51
|
Diard M, Bakkeren E, Lentsch V, Rocker A, Bekele NA, Hoces D, Aslani S, Arnoldini M, Böhi F, Schumann-Moor K, Adamcik J, Piccoli L, Lanzavecchia A, Stadtmueller BM, Donohue N, van der Woude MW, Hockenberry A, Viollier PH, Falquet L, Wüthrich D, Bonfiglio F, Loverdo C, Egli A, Zandomeneghi G, Mezzenga R, Holst O, Meier BH, Hardt WD, Slack E. A rationally designed oral vaccine induces immunoglobulin A in the murine gut that directs the evolution of attenuated Salmonella variants. Nat Microbiol 2021; 6:830-841. [PMID: 34045711 PMCID: PMC7611113 DOI: 10.1038/s41564-021-00911-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/14/2021] [Indexed: 12/12/2022]
Abstract
The ability of gut bacterial pathogens to escape immunity by antigenic variation-particularly via changes to surface-exposed antigens-is a major barrier to immune clearance1. However, not all variants are equally fit in all environments2,3. It should therefore be possible to exploit such immune escape mechanisms to direct an evolutionary trade-off. Here, we demonstrate this phenomenon using Salmonella enterica subspecies enterica serovar Typhimurium (S.Tm). A dominant surface antigen of S.Tm is its O-antigen: a long, repetitive glycan that can be rapidly varied by mutations in biosynthetic pathways or by phase variation4,5. We quantified the selective advantage of O-antigen variants in the presence and absence of O-antigen-specific immunoglobulin A and identified a set of evolutionary trajectories allowing immune escape without an associated fitness cost in naive mice. Through the use of rationally designed oral vaccines, we induced immunoglobulin A responses blocking all of these trajectories. This selected for Salmonella mutants carrying deletions of the O-antigen polymerase gene wzyB. Due to their short O-antigen, these evolved mutants were more susceptible to environmental stressors (detergents or complement) and predation (bacteriophages) and were impaired in gut colonization and virulence in mice. Therefore, a rationally induced cocktail of intestinal antibodies can direct an evolutionary trade-off in S.Tm. This lays the foundations for the exploration of mucosal vaccines capable of setting evolutionary traps as a prophylactic strategy.
Collapse
Affiliation(s)
- Médéric Diard
- Biozentrum, University of Basel, Basel, Switzerland.
| | - Erik Bakkeren
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.,Department of Zoology, University of Oxford, Oxford, UK
| | - Verena Lentsch
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | | | | | - Daniel Hoces
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | - Selma Aslani
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | - Markus Arnoldini
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | - Flurina Böhi
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.,Department of Molecular Mechanisms of Disease, University of Zürich, Zürich, Switzerland
| | - Kathrin Schumann-Moor
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.,Division of Surgical Research, University Hospital of Zürich, Zürich, Switzerland
| | - Jozef Adamcik
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Beth M Stadtmueller
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicholas Donohue
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK.,Department of Orthopedics and Trauma, Medical University of Graz, Graz, Austria
| | - Marjan W van der Woude
- York Biomedical Research Institute, Hull York Medical School, University of York, York, UK
| | - Alyson Hockenberry
- Department of Environmental Microbiology, Eawag, Dubendorf, Switzerland.,Department of Environmental Sciences, ETH Zürich, Zürich, Switzerland
| | - Patrick H Viollier
- Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Daniel Wüthrich
- Infection Biology, University Hospital of Basel, Basel, Switzerland
| | | | - Claude Loverdo
- Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Adrian Egli
- Infection Biology, University Hospital of Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Raffaele Mezzenga
- Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland.,Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Otto Holst
- Forschungszentrum Borstel, Borstel, Germany
| | - Beat H Meier
- Institute for Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Emma Slack
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland. .,Institute of Food, Nutrition and Health, D-HEST, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
52
|
de Oliveira JL, Morales AC, Hurst LD, Urrutia AO, Thompson CRL, Wolf JB. Inferring Adaptive Codon Preference to Understand Sources of Selection Shaping Codon Usage Bias. Mol Biol Evol 2021; 38:3247-3266. [PMID: 33871580 PMCID: PMC8321536 DOI: 10.1093/molbev/msab099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alternative synonymous codons are often used at unequal frequencies. Classically, studies of such codon usage bias (CUB) attempted to separate the impact of neutral from selective forces by assuming that deviations from a predicted neutral equilibrium capture selection. However, GC-biased gene conversion (gBGC) can also cause deviation from a neutral null. Alternatively, selection has been inferred from CUB in highly expressed genes, but the accuracy of this approach has not been extensively tested, and gBGC can interfere with such extrapolations (e.g., if expression and gene conversion rates covary). It is therefore critical to examine deviations from a mutational null in a species with no gBGC. To achieve this goal, we implement such an analysis in the highly AT rich genome of Dictyostelium discoideum, where we find no evidence of gBGC. We infer neutral CUB under mutational equilibrium to quantify "adaptive codon preference," a nontautologous genome wide quantitative measure of the relative selection strength driving CUB. We observe signatures of purifying selection consistent with selection favoring adaptive codon preference. Preferred codons are not GC rich, underscoring the independence from gBGC. Expression-associated "preference" largely matches adaptive codon preference but does not wholly capture the influence of selection shaping patterns across all genes, suggesting selective constraints associated specifically with high expression. We observe patterns consistent with effects on mRNA translation and stability shaping adaptive codon preference. Thus, our approach to quantifying adaptive codon preference provides a framework for inferring the sources of selection that shape CUB across different contexts within the genome.
Collapse
Affiliation(s)
- Janaina Lima de Oliveira
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, 40170-115, Brazil.,Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Atahualpa Castillo Morales
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Laurence D Hurst
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Araxi O Urrutia
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,Instituto de Ecologia, UNAM, Ciudad de Mexico 04510, Mexico
| | - Christopher R L Thompson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Jason B Wolf
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
53
|
Longitudinal study of the scalp microbiome suggests coconut oil to enrich healthy scalp commensals. Sci Rep 2021; 11:7220. [PMID: 33790324 PMCID: PMC8012655 DOI: 10.1038/s41598-021-86454-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 02/04/2021] [Indexed: 01/03/2023] Open
Abstract
Dandruff is a recurrent chronic scalp disorder, affecting majority of the population worldwide. Recently a metagenomic study of the Indian scalp microbiome described an imperative role of bacterial commensals in providing essential vitamins and amino acids to the scalp. Coconut oil and its formulations are commonly applied on the scalp in several parts of the world to maintain scalp health. Thus, in this study we examined the effect of topical application of coconut oil on the scalp microbiome (bacterial and fungal) at the taxonomic and functional levels and their correlation with scalp physiological parameters. A 16-weeks-long time-course study was performed including 12-weeks of treatment and 4-weeks of relapse phase on a cohort of 140 (70 healthy and 70 dandruff) Indian women, resulting in ~ 900 metagenomic samples. After the treatment phase, an increase in the abundance of Cutibacterium acnes and Malassezia globosa in dandruff scalp was observed, which were negatively correlated to dandruff parameters. At the functional level, an enrichment of healthy scalp-related bacterial pathways, such as biotin metabolism and decrease in the fungal pathogenesis pathways was observed. The study provides novel insights on the effect of coconut oil in maintaining a healthy scalp and in modulating the scalp microbiome.
Collapse
|
54
|
Navarro IC, Tuorto F, Jordan D, Legrand C, Price J, Braukmann F, Hendrick AG, Akay A, Kotter A, Helm M, Lyko F, Miska EA. Translational adaptation to heat stress is mediated by RNA 5-methylcytosine in Caenorhabditis elegans. EMBO J 2021; 40:e105496. [PMID: 33283887 PMCID: PMC7957426 DOI: 10.15252/embj.2020105496] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022] Open
Abstract
Methylation of carbon-5 of cytosines (m5 C) is a post-transcriptional nucleotide modification of RNA found in all kingdoms of life. While individual m5 C-methyltransferases have been studied, the impact of the global cytosine-5 methylome on development, homeostasis and stress remains unknown. Here, using Caenorhabditis elegans, we generated the first organism devoid of m5 C in RNA, demonstrating that this modification is non-essential. Using this genetic tool, we determine the localisation and enzymatic specificity of m5 C sites in the RNome in vivo. We find that NSUN-4 acts as a dual rRNA and tRNA methyltransferase in C. elegans mitochondria. In agreement with leucine and proline being the most frequently methylated tRNA isoacceptors, loss of m5 C impacts the decoding of some triplets of these two amino acids, leading to reduced translation efficiency. Upon heat stress, m5 C loss leads to ribosome stalling at UUG triplets, the only codon translated by an m5 C34-modified tRNA. This leads to reduced translation efficiency of UUG-rich transcripts and impaired fertility, suggesting a role of m5 C tRNA wobble methylation in the adaptation to higher temperatures.
Collapse
Affiliation(s)
- Isabela Cunha Navarro
- Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Francesca Tuorto
- Division of EpigeneticsDKFZ‐ZMBH AllianceGerman Cancer Research CenterHeidelbergGermany
- Division of BiochemistryMannheim Institute for Innate Immunoscience (MI3)Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Center for Molecular Biology of Heidelberg University (ZMBH)DKFZ‐ZMBH AllianceHeidelbergGermany
| | - David Jordan
- Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Carine Legrand
- Division of EpigeneticsDKFZ‐ZMBH AllianceGerman Cancer Research CenterHeidelbergGermany
| | - Jonathan Price
- Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Fabian Braukmann
- Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Alan G Hendrick
- STORM Therapeutics LimitedBabraham Research CampusCambridgeUK
| | - Alper Akay
- Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Annika Kotter
- Institute of Pharmacy and BiochemistryJohannes Gutenberg‐University MainzMainzGermany
| | - Mark Helm
- Institute of Pharmacy and BiochemistryJohannes Gutenberg‐University MainzMainzGermany
| | - Frank Lyko
- Division of EpigeneticsDKFZ‐ZMBH AllianceGerman Cancer Research CenterHeidelbergGermany
| | - Eric A Miska
- Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Wellcome Sanger InstituteWellcome Genome CampusCambridgeUK
| |
Collapse
|
55
|
Choi RJ, Mohamad Zobir SZ, Alexander-Dann B, Sharma N, Ma MK, Lam BY, Yeo GS, Zhang W, Fan TP, Bender A. Combination of Ginsenosides Rb2 and Rg3 Promotes Angiogenic Phenotype of Human Endothelial Cells via PI3K/Akt and MAPK/ERK Pathways. Front Pharmacol 2021; 12:618773. [PMID: 33643049 PMCID: PMC7902932 DOI: 10.3389/fphar.2021.618773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022] Open
Abstract
Shexiang Baoxin Pill (SBP) is an oral formulation of Chinese materia medica for the treatment of angina pectoris. It displays pleiotropic roles in protecting the cardiovascular system. However, the mode of action of SBP in promoting angiogenesis, and in particular the synergy between its constituents is currently not fully understood. The combination of ginsenosides Rb2 and Rg3 were studied in human umbilical vein endothelial cells (HUVECs) for their proangiogenic effects. To understand the mode of action of the combination in more mechanistic detail, RNA-Seq analysis was conducted, and differentially expressed genes (DEGs), pathway analysis and Weighted Gene Correlation Network Analysis (WGCNA) were applied to further identify important genes that a play pivotal role in the combination treatment. The effects of pathway-specific inhibitors were observed to provide further support for the hypothesized mode of action of the combination. Ginsenosides Rb2 and Rg3 synergistically promoted HUVEC proliferation and tube formation under defined culture conditions. Also, the combination of Rb2/Rg3 rescued cells from homocysteine-induced damage. mRNA expression of CXCL8, CYR61, FGF16 and FGFRL1 was significantly elevated by the Rb2/Rg3 treatment, and representative signaling pathways induced by these genes were found. The increase of protein levels of phosphorylated-Akt and ERK42/44 by the Rb2/Rg3 combination supports the notion that it promotes endothelial cell proliferation via the PI3K/Akt and MAPK/ERK signaling pathways. The present study provides the hypothesis that SBP, via ginsenosides Rb2 and Rg3, involves the CXCR1/2 CXCL8 (IL8)-mediated PI3K/Akt and MAPK/ERK signaling pathways in achieving its proangiogenic effects.
