51
|
A novel tag-free probe for targeting molecules interacting with a flavonoid catabolite. Biochem Biophys Rep 2016; 7:240-245. [PMID: 28955912 PMCID: PMC5613513 DOI: 10.1016/j.bbrep.2016.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 11/21/2022] Open
Abstract
3,4-Dihydroxyphenylacetic acid (DOPAC) is one of the colonic microflora-produced catabolites of quercetin 4′-glucoside (Q4′G). Although the interaction of DOPAC with cellular proteins might be involved in its biological activity, the actual proteins have not yet been identified. In this study, we developed a novel tag-free DOPAC probe to label the targeted proteins by the copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) and verified its efficacy. Various labeled proteins were detected by the DOPAC probe with the azide labeled biotin and a horseradish peroxidase (HRP)-streptavidin complex. Furthermore, a pulldown assay identified Keap1 and aryl hydrocarbon receptor (AhR) as the target proteins for the phase 2 enzyme up-regulation. A novel tag-free probe for targeting molecules interacting with a flavonoid catabolite was developed. Various labeled proteins were successfully detected by this probe with click chemistry. A pulldown assay identified Keap1 and aryl hydrocarbon receptor as the target proteins of a flavonoid catabolite.
Collapse
|
52
|
Qin S, Hou DX. Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Mol Nutr Food Res 2016; 60:1731-55. [DOI: 10.1002/mnfr.201501017] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/27/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Si Qin
- Core Research Program 1515, Key Laboratory for Food Science and Biotechnology of Hunan Province; College of Food Science and Technology; Hunan Agricultural University; Changsha China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients; Hunan Agricultural University; Changsha China
| | - De-Xing Hou
- Core Research Program 1515, Key Laboratory for Food Science and Biotechnology of Hunan Province; College of Food Science and Technology; Hunan Agricultural University; Changsha China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients; Hunan Agricultural University; Changsha China
- The United Graduate School of Agricultural Sciences; Faculty of Agriculture; Kagoshima University; Kagoshima Japan
| |
Collapse
|
53
|
Megna BW, Carney PR, Nukaya M, Geiger P, Kennedy GD. Indole-3-carbinol induces tumor cell death: function follows form. J Surg Res 2016; 204:47-54. [PMID: 27451867 DOI: 10.1016/j.jss.2016.04.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/24/2016] [Accepted: 04/14/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Even with colonoscopy screening and preventive measures becoming more commonplace, colorectal cancer (CRC) remains the third leading cause of oncologic death in the United States as of 2014. Many chemotherapeutics exist for the treatment of colorectal cancer, though they often come with significant side effect profiles or narrow efficacy ranges in terms of patient profile. Dietary phytochemicals such as glucobrassicin and its metabolite indole-3-carbinol (I3C) have been implicated in tumor prevention in many preclinical models across a variety of gastrointestinal tumors and represent an intriguing new class of natural chemotherapeutics for CRC. I3C has been identified as a ligand of the aryl hydrocarbon receptor (AHR), and we aimed to characterize this AHR activation in relation to its cytotoxic properties. METHODS Human colorectal cancer cell lines DLD1, HCT116, HT-29, LS513, and RKO were treated with indole-3-carbinol or vehicle. Cell viability was assessed via a fluorescent product assay, and apoptotic activity was assessed via a luminescent signal tied to a ratio of caspase-3 and caspase-7 activity. Gene expression of AHR and CYP1A1 messenger ribonucleic acid (mRNA) was measured using quantitative real-time polymerase chain reaction. Small interfering RNA stable expression lines were established on a HCT116 background using a laboratory-developed transfection protocol as published elsewhere. RESULTS Multiple colorectal cancer cell types express increased CYP1A1 mRNA levels (a specific marker of AHR-driven activity) after treatment with I3C, characterizing I3C treatment as agonistic of this pathway. Also, I3C induced a dose-dependent decrease in cell viability as well as inducing apoptosis. Furthermore, using small interfering RNA interference to knockdown AHR responsiveness generated a significant resistance to the chemotherapeutic actions of indole-3-carbinol regarding both cell viability and apoptotic activity. CONCLUSIONS Some degree of the cytotoxic and proapoptotic effects of indole-3-carbinol on colon cancer cells is dependent on activation of the aryl hydrocarbon receptor. This represents a novel mechanism for the molecular action of indole-3-carbinol and enhances our understanding of its effects in the context of colorectal cancer. Continued preclinical study of both indole-3-carbinol and the aryl hydrocarbon receptor pathway is warranted, which may one day lead to novel diet-derived colon cancer treatments that enlist the AHR.
