51
|
Moles TM, Mariotti L, De Pedro LF, Guglielminetti L, Picciarelli P, Scartazza A. Drought induced changes of leaf-to-root relationships in two tomato genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:24-31. [PMID: 29751252 DOI: 10.1016/j.plaphy.2018.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/23/2018] [Accepted: 05/04/2018] [Indexed: 05/14/2023]
Abstract
Water deficit triggers a dynamic and integrated cross-talk between leaves and roots. Tolerant plants have developed several physiological and molecular mechanisms to establish new cell metabolism homeostasis, avoiding and/or escaping from permanent impairments triggered by drought. Two tomato genotypes (a Southern Italy landrace called Ciettaicale and the well-known commercial cultivar Moneymaker) were investigated at vegetative stage to assess leaf and root metabolic strategies under 20 days of water deficit. Physiological and metabolic changes, in terms of ABA, IAA, proline, soluble sugars and phenols contents, occurred in both tomato genotypes under water stress. Overall, our results pointed out the higher plasticity of Ciettaicale to manage plant water status under drought in order to preserve the source-sink relationships. This aim was achieved by maintaining a more efficient leaf photosystem II (PSII) photochemistry, as suggested by chlorophyll fluorescence parameters, associated with a major investment towards root growth and activity to improve water uptake. On the contrary, the higher accumulation of carbon compounds, resulting from reduced PSII photochemistry and enhanced starch reserve mobilization, in leaves and roots of Moneymaker under drought could play a key role in the osmotic adjustment, although causing a feedback disruption of the source-sink relations. This hypothesis was also supported by the different drought-induced redox unbalance, as suggested by H2O2 and MDA contents. This could affect both PSII photochemistry and root activity, leading to a major involvement of NPQ and antioxidant system in response to drought in Moneymaker than Ciettaicale.
Collapse
Affiliation(s)
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Lorenzo Guglielminetti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy; Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy.
| | - Piero Picciarelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy; Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | - Andrea Scartazza
- Institute of Agro-environmental and Forest Biology, National Research Council, Monterotondo Scalo, RM, Italy
| |
Collapse
|
52
|
Peccoux A, Loveys B, Zhu J, Gambetta GA, Delrot S, Vivin P, Schultz HR, Ollat N, Dai Z. Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. TREE PHYSIOLOGY 2018; 38:1026-1040. [PMID: 29228360 DOI: 10.1093/treephys/tpx153] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 10/31/2017] [Indexed: 05/06/2023]
Abstract
How rootstocks contribute to the control of scion transpiration under drought is poorly understood. We investigated the role of root characteristics, hydraulic conductance and chemical signals (abscisic acid, ABA) in the response of stomatal conductance (gs) and transpiration (E) to drought in Cabernet Sauvignon (Vitis vinifera) grafted onto drought-sensitive (Vitis riparia) and drought-tolerant (Vitis berlandieri × Vitis rupestris 110R) rootstocks. All combinations showed a concomitant reduction in gs and E, and an increase in xylem sap ABA concentration during the drought cycle. Cabernet Sauvignon grafted onto 110R exhibited higher gs and E under well-watered and moderate water deficit, but all combinations converged as water deficit increased. These results were integrated into three permutations of a whole-plant transpiration model that couples both chemical (i.e., ABA) and hydraulic signals in the modelling of stomatal control. Model comparisons revealed that both hydraulic and chemical signals were important for rootstock-specific stomatal regulation. Moreover, model parameter comparison and sensitivity analysis highlighted two major parameters differentiating the rootstocks: (i) ABA biosynthetic activity and (ii) the hydraulic conductance between the rhizosphere and soil-root interface determined by root system architecture. These differences in root architecture, specifically a higher root length area in 110R, likely explain its higher E and gs observed at low and moderate water deficit.