Collapse
Affiliation(s)
- Ran Joo Choi
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Siti Zuraidah Mohamad Zobir
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Ben Alexander-Dann
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Nitin Sharma
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Marcella K.L. Ma
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, Genomics and Transcriptomics Core, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Brian Y.H. Lam
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, Genomics and Transcriptomics Core, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Giles S.H. Yeo
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, Genomics and Transcriptomics Core, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Weidong Zhang
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Bender
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
56
|
Du J, He X, Zhou Y, Zhai C, Yu D, Zhang S, Chen Q, Wan X. Gene Coexpression Network Reveals Insights into the Origin and Evolution of a Theanine-Associated Regulatory Module in Non- Camellia and Camellia Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:615-626. [PMID: 33372777 DOI: 10.1021/acs.jafc.0c06490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Theanine (thea) is one of the most important plant-derived characteristic secondary metabolites and a major healthcare product because of its beneficial biological activities, such as being an antianxiety agent, promoting memory, and lowering blood pressure. Thea mostly accumulates in Camellia plants and is especially rich in Camellia sinensis (tea plant). Although some functional genes (e.g., TS, GOGAT, and GS) attributed to thea accumulation have been separately well explored in tea plants, the evolution of a regulatory module (highly interacting gene group) related to thea metabolism remains to be elaborated. Herein, a thea-associated regulatory module (TARM) was mined by using a comprehensive analysis of a weighted gene coexpression network in Camellia and non-Camellia species. Comparative genomic analysis of 84 green plant species revealed that TARM originated from the ancestor of green plants (algae) and that TARM genes were recruited from different evolutionary nodes with the most gene duplication events at the early stage. Among the TARM genes, two core transcription factors of NAC080 and LBD38 were deduced, which may play a crucial role in regulating the biosynthesis of thea. Our findings provide the first insights into the origin and evolution of TARM and indicate a promising paradigm for identifying vital regulatory genes involved in thea metabolism.
Collapse
Affiliation(s)
- Jinke Du
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaolong He
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Yeman Zhou
- College of Science, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Chenchen Zhai
- College of Science, Wuhan University of Science and Technology, Wuhan 430081, China
| | - De'en Yu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shihua Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
57
|
Shin J, Marx H, Richards A, Vaneechoutte D, Jayaraman D, Maeda J, Chakraborty S, Sussman M, Vandepoele K, Ané JM, Coon J, Roy S. A network-based comparative framework to study conservation and divergence of proteomes in plant phylogenies. Nucleic Acids Res 2021; 49:e3. [PMID: 33219668 PMCID: PMC7797074 DOI: 10.1093/nar/gkaa1041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 09/19/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Comparative functional genomics offers a powerful approach to study species evolution. To date, the majority of these studies have focused on the transcriptome in mammalian and yeast phylogenies. Here, we present a novel multi-species proteomic dataset and a computational pipeline to systematically compare the protein levels across multiple plant species. Globally we find that protein levels diverge according to phylogenetic distance but is more constrained than the mRNA level. Module-level comparative analysis of groups of proteins shows that proteins that are more highly expressed tend to be more conserved. To interpret the evolutionary patterns of conservation and divergence, we develop a novel network-based integrative analysis pipeline that combines publicly available transcriptomic datasets to define co-expression modules. Our analysis pipeline can be used to relate the changes in protein levels to different species-specific phenotypic traits. We present a case study with the rhizobia-legume symbiosis process that supports the role of autophagy in this symbiotic association.
Collapse
Affiliation(s)
- Junha Shin
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Harald Marx
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alicia Richards
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dries Vaneechoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Ghent, Belgium
| | - Dhileepkumar Jayaraman
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junko Maeda
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sanhita Chakraborty
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael Sussman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, Ghent, Belgium
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
58
|
Bradley D, Viéitez C, Rajeeve V, Selkrig J, Cutillas PR, Beltrao P. Sequence and Structure-Based Analysis of Specificity Determinants in Eukaryotic Protein Kinases. Cell Rep 2021; 34:108602. [PMID: 33440154 PMCID: PMC7809594 DOI: 10.1016/j.celrep.2020.108602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
Protein kinases lie at the heart of cell-signaling processes and are often mutated in disease. Kinase target recognition at the active site is in part determined by a few amino acids around the phosphoacceptor residue. However, relatively little is known about how most preferences are encoded in the kinase sequence or how these preferences evolved. Here, we used alignment-based approaches to predict 30 specificity-determining residues (SDRs) for 16 preferences. These were studied with structural models and were validated by activity assays of mutant kinases. Cancer mutation data revealed that kinase SDRs are mutated more frequently than catalytic residues. We have observed that, throughout evolution, kinase specificity has been strongly conserved across orthologs but can diverge after gene duplication, as illustrated by the G protein-coupled receptor kinase family. The identified SDRs can be used to predict kinase specificity from sequence and aid in the interpretation of evolutionary or disease-related genomic variants.
Collapse
Affiliation(s)
- David Bradley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Cristina Viéitez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Vinothini Rajeeve
- Integrative Cell Signalling & Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Joel Selkrig
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Pedro R Cutillas
- Integrative Cell Signalling & Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK.
| |
Collapse
|
59
|
Variant Calling in Next Generation Sequencing Data. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
60
|
Jian J, Yang L, Gan X, Wu B, Gao L, Zeng H, Wang X, Liang Z, Wang Y, Fang L, Li J, Jiang S, Du K, Fu B, Bai M, Chen M, Fang X, Liu H, He S. Whole genome sequencing of silver carp (Hypophthalmichthys molitrix) and bighead carp (Hypophthalmichthys nobilis) provide novel insights into their evolution and speciation. Mol Ecol Resour 2020; 21:912-923. [PMID: 33191666 DOI: 10.1111/1755-0998.13297] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022]
Abstract
The edible silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis), which are two of the "Four Domesticated Fish" of China, are cultivated intensively worldwide. Here, we constructed 837- and 845-Mb draft genome assemblies for the silver carp and the bighead carp, respectively, including 24,571 and 24,229 annotated protein-coding genes. Genetic maps, anchoring 71.7% and 83.8% of all scaffolds, were obtained for the silver and bighead carp, respectively. Phylogenetic analysis showed that the bighead carp formed a clade with the silver carp, with an estimated divergence time of 3.6 million years ago; the time of divergence between the silver carp and zebrafish was 50.7 million years ago. An East Asian cyprinid genome-specific chromosome fusion took place ~9.2 million years after this clade diverged from the clade containing the common carp and Sinocyclocheilus. KEGG and GO analyses indicated that the expanded gene families in the silver and bighead carp were associated with diseases, the immune system and environmental adaptations. Genomic regions differentiating the silver and bighead carp populations were detected based on the whole-genome sequences of 42 individuals. Genes associated with the divergent regions were associated with reproductive system development and the development of primary female sexual characteristics. Thus, our results provided a novel systematic genomic analysis of the East Asian cyprinids, as well as the evolution and speciation of the silver carp and bighead carp.
Collapse
Affiliation(s)
- Jianbo Jian
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoni Gan
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Bin Wu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Li Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Honghui Zeng
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xuzhen Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Ying Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, China
| | - Lihua Fang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, China
| | | | - Kang Du
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Beide Fu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Ming Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Huanzhang Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
61
|
Wang J, Chen X, He F, Song X, Huang S, Yue W, Chen Y, Su Z, Wang C. Global Analysis of Gene Expression Profiles Provides Novel Insights into the Development and Evolution of the Large Crustacean Eriocheir sinensis. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:443-454. [PMID: 33346084 PMCID: PMC8242267 DOI: 10.1016/j.gpb.2019.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/04/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
Chinese mitten crab (Eriocheir sinensis) is an important aquaculture species in Crustacea. Functional analysis, although essential, has been hindered due to the lack of sufficient genomic or transcriptomic resources. In this study, transcriptome sequencing was conducted on 59 samples representing diverse developmental stages (fertilized eggs, zoea, megalopa, three sub-stages of larvae, juvenile crabs, and adult crabs) and different tissues (eyestalk, hepatopancreas, and muscle from juvenile crabs, and eyestalk, hepatopancreas, muscle, heart, stomach, gill, thoracic ganglia, intestine, ovary, and testis from adult crabs) of E. sinensis. A comprehensive reference transcriptome was assembled, including 19,023 protein-coding genes. Hierarchical clustering based on 128 differentially expressed cuticle-related genes revealed two distinct expression patterns during the early larval developmental stages, demonstrating the distinct roles of these genes in “crab-like” cuticle formation during metamorphosis and cuticle calcification after molting. Phylogenetic analysis of 1406 one-to-one orthologous gene families identified from seven arthropod species and Caenorhabditis elegans strongly supported the hypothesis that Malacostraca and Branchiopoda do not form a monophyletic group. Furthermore, Branchiopoda is more phylogenetically closely related to Hexapoda, and the clade of Hexapoda and Branchiopoda and the clade of Malacostraca belong to the Pancrustacea. This study offers a high-quality transcriptome resource for E. sinensis and demonstrates the evolutionary relationships of major arthropod groups. The differentially expressed genes identified in this study facilitate further investigation of the cuticle-related gene expression networks which are likely associated with “crab-like” cuticle formation during metamorphosis and cuticle calcification after molting.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Xiaowen Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Funan He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiao Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Shu Huang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Wucheng Yue
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Yipei Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China
| | - Zhixi Su
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China.
| |
Collapse
|
62
|
Casimiro-Soriguer CS, Rigual MM, Brokate-Llanos AM, Muñoz MJ, Garzón A, Pérez-Pulido AJ, Jimenez J. Using AnABlast for intergenic sORF prediction in the Caenorhabditis elegans genome. Bioinformatics 2020; 36:4827-4832. [PMID: 32614398 PMCID: PMC7723330 DOI: 10.1093/bioinformatics/btaa608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
Motivation Short bioactive peptides encoded by small open reading frames (sORFs) play important roles in eukaryotes. Bioinformatics prediction of ORFs is an early step in a genome sequence analysis, but sORFs encoding short peptides, often using non-AUG initiation codons, are not easily discriminated from false ORFs occurring by chance. Results AnABlast is a computational tool designed to highlight putative protein-coding regions in genomic DNA sequences. This protein-coding finder is independent of ORF length and reading frame shifts, thus making of AnABlast a potentially useful tool to predict sORFs. Using this algorithm, here, we report the identification of 82 putative new intergenic sORFs in the Caenorhabditis elegans genome. Sequence similarity, motif presence, expression data and RNA interference experiments support that the underlined sORFs likely encode functional peptides, encouraging the use of AnABlast as a new approach for the accurate prediction of intergenic sORFs in annotated eukaryotic genomes. Availability and implementation AnABlast is freely available at http://www.bioinfocabd.upo.es/ab/. The C.elegans genome browser with AnABlast results, annotated genes and all data used in this study is available at http://www.bioinfocabd.upo.es/celegans. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- C S Casimiro-Soriguer
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - M M Rigual
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - A M Brokate-Llanos
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - M J Muñoz
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - A Garzón
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - A J Pérez-Pulido
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - J Jimenez
- Centro Andaluz de Biología del Desarrollo (CABD, UPO-CSIC), Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
63
|
Algorithms for ribosome traffic engineering and their potential in improving host cells' titer and growth rate. Sci Rep 2020; 10:21202. [PMID: 33273552 PMCID: PMC7713304 DOI: 10.1038/s41598-020-78260-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/20/2020] [Indexed: 11/08/2022] Open
Abstract
mRNA translation is a fundamental cellular process consuming most of the intracellular energy; thus, it is under extensive evolutionary selection for optimization, and its efficiency can affect the host's growth rate. We describe a generic approach for improving the growth rate (fitness) of any organism by introducing synonymous mutations based on comprehensive computational models. The algorithms introduce silent mutations that may improve the allocation of ribosomes in the cells via the decreasing of their traffic jams during translation respectively. As a result, resources availability in the cell changes leading to improved growth-rate. We demonstrate experimentally the implementation of the method on Saccharomyces cerevisiae: we show that by introducing a few mutations in two computationally selected genes the mutant's titer increased. Our approach can be employed for improving the growth rate of any organism providing the existence of data for inferring models, and with the relevant genomic engineering tools; thus, it is expected to be extremely useful in biotechnology, medicine, and agriculture.
