51
|
Wang X, Gao S, Hao Z, Tang T, Liu F. Involvement of TRAF6 in regulating immune defense and ovarian development in Musca domestica. Int J Biol Macromol 2020; 153:1262-1271. [DOI: 10.1016/j.ijbiomac.2019.10.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022]
|
52
|
Liebig JK, Kuphal S, Bosserhoff AK. HuRdling Senescence: HuR Breaks BRAF-Induced Senescence in Melanocytes and Supports Melanoma Growth. Cancers (Basel) 2020; 12:cancers12051299. [PMID: 32455577 PMCID: PMC7281285 DOI: 10.3390/cancers12051299] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 01/17/2023] Open
Abstract
In addition to genetic changes, post-transcriptional events strongly contribute to the progression of malignant tumors. The RNA-binding protein HuR (ELAVL1) is able to bind and stabilize a large group of target mRNAs, which contain AU-rich elements (ARE) in their 3′-untranslated region. We found HuR to be upregulated in malignant melanoma in vitro and in vivo, significantly correlating with progression in vivo. Additionally, we could show that miR-194-5p can regulate HuR expression level. HuR knockdown in melanoma cells led to the suppression of proliferation and the induction of cellular senescence. Interestingly, HuR overexpression was sufficient to inhibit senescence in BRAFV600E-expressing melanocytes and to force their growth. Here, MITF (Microphthalmia-associated transcription factor), a key player in suppressing senescence and an ARE containing transcript, is positively regulated by HuR. Our results show for the first time that the overexpression of HuR is an important part of the regulatory pathway in the development of malignant melanoma and functions as a switch to overcome oncogene-induced senescence and to support melanoma formation. These newly defined alterations may provide possibilities for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Janika K. Liebig
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.K.L.); (S.K.)
| | - Silke Kuphal
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.K.L.); (S.K.)
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil-Fischer Zentrum, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.K.L.); (S.K.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-24191
| |
Collapse
|
53
|
Oncogenic hijacking of a developmental transcription factor evokes vulnerability toward oxidative stress in Ewing sarcoma. Nat Commun 2020; 11:2423. [PMID: 32415069 PMCID: PMC7228971 DOI: 10.1038/s41467-020-16244-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/23/2020] [Indexed: 01/20/2023] Open
Abstract
Ewing sarcoma (EwS) is an aggressive childhood cancer likely originating from mesenchymal stem cells or osteo-chondrogenic progenitors. It is characterized by fusion oncoproteins involving EWSR1 and variable members of the ETS-family of transcription factors (in 85% FLI1). EWSR1-FLI1 can induce target genes by using GGAA-microsatellites as enhancers. Here, we show that EWSR1-FLI1 hijacks the developmental transcription factor SOX6 – a physiological driver of proliferation of osteo-chondrogenic progenitors – by binding to an intronic GGAA-microsatellite, which promotes EwS growth in vitro and in vivo. Through integration of transcriptome-profiling, published drug-screening data, and functional in vitro and in vivo experiments including 3D and PDX models, we discover that constitutively high SOX6 expression promotes elevated levels of oxidative stress that create a therapeutic vulnerability toward the oxidative stress-inducing drug Elesclomol. Collectively, our results exemplify how aberrant activation of a developmental transcription factor by a dominant oncogene can promote malignancy, but provide opportunities for targeted therapy. Ewing sarcoma is characterized by the fusion of EWSR1 and FLI1. Here, the authors show that EWSR1-FLI1 increases the activity of the developmental transcription factor SOX6, which promotes tumor growth but also increases sensitivity to oxidative stress.
Collapse
|
54
|
The UPR sensor IRE1α and the adenovirus E3-19K glycoprotein sustain persistent and lytic infections. Nat Commun 2020; 11:1997. [PMID: 32332742 PMCID: PMC7181865 DOI: 10.1038/s41467-020-15844-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Persistent viruses cause chronic disease, and threaten the lives of immunosuppressed individuals. Here, we elucidate a mechanism supporting the persistence of human adenovirus (AdV), a virus that can kill immunosuppressed patients. Cell biological analyses, genetics and chemical interference demonstrate that one of five AdV membrane proteins, the E3-19K glycoprotein specifically triggers the unfolded protein response (UPR) sensor IRE1α in the endoplasmic reticulum (ER), but not other UPR sensors, such as protein kinase R-like ER kinase (PERK) and activating transcription factor 6 (ATF6). The E3-19K lumenal domain activates the IRE1α nuclease, which initiates mRNA splicing of X-box binding protein-1 (XBP1). XBP1s binds to the viral E1A-enhancer/promoter sequence, and boosts E1A transcription, E3-19K levels and lytic infection. Inhibition of IRE1α nuclease interrupts the five components feedforward loop, E1A, E3-19K, IRE1α, XBP1s, E1A enhancer/promoter. This loop sustains persistent infection in the presence of the immune activator interferon, and lytic infection in the absence of interferon. Adenovirus (AdV) can cause persistent infections, but underlying mechanisms are poorly understood. Here, Prasad et al. show that the AdV glycoprotein E3-19K activates the unfolded protein response sensor IRE1α, and that this triggers a feedforward loop that sustains persistent infection in the presence of interferon.
Collapse
|
55
|
Abdo AIK, Tye GJ. Interleukin 23 and autoimmune diseases: current and possible future therapies. Inflamm Res 2020; 69:463-480. [PMID: 32215665 DOI: 10.1007/s00011-020-01339-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/21/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE IL-23 is a central proinflammatory cytokine with a wide range of influence over immune response. It is implicated in several autoimmune diseases due to the infinite inflammatory loops it can create through the positive feedbacks of both IL-17 and IL-22 arms. This made IL-23 a key target of autoimmune disorders therapy, which indeed was proven to inhibit inflammation and ameliorate diseases. Current autoimmune treatments targeting IL-23 are either by preventing IL-23 ligation to its receptor (IL-23R) via antibodies or inhibiting IL-23 signaling by signaling downstream mediators' inhibitors, with each approach having its own pros and cons. METHODS Literature review was done to further understand the biology of IL-23 and current therapies. RESULTS In this review, we discuss the biological features of IL-23 and its role in the pathogenesis of autoimmune diseases including psoriasis, rheumatoid arthritis and inflammatory bowel diseases. Advantages, limitations and side effects of each concept will be reviewed, suggesting several advanced IL-23-based bio-techniques to generate new and possible future therapies to overcome current treatments problems.
Collapse
Affiliation(s)
- Ahmad Ismail Khaled Abdo
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
56
|
Liu S, Jaouannet M, Dempsey DA, Imani J, Coustau C, Kogel KH. RNA-based technologies for insect control in plant production. Biotechnol Adv 2020; 39:107463. [DOI: 10.1016/j.biotechadv.2019.107463] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022]
|
57
|
Sommer J, Dorn C, Gäbele E, Bataille F, Freese K, Seitz T, Thasler WE, Büttner R, Weiskirchen R, Bosserhoff A, Hellerbrand C. Four-And-A-Half LIM-Domain Protein 2 (FHL2) Deficiency Aggravates Cholestatic Liver Injury. Cells 2020; 9:cells9010248. [PMID: 31963815 PMCID: PMC7016690 DOI: 10.3390/cells9010248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cholestasis occurs in different clinical circumstances and leads to severe hepatic disorders. The four-and-a-half LIM-domain protein 2 (FHL2) is a scaffolding protein that modulates multiple signal transduction pathways in a tissue- and cell context-specific manner. In this study, we aimed to gain insight into the function of FHL2 in cholestatic liver injury. FHL2 expression was significantly increased in the bile duct ligation (BDL) model in mice. In Fhl2-deficient (Fhl2-ko) mice, BDL caused a more severe portal and parenchymal inflammation, extended portal fibrosis, higher serum transaminase levels, and higher pro-inflammatory and pro-fibrogenic gene expression compared to wild type (wt) mice. FHL2 depletion in HepG2 cells with siRNA resulted in a higher expression of the bile acid transporter Na+-taurocholate cotransporting polypeptide (NTCP) gene. Furthermore, FHL2-depleted HepG2 cells showed higher expression of markers for oxidative stress, lower B-cell lymphoma 2 (Bcl2) expression, and higher Bcl2-associated X protein (BAX) expression after stimulation with deoxycholic acid (DCA). In hepatic stellate cells (HSCs), FHL2 depletion caused an increased expression of TGF-β and several pro-fibrogenic matrix metalloproteinases. In summary, our study shows that deficiency in FHL2 aggravates cholestatic liver injury and suggests FHL2-mediated effects on bile acid metabolisms and HSCs as potential mechanisms for pronounced hepatocellular injury and fibrosis.
Collapse
Affiliation(s)
- Judith Sommer
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (K.F.); (T.S.); (A.B.)
| | - Christoph Dorn
- Institute of Pharmacy, University Regensburg, D-93053 Regensburg, Germany;
| | - Erwin Gäbele
- Department of Internal Medicine I, University Hospital Regensburg, D-93053 Regensburg, Germany;
| | - Frauke Bataille
- Institute of Pathology, University Regensburg, D-93049 Regensburg, Germany;
| | - Kim Freese
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (K.F.); (T.S.); (A.B.)
| | - Tatjana Seitz
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (K.F.); (T.S.); (A.B.)
| | | | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, D-50937 Cologne, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Anja Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (K.F.); (T.S.); (A.B.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, D-91054 Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (K.F.); (T.S.); (A.B.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, D-91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-24644; Fax: +49-9131-85-22485
| |
Collapse
|
58
|
Svoboda P. Key Mechanistic Principles and Considerations Concerning RNA Interference. FRONTIERS IN PLANT SCIENCE 2020; 11:1237. [PMID: 32903622 PMCID: PMC7438612 DOI: 10.3389/fpls.2020.01237] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 07/28/2020] [Indexed: 05/03/2023]
Abstract
Canonical RNAi, one of the so-called RNA-silencing mechanisms, is defined as sequence-specific RNA degradation induced by long double-stranded RNA (dsRNA). RNAi occurs in four basic steps: (i) processing of long dsRNA by RNase III Dicer into small interfering RNA (siRNA) duplexes, (ii) loading of one of the siRNA strands on an Argonaute protein possessing endonucleolytic activity, (iii) target recognition through siRNA basepairing, and (iv) cleavage of the target by the Argonaute's endonucleolytic activity. This basic pathway diversified and blended with other RNA silencing pathways employing small RNAs. In some organisms, RNAi is extended by an amplification loop employing an RNA-dependent RNA polymerase, which generates secondary siRNAs from targets of primary siRNAs. Given the high specificity of RNAi and its presence in invertebrates, it offers an opportunity for highly selective pest control. The aim of this text is to provide an introductory overview of key mechanistic aspects of RNA interference for understanding its potential and constraints for its use in pest control.
