide and 3'-alkyne units. The resulting click-linked iLOV gene contains eight triazoles at the sites of chemical ligation, and yet is fully biocompatible; it is replicated by DNA polymerases in vitro and encodes a functional iLOV protein in Escherichia coli. We demonstrate the power and potential of our one-pot gene-assembly method by preparing an epigenetically modified variant of the iLOV gene.
Collapse
Affiliation(s)
| | - Nittaya Gale
- ATDBio, Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom.,Chemistry Branch, Department of Science and Mathematics, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Ali Tavassoli
- Chemistry, University of Southampton, Southampton SO17 1BJ, UK.,Institute for Life Science, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|