Collapse
|
64
|
Li M. Calculating the most likely intron splicing orders in S. pombe, fruit fly, Arabidopsis thaliana, and humans. BMC Bioinformatics 2020; 21:478. [PMID: 33099301 PMCID: PMC7585206 DOI: 10.1186/s12859-020-03818-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 10/15/2020] [Indexed: 12/01/2022] Open
Abstract
Background Introns have been shown to be spliced in a defined order, and this order influences both alternative splicing regulation and splicing fidelity, but previous studies have only considered neighbouring introns. The detailed intron splicing order remains unknown.
Results In this work, a method was developed that can calculate the intron splicing orders of all introns in each transcript. A simulation study showed that this method can accurately calculate intron splicing orders. I further applied this method to real S. pombe, fruit fly, Arabidopsis thaliana, and human sequencing datasets and found that intron splicing orders change from gene to gene and that humans contain more not in-order spliced transcripts than S. pombe, fruit fly and Arabidopsis thaliana. In addition, I reconfirmed that the first introns in humans are spliced slower than those in S. pombe, fruit fly, and Arabidopsis thaliana genome-widely. Both the calculated most likely orders and the method developed here are available on the web. Conclusions A novel computational method was developed to calculate the intron splicing orders and applied the method to real sequencing datasets. I obtained intron splicing orders for hundreds or thousands of genes in four organisms. I found humans contain more number of not in-order spliced transcripts.
Collapse
|
65
|
Flores-Tornero M, Vogler F, Mutwil M, Potěšil D, Ihnatová I, Zdráhal Z, Sprunck S, Dresselhaus T. Transcriptomic and Proteomic Insights into Amborella trichopoda Male Gametophyte Functions. PLANT PHYSIOLOGY 2020; 184:1640-1657. [PMID: 32989009 PMCID: PMC7723084 DOI: 10.1104/pp.20.00837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/16/2020] [Indexed: 05/27/2023]
Abstract
Flowering plants (angiosperms) are characterized by pollen tubes (PTs; male gametophytes) carrying two immobile sperm cells that grow over long distances through the carpel toward the ovules, where double fertilization is executed. It is not understood how these reproductive structures evolved, which genes occur de novo in male gametophytes of angiosperms, and to which extent PT functions are conserved among angiosperms. To contribute to a deeper understanding of the evolution of gametophyte functions, we generated RNA sequencing data from seven reproductive and two vegetative control tissues of the basal angiosperm Amborella trichopoda and complemented these with proteomic data of pollen grains (PGs) and PTs. The eudicot model plant Arabidopsis (Arabidopsis thaliana) served as a reference organism for data analysis, as more than 200 genes have been associated with male gametophyte functions in this species. We describe methods to collect bicellular A. trichopoda PGs, to induce their germination in vitro, and to monitor PT growth and germ cell division. Transcriptomic and proteomic analyses indicate that A. trichopoda PGs are prepared for germination requiring lipids, energy, but likely also reactive oxygen species, while PTs are especially characterized by catabolic/biosynthetic and transport processes including cell wall biosynthesis and gene regulation. Notably, a number of pollen-specific genes were lacking in Arabidopsis, and the number of genes involved in pollen signaling is significantly reduced in A. trichopoda In conclusion, we provide insight into male gametophyte functions of the most basal angiosperm and establish a valuable resource for future studies on the evolution of flowering plants.
Collapse
Affiliation(s)
- María Flores-Tornero
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Frank Vogler
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Ivana Ihnatová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
66
|
Olsson Lindvall M, Angerfors A, Andersson B, Nilsson S, Davila Lopez M, Hansson L, Stanne TM, Jern C. Comparison of DNA Methylation Profiles of Hemostatic Genes between Liver Tissue and Peripheral Blood within Individuals. Thromb Haemost 2020; 121:573-583. [PMID: 33202445 PMCID: PMC8116175 DOI: 10.1055/s-0040-1720980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
DNA methylation has become increasingly recognized in the etiology of complex diseases, including thrombotic disorders. Blood is often collected in epidemiological studies for genotyping and has recently also been used to examine DNA methylation in epigenome-wide association studies. DNA methylation patterns are often tissue-specific, thus, peripheral blood may not accurately reflect the methylation pattern in the tissue of relevance. Here, we collected paired liver and blood samples concurrently from 27 individuals undergoing liver surgery. We performed targeted bisulfite sequencing for a set of 35 hemostatic genes primarily expressed in liver to analyze DNA methylation levels of >10,000 cytosine-phosphate-guanine (CpG) dinucleotides. We evaluated whether DNA methylation in blood could serve as a proxy for DNA methylation in liver at individual CpGs. Approximately 30% of CpGs were nonvariable and were predominantly hypo- (<25%) or hypermethylated (>70%) in both tissues. While blood can serve as a proxy for liver at these CpGs, the low variability renders these unlikely to explain phenotypic differences. We therefore focused on CpG sites with variable methylation levels in liver. The level of blood-liver tissue correlation varied widely across these variable CpGs; moderate correlations (0.5 ≤ r < 0.75) were detected for 6% and strong correlations (r ≥ 0.75) for a further 4%. Our findings indicate that it is essential to study the concordance of DNA methylation between blood and liver at individual CpGs. This paired blood-liver dataset is intended as a resource to aid interpretation of blood-based DNA methylation results.
Collapse
Affiliation(s)
- Martina Olsson Lindvall
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Annelie Angerfors
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Bioinformatics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Björn Andersson
- Bioinformatics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | - Tara M Stanne
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christina Jern
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
67
|
Cascant-Lopez E, Crosthwaite SK, Johnson LJ, Harrison RJ. No Evidence That Homologs of Key Circadian Clock Genes Direct Circadian Programs of Development or mRNA Abundance in Verticillium dahliae. Front Microbiol 2020; 11:1977. [PMID: 33013740 PMCID: PMC7493669 DOI: 10.3389/fmicb.2020.01977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/27/2020] [Indexed: 01/24/2023] Open
Abstract
Many organisms harbor circadian clocks that promote their adaptation to the rhythmic environment. While a broad knowledge of the molecular mechanism of circadian clocks has been gained through the fungal model Neurospora crassa, little is known about circadian clocks in other fungi. N. crassa belongs to the same class as many important plant pathogens including the vascular wilt fungus Verticillium dahliae. We identified homologs of N. crassa clock proteins in V. dahliae, which showed high conservation in key protein domains. However, no evidence for an endogenous, free-running and entrainable rhythm was observed in the daily formation of conidia and microsclerotia. In N. crassa the frequency (frq) gene encodes a central clock protein expressed rhythmically and in response to light. In contrast, expression of Vdfrq is not light-regulated. Temporal gene expression profiling over 48 h in constant darkness and temperature revealed no circadian expression of key clock genes. Furthermore, RNA-seq over a 24 h time-course revealed no robust oscillations of clock-associated transcripts in constant darkness. Comparison of gene expression between wild-type V. dahliae and a ΔVdfrq mutant showed that genes involved in metabolism, transport and redox processes are mis-regulated in the absence of Vdfrq. In addition, VdΔfrq mutants display growth defects and reduced pathogenicity in a strain dependent manner. Our data indicate that if a circadian clock exists in Verticillium, it is based on alternative mechanisms such as post-transcriptional interactions of VdFRQ and the WC proteins or the components of a FRQ-less oscillator. Alternatively, it could be that whilst the original functions of the clock proteins have been maintained, in this species the interactions that generate robust rhythmicity have been lost or are only triggered when specific environmental conditions are met. The presence of conserved clock genes in genomes should not be taken as definitive evidence of circadian function.
Collapse
Affiliation(s)
| | | | - Louise J Johnson
- The School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Richard J Harrison
- Genetics, Genomics and Breeding, NIAB EMR, East Malling, United Kingdom.,National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| |
Collapse
|
68
|
Yang F, Dong FS, Hu FH, Liu YW, Chai JF, Zhao H, Lv MY, Zhou S. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) gene family in wheat (Triticum aestivum L.). BMC Genet 2020; 21:105. [PMID: 32928120 PMCID: PMC7491182 DOI: 10.1186/s12863-020-00916-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022] Open
Abstract
Background Plant calmodulin-binding transcription activator (CAMTA) proteins play important roles in hormone signal transduction, developmental regulation, and environmental stress tolerance. However, in wheat, the CAMTA gene family has not been systematically characterized. Results In this work, 15 wheat CAMTA genes were identified using a genome-wide search method. Their chromosome location, physicochemical properties, subcellular localization, gene structure, protein domain, and promoter cis-elements were systematically analyzed. Phylogenetic analysis classified the TaCAMTA genes into three groups (groups A, B, and C), numbered 7, 6, and 2, respectively. The results showed that most TaCAMTA genes contained stress-related cis-elements. Finally, to obtain tissue-specific and stress-responsive candidates, the expression profiles of the TaCAMTAs in various tissues and under biotic and abiotic stresses were investigated. Tissue-specific expression analysis showed that all of the 15 TaCAMTA genes were expressed in multiple tissues with different expression levels, as well as under abiotic stress, the expressions of each TaCAMTA gene could respond to at least one abiotic stress. It also found that 584 genes in wheat genome were predicted to be potential target genes by CAMTA, demonstrating that CAMTA can be widely involved in plant development and growth, as well as coping with stresses. Conclusions This work systematically identified the CAMTA gene family in wheat at the whole-genome-wide level, providing important candidates for further functional analysis in developmental regulation and the stress response in wheat.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, People's Republic of China
| | - Fu-Shuang Dong
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, People's Republic of China
| | - Fang-Hui Hu
- Agriculture and Rural Bureau of Nanhe County, Xingtai, 054400, People's Republic of China
| | - Yong-Wei Liu
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, People's Republic of China
| | - Jian-Fang Chai
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, People's Republic of China
| | - He Zhao
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, People's Republic of China
| | - Meng-Yu Lv
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, People's Republic of China
| | - Shuo Zhou
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, People's Republic of China.
| |
Collapse
|
69
|
Readhead B, Haure-Mirande JV, Mastroeni D, Audrain M, Fanutza T, Kim SH, Blitzer RD, Gandy S, Dudley JT, Ehrlich ME. miR155 regulation of behavior, neuropathology, and cortical transcriptomics in Alzheimer's disease. Acta Neuropathol 2020; 140:295-315. [PMID: 32666270 PMCID: PMC8414561 DOI: 10.1007/s00401-020-02185-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs are recognized as important regulators of many facets of physiological brain function while also being implicated in the pathogenesis of several neurological disorders. Dysregulation of miR155 is widely reported across a variety of neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and traumatic brain injury. In previous work, we observed that experimentally validated miR155 gene targets were consistently enriched among genes identified as differentially expressed across multiple brain tissue and disease contexts. In particular, we found that human herpesvirus-6A (HHV-6A) suppressed miR155, recapitulating reports of miR155 inhibition by HHV-6A in infected T-cells, thyrocytes, and natural killer cells. In earlier studies, we also reported the effects of constitutive deletion of miR155 on accelerating the accumulation of Aβ deposits in 4-month-old APP/PSEN1 mice. Herein, we complete the cumulative characterization of transcriptomic, electrophysiological, neuropathological, and learning behavior profiles from 4-, 8- and 10-month-old WT and APP/PSEN1 mice in the absence or presence of miR155. We also integrated human post-mortem brain RNA-sequences from four independent AD consortium studies, together comprising 928 samples collected from six brain regions. We report that gene expression perturbations associated with miR155 deletion in mouse cortex are in aggregate observed to be concordant with AD-associated changes across these independent human late-onset AD (LOAD) data sets, supporting the relevance of our findings to human disease. LOAD has recently been formulated as the clinicopathological manifestation of a multiplex of genetic underpinnings and pathophysiological mechanisms. Our accumulated data are consistent with such a formulation, indicating that miR155 may be uniquely positioned at the intersection of at least four components of this LOAD "multiplex": (1) innate immune response pathways; (2) viral response gene networks; (3) synaptic pathology; and (4) proamyloidogenic pathways involving the amyloid β peptide (Aβ).