Collapse
|
59
|
Heinrich T, Seenisamy J, Becker F, Blume B, Bomke J, Dietz M, Eckert U, Friese-Hamim M, Gunera J, Hansen K, Leuthner B, Musil D, Pfalzgraf J, Rohdich F, Siegl C, Spuck D, Wegener A, Zenke FT. Identification of Methionine Aminopeptidase-2 (MetAP-2) Inhibitor M8891: A Clinical Compound for the Treatment of Cancer. J Med Chem 2019; 62:11119-11134. [DOI: 10.1021/acs.jmedchem.9b01070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Timo Heinrich
- Merck Healthcare, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Frank Becker
- Intana Bioscience GmbH, Lochhamer Str. 29a, D-82152 Planegg/Martinsried, Germany
| | - Beatrix Blume
- Merck Healthcare, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Jörg Bomke
- Merck Healthcare, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Melanie Dietz
- Merck Healthcare, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Uwe Eckert
- Merck Healthcare, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Manja Friese-Hamim
- Merck Healthcare, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Jakub Gunera
- Merck Healthcare, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Kerrin Hansen
- Intana Bioscience GmbH, Lochhamer Str. 29a, D-82152 Planegg/Martinsried, Germany
| | - Birgitta Leuthner
- Merck Healthcare, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Djordje Musil
- Merck Healthcare, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Jens Pfalzgraf
- Merck Healthcare, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Felix Rohdich
- Merck Healthcare, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Christian Siegl
- Merck Healthcare, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Dieter Spuck
- Merck Healthcare, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Ansgar Wegener
- Merck Healthcare, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Frank T. Zenke
- Merck Healthcare, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| |
Collapse
|
60
|
Hashemi M, Zali A, Hashemi J, Oraee-Yazdani S, Akbari A. Down-regulation of 14-3-3 zeta sensitizes human glioblastoma cells to apoptosis induction. Apoptosis 2019; 23:616-625. [PMID: 30101359 DOI: 10.1007/s10495-018-1476-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Strong 14-3-3 zeta protein expression plays an important role in tumorigenesis, including in the maintenance of cell growth, resistance increase, and the prevention of apoptosis. In this study, we focus on two targets: (1) the expression of 14-3-3 zeta in the different grades of human astrocytoma (II-IV), (2) suppression of 14-3-3 zeta protein expression in glioblastoma derived astrocytes by 14-3-3 zeta shRNA lentiviral particles. The tissues of human astrocytoma were provided from 30 patients (ten of each grade of astrocytoma). Control tissues were obtained from the peritumoral brain zone of those patients with glioblastoma. The protein and mRNA expression levels of each astrocytoma grade were assessed via western blotting and RT-PCR, respectively. Results indicated that 14-3-3 zeta was significantly expressed in glioblastoma multiforme (grade IV) and 14-3-3 zeta expression levels enhanced according to the increase of astrocytoma malignancy. In the cellular study for knock down of the 14-3-3 zeta protein, surgical biopsy of glioblastoma was used to isolate primary astrocyte. Astrocytes were transduced with 14-3-3 zeta shRNA or non-targeted shRNA lentiviral particles. Furthermore, reduction of the 14-3-3 zeta protein expression in the astrocytes evaluated through qRT-PCR and western blot after transduction of 14-3-3 zeta shRNA lentiviral particles. Moreover, apoptosis properties, including DNA fragmentation and ratio increase of Bax/Bcl-2 were observed in astrocytes following reduction of 14-3-3 zeta protein expression. Further observation indicated that the mitochondrial pathway through release of cytochorome c and caspase-3 activity was involved in the apoptosis induction. Hence, this study demonstrates a key role of the 14-3-3 zeta protein in tumorigenesis but also indicates that 14-3-3 zeta can be considered as a target for the astrocytoma treatment specially glioblastoma.
Collapse
Affiliation(s)
- Mansoureh Hashemi
- Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Shohada Tajrish Hospital, Functional Neurosurgery Research Center, Shahrdari St, Tajrish Square, Tehran, 1989934148, Iran.
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Hashemi
- Department of Chemical Engineering, University of Louisville, Louisville, KY40292, USA
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akhtar Akbari
- Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
61
|
Lai X, Eberhardt M, Schmitz U, Vera J. Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res 2019; 47:7753-7766. [PMID: 31340025 PMCID: PMC6735922 DOI: 10.1093/nar/gkz638] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs that regulate gene expression by suppressing mRNA translation and reducing mRNA stability. A miRNA can potentially bind many mRNAs, thereby affecting the expression of oncogenes and tumor suppressor genes as well as the activity of whole pathways. The promise of miRNA therapeutics in cancer is to harness this evolutionarily conserved mechanism for the coordinated regulation of gene expression, and thus restoring a normal cell phenotype. However, the promiscuous binding of miRNAs can provoke unwanted off-target effects, which are usually caused by high-dose single-miRNA treatments. Thus, it is desirable to develop miRNA therapeutics with increased specificity and efficacy. To achieve that, we propose the concept of miRNA cooperativity in order to exert synergistic repression on target genes, thus lowering the required total amount of miRNAs. We first review miRNA therapies in clinical application. Next, we summarize the knowledge on the molecular mechanism and biological function of miRNA cooperativity and discuss its application in cancer therapies. We then propose and discuss a systems biology approach to investigate miRNA cooperativity for the clinical setting. Altogether, we point out the potential of miRNA cooperativity to reduce off-target effects and to complement conventional, targeted, or immune-based therapies for cancer.
Collapse
Affiliation(s)
- Xin Lai
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ulf Schmitz
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, 2006 Camperdown, Australia
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, 2006 Camperdown, Australia
- Sydney Medical School, The University of Sydney, 2006 Camperdown, Australia
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen, 91052 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
62
|
Vu AL, Leesutthiphonchai W, Ah-Fong AMV, Judelson HS. Defining Transgene Insertion Sites and Off-Target Effects of Homology-Based Gene Silencing Informs the Application of Functional Genomics Tools in Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:915-927. [PMID: 30811313 DOI: 10.1094/mpmi-09-18-0265-ta] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DNA transformation and homology-based transcriptional silencing are frequently used to assess gene function in Phytophthora spp. Since unplanned side-effects of these tools are not well-characterized, we used P. infestans to study plasmid integration sites and whether knockdowns caused by homology-dependent silencing spread to other genes. Insertions occurred both in gene-dense and gene-sparse regions but disproportionately near the 5' ends of genes, which disrupted native coding sequences. Microhomology at the recombination site between plasmid and chromosome was common. Studies of transformants silenced for 12 different gene targets indicated that neighbors within 500 nt were often cosilenced, regardless of whether hairpin or sense constructs were employed and the direction of transcription of the target. However, this cis spreading of silencing did not occur in all transformants obtained with the same plasmid. Genome-wide studies indicated that unlinked genes with partial complementarity with the silencing-inducing transgene were not usually down-regulated. We learned that hairpin or sense transgenes were not cosilenced with the target in all transformants, which informs how screens for silencing should be performed. We conclude that transformation and gene silencing can be reliable tools for functional genomics in Phytophthora spp. but must be used carefully, especially by testing for the spread of silencing to genes flanking the target.
Collapse
Affiliation(s)
- Andrea L Vu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | | | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|
63
|
Daga N, Eicher S, Kannan A, Casanova A, Low SH, Kreibich S, Andritschke D, Emmenlauer M, Jenkins JL, Hardt WD, Greber UF, Dehio C, von Mering C. Growth-restricting effects of siRNA transfections: a largely deterministic combination of off-target binding and hybridization-independent competition. Nucleic Acids Res 2019; 46:9309-9320. [PMID: 30215772 PMCID: PMC6182159 DOI: 10.1093/nar/gky798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 09/10/2018] [Indexed: 01/17/2023] Open
Abstract
Perturbation of gene expression by means of synthetic small interfering RNAs (siRNAs) is a powerful way to uncover gene function. However, siRNA technology suffers from sequence-specific off-target effects and from limitations in knock-down efficiency. In this study, we assess a further problem: unintended effects of siRNA transfections on cellular fitness/proliferation. We show that the nucleotide compositions of siRNAs at specific positions have reproducible growth-restricting effects on mammalian cells in culture. This is likely distinct from hybridization-dependent off-target effects, since each nucleotide residue is seen to be acting independently and additively. The effect is robust and reproducible across different siRNA libraries and also across various cell lines, including human and mouse cells. Analyzing the growth inhibition patterns in correlation to the nucleotide sequence of the siRNAs allowed us to build a predictor that can estimate growth-restricting effects for any arbitrary siRNA sequence. Competition experiments with co-transfected siRNAs further suggest that the growth-restricting effects might be linked to an oversaturation of the cellular miRNA machinery, thus disrupting endogenous miRNA functions at large. We caution that competition between siRNA molecules could complicate the interpretation of double-knockdown or epistasis experiments, and potential interactions with endogenous miRNAs can be a factor when assaying cell growth or viability phenotypes.
Collapse
Affiliation(s)
- Neha Daga
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland.,Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| | - Simone Eicher
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Abhilash Kannan
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Alain Casanova
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Shyan H Low
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Saskia Kreibich
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Daniel Andritschke
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | - Jeremy L Jenkins
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Urs F Greber
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | | | - Christian von Mering
- Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland.,Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
64
|
Feuerer L, Lamm S, Henz I, Kappelmann-Fenzl M, Haferkamp S, Meierjohann S, Hellerbrand C, Kuphal S, Bosserhoff AK. Role of melanoma inhibitory activity in melanocyte senescence. Pigment Cell Melanoma Res 2019; 32:777-791. [PMID: 31172672 DOI: 10.1111/pcmr.12801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/16/2019] [Accepted: 05/26/2019] [Indexed: 01/10/2023]
Abstract
The protein melanoma inhibitory activity (MIA) is known to be expressed in melanoma and to support melanoma progression. Interestingly, previous studies also observed the expression of MIA in nevi. Concentrating on these findings, we revealed that MIA expression is correlated with a senescent state in melanocytes. Induction of replicative or oncogene-induced senescence resulted in increased MIA expression in vitro. Notably, MIA knockdown in senescent melanocytes reduced the percentage of senescence-associated beta-Gal-positive cells and enhanced proliferation. Using the melanoma mouse model Tg(Grm1), MIA-deficient mice supported the impact of MIA on senescence by showing a significantly earlier tumor onset compared to controls. In melanocytes, MIA knockdown led to a downregulation of the cell cycle inhibitor p21 in vitro and in vivo. In contrast, after induction of hTERT in human melanoma cells, p21 regulation by MIA was lost. In summary, our data show for the first time that MIA is a regulator of cellular senescence in human and murine melanocytes.