Collapse
Affiliation(s)
- Anthony Peccoux
- EGFV, Bordeaux Sciences Agro, CNRS, INRA, ISVV, Université de Bordeaux, Villenave d'Ornon, France
- Hochschule Geisenheim University, von-Lade-Straße 1, Geisenheim, Germany
| | - Brian Loveys
- CSIRO Plant Industry, Glen Osmond, SA, Australia
| | - Junqi Zhu
- EGFV, Bordeaux Sciences Agro, CNRS, INRA, ISVV, Université de Bordeaux, Villenave d'Ornon, France
| | - Gregory A Gambetta
- EGFV, Bordeaux Sciences Agro, CNRS, INRA, ISVV, Université de Bordeaux, Villenave d'Ornon, France
| | - Serge Delrot
- EGFV, Bordeaux Sciences Agro, CNRS, INRA, ISVV, Université de Bordeaux, Villenave d'Ornon, France
| | - Philippe Vivin
- EGFV, Bordeaux Sciences Agro, CNRS, INRA, ISVV, Université de Bordeaux, Villenave d'Ornon, France
| | - Hans R Schultz
- Hochschule Geisenheim University, von-Lade-Straße 1, Geisenheim, Germany
| | - Nathalie Ollat
- EGFV, Bordeaux Sciences Agro, CNRS, INRA, ISVV, Université de Bordeaux, Villenave d'Ornon, France
| | - Zhanwu Dai
- EGFV, Bordeaux Sciences Agro, CNRS, INRA, ISVV, Université de Bordeaux, Villenave d'Ornon, France
| |
Collapse
|
53
|
Kuromori T, Seo M, Shinozaki K. ABA Transport and Plant Water Stress Responses. TRENDS IN PLANT SCIENCE 2018; 23:513-522. [PMID: 29731225 DOI: 10.1016/j.tplants.2018.04.001] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 05/18/2023]
Abstract
To understand the integrative networks of signaling molecules, the sites of their biosynthesis and action must be clarified, particularly for phytohormones such as abscisic acid (ABA). The relationship between the sites of ABA biosynthesis and transport has been discussed extensively in the context of guard cells and stomatal regulation. However, guard cells are not the only site of ABA action. Recent studies have reported multiple sites of ABA biosynthesis and multiple ABA transporters, indicating that ABA transport regulation is not unidirectional but rather forms complex networks. Therefore, it is important to determine how multiple ABA sources coordinately contribute to individual biological processes under various physiological conditions.
Collapse
Affiliation(s)
- Takashi Kuromori
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
54
|
Endo T, Shimada T, Nakata Y, Fujii H, Matsumoto H, Nakajima N, Ikoma Y, Omura M. Abscisic acid affects expression of citrus FT homologs upon floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). TREE PHYSIOLOGY 2018; 38:755-771. [PMID: 29182786 DOI: 10.1093/treephys/tpx145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
After a long juvenile period, citrus trees undergo seasonal flowering cycles. Under natural conditions, citrus flowering is regulated mainly by low ambient temperatures around 15-20 °C and water deficit stress. Recent studies have revealed that fluctuations in the expression of citrus homologs of FLOWERING LOCUS T (FT, encoding a flowering integrator) are correlated with their presumed role as flower-promoting signals. Previous ectopic expression analyses have demonstrated the flower-promoting function of citrus FT homologs. In this study, we examined whether abscisic acid (ABA) affects the expression of FT homologs and the flowering induced by low ambient temperatures. Application of exogenous ABA to potted Satsuma mandarin (Citrus unshiu Marc.) trees resulted in transient accumulation of citrus FT homolog transcripts. The promoter of one citrus FT homolog, CiFT3, was active in transgenic A. thaliana (Arabidopsis thaliana) and responded to exogenous and endogenous ABA. CiFT3 is preferentially expressed in shoots, and its expression was affected by flower-inductive treatments. Endogenous ABA accumulated in mandarin shoots during the floral induction period at 15 °C and under field conditions. The accumulation of ABA was correlated with the accumulation of FT homolog transcripts and flowering intensity. It was consistent with changes in the expression of genes related to ABA metabolism. The abundance of carotenoid precursors that serve as substrates for ABA biosynthesis decreased in leaves during the accumulation of ABA. Our data indicate that ABA and carotenoid precursors in leaves influence the flowering of mandarin trees induced by low temperature.
Collapse
Affiliation(s)
- Tomoko Endo
- Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Food Research Organization (NARO), Shizuoka 424-0292, Japan
| | - Takehiko Shimada
- Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Food Research Organization (NARO), Shizuoka 424-0292, Japan
| | - Yumi Nakata
- Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Food Research Organization (NARO), Shizuoka 424-0292, Japan
| | - Hiroshi Fujii
- Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Food Research Organization (NARO), Shizuoka 424-0292, Japan
| | - Hikaru Matsumoto
- Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Food Research Organization (NARO), Shizuoka 424-0292, Japan
| | - Naoko Nakajima
- Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Food Research Organization (NARO), Shizuoka 424-0292, Japan
| | - Yoshinori Ikoma
- Institute of Fruit Tree and Tea Science (NIFTS), National Agriculture and Food Research Organization (NARO), Shizuoka 424-0292, Japan
| | - Mitsuo Omura
- Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
55
|
Takahashi F, Kuromori T, Sato H, Shinozaki K. Regulatory Gene Networks in Drought Stress Responses and Resistance in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:189-214. [PMID: 30288711 DOI: 10.1007/978-981-13-1244-1_11] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant responses to drought stress have been analyzed extensively to reveal complex regulatory gene networks, including the detection of water deficit signals, as well as the physiological, cellular, and molecular responses. Plants recognize water deficit conditions at their roots and transmit this signal to their shoots to synthesize abscisic acid (ABA) in their leaves. ABA is a key phytohormone that regulates physiological and molecular responses to drought stress, such as stomatal closure, gene expression, and the accumulation of osmoprotectants and stress proteins. ABA transporters function as the first step for propagating synthesized ABA. To prevent water loss, ABA influx in guard cells is detected by several protein kinases, such as SnRK2s and MAPKs that regulate stomatal closure. ABA mediates a wide variety of gene expression machineries with stress-responsive transcription factors, including DREBs and AREBs, to acquire drought stress resistance in whole tissues. In this chapter, we summarize recent advances in drought stress signaling, focusing on gene networks in cellular and intercellular stress responses and drought resistance.