Collapse
Affiliation(s)
- Ben Readhead
- Arizona State University-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Diego Mastroeni
- Arizona State University-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tomas Fanutza
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Soong H Kim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert D Blitzer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alzheimer's Disease Research Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Cognitive Health and NFL Neurological Care, Department of Neurology, New York, NY, 10029, USA
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, New York, NY, 10468, USA
| | - Joel T Dudley
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Michelle E Ehrlich
- Icahn Institute of Genomic Sciences and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
70
|
Diversity in the intrinsic apoptosis pathway of nematodes. Commun Biol 2020; 3:478. [PMID: 32859965 PMCID: PMC7456325 DOI: 10.1038/s42003-020-01208-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/03/2020] [Indexed: 11/08/2022] Open
Abstract
Early studies of the free-living nematode C. elegans informed us how BCL-2-regulated apoptosis in humans is regulated. However, subsequent studies showed C. elegans apoptosis has several unique features compared with human apoptosis. To date, there has been no detailed analysis of apoptosis regulators in nematodes other than C. elegans. Here, we discovered BCL-2 orthologues in 89 free-living and parasitic nematode taxa representing four evolutionary clades (I, III, IV and V). Unlike in C. elegans, 15 species possess multiple (two to five) BCL-2-like proteins, and some do not have any recognisable BCL-2 sequences. Functional studies provided no evidence that BAX/BAK proteins have evolved in nematodes, and structural studies of a BCL-2 protein from the basal clade I revealed it lacks a functionally important feature of the C. elegans orthologue. Clade I CED-4/APAF-1 proteins also possess WD40-repeat sequences associated with apoptosome assembly, not present in C. elegans, or other nematode taxa studied.
Collapse
|
71
|
Andersen EJ, Nepal MP, Purintun JM, Nelson D, Mermigka G, Sarris PF. Wheat Disease Resistance Genes and Their Diversification Through Integrated Domain Fusions. Front Genet 2020; 11:898. [PMID: 32849852 PMCID: PMC7422411 DOI: 10.3389/fgene.2020.00898] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
Plants are in a constant evolutionary arms race with their pathogens. At the molecular level, the plant nucleotide-binding leucine-rich repeat receptors (NLRs) family has coevolved with rapidly evolving pathogen effectors. While many NLRs utilize variable leucine-rich repeats (LRRs) to detect effectors, some have gained integrated domains (IDs) that may be involved in receptor activation or downstream signaling. The major objectives of this project were to identify NLR genes in wheat (Triticum aestivum L.) and assess IDs associated with immune signaling (e.g., kinase and transcription factor domains). We identified 2,151 NLR-like genes in wheat, of which 1,298 formed 547 gene clusters. Among the non-toll/interleukin-1 receptor NLR (non-TNL)-like genes, 1,552 encode LRRs, 802 are coiled-coil (CC) domain-encoding (CC-NBS-LRR or CNL) genes, and three encode resistance to powdery mildew 8 (RPW8) domains (RPW8-NBS-LRR or RNL). The expansion of the NLR gene family in wheat is attributable to its origin by recent polyploidy events. Gene clusters were likely formed by tandem duplications, and wheat NLR phylogenetic relationships were similar to those in barley and Aegilops. We also identified wheat NLR-ID fusion proteins as candidates for NLR functional diversification, often as kinase and transcription factor domains. Comparative analyses of the IDs revealed evolutionary conservation of more than 80% amino acid sequence similarity. Homology assessment indicates that these domains originated as functional non-NLR-encoding genes that were incorporated into NLR-encoding genes through duplication events. We also found that many of the NLR-ID genes encode alternative transcripts that include or exclude IDs, a phenomenon that seems to be conserved among species. To verify this, we have analyzed the alternative transcripts that include or exclude an ID of an NLR-ID from another monocotyledon species, rice (Oryza sativa). This indicates that plants employ alternative splicing to regulate IDs, possibly using them as baits, decoys, and functional signaling components. Genomic and expression data support the hypothesis that wheat uses alternative splicing to include and exclude IDs from NLR proteins.
Collapse
Affiliation(s)
- Ethan J Andersen
- Department of Biology, Francis Marion University, Florence, SC, United States
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Jordan M Purintun
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Dillon Nelson
- Department of Math, Science and Technology, Oglala Lakota College, Kyle, SD, United States
| | | | - Panagiotis F Sarris
- Department of Biology, University of Crete, Crete, Greece.,Institute of Molecular Biology and Biotechnology, FORTH, Crete, Greece.,School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
72
|
Parvathaneni RK, Bertolini E, Shamimuzzaman M, Vera DL, Lung PY, Rice BR, Zhang J, Brown PJ, Lipka AE, Bass HW, Eveland AL. The regulatory landscape of early maize inflorescence development. Genome Biol 2020; 21:165. [PMID: 32631399 PMCID: PMC7336428 DOI: 10.1186/s13059-020-02070-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The functional genome of agronomically important plant species remains largely unexplored, yet presents a virtually untapped resource for targeted crop improvement. Functional elements of regulatory DNA revealed through profiles of chromatin accessibility can be harnessed for fine-tuning gene expression to optimal phenotypes in specific environments. RESULT Here, we investigate the non-coding regulatory space in the maize (Zea mays) genome during early reproductive development of pollen- and grain-bearing inflorescences. Using an assay for differential sensitivity of chromatin to micrococcal nuclease (MNase) digestion, we profile accessible chromatin and nucleosome occupancy in these largely undifferentiated tissues and classify at least 1.6% of the genome as accessible, with the majority of MNase hypersensitive sites marking proximal promoters, but also 3' ends of maize genes. This approach maps regulatory elements to footprint-level resolution. Integration of complementary transcriptome profiles and transcription factor occupancy data are used to annotate regulatory factors, such as combinatorial transcription factor binding motifs and long non-coding RNAs, that potentially contribute to organogenesis, including tissue-specific regulation between male and female inflorescence structures. Finally, genome-wide association studies for inflorescence architecture traits based solely on functional regions delineated by MNase hypersensitivity reveals new SNP-trait associations in known regulators of inflorescence development as well as new candidates. CONCLUSIONS These analyses provide a comprehensive look into the cis-regulatory landscape during inflorescence differentiation in a major cereal crop, which ultimately shapes architecture and influences yield potential.
Collapse
Affiliation(s)
| | | | - Md Shamimuzzaman
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Current address: USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND 58102 USA
| | - Daniel L. Vera
- The Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL 32306 USA
- Current address: Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, FL 32306 USA
| | - Brian R. Rice
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306 USA
| | - Patrick J. Brown
- Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Alexander E. Lipka
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Hank W. Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | | |
Collapse
|
73
|
Merchel Piovesan Pereira B, Wang X, Tagkopoulos I. Short- and Long-Term Transcriptomic Responses of Escherichia coli to Biocides: a Systems Analysis. Appl Environ Microbiol 2020; 86:e00708-20. [PMID: 32385082 PMCID: PMC7357472 DOI: 10.1128/aem.00708-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/01/2020] [Indexed: 12/01/2022] Open
Abstract
The mechanisms of the bacterial response to biocides are poorly understood, despite their broad application. To identify the genetic basis and pathways implicated in the biocide stress response, we exposed Escherichia coli populations to 10 ubiquitous biocides. By comparing the transcriptional responses between a short-term exposure (30 min) and a long-term exposure (8 to 12 h) to biocide stress, we established the common gene and pathway clusters that are implicated in general and biocide-specific stress responses. Our analysis revealed a temporal choreography, starting from the upregulation of chaperones to the subsequent repression of motility and chemotaxis pathways and the induction of an anaerobic pool of enzymes and biofilm regulators. A systematic analysis of the transcriptional data identified a zur-regulated gene cluster to be highly active in the stress response against sodium hypochlorite and peracetic acid, presenting a link between the biocide stress response and zinc homeostasis. Susceptibility assays with knockout mutants further validated our findings and provide clear targets for downstream investigation of the implicated mechanisms of action.IMPORTANCE Antiseptics and disinfectant products are of great importance to control and eliminate pathogens, especially in settings such as hospitals and the food industry. Such products are widely distributed and frequently poorly regulated. Occasional outbreaks have been associated with microbes resistant to such compounds, and researchers have indicated potential cross-resistance with antibiotics. Despite that, there are many gaps in knowledge about the bacterial stress response and the mechanisms of microbial resistance to antiseptics and disinfectants. We investigated the stress response of the bacterium Escherichia coli to 10 common disinfectant and antiseptic chemicals to shed light on the potential mechanisms of tolerance to such compounds.
Collapse
Affiliation(s)
- Beatriz Merchel Piovesan Pereira
- Microbiology Graduate Group, University of California, Davis, California, USA
- Genome Center, University of California, Davis, California, USA
| | - Xiaokang Wang
- Genome Center, University of California, Davis, California, USA
- Biomedical Engineering Graduate Group, University of California, Davis, California, USA
| | - Ilias Tagkopoulos
- Genome Center, University of California, Davis, California, USA
- Department of Computer Science, University of California, Davis, California, USA
| |
Collapse
|
74
|
Sauer DB, Wang DN. Predicting the optimal growth temperatures of prokaryotes using only genome derived features. Bioinformatics 2020; 35:3224-3231. [PMID: 30689741 DOI: 10.1093/bioinformatics/btz059] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/20/2018] [Accepted: 01/22/2019] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Optimal growth temperature is a fundamental characteristic of all living organisms. Knowledge of this temperature is central to the study of a prokaryote, the thermal stability and temperature dependent activity of its genes, and the bioprospecting of its genome for thermally adapted proteins. While high throughput sequencing methods have dramatically increased the availability of genomic information, the growth temperatures of the source organisms are often unknown. This limits the study and technological application of these species and their genomes. Here, we present a novel method for the prediction of growth temperatures of prokaryotes using only genomic sequences. RESULTS By applying the reverse ecology principle that an organism's genome includes identifiable adaptations to its native environment, we can predict a species' optimal growth temperature with an accuracy of 5.17°C root-mean-square error and a coefficient of determination of 0.835. The accuracy can be further improved for specific taxonomic clades or by excluding psychrophiles. This method provides a valuable tool for the rapid calculation of organism growth temperature when only the genome sequence is known. AVAILABILITY AND IMPLEMENTATION Source code, genomes analyzed and features calculated are available at: https://github.com/DavidBSauer/OGT_prediction. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- David B Sauer
- Department of Cell Biology, and The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Da-Neng Wang
- Department of Cell Biology, and The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
75
|
Teng C, Zhang H, Hammond R, Huang K, Meyers BC, Walbot V. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nat Commun 2020; 11:2912. [PMID: 32518237 PMCID: PMC7283321 DOI: 10.1038/s41467-020-16634-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 05/12/2020] [Indexed: 02/08/2023] Open
Abstract
Small RNAs play important roles during plant development by regulating transcript levels of target mRNAs, maintaining genome integrity, and reinforcing DNA methylation. Dicer-like 5 (Dcl5) is proposed to be responsible for precise slicing in many monocots to generate diverse 24-nt phased, secondary small interfering RNAs (phasiRNAs), which are exceptionally abundant in meiotic anthers of diverse flowering plants. The importance and functions of these phasiRNAs remain unclear. Here, we characterized several mutants of dcl5, including alleles generated by the clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system and a transposon-disrupted allele. We report that dcl5 mutants have few or no 24-nt phasiRNAs, develop short anthers with defective tapetal cells, and exhibit temperature-sensitive male fertility. We propose that DCL5 and 24-nt phasiRNAs are critical for fertility under growth regimes for optimal yield. Small RNAs act to regulate gene or transposon activity during plant development. Here, the authors show that maize Dicer-like 5 is required for 24-nt phased, secondary small interfering RNA production in anthers and that dicer-like 5 mutants show abnormal tapetal development and temperature-sensitive sterility.