Collapse
Affiliation(s)
- Lena Feuerer
- Emil Fischer Center, Institute of Biochemistry, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Susanne Lamm
- Emil Fischer Center, Institute of Biochemistry, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ingmar Henz
- Emil Fischer Center, Institute of Biochemistry, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Kappelmann-Fenzl
- Emil Fischer Center, Institute of Biochemistry, University of Erlangen-Nürnberg, Erlangen, Germany.,Deggendorf Institute of Technology, Deggendorf, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | | | - Claus Hellerbrand
- Emil Fischer Center, Institute of Biochemistry, University of Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Silke Kuphal
- Emil Fischer Center, Institute of Biochemistry, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Katrin Bosserhoff
- Emil Fischer Center, Institute of Biochemistry, University of Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
65
|
CRISPR/Cas9 guided genome and epigenome engineering and its therapeutic applications in immune mediated diseases. Semin Cell Dev Biol 2019; 96:32-43. [PMID: 31112800 DOI: 10.1016/j.semcdb.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Recent developments in the nucleic acid editing technologies have provided a powerful tool to precisely engineer the genome and epigenome for studying many aspects of immune cell differentiation and development as well as several immune mediated diseases (IMDs) including autoimmunity and cancer. Here, we discuss the recent technological achievements of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based RNA-guided genome and epigenome editing toolkit and provide an insight into how CRISPR/Cas9 (CRISPR Associated Protein 9) toolbox could be used to examine genetic and epigenetic mechanisms underlying IMDs. In addition, we will review the progress in CRISPR/Cas9-based genome-wide genome and epigenome screens in various cell types including immune cells. Finally, we will discuss the potential of CRISPR/Cas9 in defining the molecular function of disease associated SNPs overlapping gene regulatory elements.
Collapse
|
66
|
Choi KY, Correa S, Min J, Li J, Roy S, Laccetti KH, Dreaden E, Kong S, Heo R, Roh YH, Lawson EC, Palmer PA, Hammond PT. Binary Targeting of siRNA to Hematologic Cancer Cells In Vivo using Layer-by-Layer Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1900018. [PMID: 31839764 PMCID: PMC6910249 DOI: 10.1002/adfm.201900018] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Using siRNA therapeutics to treat hematologic malignancies has been unsuccessful because blood cancer cells exhibit remarkable resistance to standard transfection methods. Herein we report the successful delivery of siRNA therapeutics with a dual-targeted, layer-by-layer nanoparticle (LbL-NP). The LbL-NP protects siRNA from nucleases in the bloodstream by embedding it within polyelectrolyte layers that coat a polymeric core. The outermost layer consists of hyaluronic acid (a CD44-ligand) covalently conjugated to CD20 antibodies. The CD20/CD44 dual-targeting outer layer provides precise binding to blood cancer cells, followed by receptor-mediated endocytosis of the LbL-NP. We use this siRNA delivery platform to silence B-cell lymphoma 2 (BCL-2), a pro-survival protein, in vitro and in vivo. The dual-targeting approach significantly enhanced internalization of BCL-2 siRNA in lymphoma and leukemia cells, which led to significant downregulation of BCL-2 expression. Systemic administration of the dual-targeted, siRNA-loaded nanoparticle induced apoptosis and hampered proliferation of blood cancer cells both in cell culture and in orthotopic non-Hodgkin's lymphoma animal models. These results provide the basis for approaches to targeting blood-borne cancers and other diseases, and suggest that LbL nanoassemblies are a promising approach for delivering therapeutic siRNA to hematopoetic cell types that are known to evade transfection by other means.
Collapse
Affiliation(s)
- Ki Young Choi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Santiago Correa
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Materials Science and Engineering, Stanford University, Palo Alto, CA, 94305, USA
| | - Jouha Min
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiahe Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sweta Roy
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kristiana H Laccetti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Erik Dreaden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Stephanie Kong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Roun Heo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Young Hoon Roh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Edward C Lawson
- Janssen Research and Development, LLC, Spring House, PA, 19477, USA
| | - Peter A Palmer
- Janssen Research and Development, LLC, Spring House, PA, 19477, USA
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
67
|
Mahli A, Seitz T, Beckröge T, Freese K, Thasler WE, Benkert M, Dietrich P, Weiskirchen R, Bosserhoff A, Hellerbrand C. Bone Morphogenetic Protein-8B Expression is Induced in Steatotic Hepatocytes and Promotes Hepatic Steatosis and Inflammation In Vitro. Cells 2019; 8:cells8050457. [PMID: 31096638 PMCID: PMC6562647 DOI: 10.3390/cells8050457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered to be the hepatic manifestation of the metabolic syndrome. The bone morphogenetic protein-8B (BMP8B) has been shown to be expressed in brown adipose tissues and the hypothalamus and to affect thermogenesis and susceptibility to diet-induced obesity. Here, we aimed to analyze BMP8B expression in NAFLD and to gain insight into BMP8B effects on pathophysiological steps of NAFLD progression. BMP8B mRNA and protein expression were dose-dependently induced in primary human hepatocytes in vitro upon incubation with fatty acids. Furthermore, hepatic BMP8B expression was significantly increased in a murine NAFLD model and in NAFLD patients compared with controls. Incubation with recombinant BMP8B further enhanced the fatty acid-induced cellular lipid accumulation as well as NFκB activation and pro-inflammatory gene expression in hepatocytes, while siRNA-mediated BMP8B depletion ameliorated these fatty acid-induced effects. Analysis of the expression of key factors of hepatocellular lipid transport and metabolisms indicated that BMP8B effects on fatty acid uptake as well as de novo lipogenesis contributed to hepatocellular accumulation of fatty acids leading to increased storage in the form of triglycerides and enhanced combustion by beta oxidation. In conclusion, our data indicate that BMP8B enhances different pathophysiological steps of NAFLD progression and suggest BMP8B as a promising prognostic marker and therapeutic target for NAFLD and, potentially, also for other chronic liver diseases.
Collapse
Affiliation(s)
- Abdo Mahli
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | - Tatjana Seitz
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | - Tobias Beckröge
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | - Kim Freese
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | | | - Matthias Benkert
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | - Peter Dietrich
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany.
| | - Anja Bosserhoff
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| | - Claus Hellerbrand
- Institute of Biochemistry (Emil-Fischer Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany.
| |
Collapse
|
68
|
Dietrich P, Hellerbrand C, Bosserhoff A. The Delta Subunit of Rod-Specific Photoreceptor cGMP Phosphodiesterase (PDE6D) Contributes to Hepatocellular Carcinoma Progression. Cancers (Basel) 2019; 11:cancers11030398. [PMID: 30901922 PMCID: PMC6468542 DOI: 10.3390/cancers11030398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence reveals crucial roles of wild type RAS in liver cancer. The delta subunit of rod-specific photoreceptor cGMP phosphodiesterase (PDE6D) regulates the trafficking of RAS proteins to the plasma membrane and thereby contributes to RAS activation. However, the expression and specific function of PDE6D in hepatocellular carcinoma (HCC) were completely unknown. In this study, PDE6D was newly found to be markedly upregulated in HCC tissues and cell lines. Overexpression of PDE6D in HCC correlated with enhanced tumor stages, tumor grading, and ERK activation. PDE6D depletion significantly reduced proliferation, clonogenicity, and migration of HCC cells. Moreover, PDE6D was induced by TGF-β1, the mediator of stemness, epithelial-mesenchymal transition (EMT), and chemoresistance. In non-resistant cells, overexpression of PDE6D conferred resistance to sorafenib-induced toxicity. Further, PDE6D was overexpressed in sorafenib resistance, and inhibition of PDE6D reduced proliferation and migration in sorafenib-resistant HCC cells. Together, PDE6D was found to be overexpressed in liver cancer and correlated with tumor stages, grading, and ERK activation. Moreover, PDE6D contributed to migration, proliferation, and sorafenib resistance in HCC cells, therefore representing a potential novel therapeutic target.
Collapse
Affiliation(s)
- Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University, Erlangen-Nürnberg, 91054 Erlangen, Germany.
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University, Erlangen-Nürnberg, 91054 Erlangen, Germany.
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany.
| | - Anja Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University, Erlangen-Nürnberg, 91054 Erlangen, Germany.
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany.
| |
Collapse
|
69
|
Gulvady AC, Forsythe IJ, Turner CE. Hic-5 regulates Src-induced invadopodia rosette formation and organization. Mol Biol Cell 2019; 30:1298-1313. [PMID: 30893012 PMCID: PMC6724605 DOI: 10.1091/mbc.e18-10-0629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibroblasts transformed by the proto-oncogene Src form individual invadopodia that can spontaneously self-organize into large matrix-degrading superstructures called rosettes. However, the mechanisms by which the invadopodia can spatiotemporally reorganize their architecture is not well understood. Here, we show that Hic-5, a close relative of the scaffold protein paxillin, is essential for the formation and organization of rosettes in active Src-transfected NIH3T3 fibroblasts and cancer-associated fibroblasts. Live cell imaging, combined with domain-mapping analysis of Hic-5, identified critical motifs as well as phosphorylation sites that are required for the formation and dynamics of rosettes. Using pharmacological inhibition and mutant expression, we show that FAK kinase activity, along with its proximity to and potential interaction with the LD2,3 motifs of Hic-5, is necessary for rosette formation. Invadopodia dynamics and their coalescence into rosettes were also dependent on Rac1, formin, and myosin II activity. Superresolution microscopy revealed the presence of formin FHOD1 and INF2-mediated unbranched radial F-actin fibers emanating from invadopodia and rosettes, which may facilitate rosette formation. Collectively, our data highlight a novel role for Hic-5 in orchestrating the organization of invadopodia into higher-order rosettes, which may promote the localized matrix degradation necessary for tumor cell invasion.