Collapse
Affiliation(s)
- Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan.
| | - Takashi Kuromori
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Hikaru Sato
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan.
| |
Collapse
|
56
|
Li W, de Ollas C, Dodd IC. Long-distance ABA transport can mediate distal tissue responses by affecting local ABA concentrations. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:16-33. [PMID: 29052969 DOI: 10.1111/jipb.12605] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/16/2017] [Indexed: 05/21/2023]
Abstract
Environmental stresses that perturb plant water relations influence abscisic acid (ABA) concentrations, but it is unclear whether long-distance ABA transport contributes to changes in local ABA levels. To determine the physiological relevance of ABA transport, we made reciprocal- and self-grafts of ABA-deficient flacca mutant and wild-type (WT) tomato plants, in which low phosphorus (P) conditions decreased ABA concentrations while salinity increased ABA concentrations. Whereas foliar ABA concentrations in the WT scions were rootstock independent under conditions, salinity resulted in long-distance transport of ABA: flacca scions had approximately twice as much ABA when grafted on WT rootstocks compared to flacca rootstocks. Root ABA concentrations were scion dependent: both WT and flacca rootstocks had less ABA with the flacca mutant scion than with the WT scion under conditions. In WT scions, whereas rootstock genotype had limited effects on stomatal conductance under conditions, a flacca rootstock decreased leaf area of stressed plants, presumably due to attenuated root-to-shoot ABA transport. In flacca scions, a WT rootstock decreased stomatal conductance but increased leaf area of stressed plants, likely due to enhanced root-to-shoot ABA transport. Thus, long-distance ABA transport can affect responses in distal tissues by changing local ABA concentrations.
Collapse
Affiliation(s)
- Wenrao Li
- College of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Carlos de Ollas
- Plant & Crop Sciences, Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Ian C Dodd
- Plant & Crop Sciences, Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
57
|
Scartazza A, Picciarelli P, Mariotti L, Curadi M, Barsanti L, Gualtieri P. The role of Euglena gracilis paramylon in modulating xylem hormone levels, photosynthesis and water-use efficiency in Solanum lycopersicum L. PHYSIOLOGIA PLANTARUM 2017; 161:486-501. [PMID: 28767129 DOI: 10.1111/ppl.12611] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
β-1,3-glucans such as paramylon act as elicitors in plants, modifying the hormonal levels and the physiological responses. Plant hormones affect all phases of the plant life cycle and their responses to environmental stresses, both biotic and abiotic. The aim of this study was to investigate the effects of a root treatment with Euglena gracilis paramylon on xylem hormonal levels, photosynthetic performance and dehydration stress in tomato (Solanum lycopersicum). Paramylon granules were processed to obtain the linear fibrous structures capable to interact with tomato cell membrane. Modulation of hormone levels (abscisic acid, jasmonic acid and salicylic acid) and related physiological responses such as CO2 assimilation rate, stomatal and mesophyll conductance, intercellular CO2 concentration, transpiration rate, water-use efficiency, quantum yield of photosystem II and leaf water potential were investigated. The results indicate a clear dose-dependent effect of paramylon on the hormonal content of xylem sap, photosynthetic performance and dehydration tolerance. Paramylon has the capability to enhance plant defense capacity against abiotic stress, such as drought, by modulating the conductance to CO2 diffusion from air to the carboxylation sites and improving the water-use efficiency.
Collapse
Affiliation(s)
- Andrea Scartazza
- Istituto di Biologia Agroambientale e Forestale, CNR, 00016, Monterotondo Scalo, Roma, Italy
| | - Piero Picciarelli
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124, Pisa, Italy
| | - Lorenzo Mariotti
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124, Pisa, Italy
| | - Maurizio Curadi
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, 56124, Pisa, Italy
| | | | | |
Collapse
|
58
|
Sussmilch FC, McAdam SAM. Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity. PLANTS (BASEL, SWITZERLAND) 2017; 6:E54. [PMID: 29113039 PMCID: PMC5750630 DOI: 10.3390/plants6040054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
Angiosperms are able to respond rapidly to the first sign of dry conditions, a decrease in air humidity, more accurately described as an increase in the vapor pressure deficit between the leaf and the atmosphere (VPD), by abscisic acid (ABA)-mediated stomatal closure. The genes underlying this response offer valuable candidates for targeted selection of crop varieties with improved drought tolerance, a critical goal for current plant breeding programs, to maximize crop production in drier and increasingly marginalized environments, and meet the demands of a growing population in the face of a changing climate. Here, we review current understanding of the genetic mechanisms underpinning ABA-mediated stomatal closure, a key means for conserving water under dry conditions, examine how these mechanisms evolved, and discuss what remains to be investigated.