Collapse
Affiliation(s)
- Chong Teng
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Han Zhang
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Reza Hammond
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19716, USA
| | - Kun Huang
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19716, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA. .,Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
76
|
Ma X, Si F, Liu X, Luan W. PRMdb: A Repository of Predicted RNA Modifications in Plants. PLANT & CELL PHYSIOLOGY 2020; 61:1213-1222. [PMID: 32542382 DOI: 10.1093/pcp/pcaa042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Evidence is mounting that RNA modifications play essential roles in posttranscriptional regulation of gene expression. So far, over 150 RNA modifications catalyzed by distinct enzymes have been documented. In plants, genome-wide identification of RNA modifications is largely limited to the model species Arabidopsis thaliana, while lacking in diverse non-model plants. Here, we present PRMdb, a plant RNA modification database, based on the analysis of thousands of RNA-seq, degradome-seq and small RNA-seq data from a wide range of plant species using the well-documented tool HAMR (high-throughput analysis of modified ribonucleotide). PRMdb provides a user-friendly interface that enables easy browsing and searching of the tRNA and mRNA modification data. We show that PRMdb collects high-confidence RNA modifications including novel RNA modification sites that can be validated by genomic PCR and reverse transcription PCR. In summary, PRMdb provides a valuable web resource for deciphering the epitranscriptomes in diverse plant species and will facilitate functional studies of RNA modifications in plants. RPMdb is available via http://www.biosequencing.cn/PRMdb/.
Collapse
Affiliation(s)
- Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Fuyan Si
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaonan Liu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| | - Weijiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
77
|
RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Res 2020; 47:D221-D229. [PMID: 30395267 PMCID: PMC6324050 DOI: 10.1093/nar/gky1034] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022] Open
Abstract
RNAcentral is a comprehensive database of non-coding RNA (ncRNA) sequences, collating information on ncRNA sequences of all types from a broad range of organisms. We have recently added a new genome mapping pipeline that identifies genomic locations for ncRNA sequences in 296 species. We have also added several new types of functional annotations, such as tRNA secondary structures, Gene Ontology annotations, and miRNA-target interactions. A new quality control mechanism based on Rfam family assignments identifies potential contamination, incomplete sequences, and more. The RNAcentral database has become a vital component of many workflows in the RNA community, serving as both the primary source of sequence data for academic and commercial groups, as well as a source of stable accessions for the annotation of genomic and functional features. These examples are facilitated by an improved RNAcentral web interface, which features an updated genome browser, a new sequence feature viewer, and improved text search functionality. RNAcentral is freely available at https://rnacentral.org.
Collapse
Affiliation(s)
- The RNAcentral Consortium
http://orcid.org/0000-0002-6497-2883SweeneyBlake Ahttp://orcid.org/0000-0001-7279-2682PetrovAnton IBurkovBorishttp://orcid.org/0000-0001-8626-2148FinnRobert Dhttp://orcid.org/0000-0002-6982-4660BatemanAlexSzymanskiMaciejKarlowskiWojciech MGorodkinJanSeemannStefan ECannoneJamie JGutellRobin RFeyPetraBasuSiddharthaKaySimonhttp://orcid.org/0000-0001-7954-7057CochraneGuyBillisKostantinosEmmertDavidMarygoldSteven Jhttp://orcid.org/0000-0001-6718-3559HuntleyRachael Phttp://orcid.org/0000-0002-9791-0064LoveringRuth CFrankishAdamChanPatricia Phttp://orcid.org/0000-0003-3253-6021LoweTodd Mhttp://orcid.org/0000-0002-8380-5247BrufordElspethSealRuthhttp://orcid.org/0000-0001-6274-0184VandesompeleJohttp://orcid.org/0000-0002-2685-2637VoldersPieter-JanParaskevopoulouMariaMaLinaZhangZhangGriffiths-JonesSamBujnickiJanusz MBoccalettoPietrohttp://orcid.org/0000-0001-8522-334XBlakeJudith ABultCarol JChenRunshengZhaoYiWoodValerieRutherfordKimhttp://orcid.org/0000-0002-2084-269XRivasElenaColeJameshttp://orcid.org/0000-0001-5356-4174LaulederkindStanley J FShimoyamaMaryGillespieMarc EOrlic-MilacicMarijahttp://orcid.org/0000-0001-9424-9197KalvariIoannahttp://orcid.org/0000-0002-2497-3427NawrockiEricEngelStacia Rhttp://orcid.org/0000-0001-9163-5180CherryJ MichaelTeamSILVABerardiniTanya ZHatzigeorgiouArtemisKaragkouniDimitrahttp://orcid.org/0000-0002-1751-9226HoweKevinDavisPaulDingerMarcelhttp://orcid.org/0000-0002-7294-0865HeShunminYoshihamaMakiKenmochiNaoyaStadlerPeter FWilliamsKelly P
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute for Cellular and Molecular Biology, and the Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, USA
- dictyBase, Northwestern University, 420 E. Superior St., Chicago, IL 60611, USA
- Department of Molecular and Cellular Biology, Harvard University, Biological Laboratories, 16 Divinity Avenue, Cambridge, MA 02140, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece
- Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521 Athens, Greece
- Ghent University and Cancer Research Institute Ghent, 9000 Ghent, Belgium
- St Vincent's Clinical School, UNSW Sydney, Sydney, Australia
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, USA
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China
- Cambridge Systems Biology and Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, Cambridgeshire CB2 1GA, UK
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
- National Center for Biotechnology Information, U.S. National Library of Medicine, Bethesda, MD 20894, USA
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI 53226, USA
- Department of Genetics, Stanford University, Palo Alto, CA 94304 USA
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen
- Jacobs University Bremen, School of Engineering and Science, D-28759 Bremen
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
- Phoenix Bioinformatics, Fremont, CA 94538, USA
- Systems Biology Department, Sandia National Laboratories, Livermore, CA 94551, USA
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstr. 1618, 04107 Leipzig, Germany
- Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, German Centre for Integrative Biodiversity Research (iDiv), and Leipzig Research Center for Civilization Diseases, Universität Leipzig, Ritterstrasse 9–13, 04109 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Insel Strasse 22, 04103 Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany
- Department of Theoretical Chemistry, University of Vienna, Wahringerstrasse 17, 1090 Vienna, Austria
- Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, Denmark
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- To whom correspondence should be addressed. Tel: +44 1223 492550; Fax: +44 1223 494468;
| |
Collapse
|
78
|
Portune KJ, Pérez MC, Álvarez-Hornos J, Gabaldón C. Contribution of bacterial biodiversity on the operational performance of a styrene biotrickling filter. CHEMOSPHERE 2020; 247:125800. [PMID: 31927182 DOI: 10.1016/j.chemosphere.2019.125800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Long-term operational stability of biotrickling filters (BTFs) degrading volatile organic compounds (VOCs) is dependent on both physicochemical as well as biological properties. Effects of increasingly stressful levels of air pollutants on the microbial structure of biofilms within BTFs are not well understood, especially for VOCs such as styrene. To investigate the relationship between biofilm biodiversity and operational stability, the temporal dynamics of a biofilm from a biotrickling filter subjected to stepwise increasing levels of air polluted with styrene was investigated using 16S rDNA pyrosequencing and PCR-denaturing gradient gel electrophoresis (PCR-DGGE). As styrene contaminant loads were increased, microbial community composition was distinctly altered and diversity was initially reduced in early stages but gradually stabilized and increased diversity in later stages, suggesting a recovery and acclimatization period within the microbial community during incremental exposure of the pollutant. Although temporary reductions in known styrene-degrading bacterial genera (Pseudomonas and Rhodococcus) occurred under increased styrene loads, stable BTF performance was maintained due to functional redundancy. New candidate genera for styrene degradation (Azoarcus, Dokdonella) were identified in conditions of high styrene loads, and may have supported the observed stable BTF performance throughout the experiment. Styrene inlet load was found to be important modulator of community composition and may have been partly responsible for the observed temporary reductions of Pseudomonas. Notable differences between dominant genera detected via pyrosequencing compared to species detected by PCR-DGGE suggests that simultaneous implementation of both techniques is valuable for fully characterizing dynamic microbial communities.
Collapse
Affiliation(s)
- Kevin J Portune
- Research Group GI(2)AM, Department of Chemical Engineering, Universitat de València, Burjassot, Spain
| | - M Carmen Pérez
- Research Group GI(2)AM, Department of Chemical Engineering, Universitat de València, Burjassot, Spain
| | - Javier Álvarez-Hornos
- Research Group GI(2)AM, Department of Chemical Engineering, Universitat de València, Burjassot, Spain
| | - Carmen Gabaldón
- Research Group GI(2)AM, Department of Chemical Engineering, Universitat de València, Burjassot, Spain.
| |
Collapse
|
79
|
Médigue C, Calteau A, Cruveiller S, Gachet M, Gautreau G, Josso A, Lajus A, Langlois J, Pereira H, Planel R, Roche D, Rollin J, Rouy Z, Vallenet D. MicroScope-an integrated resource for community expertise of gene functions and comparative analysis of microbial genomic and metabolic data. Brief Bioinform 2020; 20:1071-1084. [PMID: 28968784 PMCID: PMC6931091 DOI: 10.1093/bib/bbx113] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/17/2017] [Indexed: 12/11/2022] Open
Abstract
The overwhelming list of new bacterial genomes becoming available on a daily basis makes accurate genome annotation an essential step that ultimately determines the relevance of thousands of genomes stored in public databanks. The MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Starting from the results of our syntactic, functional and relational annotation pipelines, MicroScope provides an integrated environment for the expert annotation and comparative analysis of prokaryotic genomes. It combines tools and graphical interfaces to analyze genomes and to perform the manual curation of gene function in a comparative genomics and metabolic context. In this article, we describe the free-of-charge MicroScope services for the annotation and analysis of microbial (meta)genomes, transcriptomic and re-sequencing data. Then, the functionalities of the platform are presented in a way providing practical guidance and help to the nonspecialists in bioinformatics. Newly integrated analysis tools (i.e. prediction of virulence and resistance genes in bacterial genomes) and original method recently developed (the pan-genome graph representation) are also described. Integrated environments such as MicroScope clearly contribute, through the user community, to help maintaining accurate resources.
Collapse
|
80
|
Stothard P, Grant JR, Van Domselaar G. Visualizing and comparing circular genomes using the CGView family of tools. Brief Bioinform 2020; 20:1576-1582. [PMID: 28968859 PMCID: PMC6781573 DOI: 10.1093/bib/bbx081] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/14/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022] Open
Abstract
Graphical genome maps are widely used to assess genome features and sequence characteristics. The CGView (Circular Genome Viewer) software family is a popular collection of tools for generating genome maps for bacteria, organelles and viruses. In this review, we describe the capabilities of the original CGView program along with those of subsequent companion applications, including the CGView Server and the CGView Comparison Tool. We also discuss GView, a graphical user interface-enabled rewrite of CGView, and the GView Server, which offers several integrated analyses for identifying shared or unique genome regions relative to a collection of comparison genomes. We conclude with some remarks about our current development efforts related to CGView aimed at adding new functionality while increasing ease of use.
Collapse
Affiliation(s)
- Paul Stothard
- Corresponding author: Paul Stothard, Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton AB T6G2P5, Canada. Tel.: 780-492-5242; Fax:780-248-1900; E-mail:
| | | | | |
Collapse
|
81
|
Fernandez-Pozo N, Haas FB, Meyberg R, Ullrich KK, Hiss M, Perroud PF, Hanke S, Kratz V, Powell AF, Vesty EF, Daum CG, Zane M, Lipzen A, Sreedasyam A, Grimwood J, Coates JC, Barry K, Schmutz J, Mueller LA, Rensing SA. PEATmoss (Physcomitrella Expression Atlas Tool): a unified gene expression atlas for the model plant Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:165-177. [PMID: 31714620 DOI: 10.1111/tpj.14607] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 05/23/2023]
Abstract
Physcomitrella patens is a bryophyte model plant that is often used to study plant evolution and development. Its resources are of great importance for comparative genomics and evo-devo approaches. However, expression data from Physcomitrella patens were so far generated using different gene annotation versions and three different platforms: CombiMatrix and NimbleGen expression microarrays and RNA sequencing. The currently available P. patens expression data are distributed across three tools with different visualization methods to access the data. Here, we introduce an interactive expression atlas, Physcomitrella Expression Atlas Tool (PEATmoss), that unifies publicly available expression data for P. patens and provides multiple visualization methods to query the data in a single web-based tool. Moreover, PEATmoss includes 35 expression experiments not previously available in any other expression atlas. To facilitate gene expression queries across different gene annotation versions, and to access P. patens annotations and related resources, a lookup database and web tool linked to PEATmoss was implemented. PEATmoss can be accessed at https://peatmoss.online.uni-marburg.de.