Collapse
Affiliation(s)
- Anushree C Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Ian J Forsythe
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
70
|
Efficient Inhibition of Avian and Seasonal Influenza A Viruses by a Virus-Specific Dicer-Substrate Small Interfering RNA Swarm in Human Monocyte-Derived Macrophages and Dendritic Cells. J Virol 2019; 93:JVI.01916-18. [PMID: 30463970 DOI: 10.1128/jvi.01916-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022] Open
Abstract
Influenza A viruses (IAVs) are viral pathogens that cause epidemics and occasional pandemics of significant mortality. The generation of efficacious vaccines and antiviral drugs remains a challenge due to the rapid appearance of new influenza virus types and antigenic variants. Consequently, novel strategies for the prevention and treatment of IAV infections are needed, given the limitations of the presently available antivirals. Here, we used enzymatically produced IAV-specific double-stranded RNA (dsRNA) molecules and Giardia intestinalis Dicer for the generation of a swarm of small interfering RNA (siRNA) molecules. The siRNAs target multiple conserved genomic regions of the IAVs. In mammalian cells, the produced 25- to 27-nucleotide-long siRNA molecules are processed by endogenous Dicer into 21-nucleotide siRNAs and are thus designated Dicer-substrate siRNAs (DsiRNAs). We evaluated the efficacy of the above DsiRNA swarm at preventing IAV infections in human primary monocyte-derived macrophages and dendritic cells. The replication of different IAV strains, including avian influenza H5N1 and H7N9 viruses, was significantly inhibited by pretransfection of the cells with the IAV-specific DsiRNA swarm. Up to 7 orders of magnitude inhibition of viral RNA expression was observed, which led to a dramatic inhibition of IAV protein synthesis and virus production. The IAV-specific DsiRNA swarm inhibited virus replication directly through the RNA interference pathway although a weak induction of innate interferon responses was detected. Our results provide direct evidence for the feasibility of the siRNA strategy and the potency of DsiRNA swarms in the prevention and treatment of influenza, including the highly pathogenic avian influenza viruses.IMPORTANCE In spite of the enormous amount of research, influenza virus is still one of the major challenges for medical virology due to its capacity to generate new variants, which potentially lead to severe epidemics and pandemics. We demonstrated here that a swarm of small interfering RNA (siRNA) molecules, including more than 100 different antiviral RNA molecules targeting the most conserved regions of the influenza A virus genome, could efficiently inhibit the replication of all tested avian and seasonal influenza A variants in human primary monocyte-derived macrophages and dendritic cells. The wide antiviral spectrum makes the virus-specific siRNA swarm a potentially efficient treatment modality against both avian and seasonal influenza viruses.
Collapse
|
71
|
Ziegler C, Graf J, Faderl S, Schedlbauer J, Strieder N, Förstl B, Spang R, Bruckmann A, Merkl R, Hombach S, Kretz M. The long non-coding RNA LINC00941 and SPRR5 are novel regulators of human epidermal homeostasis. EMBO Rep 2019; 20:embr.201846612. [PMID: 30622217 DOI: 10.15252/embr.201846612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023] Open
Abstract
Several long non-coding RNAs (lncRNAs) act as regulators of cellular homeostasis; however, few of these molecules were functionally characterized in a mature human tissue environment. Here, we report that the lncRNA LINC00941 is a crucial regulator of human epidermal homeostasis. LINC00941 is enriched in progenitor keratinocytes and acts as a repressor of keratinocyte differentiation. Furthermore, LINC00941 represses SPRR5, a previously uncharacterized molecule, which functions as an essential positive regulator of keratinocyte differentiation. Interestingly, 54.8% of genes repressed in SPRR5-deficient epidermal tissue are induced in LINC00941-depleted organotypic epidermis, suggesting a common mode of action for both molecules.
Collapse
Affiliation(s)
- Christian Ziegler
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Johannes Graf
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Stefan Faderl
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Jessica Schedlbauer
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Nicholas Strieder
- Statistical Bioinformatics Department, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Bianca Förstl
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Rainer Spang
- Statistical Bioinformatics Department, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Astrid Bruckmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sonja Hombach
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Markus Kretz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
72
|
Roth A, Boulay K, Groß M, Polycarpou-Schwarz M, Mallette FA, Regnier M, Bida O, Ginsberg D, Warth A, Schnabel PA, Muley T, Meister M, Zabeck H, Hoffmann H, Diederichs S. Targeting LINC00673 expression triggers cellular senescence in lung cancer. RNA Biol 2018; 15:1499-1511. [PMID: 30499379 DOI: 10.1080/15476286.2018.1553481] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aberrant expression of noncoding RNAs plays a critical role during tumorigenesis. To uncover novel functions of long non-coding RNA (lncRNA) in lung adenocarcinoma, we used a microarray-based screen identifying LINC00673 with elevated expression in matched tumor versus normal tissue. We report that loss of LINC00673 is sufficient to trigger cellular senescence, a tumor suppressive mechanism associated with permanent cell cycle arrest, both in lung cancer and normal cells in a p53-dependent manner. LINC00673-depleted cells fail to efficiently transit from G1- to S-phase. Using a quantitative proteomics approach, we confirm the modulation of senescence-associated genes as a result of LINC00673 knockdown. In addition, we uncover that depletion of p53 in normal and tumor cells is sufficient to overcome LINC00673-mediated cell cycle arrest and cellular senescence. Furthermore, we report that overexpression of LINC00673 reduces p53 translation and contributes to the bypass of Ras-induced senescence. In summary, our findings highlight LINC00673 as a crucial regulator of proliferation and cellular senescence in lung cancer.
Collapse
Affiliation(s)
- Anna Roth
- a Division of RNA Biology & Cancer (B150) , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Karine Boulay
- a Division of RNA Biology & Cancer (B150) , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Matthias Groß
- a Division of RNA Biology & Cancer (B150) , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Maria Polycarpou-Schwarz
- a Division of RNA Biology & Cancer (B150) , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Frédérick A Mallette
- b Chromatin Structure and Cellular Senescence Research Unit, Maisonneuve-Rosemont Hospital Research Centre & Department of Medicine , Université de Montréal , Montreal , Canada
| | - Marine Regnier
- b Chromatin Structure and Cellular Senescence Research Unit, Maisonneuve-Rosemont Hospital Research Centre & Department of Medicine , Université de Montréal , Montreal , Canada
| | - Or Bida
- c The Mina and Everard Goodman Faculty of Life Science , Bar Ilan University , Ramat Gan , Israel
| | - Doron Ginsberg
- c The Mina and Everard Goodman Faculty of Life Science , Bar Ilan University , Ramat Gan , Israel
| | - Arne Warth
- d Institute of Pathology , University Hospital Heidelberg , Heidelberg , Germany.,e Translational Lung Research Centre Heidelberg (TLRC-H) , Member of the German Center for Lung Research (DZL) , Heidelberg , Germany
| | - Philipp A Schnabel
- d Institute of Pathology , University Hospital Heidelberg , Heidelberg , Germany
| | - Thomas Muley
- e Translational Lung Research Centre Heidelberg (TLRC-H) , Member of the German Center for Lung Research (DZL) , Heidelberg , Germany.,f Thoraxklinik Heidelberg , Heidelberg , Germany
| | - Michael Meister
- e Translational Lung Research Centre Heidelberg (TLRC-H) , Member of the German Center for Lung Research (DZL) , Heidelberg , Germany.,f Thoraxklinik Heidelberg , Heidelberg , Germany
| | - Heike Zabeck
- f Thoraxklinik Heidelberg , Heidelberg , Germany
| | | | - Sven Diederichs
- a Division of RNA Biology & Cancer (B150) , German Cancer Research Center (DKFZ) , Heidelberg , Germany.,g Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine , University of Freiburg , Freiburg , Germany.,h German Cancer Consortium (DKTK) , Freiburg , Germany
| |
Collapse
|
73
|
Orth MF, Gerke JS, Knösel T, Altendorf-Hofmann A, Musa J, Alba-Rubio R, Stein S, Hölting TLB, Cidre-Aranaz F, Romero-Pérez L, Dallmayer M, Baldauf MC, Marchetto A, Sannino G, Knott MML, Wehweck F, Ohmura S, Li J, Hakozaki M, Kirchner T, Dandekar T, Butt E, Grünewald TGP. Functional genomics identifies AMPD2 as a new prognostic marker for undifferentiated pleomorphic sarcoma. Int J Cancer 2018; 144:859-867. [DOI: 10.1002/ijc.31903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Martin F. Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
| | - Julia S. Gerke
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
| | - Thomas Knösel
- Institute of Pathology; Faculty of Medicine, LMU Munich; Munich Germany
| | | | - Julian Musa
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
| | - Rebeca Alba-Rubio
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
| | - Stefanie Stein
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
| | - Tilman L. B. Hölting
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
| | - Laura Romero-Pérez
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
| | - Marlene Dallmayer
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
| | - Michaela C. Baldauf
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
| | - Aruna Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
| | - Giuseppina Sannino
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
| | - Maximilian M. L. Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
- Institute of Pathology; Faculty of Medicine, LMU Munich; Munich Germany
| | - Fabienne Wehweck
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
- Institute of Pathology; Faculty of Medicine, LMU Munich; Munich Germany
| | - Shunya Ohmura
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
| | - Jing Li
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
| | - Michiyuki Hakozaki
- Department of Orthopaedic Surgery; Fukushima Medical University School of Medicine; Fukushima Japan
| | - Thomas Kirchner
- Institute of Pathology; Faculty of Medicine, LMU Munich; Munich Germany
- German Cancer Consortium (DKTK), partner site Munich; Germany
- German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Thomas Dandekar
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, Biocenter; Am Hubland, Würzburg Germany
| | - Elke Butt
- Institute for Experimental Biomedicine II, University Clinic of Würzburg; Würzburg Germany
| | - Thomas G. P. Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology; Institute of Pathology, Faculty of Medicine, LMU Munich; Munich Germany
- Institute of Pathology; Faculty of Medicine, LMU Munich; Munich Germany
- German Cancer Consortium (DKTK), partner site Munich; Germany
- German Cancer Research Center (DKFZ); Heidelberg Germany
| |
Collapse
|
74
|
Klingenberg M, Groß M, Goyal A, Polycarpou-Schwarz M, Miersch T, Ernst AS, Leupold J, Patil N, Warnken U, Allgayer H, Longerich T, Schirmacher P, Boutros M, Diederichs S. The Long Noncoding RNA Cancer Susceptibility 9 and RNA Binding Protein Heterogeneous Nuclear Ribonucleoprotein L Form a Complex and Coregulate Genes Linked to AKT Signaling. Hepatology 2018; 68:1817-1832. [PMID: 29790588 DOI: 10.1002/hep.30102] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/08/2018] [Accepted: 05/12/2018] [Indexed: 12/31/2022]
Abstract
The identification of viability-associated long noncoding RNAs (lncRNAs) might be a promising rationale for new therapeutic approaches in liver cancer. Here, we applied an RNA interference screening approach in hepatocellular carcinoma (HCC) cell lines to find viability-associated lncRNAs. Among the multiple identified lncRNAs with a significant impact on HCC cell viability, we selected cancer susceptibility 9 (CASC9) due to the strength of its phenotype, expression, and up-regulation in HCC versus normal liver. CASC9 regulated viability across multiple HCC cell lines as shown by clustered regularly interspaced short palindromic repeats interference and single small interfering RNA (siRNA)-mediated and siRNA pool-mediated depletion of CASC9. Further, CASC9 depletion caused an increase in apoptosis and a decrease of proliferation. We identified the RNA binding protein heterogeneous nuclear ribonucleoprotein L (HNRNPL) as a CASC9 interacting protein by RNA affinity purification and validated it by native RNA immunoprecipitation. Knockdown of HNRNPL mimicked the loss-of-viability phenotype observed upon CASC9 depletion. Analysis of the proteome (stable isotope labeling with amino acids in cell culture) of CASC9-depleted and HNRNPL-depleted cells revealed a set of coregulated genes which implied a role of the CASC9:HNRNPL complex in AKT signaling and DNA damage sensing. CASC9 expression levels were elevated in patient-derived tumor samples compared to normal control tissue and had a significant association with overall survival of HCC patients. In a xenograft chicken chorioallantoic membrane model, we measured decreased tumor size after knockdown of CASC9. Conclusion: Taken together, we provide a comprehensive list of viability-associated lncRNAs in HCC; we identified the CASC9:HNRNPL complex as a clinically relevant viability-associated lncRNA/protein complex which affects AKT signaling and DNA damage sensing in HCC.