Collapse
Affiliation(s)
- Bryant W Megna
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Patrick R Carney
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Manabu Nukaya
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Pete Geiger
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Gregory D Kennedy
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
54
|
Drug metabolism and clearance system in tumor cells of patients with multiple myeloma. Oncotarget 2016; 6:6431-47. [PMID: 25669983 PMCID: PMC4467447 DOI: 10.18632/oncotarget.3237] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/10/2014] [Indexed: 01/22/2023] Open
Abstract
Resistance to chemotherapy is a major limitation of cancer treatments with several molecular mechanisms involved, in particular altered local drug metabolism and detoxification process. The role of drug metabolism and clearance system has not been satisfactorily investigated in Multiple Myeloma (MM), a malignant plasma cell cancer for which a majority of patients escapes treatment. The expression of 350 genes encoding for uptake carriers, xenobiotic receptors, phase I and II Drug Metabolizing Enzymes (DMEs) and efflux transporters was interrogated in MM cells (MMCs) of newly-diagnosed patients in relation to their event free survival. MMCs of patients with a favourable outcome have an increased expression of genes coding for xenobiotic receptors (RXRα, LXR, CAR and FXR) and accordingly of their gene targets, influx transporters and phase I/II DMEs. On the contrary, MMCs of patients with unfavourable outcome displayed a global down regulation of genes coding for xenobiotic receptors and the downstream detoxification genes but had a high expression of genes coding for ARNT and Nrf2 pathways and ABC transporters. Altogether, these data suggests ARNT and Nrf2 pathways could be involved in MM primary resistance and that targeting RXRα, PXR, LXR and FXR through agonists could open new perspectives to alleviate or reverse MM drug resistance.
Collapse
|
55
|
Megna BW, Carney PR, Kennedy GD. Intestinal inflammation and the diet: Is food friend or foe? World J Gastrointest Surg 2016; 8:115-123. [PMID: 26981185 PMCID: PMC4770165 DOI: 10.4240/wjgs.v8.i2.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/15/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic intestinal illness of autoimmune origin affecting millions across the globe. The most common subtypes include ulcerative colitis (UC) and Crohn’s disease. While many medical treatments for IBD exist, none come without the risk of significant immunosuppression and in general do not have benign side effect profiles. Surgical intervention exists only as radical resection for medically refractory UC. There exists a dire need for novel treatments that target the inherent pathophysiologic disturbances of IBD, rather than global immune suppression. One avenue of investigation that could provide such an agent is the interaction between certain dietary elements and the aryl hydrocarbon receptor (AHR). The AHR is a cytosolic transcription factor with a rich history in environmental toxicant handling, however, recently a role has emerged for the AHR as a modulator of the gastrointestinal immune system. Studies have come to elucidate these effects to include the enhancement of Th cell subset differentiation, interactions between enteric flora and the luminal wall, and modulation of inflammatory interleukin and cytokine signaling. This review highlights advancements in our understanding of AHR activity in the digestive tract and how this stimulation may be wrought by certain dietary “micronutriceuticals”, namely indole-3-carbinol (I3C) and its derivatives. Greater clarity surrounding these dynamics could lead to a novel diet-derived agonist of the AHR which is not only non-toxic, but also efficacious in the amelioration of clinical IBD.