Collapse
Affiliation(s)
- Frances C Sussmilch
- School of Biological Sciences, University of Tasmania, Hobart TAS 7001, Australia.
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany.
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
59
|
Qiu C, Ethier G, Pepin S, Dubé P, Desjardins Y, Gosselin A. Persistent negative temperature response of mesophyll conductance in red raspberry (Rubus idaeus L.) leaves under both high and low vapour pressure deficits: a role for abscisic acid? PLANT, CELL & ENVIRONMENT 2017. [PMID: 28620951 DOI: 10.1111/pce.12997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The temperature dependence of mesophyll conductance (gm ) was measured in well-watered red raspberry (Rubus idaeus L.) plants acclimated to leaf-to-air vapour pressure deficit (VPDL) daytime differentials of contrasting amplitude, keeping a fixed diurnal leaf temperature (Tleaf ) rise from 20 to 35 °C. Contrary to the great majority of gm temperature responses published to date, we found a pronounced reduction of gm with increasing Tleaf irrespective of leaf chamber O2 level and diurnal VPDL regime. Leaf hydraulic conductance was greatly enhanced during the warmer afternoon periods under both low (0.75 to 1.5 kPa) and high (0.75 to 3.5 kPa) diurnal VPDL regimes, unlike stomatal conductance (gs ), which decreased in the afternoon. Consequently, the leaf water status remained largely isohydric throughout the day, and therefore cannot be evoked to explain the diurnal decrease of gm . However, the concerted diurnal reductions of gm and gs were well correlated with increases in leaf abscisic acid (ABA) content, thus suggesting that ABA can induce a significant depression of gm under favourable leaf water status. Our results challenge the view that the temperature dependence of gm can be explained solely from dynamic leaf anatomical adjustments and/or from the known thermodynamic properties of aqueous solutions and lipid membranes..
Collapse
Affiliation(s)
- Changpeng Qiu
- Department of Plant Sciences, Laval University, Quebec, Canada
| | - Gilbert Ethier
- Department of Plant Sciences, Laval University, Quebec, Canada
| | - Steeve Pepin
- Department of Soils and Agri-Food Engineering, Laval University, Quebec, Canada
| | - Pascal Dubé
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, Canada
| | - Yves Desjardins
- Department of Plant Sciences, Laval University, Quebec, Canada
| | - André Gosselin
- Department of Plant Sciences, Laval University, Quebec, Canada
| |
Collapse
|
60
|
Saeed W, Naseem S, Ali Z. Strigolactones Biosynthesis and Their Role in Abiotic Stress Resilience in Plants: A Critical Review. FRONTIERS IN PLANT SCIENCE 2017; 8:1487. [PMID: 28894457 PMCID: PMC5581504 DOI: 10.3389/fpls.2017.01487] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/10/2017] [Indexed: 05/03/2023]
Abstract
Strigolactones (SLs), being a new class of plant hormones, play regulatory roles against abiotic stresses in plants. There are multiple hormonal response pathways, which are adapted by the plants to overcome these stressful environmental constraints to reduce the negative impact on overall crop plant productivity. Genetic modulation of the SLs could also be applied as a potential approach in this regard. However, endogenous plant hormones play central roles in adaptation to changing environmental conditions, by mediating growth, development, nutrient allocation, and source/sink transitions. In addition, the hormonal interactions can fine-tune the plant response and determine plant architecture in response to environmental stimuli such as nutrient deprivation and canopy shade. Considerable advancements and new insights into SLs biosynthesis, signaling and transport has been unleashed since the initial discovery. In this review we present basic overview of SL biosynthesis and perception with a detailed discussion on our present understanding of SLs and their critical role to tolerate environmental constraints. The SLs and abscisic acid interplay during the abiotic stresses is particularly highlighted. Main Conclusion: More than shoot branching Strigolactones have uttermost capacity to harmonize stress resilience.
Collapse
Affiliation(s)
| | | | - Zahid Ali
- Department of Biosciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| |
Collapse
|
61
|
Deans RM, Brodribb TJ, McAdam SAM. An Integrated Hydraulic-Hormonal Model of Conifer Stomata Predicts Water Stress Dynamics. PLANT PHYSIOLOGY 2017; 174:478-486. [PMID: 28341770 PMCID: PMC5462058 DOI: 10.1104/pp.17.00150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/23/2017] [Indexed: 05/07/2023]
Abstract
A simple model combining leaf hydraulics and abscisic acid sensitivity can predict stomatal dynamics to short-term changes in plant water status in a conifer.