Collapse
Affiliation(s)
- Marcel Klingenberg
- Division of RNA Biology & Cancer, German Cancer Research Center.,Faculty of Biosciences, Heidelberg University.,Institute of Pathology, University Hospital Heidelberg.,Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg
| | - Matthias Groß
- Division of RNA Biology & Cancer, German Cancer Research Center.,Institute of Pathology, University Hospital Heidelberg
| | - Ashish Goyal
- Division of RNA Biology & Cancer, German Cancer Research Center
| | | | - Thilo Miersch
- Division of Signaling and Functional Genomics, German Cancer Research Center
| | - Anne-Sophie Ernst
- Faculty of Biosciences, Heidelberg University.,Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology, University of Heidelberg.,Institute of Physiology and Pathophysiology, University of Heidelberg
| | - Jörg Leupold
- Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, and Centre for Biomedicine and Medical Technology Mannheim, University of Heidelberg
| | - Nitin Patil
- Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, and Centre for Biomedicine and Medical Technology Mannheim, University of Heidelberg
| | - Uwe Warnken
- Genomics and Proteomics Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Heike Allgayer
- Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, and Centre for Biomedicine and Medical Technology Mannheim, University of Heidelberg
| | | | | | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center.,Division of Cancer Research, Department of Thoracic Surgery, Medical Center, University of Freiburg.,Faculty of Medicine, University of Freiburg.,German Cancer Consortium, Freiburg, Germany
| |
Collapse
|
75
|
Roovers J, De Jonghe P, Weckhuysen S. The therapeutic potential of RNA regulation in neurological disorders. Expert Opin Ther Targets 2018; 22:1017-1028. [PMID: 30372655 DOI: 10.1080/14728222.2018.1542429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Gene regulation is the term used to describe the mechanisms by which a cell increases or decreases the amount of a gene product (RNA or protein). In complex organs such as the brain, gene regulation is of the utmost importance; aberrations in the regulation of specific genes can lead to neurological disorders. Understanding these mechanisms can create new strategies for targeting these disorders and progress is being made. Two drugs that function at the RNA level (nusinersen and eteplirsen) have now been approved by the FDA for the treatment of Spinomuscular atrophy and Duchenne muscular dystrophy, respectively; several other compounds for neurological disease are currently being investigated in preclinical studies and clinical trials. Areas covered: We highlight how gene regulation at the level of RNA molecules can be used as a therapeutic strategy to treat neurological disorders. We provide examples of how such an approach is being studied or used and discuss the current hurdles. Expert opinion: Targeting gene expression at the RNA level is a promising strategy to treat genetic neurological disorders. Safe administration, long-term efficacy, and potential side effects, however, still need careful evaluation before RNA therapeutics can be applied on a larger scale.
Collapse
Affiliation(s)
- Jolien Roovers
- a Neurogenetics Group , Center for Molecular Neurology, VIB , Antwerp , Belgium.,b Laboratory of Neurogenetics, Institute Born-Bunge , University of Antwerp , Antwerp , Belgium
| | - Peter De Jonghe
- a Neurogenetics Group , Center for Molecular Neurology, VIB , Antwerp , Belgium.,b Laboratory of Neurogenetics, Institute Born-Bunge , University of Antwerp , Antwerp , Belgium.,c Department of Neurology , University Hospital Antwerp , Antwerp , Belgium
| | - Sarah Weckhuysen
- a Neurogenetics Group , Center for Molecular Neurology, VIB , Antwerp , Belgium.,b Laboratory of Neurogenetics, Institute Born-Bunge , University of Antwerp , Antwerp , Belgium.,c Department of Neurology , University Hospital Antwerp , Antwerp , Belgium
| |
Collapse
|
76
|
Levanova A, Poranen MM. RNA Interference as a Prospective Tool for the Control of Human Viral Infections. Front Microbiol 2018; 9:2151. [PMID: 30254624 PMCID: PMC6141738 DOI: 10.3389/fmicb.2018.02151] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022] Open
Abstract
RNA interference (RNAi), which is mediated by small interfering RNAs (siRNAs) derived from viral genome or its replicative intermediates, is a natural antiviral defense in plants, fungi, and invertebrates. Whether RNAi naturally protects humans from viral invasion is still a matter of debate. Nevertheless, exogenous siRNAs are able to halt viral infection in mammals. The current review critically evaluates the production of antiviral siRNAs, delivery techniques to the infection sites, as well as provides an overview of antiviral siRNAs in clinical trials.
Collapse
Affiliation(s)
- Alesia Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
77
|
Pastor F, Berraondo P, Etxeberria I, Frederick J, Sahin U, Gilboa E, Melero I. An RNA toolbox for cancer immunotherapy. Nat Rev Drug Discov 2018; 17:751-767. [DOI: 10.1038/nrd.2018.132] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
78
|
To accelerate the Zika beat: Candidate design for RNA interference-based therapy. Virus Res 2018; 255:133-140. [DOI: 10.1016/j.virusres.2018.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
|
79
|
Stojic L, Lun AT, Mangei J, Mascalchi P, Quarantotti V, Barr AR, Bakal C, Marioni JC, Gergely F, Odom DT. Specificity of RNAi, LNA and CRISPRi as loss-of-function methods in transcriptional analysis. Nucleic Acids Res 2018; 46:5950-5966. [PMID: 29860520 PMCID: PMC6093183 DOI: 10.1093/nar/gky437] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
Loss-of-function (LOF) methods such as RNA interference (RNAi), antisense oligonucleotides or CRISPR-based genome editing provide unparalleled power for studying the biological function of genes of interest. However, a major concern is non-specific targeting, which involves depletion of transcripts other than those intended. Little work has been performed to characterize the off-target effects of these common LOF methods at the whole-transcriptome level. Here, we experimentally compared the non-specific activity of RNAi, antisense oligonucleotides and CRISPR interference (CRISPRi). All three methods yielded non-negligible off-target effects in gene expression, with CRISPRi also exhibiting strong clonal effects. As an illustrative example, we evaluated the performance of each method for determining the role of an uncharacterized long noncoding RNA (lncRNA). Several LOF methods successfully depleted the candidate lncRNA but yielded different sets of differentially expressed genes as well as a different cellular phenotype upon depletion. Similar discrepancies between methods were observed with a protein-coding gene (Ch-TOG/CKAP5) and another lncRNA (MALAT1). We suggest that the differences between methods arise due to method-specific off-target effects and provide guidelines for mitigating such effects in functional studies. Our recommendations provide a framework with which off-target effects can be managed to improve functional characterization of genes of interest.
Collapse
Affiliation(s)
- Lovorka Stojic
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Aaron T L Lun
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Jasmin Mangei
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Patrice Mascalchi
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Valentina Quarantotti
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Alexis R Barr
- Institute of Cancer Research, 237 Fulham Road London SW3 6JB, UK
| | - Chris Bakal
- Institute of Cancer Research, 237 Fulham Road London SW3 6JB, UK
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
80
|
Kaur G, Cheung HC, Xu W, Wong JV, Chan FF, Li Y, McReynolds L, Huang L. Milligram scale production of potent recombinant small interfering RNAs in Escherichia coli. Biotechnol Bioeng 2018; 115:2280-2291. [PMID: 29873060 DOI: 10.1002/bit.26740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022]
Abstract
Small interfering RNAs (siRNAs) are invaluable research tools for studying gene functions in mammalian cells. siRNAs are mainly produced by chemical synthesis or by enzymatic digestion of double-stranded RNA (dsRNA) produced in vitro. Recently, bacterial cells, engineered with ectopic plant viral siRNA binding protein p19, have enabled the production of "recombinant" siRNAs (pro-siRNAs). Here, we describe an optimized methodology for the production of milligram amount of highly potent recombinant pro-siRNAs from Escherichia coli cells. We first optimized bacterial culture medium and tested new designs of pro-siRNA production plasmid. Through the exploration of multiple pro-siRNA related factors, including the expression of p19 protein, (dsRNA) generation method, and the level of RNase III, we developed an optimal pro-siRNA production plasmid. Together with a high-cell density fed-batch fermentation method in a bioreactor, we have achieved a yield of ~10 mg purified pro-siRNA per liter of bacterial culture. The pro-siRNAs produced by the optimized method can achieve high efficiency of gene silencing when used at low nanomolar concentrations. This new method enables fast, economical, and renewable production of pure and highly potent bioengineered pro-siRNAs at the milligram level. Our study also provides important insights into the strategies for optimizing the production of RNA products in bacteria, which is an under-explored field.