Collapse
Affiliation(s)
- Noe Fernandez-Pozo
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Fabian B Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Rabea Meyberg
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Manuel Hiss
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | | | - Sebastian Hanke
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Viktor Kratz
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | | | - Eleanor F Vesty
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Christopher G Daum
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Matthew Zane
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Anna Lipzen
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | | | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Kerrie Barry
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Jeremy Schmutz
- US Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA, 94598, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Germany
| |
Collapse
|
82
|
Szabo EX, Reichert P, Lehniger MK, Ohmer M, de Francisco Amorim M, Gowik U, Schmitz-Linneweber C, Laubinger S. Metabolic Labeling of RNAs Uncovers Hidden Features and Dynamics of the Arabidopsis Transcriptome. THE PLANT CELL 2020; 32:871-887. [PMID: 32060173 PMCID: PMC7145469 DOI: 10.1105/tpc.19.00214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 01/14/2020] [Accepted: 02/11/2020] [Indexed: 05/05/2023]
Abstract
Transcriptome analysis by RNA sequencing (RNA-seq) has become an indispensable research tool in modern plant biology. Virtually all RNA-seq studies provide a snapshot of the steady state transcriptome, which contains valuable information about RNA populations at a given time but lacks information about the dynamics of RNA synthesis and degradation. Only a few specialized sequencing techniques, such as global run-on sequencing, have been used to provide information about RNA synthesis rates in plants. Here, we demonstrate that RNA labeling with the modified, nontoxic uridine analog 5-ethynyl uridine (5-EU) in Arabidopsis (Arabidopsis thaliana) seedlings provides insight into plant transcriptome dynamics. Pulse labeling with 5-EU revealed nascent and unstable RNAs, RNA processing intermediates generated by splicing, and chloroplast RNAs. Pulse-chase experiments with 5-EU allowed us to determine RNA stabilities without the need for chemical transcription inhibitors such as actinomycin and cordycepin. Inhibitor-free, genome-wide analysis of polyadenylated RNA stability via 5-EU pulse-chase experiments revealed RNAs with shorter half-lives than those reported after chemical inhibition of transcription. In summary, our results indicate that the Arabidopsis nascent transcriptome contains unstable RNAs and RNA processing intermediates and suggest that polyadenylated RNAs have low stability in plants. Our technique lays the foundation for easy, affordable, nascent transcriptome analysis and inhibitor-free analysis of RNA stability in plants.
Collapse
Affiliation(s)
- Emese Xochitl Szabo
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
| | - Philipp Reichert
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
| | | | - Marilena Ohmer
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
| | | | - Udo Gowik
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
| | | | - Sascha Laubinger
- Institute for Biology and Environmental Science, University of Oldenburg, 26129 Oldenburg, Germany
- Centre for Plant Molecular Biology, University of Tübingen, 72074 Tübingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
83
|
Terekhanova NV, Barmintseva AE, Kondrashov AS, Bazykin GA, Mugue NS. Architecture of Parallel Adaptation in Ten Lacustrine Threespine Stickleback Populations from the White Sea Area. Genome Biol Evol 2020; 11:2605-2618. [PMID: 31406984 PMCID: PMC6761963 DOI: 10.1093/gbe/evz175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2019] [Indexed: 12/20/2022] Open
Abstract
Adaptation of threespine stickleback to freshwater involves parallel recruitment of freshwater alleles in clusters of closely linked sites, or divergence islands (DIs). However, it remains unclear to what extent the DIs and the alleles that constitute them coincide between populations that underwent adaptation to freshwater independently. We examine threespine sticklebacks from ten freshwater lakes that emerged 500–1500 years ago in the White Sea basin, with the emphasis on repeatability of genomic patterns of adaptation among the lake populations and the role of local recombination rate in the distribution and structure of DIs. The 65 detected DIs are clustered in the genome, forming 12 aggregations, and this clustering cannot be explained by the variation of the recombination rate. Only 21 of the DIs are present in all the freshwater populations, likely being indispensable for successful colonization of freshwater environment by the ancestral marine population. Within most DIs, the same set of single nucleotide polymorphisms (SNPs) distinguish marine and freshwater haplotypes in all the lake populations; however, in some DIs, freshwater alleles differ between populations, suggesting that they could have been established by recruitment of different haplotypes in different populations.
Collapse
Affiliation(s)
- Nadezhda V Terekhanova
- Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
| | - Anna E Barmintseva
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
| | - Alexey S Kondrashov
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan.,M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Georgii A Bazykin
- Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
| | - Nikolai S Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia.,N. K. Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| |
Collapse
|
84
|
Höök L, Leal L, Talla V, Backström N. Multilayered Tuning of Dosage Compensation and Z-Chromosome Masculinization in the Wood White (Leptidea sinapis) Butterfly. Genome Biol Evol 2020; 11:2633-2652. [PMID: 31400207 PMCID: PMC6761951 DOI: 10.1093/gbe/evz176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
In species with genetic sex determination, dosage compensation can evolve to equal expression levels of sex-linked and autosomal genes. Current knowledge about dosage compensation has mainly been derived from male-heterogametic (XX/XY) model organisms, whereas less is understood about the process in female-heterogametic systems (ZZ/ZW). In moths and butterflies, downregulation of Z-linked expression in males (ZZ) to match the expression level in females (ZW) is often observed. However, little is known about the underlying regulatory mechanisms, or if dosage compensation patterns vary across ontogenetic stages. In this study, we assessed dynamics of Z-linked and autosomal expression levels across developmental stages in the wood white (Leptidea sinapis). We found that although expression of Z-linked genes in general was reduced compared with autosomal genes, dosage compensation was actually complete for some categories of genes, in particular sex-biased genes, but equalization in females was constrained to a narrower gene set. We also observed a noticeable convergence in Z-linked expression between males and females after correcting for sex-biased genes. Sex-biased expression increased successively across developmental stages, and male-biased genes were enriched on the Z-chromosome. Finally, all five core genes associated with the ribonucleoprotein dosage compensation complex male-specific lethal were detected in adult females, in correspondence with a reduction in the expression difference between autosomes and the single Z-chromosome. We show that tuning of gene dosage is multilayered in Lepidoptera and argue that expression balance across chromosomal classes may predominantly be driven by enrichment of male-biased genes on the Z-chromosome and cooption of available dosage regulators.
Collapse
Affiliation(s)
- Lars Höök
- Evolutionary Biology Program, Department of Ecology and Genetics, Evolutionary Biology Centre (EBC), Uppsala University, Sweden
| | - Luis Leal
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre (EBC), Uppsala University, Sweden
| | - Venkat Talla
- Evolutionary Biology Program, Department of Ecology and Genetics, Evolutionary Biology Centre (EBC), Uppsala University, Sweden
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics, Evolutionary Biology Centre (EBC), Uppsala University, Sweden
| |
Collapse
|
85
|
Azim JB, Khan MFH, Hassan L, Robin AHK. Genome-Wide Characterization and Expression Profiling of Plant-SpecificPLATZTranscription Factor Family Genes inBrassica rapaL. ACTA ACUST UNITED AC 2020. [DOI: 10.9787/pbb.2020.8.1.28] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jaber Bin Azim
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Fahim Hassan Khan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Lutful Hassan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
86
|
Xie Y, Fang B, Liu W, Li G, Huang RL, Zhang L, He J, Zhou S, Liu K, Li Q. Transcriptome differences in adipose stromal cells derived from pre- and postmenopausal women. Stem Cell Res Ther 2020; 11:92. [PMID: 32111240 PMCID: PMC7049195 DOI: 10.1186/s13287-020-01613-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/02/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND As the population ages, an increasing number of postmenopausal women are donors of adipose stromal cells (ASCs) and may benefit from autologous ASC-related treatments. However, the effect of menopausal status on ASCs has not been investigated. METHODS RNA sequencing data were downloaded, and differentially expressed genes (DEGs) were identified. Hierarchical clustering, Gene Ontology, and pathway analyses were applied to the DEGs. Two gene coexpression network analysis approaches were applied to the DEGs to provide a holistic view and preserve gene interactions. Hub genes of the gene coexpression network were identified, and their expression profiles were examined with clinical samples. ASCs from pre- and postmenopausal women were co-cultured with monocytes and T cells to determine their immunoregulatory role. RESULTS In total, 2299 DEGs were identified and presented distinct expression profiles between pre- and postmenopausal women. Gene Ontology and pathway analyses revealed some fertility-, sex hormone-, immune-, aging-, and angiogenesis-related terms and pathways. Gene coexpression networks were constructed, and the top hub genes, including TIE1, ANGPT2, RNASE1, PLVAP, CA2, and MPZL2, were consistent between the two approaches. Expression profiles of hub genes from the RNA sequencing data and clinical samples were consistent. ASCs from postmenopausal women elicit M1 polarization, while their counterparts facilitate CD3/4+ T cell proliferation. CONCLUSIONS The present study reveals the transcriptome differences in ASCs derived from pre- and postmenopausal women and provides holistic views by preserving gene interactions via gene coexpression network analysis. The top hub genes identified by this study could serve as potential targets to enhance the therapeutic potential of ASCs.
Collapse
Affiliation(s)
- Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Wenhui Liu
- Plastic & Reconstructive Surgery of the First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, China.
| | - Guangshuai Li
- Plastic & Reconstructive Surgery of the First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Lu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shuangbai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| |
Collapse
|
87
|
Singh U, Hur M, Dorman K, Wurtele ES. MetaOmGraph: a workbench for interactive exploratory data analysis of large expression datasets. Nucleic Acids Res 2020; 48:e23. [PMID: 31956905 PMCID: PMC7039010 DOI: 10.1093/nar/gkz1209] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
The diverse and growing omics data in public domains provide researchers with tremendous opportunity to extract hidden, yet undiscovered, knowledge. However, the vast majority of archived data remain unused. Here, we present MetaOmGraph (MOG), a free, open-source, standalone software for exploratory analysis of massive datasets. Researchers, without coding, can interactively visualize and evaluate data in the context of its metadata, honing-in on groups of samples or genes based on attributes such as expression values, statistical associations, metadata terms and ontology annotations. Interaction with data is easy via interactive visualizations such as line charts, box plots, scatter plots, histograms and volcano plots. Statistical analyses include co-expression analysis, differential expression analysis and differential correlation analysis, with significance tests. Researchers can send data subsets to R for additional analyses. Multithreading and indexing enable efficient big data analysis. A researcher can create new MOG projects from any numerical data; or explore an existing MOG project. MOG projects, with history of explorations, can be saved and shared. We illustrate MOG by case studies of large curated datasets from human cancer RNA-Seq, where we identify novel putative biomarker genes in different tumors, and microarray and metabolomics data from Arabidopsis thaliana. MOG executable and code: http://metnetweb.gdcb.iastate.edu/ and https://github.com/urmi-21/MetaOmGraph/.