Collapse
Affiliation(s)
- Ross M Deans
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
62
|
Brodribb TJ, McAdam SA, Carins Murphy MR. Xylem and stomata, coordinated through time and space. PLANT, CELL & ENVIRONMENT 2017; 40:872-880. [PMID: 27531223 DOI: 10.1111/pce.12817] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/07/2016] [Accepted: 08/10/2016] [Indexed: 05/18/2023]
Abstract
Land plants exhibit a degree of homeostasis in leaf water content to protect against damage to photosynthetic and xylem tissues, and to maintain an efficient allocation of resources. This is achieved by a strong coordination between the systems regulating water delivery (xylem) and water loss (stomata). This review discusses evolution in xylem and stomatal function, specifically focussing on the interactions between them.
Collapse
Affiliation(s)
- Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Scott Am McAdam
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | | |
Collapse
|
63
|
Chitarra W, Perrone I, Avanzato CG, Minio A, Boccacci P, Santini D, Gilardi G, Siciliano I, Gullino ML, Delledonne M, Mannini F, Gambino G. Grapevine Grafting: Scion Transcript Profiling and Defense-Related Metabolites Induced by Rootstocks. FRONTIERS IN PLANT SCIENCE 2017; 8:654. [PMID: 28496453 PMCID: PMC5407058 DOI: 10.3389/fpls.2017.00654] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/10/2017] [Indexed: 05/19/2023]
Abstract
Rootstocks are among the main factors that influence grape development as well as fruit and wine composition. In this work, rootstock/scion interactions were studied using transcriptomic and metabolic approaches on leaves of the "Gaglioppo" variety, grafted onto 13 different rootstocks growing in the same vineyard. The whole leaf transcriptome of "Gaglioppo" grafted onto five selected rootstocks showed high variability in gene expression. In particular, significant modulation of transcripts linked to primary and secondary metabolism was observed. Interestingly, genes and metabolites involved in defense responses (e.g., stilbenes and defense genes) were strongly activated particularly in the GAG-41B combination, characterized in addition by the down-regulation of abscisic acid (ABA) metabolism. On the contrary, the leaves of "Gaglioppo" grafted onto 1103 Paulsen showed an opposite regulations of those transcripts and metabolites, together with the greater sensitivity to downy mildew in a preliminary in vitro assay. This study carried out an extensive transcriptomic analysis of rootstock effects on scion leaves, helping to unravel this complex interaction, and suggesting an interesting correlation among constitutive stilbenes, ABA compound, and disease susceptibility to a fungal pathogen.
Collapse
Affiliation(s)
- Walter Chitarra
- Institute for Sustainable Plant Protection, National Research CouncilTorino, Italy
- Council for Agricultural Research and Economics, Viticulture Research CenterConegliano, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research CouncilTorino, Italy
| | | | - Andrea Minio
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research CouncilTorino, Italy
| | - Deborah Santini
- Institute for Sustainable Plant Protection, National Research CouncilTorino, Italy
| | - Giovanna Gilardi
- AGROINNOVA, Centre for Innovation in the Agro-Environmental Sector, University of TorinoGrugliasco, Italy
| | - Ilenia Siciliano
- AGROINNOVA, Centre for Innovation in the Agro-Environmental Sector, University of TorinoGrugliasco, Italy
| | - Maria L. Gullino
- AGROINNOVA, Centre for Innovation in the Agro-Environmental Sector, University of TorinoGrugliasco, Italy
| | | | - Franco Mannini
- Institute for Sustainable Plant Protection, National Research CouncilTorino, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research CouncilTorino, Italy
| |
Collapse
|
64
|
Sussmilch FC, Brodribb TJ, McAdam SAM. What are the evolutionary origins of stomatal responses to abscisic acid in land plants? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:240-260. [PMID: 28093875 DOI: 10.1111/jipb.12523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/15/2017] [Indexed: 05/20/2023]
Abstract
The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of this response recur in the literature. A single-step model for stomatal control suggests that stomata evolved active, ABA-mediated control of stomatal aperture, when these structures first appeared, prior to the divergence of bryophyte and vascular plant lineages. In contrast, a gradualistic model for stomatal control proposes that the most basal vascular plant stomata responded passively to changes in leaf water status. This model suggests that active ABA-driven mechanisms for stomatal responses to water status instead evolved after the divergence of seed plants, culminating in the complex, ABA-mediated responses observed in modern angiosperms. Here we review the findings that form the basis for these two models, including recent work that provides critical molecular insights into resolving this intriguing debate, and find strong evidence to support a gradualistic model for stomatal evolution.