Collapse
Affiliation(s)
- Guneet Kaur
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Present address: Sino-Forest Applied Research Centre for Pearl River Delta Environment & Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Hung-Chi Cheung
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Wei Xu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Jun Vic Wong
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - For Fan Chan
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yingxue Li
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Larry McReynolds
- Division of RNA Biology, New England Biolabs, Ipswich, Massachusetts
| | - Linfeng Huang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
81
|
Gatta AK, Hariharapura RC, Udupa N, Reddy MS, Josyula VR. Strategies for improving the specificity of siRNAs for enhanced therapeutic potential. Expert Opin Drug Discov 2018; 13:709-725. [PMID: 29902093 DOI: 10.1080/17460441.2018.1480607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION RNA interference has become a tool of choice in the development of drugs in various therapeutic areas of Post Transcriptional Gene Silencing (PTGS). The critical element in developing successful RNAi therapeutics lies in designing small interfering RNA (siRNA) using an efficient algorithm satisfying the designing criteria. Further, translation of siRNA from bench-side to bedside needs an efficient delivery system and/or chemical modification. Areas covered: This review emphasizes the importance of dicer, the criteria for efficient siRNA design, the currently available algorithms and strategies to overcome off-target effects, immune stimulatory effects and endosomal trap. Expert opinion: Specificity and stability are the primary concerns for siRNA therapeutics. The design criteria and algorithms should be chosen rationally to have a siRNA sequence that binds to the corresponding mRNA as it happens in the Watson and Crick base pairing. However, it must evade a few more hurdles (Endocytosis, Serum stability etc.) to be functional in the cytosol.
Collapse
Affiliation(s)
- Aditya Kiran Gatta
- a Cell and Molecular Biology lab, Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Raghu Chandrashekhar Hariharapura
- a Cell and Molecular Biology lab, Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Nayanabhirama Udupa
- b Research Directorate of Health Sciences , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Meka Sreenivasa Reddy
- c Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Venkata Rao Josyula
- a Cell and Molecular Biology lab, Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , Karnataka , India
| |
Collapse
|
82
|
Høiberg HC, Sparvath SM, Andersen VL, Kjems J, Andersen ES. An RNA Origami Octahedron with Intrinsic siRNAs for Potent Gene Knockdown. Biotechnol J 2018; 14:e1700634. [PMID: 29802763 DOI: 10.1002/biot.201700634] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 05/17/2018] [Indexed: 12/13/2022]
Abstract
The fields of DNA and RNA nanotechnology have established nucleic acids as valuable building blocks for functional nanodevices with applications in nanomedicine. Here, a simple method for designing and assembling a 3D scaffolded RNA origami wireframe structure with intrinsic functioning small interfering RNAs (siRNAs) embedded is introduced. Uniquely, the method uses an mRNA fragment as scaffold strand, which is folded by sequence-complementarity of nine shorter synthetic strands. High-yield production of the intended 3D structure is verified by transmission electron microscopy (TEM). Production of functional siRNAs is facilitated by incorporating recognition sites for Dicer at selected locations in the structure, and efficient silencing of a target reporter gene is demonstrated.
Collapse
Affiliation(s)
| | - Steffen M Sparvath
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000 C, Denmark
| | - Veronica L Andersen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000 C, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000 C, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark
| | - Ebbe S Andersen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus 8000 C, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark
| |
Collapse
|
83
|
|
84
|
The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation. Oncogene 2018; 37:4750-4768. [DOI: 10.1038/s41388-018-0281-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 01/26/2023]
|
85
|
Chan CYS, Roberts O, Rajoli RKR, Liptrott NJ, Siccardi M, Almond L, Owen A. Derivation of CYP3A4 and CYP2B6 degradation rate constants in primary human hepatocytes: A siRNA-silencing-based approach. Drug Metab Pharmacokinet 2018; 33:179-187. [PMID: 29921509 DOI: 10.1016/j.dmpk.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/22/2017] [Accepted: 01/10/2018] [Indexed: 12/26/2022]
Abstract
The first-order degradation rate constant (kdeg) of cytochrome P450 (CYP) enzymes is a known source of uncertainty in the prediction of time-dependent drug-drug interactions (DDIs) in physiologically-based pharmacokinetic (PBPK) modelling. This study aimed to measure CYP kdeg using siRNA to suppress CYP expression in primary human hepatocytes followed by incubation over a time-course and tracking of protein expression and activity to observe degradation. The magnitude of gene knockdown was determined by qPCR and activity was measured by probe substrate metabolite formation and CYP2B6-Glo™ assay. Protein disappearance was determined by Western blotting. During a time-course of 96 and 60 h of incubation, over 60% and 76% mRNA knockdown was observed for CYP3A4 and CYP2B6, respectively. The kdeg of CYP3A4 and CYP2B6 protein was 0.0138 h-1 (±0.0023) and 0.0375 h-1 (±0.025), respectively. The kdeg derived from probe substrate metabolism activity was 0.0171 h-1 (±0.0025) for CYP3A4 and 0.0258 h-1 (±0.0093) for CYP2B6. The CYP3A4 kdeg values derived from protein disappearance and metabolic activity were in relatively good agreement with each other and similar to published values. This novel approach can now be used for other less well-characterised CYPs.
Collapse
Affiliation(s)
- Christina Y S Chan
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Owain Roberts
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Rajith K R Rajoli
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Neill J Liptrott
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Marco Siccardi
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Lisa Almond
- Simcyp (a Certara Company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, UK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK.
| |
Collapse
|
86
|
Zeiner PS, Zinke J, Kowalewski DJ, Bernatz S, Tichy J, Ronellenfitsch MW, Thorsen F, Berger A, Forster MT, Muller A, Steinbach JP, Beschorner R, Wischhusen J, Kvasnicka HM, Plate KH, Stefanović S, Weide B, Mittelbronn M, Harter PN. CD74 regulates complexity of tumor cell HLA class II peptidome in brain metastasis and is a positive prognostic marker for patient survival. Acta Neuropathol Commun 2018; 6:18. [PMID: 29490700 PMCID: PMC5831742 DOI: 10.1186/s40478-018-0521-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 12/30/2022] Open
Abstract
Despite multidisciplinary local and systemic therapeutic approaches, the prognosis for most patients with brain metastases is still dismal. The role of adaptive and innate anti-tumor response including the Human Leukocyte Antigen (HLA) machinery of antigen presentation is still unclear. We present data on the HLA class II-chaperone molecule CD74 in brain metastases and its impact on the HLA peptidome complexity.We analyzed CD74 and HLA class II expression on tumor cells in a subset of 236 human brain metastases, primary tumors and peripheral metastases of different entities in association with clinical data including overall survival. Additionally, we assessed whole DNA methylome profiles including CD74 promoter methylation and differential methylation in 21 brain metastases. We analyzed the effects of a siRNA mediated CD74 knockdown on HLA-expression and HLA peptidome composition in a brain metastatic melanoma cell line.We observed that CD74 expression on tumor cells is a strong positive prognostic marker in brain metastasis patients and positively associated with tumor-infiltrating T-lymphocytes (TILs). Whole DNA methylome analysis suggested that CD74 tumor cell expression might be regulated epigenetically via CD74 promoter methylation. CD74high and TILhigh tumors displayed a differential DNA methylation pattern with highest enrichment scores for antigen processing and presentation. Furthermore, CD74 knockdown in vitro lead to a reduction of HLA class II peptidome complexity, while HLA class I peptidome remained unaffected.In summary, our results demonstrate that a functional HLA class II processing machinery in brain metastatic tumor cells, reflected by a high expression of CD74 and a complex tumor cell HLA peptidome, seems to be crucial for better patient prognosis.
Collapse
Affiliation(s)
- P S Zeiner
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
| | - J Zinke
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
| | - D J Kowalewski
- Department of Immunology, Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | - S Bernatz
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
| | - J Tichy
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
| | - M W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
| | - F Thorsen
- Department of Biomedicine, The Kristian Gerhard Jebsen Brain Tumour Research Center and The Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - A Berger
- Institute for Virology, Goethe-University, Frankfurt am Main, Germany
| | - M T Forster
- Department of Neurosurgery, Goethe-University, Frankfurt am Main, Germany
| | - A Muller
- Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - J P Steinbach
- Dr. Senckenberg Institute of Neurooncology, Goethe-University, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany
| | - R Beschorner
- Department of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - J Wischhusen
- Department of Gynecology, University of Wuerzburg, Wuerzburg, Germany
| | - H M Kvasnicka
- Goethe-University, Dr. Senckenberg Institute for Pathology, Frankfurt am Main, Germany
| | - K H Plate
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany
| | - S Stefanović
- Department of Immunology, Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - B Weide
- Department of Dermatology, University of Tuebingen, Tuebingen, Germany
| | - M Mittelbronn
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany
- Luxembourg Centre of Neuropathology (LCNP), 3555, Dudelange, Luxembourg
- Laboratoire National de Santé, Department of Pathology, 3555, Dudelange, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4361, Esch-sur-Alzette, Luxembourg
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), 1526, Luxembourg, Luxembourg
| | - P N Harter
- Edinger Institute (Institute of Neurology), Goethe-University, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt am Main, Germany.
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz, Germany.
| |
Collapse
|
87
|
Seok H, Lee H, Jang ES, Chi SW. Evaluation and control of miRNA-like off-target repression for RNA interference. Cell Mol Life Sci 2018; 75:797-814. [PMID: 28905147 PMCID: PMC11105550 DOI: 10.1007/s00018-017-2656-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 01/08/2023]
Abstract
RNA interference (RNAi) has been widely adopted to repress specific gene expression and is easily achieved by designing small interfering RNAs (siRNAs) with perfect sequence complementarity to the intended target mRNAs. Although siRNAs direct Argonaute (Ago), a core component of the RNA-induced silencing complex (RISC), to recognize and silence target mRNAs, they also inevitably function as microRNAs (miRNAs) and suppress hundreds of off-targets. Such miRNA-like off-target repression is potentially detrimental, resulting in unwanted toxicity and phenotypes. Despite early recognition of the severity of miRNA-like off-target repression, this effect has often been overlooked because of difficulties in recognizing and avoiding off-targets. However, recent advances in genome-wide methods and knowledge of Ago-miRNA target interactions have set the stage for properly evaluating and controlling miRNA-like off-target repression. Here, we describe the intrinsic problems of miRNA-like off-target effects caused by canonical and noncanonical interactions. We particularly focus on various genome-wide approaches and chemical modifications for the evaluation and prevention of off-target repression to facilitate the use of RNAi with secured specificity.