Collapse
|
56
|
Licznerska B, Baer-Dubowska W. Indole-3-Carbinol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:131-154. [PMID: 27671815 DOI: 10.1007/978-3-319-41334-1_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Indole-3-carbinol (I3C), a common phytochemical in cruciferous vegetables, and its condensation product, 3,3'-diindolylmethane (DIM) exert several biological activities on cellular and molecular levels, which contribute to their well-recognized chemoprevention potential. Initially, these compounds were classified as blocking agents that increase drug-metabolizing enzyme activity. Now it is widely accepted that I3C and DIM affect multiple signaling pathways and target molecules controlling cell division, apoptosis, or angiogenesis deregulated in cancer cells. Although most of the current data support the role of I3C and DIM in prevention of hormone-dependent cancers, it seems that their application in prevention of the other cancer as well as cardiovascular disease, obesity, and diabetes reduction is also possible. This chapter summarizes the current experimental data on the I3C and DIM activity and the results of clinical studies indicating their role in prevention of chronic diseases.
Collapse
Affiliation(s)
- Barbara Licznerska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
57
|
Szaefer H, Krajka-Kuźniak V, Licznerska B, Bartoszek A, Baer-Dubowska W. Cabbage Juices and Indoles Modulate the Expression Profile of AhR, ERα, and Nrf2 in Human Breast Cell Lines. Nutr Cancer 2015; 67:1342-54. [DOI: 10.1080/01635581.2015.1082111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
58
|
Simon TW, Budinsky RA, Rowlands JC. A model for aryl hydrocarbon receptor-activated gene expression shows potency and efficacy changes and predicts squelching due to competition for transcription co-activators. PLoS One 2015; 10:e0127952. [PMID: 26039703 PMCID: PMC4454675 DOI: 10.1371/journal.pone.0127952] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022] Open
Abstract
A stochastic model of nuclear receptor-mediated transcription was developed based on activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and subsequent binding the activated AHR to xenobiotic response elements (XREs) on DNA. The model was based on effects observed in cells lines commonly used as in vitro experimental systems. Following ligand binding, the AHR moves into the cell nucleus and forms a heterodimer with the aryl hydrocarbon nuclear translocator (ARNT). In the model, a requirement for binding to DNA is that a generic coregulatory protein is subsequently bound to the AHR-ARNT dimer. Varying the amount of coregulator available within the nucleus altered both the potency and efficacy of TCDD for inducing for transcription of CYP1A1 mRNA, a commonly used marker for activation of the AHR. Lowering the amount of available cofactor slightly increased the EC50 for the transcriptional response without changing the efficacy or maximal response. Further reduction in the amount of cofactor reduced the efficacy and produced non-monotonic dose-response curves (NMDRCs) at higher ligand concentrations. The shapes of these NMDRCs were reminiscent of the phenomenon of squelching. Resource limitations for transcriptional machinery are becoming apparent in eukaryotic cells. Within single cells, nuclear receptor-mediated gene expression appears to be a stochastic process; however, intercellular communication and other aspects of tissue coordination may represent a compensatory process to maintain an organism’s ability to respond on a phenotypic level to various stimuli within an inconstant environment.
Collapse
Affiliation(s)
- Ted W. Simon
- Ted Simon LLC, Winston, GA, United States of America
- * E-mail:
| | - Robert A. Budinsky
- The Dow Chemical Company, Toxicology and Environmental Research & Consulting. Midland, MI, United States of America
| | - J. Craig Rowlands
- The Dow Chemical Company, Toxicology and Environmental Research & Consulting. Midland, MI, United States of America
| |
Collapse
|
59
|
Jin L, Gaus C, Escher BI. Adaptive stress response pathways induced by environmental mixtures of bioaccumulative chemicals in dugongs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6963-6973. [PMID: 25923886 DOI: 10.1021/acs.est.5b00947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To address the poorly understood mixture effects of chemicals in the marine mammal dugong, we coupled equilibrium-based passive sampling in blubber to a range of in vitro bioassays for screening mixtures of bioaccumulative chemicals. The modes of action included early effect indicators along important toxicity pathways, such as induction of xenobiotic metabolism, and some integrative indicators downstream of the molecular initiating event, such as adaptive stress responses. Activation of aryl hydrocarbon receptor (AhR) and Nrf2-mediated oxidative stress response were found to be the most prominent effects, while the p53-mediated DNA damage response and NF-κB-mediated response to inflammation were not significantly affected. Although polychlorinated dibenzo-p-dioxins (PCDDs) quantified in the samples accounted for the majority of AhR-mediated activity, PCDDs explained less than 5% of the total oxidative stress response, despite their known ability to activate this pathway. Altered oxidative stress response was observed with both individual chemicals and blubber extracts subject to metabolic activation by rat liver S9 fraction. Metabolic activation resulted in both enhanced and reduced toxicity, suggesting the relevance and utility of incorporating metabolic enzymes into in vitro bioassays. Our approach provides a first insight into the burden of toxicologically relevant bioaccumulative chemical mixtures in dugongs and can be applied to lipid tissue of other wildlife species.