Collapse
Affiliation(s)
- Frances C Sussmilch
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
65
|
Mitchell PJ, McAdam SAM, Pinkard EA, Brodribb TJ. Significant contribution from foliage-derived ABA in regulating gas exchange in Pinus radiata. TREE PHYSIOLOGY 2017; 37:236-245. [PMID: 28399262 DOI: 10.1093/treephys/tpw092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/20/2016] [Indexed: 06/07/2023]
Abstract
The complex regulatory system controlling stomata involves physical and chemical signals that affect guard cell turgor to bring about changes in stomatal conductance (gs). Abscisic acid (ABA) closes stomata, yet the mechanisms controlling foliar ABA status in tree species remain unclear. The importance of foliage-derived ABA in regulating gas exchange was evaluated under treatments that affected phloem export through girdling and reduced water availability in the tree species, Pinus radiata (D. Don). Branch- and whole-plant girdling increased foliar ABA levels leading to declines in gs, despite no change in plant water status. Changes in gs were largely independent of the more transient increases in foliar non-structural carbohydrates (NSC), suggesting that gradual accumulation of foliar ABA was the primary mechanism for reductions in gs and assimilation. Whole-plant girdling eventually reduced root NSC, hindering root water uptake and decreasing foliar water potential, causing a dramatic increase in ABA level in leaves and concentrations in the xylem sap of shoots (4032 ng ml-1), while root xylem sap concentrations remained low (43 ng ml-1). Contrastingly, the drought treatment caused similar increases in xylem sap ABA in both roots and shoots, suggesting that declines in water potential result in relatively consistent changes in ABA along the hydraulic pathway. ABA levels in plant canopies can be regulated independently of changes in root water status triggered by changes by both phloem export and foliar water status.
Collapse
Affiliation(s)
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, College Rd, Hobart, Tasmania 7005, Australia
| | | | | |
Collapse
|
66
|
Fanourakis D, Bouranis D, Giday H, Carvalho DRA, Rezaei Nejad A, Ottosen CO. Improving stomatal functioning at elevated growth air humidity: A review. JOURNAL OF PLANT PHYSIOLOGY 2016; 207:51-60. [PMID: 27792901 DOI: 10.1016/j.jplph.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/07/2016] [Indexed: 05/05/2023]
Abstract
Plants grown at high relative air humidity (RH≥85%) are prone to lethal wilting upon transfer to conditions of high evaporative demand. The reduced survival of these plants is related to (i) increased cuticular permeability, (ii) changed anatomical features (i.e., longer pore length and higher stomatal density), (iii) reduced rehydration ability, (iv) impaired water potential sensitivity to leaf dehydration and, most importantly, (v) compromised stomatal closing ability. This review presents a critical analysis of the strategies which stimulate stomatal functioning during plant development at high RH. These include (a) breeding for tolerant cultivars, (b) interventions with respect to the belowground environment (i.e., water deficit, increased salinity, nutrient culture and grafting) as well as (c) manipulation of the aerial environment [i.e., increased proportion of blue light, increased air movement, temporal temperature rise, and spraying with abscisic acid (ABA)]. Root hypoxia, mechanical disturbance, as well as spraying with compounds mimicking ABA, lessening its inactivation or stimulating its within-leaf redistribution are also expected to improve stomatal functioning of leaves expanded in humid air. Available evidence leaves little doubt that genotypic and phenotypic differences in stomatal functioning following cultivation at high RH are realized through the intermediacy of ABA.
Collapse
Affiliation(s)
- Dimitrios Fanourakis
- School of Agricultural Technology, Technological Educational Institute of Crete, GR 71004 Heraklio, Greece.
| | - Dimitrios Bouranis
- Plant Physiology and Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Athens, Greece
| | - Habtamu Giday
- Horticulture and Product Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Dália R A Carvalho
- Horticulture and Product Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Abdolhossein Rezaei Nejad
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Carl-Otto Ottosen
- Aarhus University, Department of Food Science, Kirstinebjergvej 10, DK-5792 Årslev, Denmark
| |
Collapse
|
67
|
Visentin I, Vitali M, Ferrero M, Zhang Y, Ruyter-Spira C, Novák O, Strnad M, Lovisolo C, Schubert A, Cardinale F. Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. THE NEW PHYTOLOGIST 2016; 212:954-963. [PMID: 27716937 DOI: 10.1111/nph.14190] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/04/2016] [Indexed: 05/03/2023]
Abstract
Strigolactones (SL) contribute to drought acclimatization in shoots, because SL-depleted plants are hypersensitive to drought due to stomatal hyposensitivity to abscisic acid (ABA). However, under drought, SL biosynthesis is repressed in roots, suggesting organ specificity in their metabolism and role. Because SL can be transported acropetally, such a drop may also affect shoots, as a systemic indication of stress. We investigated this hypothesis by analysing molecularly and physiologically wild-type (WT) tomato (Solanum lycopersicum) scions grafted onto SL-depleted rootstocks, compared with self-grafted WT and SL-depleted genotypes, during a drought time-course. Shoots receiving few SL from the roots behaved as if under mild stress even if irrigated. Their stomata were hypersensitive to ABA (likely via a localized enhancement of SL synthesis in shoots). Exogenous SL also enhanced stomata sensitivity to ABA. As the partial shift of SL synthesis from roots to shoots mimics what happens under drought, a reduction of root-produced SL might represent a systemic signal unlinked from shootward ABA translocation, and sufficient to prime the plant for better stress avoidance.