Collapse
Affiliation(s)
- Heeyoung Seok
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Haejeong Lee
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Eun-Sook Jang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
- EncodeGEN Co. Ltd, Seoul, 06329, Korea
| | - Sung Wook Chi
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
88
|
Yan MS, Turgeon PJ, Man HSJ, Dubinsky MK, Ho JJD, El-Rass S, Wang YD, Wen XY, Marsden PA. Histone acetyltransferase 7 (KAT7)-dependent intragenic histone acetylation regulates endothelial cell gene regulation. J Biol Chem 2018; 293:4381-4402. [PMID: 29414790 DOI: 10.1074/jbc.ra117.001383] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/26/2018] [Indexed: 12/12/2022] Open
Abstract
Although the functional role of chromatin marks at promoters in mediating cell-restricted gene expression has been well characterized, the role of intragenic chromatin marks is not well understood, especially in endothelial cell (EC) gene expression. Here, we characterized the histone H3 and H4 acetylation profiles of 19 genes with EC-enriched expression via locus-wide chromatin immunoprecipitation followed by ultra-high-resolution (5 bp) tiling array analysis in ECs versus non-ECs throughout their genomic loci. Importantly, these genes exhibit differential EC enrichment of H3 and H4 acetylation in their promoter in ECs versus non-ECs. Interestingly, VEGFR-2 and VEGFR-1 show EC-enriched acetylation across broad intragenic regions and are up-regulated in non-ECs by histone deacetylase inhibition. It is unclear which histone acetyltransferases (KATs) are key to EC physiology. Depletion of KAT7 reduced VEGFR-2 expression and disrupted angiogenic potential. Microarray analysis of KAT7-depleted ECs identified 263 differentially regulated genes, many of which are key for growth and angiogenic potential. KAT7 inhibition in zebrafish embryos disrupted vessel formation and caused loss of circulatory integrity, especially hemorrhage, all of which were rescued with human KAT7. Notably, perturbed EC-enriched gene expression, especially the VEGFR-2 homologs, contributed to these vascular defects. Mechanistically, KAT7 participates in VEGFR-2 transcription by mediating RNA polymerase II binding, H3 lysine 14, and H4 acetylation in its intragenic region. Collectively, our findings support the importance of differential histone acetylation at both promoter and intragenic regions of EC genes and reveal a previously underappreciated role of KAT7 and intragenic histone acetylation in regulating VEGFR-2 and endothelial function.
Collapse
Affiliation(s)
- Matthew S Yan
- From the Departments of Medical Biophysics and.,Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and
| | - Paul J Turgeon
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and.,Laboratory Medicine and Pathobiology
| | - Hon-Sum Jeffrey Man
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and.,Institute of Medical Science, and
| | - Michelle K Dubinsky
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and.,Institute of Medical Science, and
| | - J J David Ho
- the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 31336, and.,the Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida 31336
| | - Suzan El-Rass
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and.,Institute of Medical Science, and
| | - You-Dong Wang
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and.,Institute of Medical Science, and
| | - Xiao-Yan Wen
- Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and.,Institute of Medical Science, and
| | - Philip A Marsden
- From the Departments of Medical Biophysics and .,Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, and.,Institute of Medical Science, and.,Department of Medicine, University of Toronto, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
89
|
Ott CA, Linck L, Kremmer E, Meister G, Bosserhoff AK. Induction of exportin-5 expression during melanoma development supports the cellular behavior of human malignant melanoma cells. Oncotarget 2018; 7:62292-62304. [PMID: 27556702 PMCID: PMC5308727 DOI: 10.18632/oncotarget.11410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/09/2016] [Indexed: 01/08/2023] Open
Abstract
Regulation of gene expression via microRNAs is known to promote the development of many types of cancer. In melanoma, miRNAs are globally up-regulated, and alterations of miRNA-processing enzymes have already been identified. However, mis-regulation of miRNA transport has not been analyzed in melanoma yet. We hypothesized that alterations in miRNA transport disrupt miRNA processing. Therefore, we investigated whether the pre-miRNA transporter Exportin-5 (XPO5) was involved in altered miRNA maturation and functional consequences in melanoma. We found that XPO5 is significantly over-expressed in melanoma compared with melanocytes. We showed enhanced XPO5 mRNA stability in melanoma cell lines which likely contributes to up-regulated XPO5 protein expression. In addition, we identified MEK signaling as a regulator of XPO5 expression in melanoma. Knockdown of XPO5 expression in melanoma cells led to decreased mature miRNA levels and drastic functional changes. Our data revealed that aberrant XPO5 expression is important for the maturation of miRNAs and the malignant behavior of melanoma cells. We suggest that the high abundance of XPO5 in melanoma leads to enhanced survival, proliferation and metastasis and thereby supports the aggressiveness of melanoma.
Collapse
Affiliation(s)
- Corinna Anna Ott
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lisa Linck
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 81377 Munich, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 093053 Regensburg, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
90
|
He Y, Yuan C, Chen L, Liu Y, Zhou H, Xu N, Liao DJ. While it is not deliberate, much of today's biomedical research contains logical and technical flaws, showing a need for corrective action. Int J Med Sci 2018; 15:309-322. [PMID: 29511367 PMCID: PMC5835702 DOI: 10.7150/ijms.23215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
Biomedical research has advanced swiftly in recent decades, largely due to progress in biotechnology. However, this rapid spread of new, and not always-fully understood, technology has also created a lot of false or irreproducible data and artifacts, which sometimes have led to erroneous conclusions. When describing various scientific issues, scientists have developed a habit of saying "on one hand… but on the other hand…", because discrepant data and conclusions have become omnipresent. One reason for this problematic situation is that we are not always thoughtful enough in study design, and sometimes lack enough philosophical contemplation. Another major reason is that we are too rushed in introducing new technology into our research without assimilating technical details. In this essay, we provide examples in different research realms to justify our points. To help readers test their own weaknesses, we raise questions on technical details of RNA reverse transcription, polymerase chain reactions, western blotting and immunohistochemical staining, as these methods are basic and are the base for other modern biotechnologies. Hopefully, after contemplation and reflection on these questions, readers will agree that we indeed know too little about these basic techniques, especially about the artifacts they may create, and thus many conclusions drawn from the studies using those ever-more-sophisticated techniques may be even more problematic.
Collapse
Affiliation(s)
- Yan He
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China.,Molecular Biology Center, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang City, Hubei 443002, P.R. China
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yanjie Liu
- Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Haiyan Zhou
- Clinical Research Center, Guizhou Medical University Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, PR China
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang, Guizhou 550004, P. R. China.,Molecular Biology Center, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Department of Pathology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
91
|
Multi-Target Inhibition of Cancer Cell Growth by SiRNA Cocktails and 5-Fluorouracil Using Effective Piperidine-Terminated Phosphorus Dendrimers. COLLOIDS AND INTERFACES 2017. [DOI: 10.3390/colloids1010006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
92
|
Goyal A, Myacheva K, Groß M, Klingenberg M, Duran Arqué B, Diederichs S. Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res 2017; 45:e12. [PMID: 28180319 PMCID: PMC5388423 DOI: 10.1093/nar/gkw883] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/01/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
The CRISPR/Cas9 system provides a revolutionary genome editing tool for all areas of molecular biology. In long non-coding RNA (lncRNA) research, the Cas9 nuclease can delete lncRNA genes or introduce RNA-destabilizing elements into their locus. The nuclease-deficient dCas9 mutant retains its RNA-dependent DNA-binding activity and can modulate gene expression when fused to transcriptional repressor or activator domains. Here, we systematically analyze whether CRISPR approaches are suitable to target lncRNAs. Many lncRNAs are derived from bidirectional promoters or overlap with promoters or bodies of sense or antisense genes. In a genome-wide analysis, we find only 38% of 15929 lncRNA loci are safely amenable to CRISPR applications while almost two-thirds of lncRNA loci are at risk to inadvertently deregulate neighboring genes. CRISPR- but not siPOOL or Antisense Oligo (ASO)-mediated targeting of lncRNAs NOP14-AS1, LOC389641, MNX1-AS1 or HOTAIR also affects their respective neighboring genes. Frequently overlooked, the same restrictions may apply to mRNAs. For example, the tumor suppressor TP53 and its head-to-head neighbor WRAP53 are jointly affected by the same sgRNAs but not siPOOLs. Hence, despite the advantages of CRISPR/Cas9 to modulate expression bidirectionally and in cis, approaches based on ASOs or siPOOLs may be the better choice to target specifically the transcript from complex loci.
Collapse
Affiliation(s)
- Ashish Goyal
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ksenia Myacheva
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Matthias Groß
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcel Klingenberg
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany
| | - Berta Duran Arqué
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sven Diederichs
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Division of Cancer Research, Dept. of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
93
|
Sluch VM, Chamling X, Liu MM, Berlinicke CA, Cheng J, Mitchell KL, Welsbie DS, Zack DJ. Enhanced Stem Cell Differentiation and Immunopurification of Genome Engineered Human Retinal Ganglion Cells. Stem Cells Transl Med 2017; 6:1972-1986. [PMID: 29024560 PMCID: PMC6430043 DOI: 10.1002/sctm.17-0059] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022] Open
Abstract
Human pluripotent stem cells have the potential to promote biological studies and accelerate drug discovery efforts by making possible direct experimentation on a variety of human cell types of interest. However, stem cell cultures are generally heterogeneous and efficient differentiation and purification protocols are often lacking. Here, we describe the generation of clustered regularly‐interspaced short palindromic repeats(CRISPR)‐Cas9 engineered reporter knock‐in embryonic stem cell lines in which tdTomato and a unique cell‐surface protein, THY1.2, are expressed under the control of the retinal ganglion cell (RGC)‐enriched gene BRN3B. Using these reporter cell lines, we greatly improved adherent stem cell differentiation to the RGC lineage by optimizing a novel combination of small molecules and established an anti‐THY1.2‐based protocol that allows for large‐scale RGC immunopurification. RNA‐sequencing confirmed the similarity of the stem cell‐derived RGCs to their endogenous human counterparts. Additionally, we developed an in vitro axonal injury model suitable for studying signaling pathways and mechanisms of human RGC cell death and for high‐throughput screening for neuroprotective compounds. Using this system in combination with RNAi‐based knockdown, we show that knockdown of dual leucine kinase (DLK) promotes survival of human RGCs, expanding to the human system prior reports that DLK inhibition is neuroprotective for murine RGCs. These improvements will facilitate the development and use of large‐scale experimental paradigms that require numbers of pure RGCs that were not previously obtainable. Stem Cells Translational Medicine2017;6:1972–1986
Collapse
Affiliation(s)
- Valentin M Sluch
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melissa M Liu
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cynthia A Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jie Cheng
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine L Mitchell
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Derek S Welsbie
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Shiley Eye Institute, University of California, San Diego, La Jolla, California, USA
| | - Donald J Zack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
94
|
Québatte M, Dehio C. Systems-level interference strategies to decipher host factors involved in bacterial pathogen interaction: from RNAi to CRISPRi. Curr Opin Microbiol 2017; 39:34-41. [DOI: 10.1016/j.mib.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
|
95
|
Treiber T, Treiber N, Plessmann U, Harlander S, Daiß JL, Eichner N, Lehmann G, Schall K, Urlaub H, Meister G. A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis. Mol Cell 2017; 66:270-284.e13. [PMID: 28431233 DOI: 10.1016/j.molcel.2017.03.014] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/22/2016] [Accepted: 03/20/2017] [Indexed: 12/19/2022]
Abstract
During microRNA (miRNA) biogenesis, two endonucleolytic reactions convert stem-loop-structured precursors into mature miRNAs. These processing steps can be posttranscriptionally regulated by RNA-binding proteins (RBPs). Here, we have used a proteomics-based pull-down approach to map and characterize the interactome of a multitude of pre-miRNAs. We identify ∼180 RBPs that interact specifically with distinct pre-miRNAs. For functional validation, we combined RNAi and CRISPR/Cas-mediated knockout experiments to analyze RBP-dependent changes in miRNA levels. Indeed, a large number of the investigated candidates, including splicing factors and other mRNA processing proteins, have effects on miRNA processing. As an example, we show that TRIM71/LIN41 is a potent regulator of miR-29a processing and its inactivation directly affects miR-29a targets. We provide an extended database of RBPs that interact with pre-miRNAs in extracts of different cell types, highlighting a widespread layer of co- and posttranscriptional regulation of miRNA biogenesis.