Collapse
Affiliation(s)
- Urminder Singh
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Manhoi Hur
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Karin Dorman
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
88
|
Chen CC, Qian X, Yoon BJ. RNAdetect: efficient computational detection of novel non-coding RNAs. Bioinformatics 2020; 35:1133-1141. [PMID: 30169792 DOI: 10.1093/bioinformatics/bty765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/30/2018] [Accepted: 08/30/2018] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Non-coding RNAs (ncRNAs) are known to play crucial roles in various biological processes, and there is a pressing need for accurate computational detection methods that could be used to efficiently scan genomes to detect novel ncRNAs. However, unlike coding genes, ncRNAs often lack distinctive sequence features that could be used for recognizing them. Although many ncRNAs are known to have a well conserved secondary structure, which provides useful cues for computational prediction, it has been also shown that a structure-based approach alone may not be sufficient for detecting ncRNAs in a single sequence. Currently, the most effective ncRNA detection methods combine structure-based techniques with a comparative genome analysis approach to improve the prediction performance. RESULTS In this paper, we propose RNAdetect, a computational method incorporating novel features for accurate detection of ncRNAs in combination with comparative genome analysis. Given a sequence alignment, RNAdetect can accurately detect the presence of functional ncRNAs by incorporating novel predictive features based on the concept of generalized ensemble defect (GED), which assesses the degree of structure conservation across multiple related sequences and the conformation of the individual folding structures to a common consensus structure. Furthermore, n-gram models (NGMs) are used to extract features that can effectively capture sequence homology to known ncRNA families. Utilization of NGMs can enhance the detection of ncRNAs that have sparse folding structures with many unpaired bases. Extensive performance evaluation based on the Rfam database and bacterial genomes demonstrate that RNAdetect can accurately and reliably detect novel ncRNAs, outperforming the current state-of-the-art methods. AVAILABILITY AND IMPLEMENTATION The source code for RNAdetect and the benchmark data used in this paper can be downloaded at https://github.com/bjyoontamu/RNAdetect.
Collapse
Affiliation(s)
- Chun-Chi Chen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.,TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX, USA
| | - Xiaoning Qian
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.,TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX, USA
| | - Byung-Jun Yoon
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.,TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
89
|
Bartley BA, Beal J, Karr JR, Strychalski EA. Organizing genome engineering for the gigabase scale. Nat Commun 2020; 11:689. [PMID: 32019919 PMCID: PMC7000699 DOI: 10.1038/s41467-020-14314-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Genome-scale engineering holds great potential to impact science, industry, medicine, and society, and recent improvements in DNA synthesis have enabled the manipulation of megabase genomes. However, coordinating and integrating the workflows and large teams necessary for gigabase genome engineering remains a considerable challenge. We examine this issue and recommend a path forward by: 1) adopting and extending existing representations for designs, assembly plans, samples, data, and workflows; 2) developing new technologies for data curation and quality control; 3) conducting fundamental research on genome-scale modeling and design; and 4) developing new legal and contractual infrastructure to facilitate collaboration.
Collapse
Affiliation(s)
| | - Jacob Beal
- Raytheon BBN Technologies, Cambridge, MA, 02138, USA.
| | - Jonathan R Karr
- Icahn Institute and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10128, USA
| | | |
Collapse
|
90
|
Villafana RT, Rampersad SN. Diversity, structure, and synteny of the cutinase gene of Colletotrichum species. Ecol Evol 2020; 10:1425-1443. [PMID: 32076525 PMCID: PMC7029052 DOI: 10.1002/ece3.5998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/20/2019] [Indexed: 11/12/2022] Open
Abstract
Colletotrichum species complexes are among the top 10 economically important fungal plant pathogens worldwide because they can infect climacteric and nonclimacteric fruit at the pre and/or postharvest stages. C. truncatum is the major pathogen responsible for anthracnose of green and red bell pepper fruit worldwide. C. brevisporum was recently reported to be a minor pathogen of red bell pepper fruit in Trinidad, but has recently been reported as pathogenic to other host species in other countries. The ability of these phytopathogens to produce and secrete cutinase is required for dismantling the cuticle of the host plant and, therefore, crucial to the necrotrophic phase of their infection strategy. In vitro bioassays using different lipid substrates confirmed the ability of C. truncatum and C. brevisporum isolates from green and red bell peppers to secrete cutinase. The diversity, structure and organization and synteny of the cutinase gene were determined among different Colletotrichum species. Cluster analysis indicated a low level of nucleotide variation among C. truncatum sequences. Nucleotide sequences of C. brevisporum were more related to C. truncatum cutinase nucleotide sequences than to C. gloeosporioides. Cluster patterns coincided with haplotype and there was evidence of significant positive selection with no recombination signatures. The structure of the cutinase gene included two exons with one intervening intron and, therefore, one splice variant. Although amino acid sequences were highly conserved among C. truncatum isolates, diversity "hot spots" were revealed when the 66-amino acid coding region of 200 fungal species was compared. Twenty cutinase orthologues were detected among different fungal species, whose common ancestor is Pezizomycotina and it is purported that these orthologues arose through a single gene duplication event prior to speciation. The cutinase domain was retained both in structure and arrangement among 34 different Colletotrichum species. The order of aligned genomic blocks between species and the arrangement of flanking protein domains were also conserved and shared for those domains immediately located at the N- and C-terminus of the cutinase domain. Among these were an RNA recognition motif, translation elongation factor, signal peptide, pentatricopeptide repeat, and Hsp70 family of chaperone proteins, all of which support the expression of the cutinase gene. The findings of this study are important to understanding the evolution of the cutinase gene in C. truncatum as a key component of the biotrophic-necrotrophic switch which may be useful in developing gene-targeting strategies to decrease the pathogenic potential of Colletotrichum species.
Collapse
Affiliation(s)
- Ria T. Villafana
- Faculty of Science and TechnologyDepartment of Life SciencesBiochemistry Research LabThe University of the West IndiesSt. AugustineTrinidad and Tobago – West Indies
| | - Sephra N. Rampersad
- Faculty of Science and TechnologyDepartment of Life SciencesBiochemistry Research LabThe University of the West IndiesSt. AugustineTrinidad and Tobago – West Indies
| |
Collapse
|
91
|
Mende DR, Letunic I, Maistrenko OM, Schmidt TSB, Milanese A, Paoli L, Hernández-Plaza A, Orakov AN, Forslund SK, Sunagawa S, Zeller G, Huerta-Cepas J, Coelho LP, Bork P. proGenomes2: an improved database for accurate and consistent habitat, taxonomic and functional annotations of prokaryotic genomes. Nucleic Acids Res 2020; 48:D621-D625. [PMID: 31647096 PMCID: PMC7145564 DOI: 10.1093/nar/gkz1002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
Microbiology depends on the availability of annotated microbial genomes for many applications. Comparative genomics approaches have been a major advance, but consistent and accurate annotations of genomes can be hard to obtain. In addition, newer concepts such as the pan-genome concept are still being implemented to help answer biological questions. Hence, we present proGenomes2, which provides 87 920 high-quality genomes in a user-friendly and interactive manner. Genome sequences and annotations can be retrieved individually or by taxonomic clade. Every genome in the database has been assigned to a species cluster and most genomes could be accurately assigned to one or multiple habitats. In addition, general functional annotations and specific annotations of antibiotic resistance genes and single nucleotide variants are provided. In short, proGenomes2 provides threefold more genomes, enhanced habitat annotations, updated taxonomic and functional annotation and improved linkage to the NCBI BioSample database. The database is available at http://progenomes.embl.de/.
Collapse
Affiliation(s)
- Daniel R Mende
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Ivica Letunic
- Biobyte solutions GmbH, Bothestr, 142, 69117 Heidelberg, Germany
| | - Oleksandr M Maistrenko
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Alessio Milanese
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Lucas Paoli
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Ana Hernández-Plaza
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Askarbek N Orakov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Sofia K Forslund
- Max Delbrück Centre for Molecular Medicine, 13125 Berlin, Germany
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, 13125 Berlin, Germany
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
92
|
De Kesel J, Gómez-Rodríguez R, Bonneure E, Mangelinckx S, Kyndt T. The Use of PTI-Marker Genes to Identify Novel Compounds that Establish Induced Resistance in Rice. Int J Mol Sci 2020; 21:E317. [PMID: 31906566 PMCID: PMC6981679 DOI: 10.3390/ijms21010317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/04/2023] Open
Abstract
Compounds that establish induced resistance (IR) in plants are promising alternatives for the pesticides that are progressively being banned worldwide. Screening platforms to identify IR-establishing compounds have been developed, but none were specifically designed for monocot plants. Here, we propose the use of an RT-qPCR screening platform, based on conserved immunity marker genes of rice as proxy for IR induction. Central regulators of biotic stress responses of rice were identified with a weighted gene co-expression network analysis (WGCNA), using more than 350 microarray datasets of rice under various sorts of biotic stress. Candidate genes were narrowed down to six immunity marker genes, based on consistent association with pattern-triggered immunity (PTI), both in rice plants as in rice cell suspension cultures (RCSCs). By monitoring the expression of these genes in RCSCs upon treatment with candidate IR-inducing compounds, we showed that our marker genes can predict IR induction in rice. Diproline, a novel IR-establishing compound for monocots that was detected with these marker genes, was shown to induce rice resistance against root-knot nematodes, without fitness costs. Gene expression profiling of the here-described PTI-marker genes can be executed on fully-grown plants or in RCSCs, providing a novel and versatile tool to predict IR induction.
Collapse
Affiliation(s)
- Jonas De Kesel
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (J.D.K.); (R.G.-R.)
| | - Ramsés Gómez-Rodríguez
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (J.D.K.); (R.G.-R.)
| | - Eli Bonneure
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (E.B.); (S.M.)
| | - Sven Mangelinckx
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (E.B.); (S.M.)
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (J.D.K.); (R.G.-R.)
| |
Collapse
|
93
|
Fatima F, McCallum BD, Pozniak CJ, Hiebert CW, McCartney CA, Fedak G, You FM, Cloutier S. Identification of New Leaf Rust Resistance Loci in Wheat and Wild Relatives by Array-Based SNP Genotyping and Association Genetics. FRONTIERS IN PLANT SCIENCE 2020; 11:583738. [PMID: 33304363 PMCID: PMC7701059 DOI: 10.3389/fpls.2020.583738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/15/2020] [Indexed: 05/22/2023]
Abstract
Leaf rust caused by Puccinia triticina is the most widespread rust disease of wheat. As pathogen populations are constantly evolving, identification of novel sources of resistance is necessary to maintain disease resistance and stay ahead of this plant-pathogen evolutionary arms race. The wild genepool of wheat is a rich source of genetic diversity, accounting for 44% of the Lr genes identified. Here we performed a genome-wide association study (GWAS) on a diverse germplasm of 385 accessions, including 27 different Triticum and Aegilops species. Genetic characterization using the wheat 90 K array and subsequent filtering identified a set of 20,501 single nucleotide polymorphic (SNP) markers. Of those, 9,570 were validated using exome capture and mapped onto the Chinese Spring reference sequence v1.0. Phylogenetic analyses illustrated four major clades, clearly separating the wild species from the T. aestivum and T. turgidum species. GWAS was conducted using eight statistical models for infection types against six leaf rust isolates and leaf rust severity rated in field trials for 3-4 years at 2-3 locations in Canada. Functional annotation of genes containing significant quantitative trait nucleotides (QTNs) identified 96 disease-related loci associated with leaf rust resistance. A total of 21 QTNs were in haplotype blocks or within flanking markers of at least 16 known Lr genes. The remaining significant QTNs were considered loci that putatively harbor new Lr resistance genes. Isolation of these candidate genes will contribute to the elucidation of their role in leaf rust resistance and promote their usefulness in marker-assisted selection and introgression.
Collapse
Affiliation(s)
- Fizza Fatima
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Brent D. McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Curtis J. Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Colin W. Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Curt A. McCartney
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - George Fedak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Frank M. You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Sylvie Cloutier,
| |
Collapse
|
94
|
Chaley M, Kutyrkin V. Stochastic models for description of structural-statistical properties in DNA sequences. J Theor Biol 2019; 496:110126. [PMID: 31866393 DOI: 10.1016/j.jtbi.2019.110126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 12/02/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
New stochastic models based on a notion of stochastic codon are proposed. These models, presented by special random strings, describe practical structural-statistical properties which are peculiar to coding DNA both from prokaryotic and eukaryotic genomes. In such the case coding regions are considered as the realizations of random strings. The models introduced explain existence of latent profile periodicity with a period which is not only equal to but also multiplied of three in the coding regions. For the sequences with latent profile period multiplied of three, but not equal to three, the proposed models ensure existence of special property of 3-regularity in these sequences which is practically recognized in all coding sequences of the genomes analyzed. Feasibility of the stochastic models proposed was tested in numerical experiments with binary reencoded paragraphs of literary texts (in English and Italian languages), used as analog of DNA coding regions.