Collapse
Affiliation(s)
- Ivan Visentin
- Laboratory of Plant Physiology, DISAFA - Turin University, Grugliasco, 10095, TO, Italy
| | - Marco Vitali
- Laboratory of Plant Physiology, DISAFA - Turin University, Grugliasco, 10095, TO, Italy
| | - Manuela Ferrero
- Laboratory of Plant Physiology, DISAFA - Turin University, Grugliasco, 10095, TO, Italy
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Wageningen University, 6708, PB Wageningen, the Netherlands
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University, 6708, PB Wageningen, the Netherlands
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacky University Olomouc, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacky University Olomouc, Olomouc, Czech Republic
| | - Claudio Lovisolo
- Laboratory of Plant Physiology, DISAFA - Turin University, Grugliasco, 10095, TO, Italy
| | - Andrea Schubert
- Laboratory of Plant Physiology, DISAFA - Turin University, Grugliasco, 10095, TO, Italy
| | - Francesca Cardinale
- Laboratory of Plant Physiology, DISAFA - Turin University, Grugliasco, 10095, TO, Italy
| |
Collapse
|
68
|
Lacombe B, Achard P. Long-distance transport of phytohormones through the plant vascular system. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:1-8. [PMID: 27340874 DOI: 10.1016/j.pbi.2016.06.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 05/18/2023]
Abstract
Phytohormones are a group of low abundance molecules that activate various metabolic and developmental processes in response to environmental and endogenous signals. Like animal hormones, plant hormones often have distinct source and target tissues, hence ensuring long-range communication at the whole-plant level. Plants rely on various hormone distribution mechanisms depending on the distance and the direction of the transport. Here, we highlight the recent findings on the long-distance movement of plant hormones within the vasculature, from the physiological role to the molecular mechanism of the transport.
Collapse
Affiliation(s)
- Benoit Lacombe
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes 'Claude Grignon', 34060 Montpellier Cedex, France
| | - Patrick Achard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| |
Collapse
|
69
|
Manzi M, Lado J, Rodrigo MJ, Arbona V, Gómez-Cadenas A. ABA accumulation in water-stressed Citrus roots does not rely on carotenoid content in this organ. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:151-161. [PMID: 27717451 DOI: 10.1016/j.plantsci.2016.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 05/25/2023]
Abstract
Sustained abscisic acid (ABA) accumulation in dehydrated citrus roots depends on the transport from aerial organs. Under this condition, the role of the β,β-carotenoids (ABA precursors) to the de novo synthesis of ABA in roots needs to be clarified since their low availability in this organ restricts its accumulation. To accomplish that, detached citrus roots were exposed to light (to increase their carotenoid content) and subsequently dehydrated (to trigger ABA accumulation). Stress imposition sharply decreased the pool of β,β-carotenoids but, unexpectedly, no concomitant rise in ABA content was observed. Contrastingly, roots of intact plants (with low levels of carotenoids) showed a similar decrease of ABA precursor together with a significant ABA accumulation. Furthermore, upon dehydration both types of roots showed similar upregulation of the key genes involved in biosynthesis of carotenoids and ABA (CsPSY3a; CsβCHX1; CsβCHX2; CsNCED1; CsNCED2), demonstrating a conserved transcriptional response triggered by water stress. Thus, the sharp decrease in root carotenoid levels in response to dehydration should be related to other stress-related signals instead of contributing to ABA biosynthesis. In summary, ABA accumulation in dehydrated-citrus roots largely relies on the presence of the aerial organs and it is independent of the amount of available root β,β-carotenoids.
Collapse
Affiliation(s)
- Matías Manzi
- Ecofisiología y Biotecnología, Dept. Ciències Agraries i del Medi Natural, Universitat Jaume I, E-12071 Castellón de la Plana, Spain
| | - Joanna Lado
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980 Valencia, Spain
| | - María Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Agustín Escardino 7, 46980 Valencia, Spain
| | - Vicent Arbona
- Ecofisiología y Biotecnología, Dept. Ciències Agraries i del Medi Natural, Universitat Jaume I, E-12071 Castellón de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Ecofisiología y Biotecnología, Dept. Ciències Agraries i del Medi Natural, Universitat Jaume I, E-12071 Castellón de la Plana, Spain.