Collapse
Affiliation(s)
- Thomas Treiber
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Nora Treiber
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Uwe Plessmann
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | - Simone Harlander
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Julia-Lisa Daiß
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Norbert Eichner
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Gerhard Lehmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Kevin Schall
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute of Biophysical Chemistry, 37077 Göttingen, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
96
|
A CDC42-centered signaling unit is a dominant positive regulator of endothelial integrity. Sci Rep 2017; 7:10132. [PMID: 28860633 PMCID: PMC5579287 DOI: 10.1038/s41598-017-10392-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022] Open
Abstract
Endothelial barrier function is carefully controlled to protect tissues from edema and damage inflicted by extravasated leukocytes. RhoGTPases, in conjunction with myriad regulatory proteins, exert both positive and negative effects on the endothelial barrier integrity. Precise knowledge about the relevant mechanisms is currently fragmented and we therefore performed a comprehensive analysis of endothelial barrier regulation by RhoGTPases and their regulators. Combining RNAi with electrical impedance measurements we quantified the relevance of 270 Rho-associated genes for endothelial barrier function. Statistical analysis identified 10 targets of which six promoted- and four reduced endothelial barrier function upon downregulation. We analyzed in more detail two of these which were not previously identified as regulators of endothelial integrity. We found that the Rac1-GEF (Guanine nucleotide Exchange Factor) TIAM2 is a positive regulator and the Cdc42(Rac1)-GAP (GTPase-Activating Protein) SYDE1 is a negative regulator of the endothelial barrier function. Finally, we found that the GAP SYDE1 is part of a Cdc42-centered signaling unit, also comprising the Cdc42-GEF FARP1 and the Cdc42 effector PAK7 which controls the integrity of the endothelial barrier. In conclusion, using a siRNA-based screen, we identified new regulators of barrier function and found that Cdc42 is a dominant positive regulator of endothelial integrity.
Collapse
|
97
|
Liu CF, Chen R, Frezzo JA, Katyal P, Hill LK, Yin L, Srivastava N, More HT, Renfrew PD, Bonneau R, Montclare JK. Efficient Dual siRNA and Drug Delivery Using Engineered Lipoproteoplexes. Biomacromolecules 2017; 18:2688-2698. [PMID: 28686014 DOI: 10.1021/acs.biomac.7b00203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An engineered supercharged coiled-coil protein (CSP) and the cationic transfection reagent Lipofectamine 2000 are combined to form a lipoproteoplex for the purpose of dual delivery of siRNA and doxorubicin. CSP, bearing an external positive charge and axial hydrophobic pore, demonstrates the ability to condense siRNA and encapsulate the small-molecule chemotherapeutic, doxorubicin. The lipoproteoplex demonstrates improved doxorubicin loading relative to Lipofectamine 2000. Furthermore, it induces effective transfection of GAPDH (60% knockdown) in MCF-7 breast cancer cells with efficiencies comparing favorably to Lipofectamine 2000. When the lipoproteoplex is loaded with doxorubicin, the improved doxorubicin loading (∼40 μg Dox/mg CSP) results in a substantial decrease in MCF-7 cell viability.
Collapse
Affiliation(s)
- Che Fu Liu
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering , Brooklyn, New York 11201, United States
| | - Raymond Chen
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering , Brooklyn, New York 11201, United States
| | - Joseph A Frezzo
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering , Brooklyn, New York 11201, United States
| | - Priya Katyal
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering , Brooklyn, New York 11201, United States
| | - Lindsay K Hill
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering , Brooklyn, New York 11201, United States.,Department of Biomedical Engineering, State University of New York Downstate Medical Center , Brooklyn, New York 11203, United States.,Department of Radiology, New York University School of Medicine , New York, New York 10016, United States
| | - Liming Yin
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering , Brooklyn, New York 11201, United States
| | - Nikita Srivastava
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering , Brooklyn, New York 11201, United States
| | - Haresh T More
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering , Brooklyn, New York 11201, United States
| | - P Douglas Renfrew
- Center for Computational Biology, Flatiron Institute, Simons Foundation , 162 Fifth Avenue, New York, New York 10010, United States
| | - Richard Bonneau
- Center for Genomics and Systems Biology, New York University , New York, New York 10003, United States.,Courant Institute of Mathematical Sciences, Computer Science Department, New York University , New York, New York 10009, United States.,Center for Computational Biology, Flatiron Institute, Simons Foundation , 162 Fifth Avenue, New York, New York 10010, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering , Brooklyn, New York 11201, United States.,Department of Chemistry, New York University , New York, New York 10003, United States.,Department of Biochemistry, SUNY Downstate Medical Center , Brooklyn, New York 11203, United States
| |
Collapse
|
98
|
Transcriptome modeling and phenotypic assays for cancer precision medicine. Arch Pharm Res 2017; 40:906-914. [PMID: 28766239 DOI: 10.1007/s12272-017-0940-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/27/2017] [Indexed: 01/02/2023]
Abstract
Cancer precision medicine requires clinically actionable biomarkers for patient stratification and a better prediction of clinical outcome. Although thousands of cancer-enriched mutated genes have been reported by global sequencing projects, to date, only a few oncogenic mutations have been confirmed as effective biomarkers in cancer therapies. The low frequency and varied profile (i.e., allele frequency, mutation position) of mutant genes among cancer types limit the utility of predictive biomarkers. The recent explosion of cancer transcriptome and phenotypic screening data provides another opportunity for finding transcript-level biomarkers and targets, thus overcoming the limitation of cancer mutation analyses. Technological developments enable the rapid and extensive discovery of potential target-biomarker combinations from large-scale transcriptome-level screening combined with physiologically relevant phenotypic assays. Here, we summarized recent progress as well as discussed the outlook of transcriptome-oriented data mining strategies and phenotypic assays for the identification of non-genetic biomarkers and targets in cancer drug discovery.
Collapse
|
99
|
Welsbie DS, Mitchell KL, Jaskula-Ranga V, Sluch VM, Yang Z, Kim J, Buehler E, Patel A, Martin SE, Zhang PW, Ge Y, Duan Y, Fuller J, Kim BJ, Hamed E, Chamling X, Lei L, Fraser IDC, Ronai ZA, Berlinicke CA, Zack DJ. Enhanced Functional Genomic Screening Identifies Novel Mediators of Dual Leucine Zipper Kinase-Dependent Injury Signaling in Neurons. Neuron 2017. [PMID: 28641113 DOI: 10.1016/j.neuron.2017.06.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dual leucine zipper kinase (DLK) has been implicated in cell death signaling secondary to axonal damage in retinal ganglion cells (RGCs) and other neurons. To better understand the pathway through which DLK acts, we developed enhanced functional genomic screens in primary RGCs, including use of arrayed, whole-genome, small interfering RNA libraries. Explaining why DLK inhibition is only partially protective, we identify leucine zipper kinase (LZK) as cooperating with DLK to activate downstream signaling and cell death in RGCs, including in a mouse model of optic nerve injury, and show that the same pathway is active in human stem cell-derived RGCs. Moreover, we identify four transcription factors, JUN, activating transcription factor 2 (ATF2), myocyte-specific enhancer factor 2A (MEF2A), and SRY-Box 11 (SOX11), as being the major downstream mediators through which DLK/LZK activation leads to RGC cell death. Increased understanding of the DLK pathway has implications for understanding and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Derek S Welsbie
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Katherine L Mitchell
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vinod Jaskula-Ranga
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Valentin M Sluch
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhiyong Yang
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica Kim
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eugen Buehler
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Amit Patel
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Scott E Martin
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Ping-Wu Zhang
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yan Ge
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yukan Duan
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John Fuller
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Byung-Jin Kim
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eman Hamed
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xitiz Chamling
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lei Lei
- Department of Biology, University of New England, Biddeford, ME 04005, USA
| | - Iain D C Fraser
- Signaling Systems Unit, Laboratory of Systems Biology, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ze'ev A Ronai
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Cynthia A Berlinicke
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Donald J Zack
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Department of Molecular Biology and Genetics, Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
100
|
Sun G, Riggs AD. A Simple and Cost-Effective Approach for In Vitro Production of Sliced siRNAs as Potent Triggers for RNAi. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:345-355. [PMID: 28918034 PMCID: PMC5537206 DOI: 10.1016/j.omtn.2017.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 07/08/2017] [Accepted: 07/09/2017] [Indexed: 12/25/2022]
Abstract
We have studied the molecular properties of in-vitro-transcribed sliced small interfering RNAs (tsli-siRNAs) as an alternative RNAi agent for chemically synthesized siRNA. We describe here a simple and cost-effective procedure for high-purity production of tsli-siRNA using bacteriophage T7 RNA polymerases. tsli-siRNAs exhibit potent gene knockdown effects, with efficacy comparable with that of chemically synthesized sli-siRNAs and classical siRNAs. Furthermore, we found that it is very easy to prepare potent tsli-siRNAs with modified bases, such as 2′-fluorine- or biotin-16-modified tsli-siRNAs. tsli-siRNAs can cause a mild innate immune response, which can be easily eliminated by alkaline phosphatase treatment. On the other hand, this feature, which can be useful as a trigger of the innate immune response, can be enhanced by polynucleotide kinase treatment. Because of the simplicity of preparation and purification, the procedure presented here could be useful for the production of RNAi or immunostimulatory reagents.
Collapse
Affiliation(s)
- Guihua Sun
- Department of Diabetes Complications & Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| | - Arthur D Riggs
- Department of Diabetes Complications & Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|