Collapse
Affiliation(s)
- Maria Chaley
- Institute of Mathematical Problems of Biology RAS - Branch of Keldysh Institute of Applied Mathematics RAS, Professor Vitkevich St.,1, 142290 Pushchino, Russia.
| | - Vladimir Kutyrkin
- Moscow State Technical University n.a. N.E. Bauman, the 2nd Baumanskaya st.,5, 105005 Moscow, Russia.
| |
Collapse
|
95
|
Janowska-Sejda EI, Lysenko A, Urban M, Rawlings C, Tsoka S, Hammond-Kosack KE. PHI-Nets: A Network Resource for Ascomycete Fungal Pathogens to Annotate and Identify Putative Virulence Interacting Proteins and siRNA Targets. Front Microbiol 2019; 10:2721. [PMID: 31866958 PMCID: PMC6908471 DOI: 10.3389/fmicb.2019.02721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/08/2019] [Indexed: 12/28/2022] Open
Abstract
Interactions between proteins underlie all aspects of complex biological mechanisms. Therefore, methodologies based on complex network analyses can facilitate identification of promising candidate genes involved in phenotypes of interest and put this information into appropriate contexts. To facilitate discovery and gain additional insights into globally important pathogenic fungi, we have reconstructed computationally inferred interactomes using an interolog and domain-based approach for 15 diverse Ascomycete fungal species, across nine orders, specifically Aspergillus fumigatus, Bipolaris sorokiniana, Blumeria graminis f. sp. hordei, Botrytis cinerea, Colletotrichum gloeosporioides, Colletotrichum graminicola, Fusarium graminearum, Fusarium oxysporum f. sp. lycopersici, Fusarium verticillioides, Leptosphaeria maculans, Magnaporthe oryzae, Saccharomyces cerevisiae, Sclerotinia sclerotiorum, Verticillium dahliae, and Zymoseptoria tritici. Network cartography analysis was associated with functional patterns of annotated genes linked to the disease-causing ability of each pathogen. In addition, for the best annotated organism, namely F. graminearum, the distribution of annotated genes with respect to network structure was profiled using a random walk with restart algorithm, which suggested possible co-location of virulence-related genes in the protein–protein interaction network. In a second ‘use case’ study involving two networks, namely B. cinerea and F. graminearum, previously identified small silencing plant RNAs were mapped to their targets. The F. graminearum phenotypic network analysis implicates eight B. cinerea targets and 35 F. graminearum predicted interacting proteins as prime candidate virulence genes for further testing. All 15 networks have been made accessible for download at www.phi-base.org providing a rich resource for major crop plant pathogens.
Collapse
Affiliation(s)
- Elzbieta I Janowska-Sejda
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom.,Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom.,Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Artem Lysenko
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Martin Urban
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Chris Rawlings
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Kim E Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
96
|
Ermakov A, Bobrovskikh A, Zubairova U, Konstantinov D, Doroshkov A. Stress-induced changes in the expression of antioxidant system genes for rice ( Oryza sativa L.) and bread wheat ( Triticum aestivum L.). PeerJ 2019; 7:e7791. [PMID: 31803533 PMCID: PMC6886489 DOI: 10.7717/peerj.7791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/29/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Plant cell metabolism inevitably forms reactive oxygen species (ROS), which can damage cells or lead to their death. The antioxidant system (AOS) evolved to eliminate a high concentration of ROS. For plants, this system consists of the seven classes of antioxidant enzymes and antioxidant compounds. Each enzymatic class contains a various number of genes which may vary from species to species. In such a multi-copy genetic system, the integration of evolutionary characteristics and expression data makes it possible to effectively predict promising breeding targets for the design of highly-yielding cultivars. In the plant cells, ROS production can increase as a result of abiotic stresses. Accordingly, AOS responds to stress by altering the expression of the genes of its components. Expression profiles of AOS enzymes, including their changes under stress, remains incomplete. A comprehensive study of the system behavior in response to stress for different species gives the key to identify the general mechanisms of AOS regulation. In this article, we studied stress-induced changes in the expression of AOS genes in photosynthetic tissues for rice and bread wheat. METHODS A meta-analysis of genome-wide transcriptome data on stress-induced changes in expression profiles of antioxidant genes using microarray and next generation sequencing (NGS) experiments from the GEO NCBI database for rice and bread wheat was carried out. Experimental study of expression changes in short (6 h) and prolonged (24 h) cold stress responses for selected AOS genes of bread wheat cultivars Saratovskaya29 and Yanetzkis Probat was conducted using qPCR. RESULTS The large-scale meta-transcriptome and complementary experimental analysis revealed a summary of fold changes in the AOS gene expression in response to cold and water deficiency for rice and bread wheat.
Collapse
Affiliation(s)
- Anton Ermakov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
| | - Aleksandr Bobrovskikh
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Ulyana Zubairova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Dmitrii Konstantinov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Alexey Doroshkov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
97
|
Genome-wide identification and expression analysis of the StSWEET family genes in potato (Solanum tuberosum L.). Genes Genomics 2019; 42:135-153. [PMID: 31782074 DOI: 10.1007/s13258-019-00890-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/13/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND The sugar will eventually be exported transporter (SWEET) family is a novel type of membrane-embedded sugar transporter that contains seven transmembrane helices with two MtN3/saliva domains. The SWEET family plays crucial roles in multiple processes, including carbohydrate transportation, development, environmental adaptability and host-pathogen interactions. Although SWEET genes, especially those involved in response to biotic stresses, have been extensively characterized in many plants, they have not yet been studied in potato. OBJECTIVE The identification of StSWEET genes provides important candidates for further functional analysis and lays the foundation for the production of good quality and high yield potatoes through molecular breeding. METHODS In this study, StSWEET genes were identified using a genome-wide search method. A comprehensive analysis of StSWEET family through bioinformatics methods, such as phylogenetic tree, gene structure and promoter prediction analysis. The expression profiles of StSWEET genes in different potato tissues and under P. infestans attack and sugar stress were studied using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Phylogenetic analysis classified 33 StSWEET genes into four groups containing 12, 5, 12 and 4 genes. Furthermore, the gene structures and conserved motifs found that the StSWEET genes are very conservative during evolution. The chromosomal localization pattern showed that the distribution and density of the StSWEETs on 10 potato chromosomes were uneven and basically clustered. Predictive promoter analysis indicated that StSWEET proteins are associated with cell growth, development, secondary metabolism, and response to biotic and abiotic stresses. Finally, the expression patterns of the StSWEET genes in different tissues and the induction of P. infestans and the process of the sugar stress were investigated to obtain the tissue-specific and stress-responsive candidates. CONCLUSION This study systematically identifies the SWEET gene family in potato at the genome-wide level, providing important candidates for further functional analysis and contributing to a better understanding of the molecular basis of development and tolerance in potato.
Collapse
|
98
|
Zhou Y, Li X, Katsuma S, Xu Y, Shi L, Shimada T, Wang H. Duplication and diversification of trehalase confers evolutionary advantages on lepidopteran insects. Mol Ecol 2019; 28:5282-5298. [PMID: 31674075 DOI: 10.1111/mec.15291] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
Abstract
Gene duplication provides a major source of new genes for evolutionary novelty and ecological adaptation. However, the maintenance of duplicated genes and their relevance to adaptive evolution has long been debated. Insect trehalase (Treh) plays key roles in energy metabolism, growth, and stress recovery. Here, we show that the duplication of Treh in Lepidoptera (butterflies and moths) is linked with their adaptation to various environmental stresses. Generally, two Treh genes are present in insects: Treh1 and Treh2. We report three distinct forms of Treh in lepidopteran insects, where Treh1 was duplicated into two gene clusters (Treh1a and Treh1b). These gene clusters differ in gene expression patterns, enzymatic properties, and subcellular localizations, suggesting that the enzymes probably underwent sub- and/or neofunctionalization in the lepidopteran insects. Interestingly, selective pressure analysis provided significant evidence of positive selection on duplicate Treh1b gene in lepidopteran insect lineages. Most positively selected sites were located in the alpha-helical region, and several sites were close to the trehalose binding and catalytic sites. Subcellular adaptation of duplicate Treh1b driven by positive selection appears to have occurred as a result of selected changes in specific sequences, allowing for rapid reprogramming of duplicated Treh during evolution. Our results suggest that gene duplication of Treh and subsequent functional diversification could increase the survival rate of lepidopteran insects through various regulations of intracellular trehalose levels, facilitating their adaptation to diverse habitats. This study provides evidence regarding the mechanism by which gene family expansion can contribute to species adaptation through gene duplication and subsequent functional diversification.
Collapse
Affiliation(s)
- Yanyan Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaotong Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Susumu Katsuma
- Laboratory of Insect Genetics and Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Liangen Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Toru Shimada
- Laboratory of Insect Genetics and Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
99
|
Purać J, Nikolić TV, Kojić D, Ćelić AS, Plavša JJ, Blagojević DP, Petri ET. Identification of a metallothionein gene in honey bee Apis mellifera and its expression profile in response to Cd, Cu and Pb exposure. Mol Ecol 2019; 28:731-745. [PMID: 30575191 DOI: 10.1111/mec.14984] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 11/29/2018] [Indexed: 12/01/2022]
Abstract
Metallothioneins are ubiquitous proteins important in metal homeostasis and detoxification. However, they have not previously been identified in honey bees or other Hymenoptera, where metallothioneins could be of ecophysiological and ecotoxicological significance. Better understanding of the molecular responses to stress induced by toxic metals could contribute to honey bee conservation. In addition, honey bee metallothionein could represent a biomarker for monitoring environmental quality. Here we identify and characterize a metallothionein gene in Apis mellifera (AmMT). AmMT is 1,680 bp long and encodes a 48 amino acids protein with 15 cysteines and no aromatic residues. A metal response element upstream of the start codon, coupled with numerous cis-regulatory elements indicate the functional context of AmMT. Molecular modelling predicts several transition metal binding sites, and comparative phylogenetic analysis revealed five putative metallothionein proteins in three other hymenoptera species. AmMT was characterized by cloning the full-length coding sequence of the putative metallothionein. Recombinant AmMT was found to increase metal tolerance upon overexpression in Escherichia coli supplemented with Cd, Cu or Pb. Finally, in laboratory tests on honey bees, gene expression profiles showed a dose-dependant relationship between Cd, Cu and Pb concentrations present in food and AmMT expression, while field experiments showed induction of AmMT in bees from an industrial site compared to those from an urban area. These studies suggest that AmMT has metal binding properties in agreement with a possible role in metal homeostasis. Further functional and structural characterization of metallothionein in honey bees and other Hymenoptera are necessary.
Collapse
Affiliation(s)
- Jelena Purać
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Tatjana V Nikolić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Danijela Kojić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Anđelka S Ćelić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Jovana J Plavša
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Duško P Blagojević
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Edward T Petri
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
100
|
Smithers B, Oates M, Gough J. 'Why genes in pieces?'-revisited. Nucleic Acids Res 2019; 47:4970-4973. [PMID: 30997511 PMCID: PMC6547436 DOI: 10.1093/nar/gkz284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 02/04/2023] Open
Abstract
The alignment between the boundaries of protein domains and the boundaries of exons could provide evidence for the evolution of proteins via domain shuffling, but literature in the field has so far struggled to conclusively show this. Here, on larger data sets than previously possible, we do finally show that this phenomenon is indisputably found widely across the eukaryotic tree. In contrast, the alignment between exons and the boundaries of intrinsically disordered regions of proteins is not a general property of eukaryotes. Most interesting of all is the discovery that domain-exon alignment is much more common in recently evolved protein sequences than older ones.
Collapse
Affiliation(s)
- Ben Smithers
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Matt Oates
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Julian Gough
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK.,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|