| |
Collapse
|
70
|
Peuke AD. ABA flow modelling in Ricinus communis exposed to salt stress and variable nutrition. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5301-5311. [PMID: 27440939 PMCID: PMC5049382 DOI: 10.1093/jxb/erw291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In a series of experiments with Ricinus communis, abscisic acid (ABA) concentrations in tissues and transport saps, its de novo biosynthesis, long-distance transport, and metabolism (degradation) were affected by nutritional conditions, nitrogen (N) source, and nutrient limitation, or salt stress. In the present study these data were statistically re-evaluated, and new correlations presented that underpin the importance of this universal phytohormone. The biggest differences in ABA concentration were observed in xylem sap. N source had the strongest effect; however, nutrient limitation (particularly phosphorus limitation) and salt also had significant effects. ABA was found in greater concentration in phloem sap compared with xylem sap; however, the effect of treatment on ABA concentration in phloem was lower. In the leaves, ABA concentration was most variable compared with the other tissues. This variation was only affected by the N source. In roots, ABA was significantly decreased by nutrient limitation. Of the compartments in which ABA was quantified, xylem sap ABA concentration was most significantly correlated with leaf stomatal conductance and leaf growth. Additionally, ABA concentration in xylem was significantly correlated to that in phloem, indicating a 6-fold concentration increase from xylem to phloem. The ABA flow model showed that biosynthesis of ABA in roots affected the xylem flow of ABA. Moreover, ABA concentration in xylem affected the degradation of the phytohormone in shoots and also its export from shoots via phloem. The role of phloem transport is discussed since it stimulates ABA metabolism in roots.
Collapse
Affiliation(s)
- Andreas D Peuke
- ADP International Plant Science Consulting, Talstraße 8, D-79194 Gundelfingen, Germany
| |
Collapse
|
71
|
Rodriguez-Dominguez CM, Buckley TN, Egea G, de Cires A, Hernandez-Santana V, Martorell S, Diaz-Espejo A. Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor. PLANT, CELL & ENVIRONMENT 2016; 39:2014-26. [PMID: 27255698 DOI: 10.1111/pce.12774] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 05/21/2023]
Abstract
Reduced stomatal conductance (gs ) during soil drought in angiosperms may result from effects of leaf turgor on stomata and/or factors that do not directly depend on leaf turgor, including root-derived abscisic acid (ABA) signals. To quantify the roles of leaf turgor-mediated and leaf turgor-independent mechanisms in gs decline during drought, we measured drought responses of gs and water relations in three woody species (almond, grapevine and olive) under a range of conditions designed to generate independent variation in leaf and root turgor, including diurnal variation in evaporative demand and changes in plant hydraulic conductance and leaf osmotic pressure. We then applied these data to a process-based gs model and used a novel method to partition observed declines in gs during drought into contributions from each parameter in the model. Soil drought reduced gs by 63-84% across species, and the model reproduced these changes well (r(2) = 0.91, P < 0.0001, n = 44) despite having only a single fitted parameter. Our analysis concluded that responses mediated by leaf turgor could explain over 87% of the observed decline in gs across species, adding to a growing body of evidence that challenges the root ABA-centric model of stomatal responses to drought.
Collapse
Affiliation(s)
- Celia M Rodriguez-Dominguez
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes 10, 41012, Seville, Spain
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Seville, Spain
| | - Thomas N Buckley
- IA Watson Grains Research Centre, Plant Breeding Institute, Faculty of Agriculture and Environment, The University of Sydney, Narrabri, NSW, 2390, Australia
| | - Gregorio Egea
- Área de Ingeniería Agroforestal, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra Utrera, km 1, 41013, Seville, Spain
| | - Alfonso de Cires
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Seville, Spain
| | - Virginia Hernandez-Santana
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes 10, 41012, Seville, Spain
| | - Sebastia Martorell
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| | - Antonio Diaz-Espejo
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Avenida Reina Mercedes 10, 41012, Seville, Spain
| |
Collapse
|
72
|
McAdam SAM, Manzi M, Ross JJ, Brodribb TJ, Gómez-Cadenas A. Uprooting an abscisic acid paradigm: Shoots are the primary source. PLANT SIGNALING & BEHAVIOR 2016; 11:e1169359. [PMID: 27031537 PMCID: PMC4973758 DOI: 10.1080/15592324.2016.1169359] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the past, a conventional wisdom has been that abscisic acid (ABA) is a xylem-transported hormone that is synthesized in the roots, while acting in the shoot to close stomata in response to a decrease in plant water status. Now, however, evidence from two studies, which we have conducted independently, challenges this root-sourced ABA paradigm. We show that foliage-derived ABA has a major influence over root development and that leaves are the predominant location for ABA biosynthesis during drought stress.
Collapse
Affiliation(s)
- Scott A. M. McAdam
- School of Biological Sciences, University of Tasmania, Hobart, Australia
- CONTACT Scott A. M. McAdam ; Aurelio Gómez-Cadenas
| | - Matías Manzi
- Ecofisiologia y Biotecnologia, Dept. Ciències Agraries i del Medi Natural, Universitat Jaume I. Castellón de la Plana, Spain
| | - John J. Ross
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| | | | - Aurelio Gómez-Cadenas
- Ecofisiologia y Biotecnologia, Dept. Ciències Agraries i del Medi Natural, Universitat Jaume I. Castellón de la Plana, Spain
- CONTACT Scott A. M. McAdam ; Aurelio Gómez-Cadenas
| |
Collapse
|