Collapse
Affiliation(s)
- Ling Jin
- †The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD 4018, Australia
| | - Caroline Gaus
- †The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD 4018, Australia
| | - Beate I Escher
- †The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD 4018, Australia
- ‡UFZ - Helmholtz Centre for Environmental Research, Cell Toxicology, 04318 Leipzig, Germany
- ∥Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, 72074 Tübingen, Germany
| |
Collapse
|
60
|
Connolly M, Fernández-Cruz ML, Navas JM. Recovery of redox homeostasis altered by CuNPs in H4IIE liver cells does not reduce the cytotoxic effects of these NPs: an investigation using aryl hydrocarbon receptor (AhR) dependent antioxidant activity. Chem Biol Interact 2015; 228:57-68. [PMID: 25617484 DOI: 10.1016/j.cbi.2015.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/26/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
Abstract
The generation of reactive oxygen species (ROS) and consequent oxidative stress is regarded as a relevant mechanism for nanoparticle toxicity. In cells, the activation of the aryl hydrocarbon receptor (AhR) triggers a cascade of defence responses against oxidative stress. By increasing AhR dependent cellular anti-oxidant activity, we tested the extent to which the cytotoxic effect of copper nanoparticles (CuNPs) is governed by oxidative stress. H4IIE rat hepatoma cells were challenged with high ROS levels after exposure to CuNPs, while the AhR-induced cellular anti-oxidant defence was simultaneously activated by the AhR ligand beta-Naphthoflavone (ßNF). Activation of phase II detoxification enzymes (as glutathione-S-transferases, GSTs) and anti-oxidants (glutathione, GSH) led to a complete abrogation of CuNP-induced ROS production. However, a concurrent reduction in cytotoxicity was not detected, thereby indicating that CuNPs exert non-oxidative stress mediated cytotoxic effects. Transmission electron microscopy analysis pointed to a direct physical perturbation of cellular structures by CuNPs, thus contributing to their cytotoxicity. Our observations highlight that distinct mechanisms underlie the toxicity of ions and NPs and indicate that while ROS elicitation is CuNP-specific, the cytotoxic action of these particles may not be directly related to their pro-oxidative activity. These findings have important implications with respect to the oxidative stress paradigm used to explain NP toxicity.
Collapse
Affiliation(s)
- Mona Connolly
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7.5, Madrid, Spain.
| | - María Luisa Fernández-Cruz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7.5, Madrid, Spain.
| | - José María Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7.5, Madrid, Spain.
| |
Collapse
|
61
|
L'Héritier F, Marques M, Fauteux M, Gaudreau L. Defining molecular sensors to assess long-term effects of pesticides on carcinogenesis. Int J Mol Sci 2014; 15:17148-61. [PMID: 25257533 PMCID: PMC4200861 DOI: 10.3390/ijms150917148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/11/2014] [Accepted: 09/22/2014] [Indexed: 12/04/2022] Open
Abstract
The abundance of dioxins and dioxin-like pollutants has massively increased in the environment due to human activity. These chemicals are particularly persistent and accumulate in the food chain, which raises major concerns regarding long-term exposure to human health. Most dioxin-like pollutants activate the aryl hydrocarbon receptor (AhR) transcription factor, which regulates xenobiotic metabolism enzymes that belong to the cytochrome P450 1A family (that includes CYP1A1 and CYP1B1). Importantly, a crosstalk exists between estrogen receptor α (ERα) and AhR. More specifically, ERα represses the expression of the CYP1A1 gene, which encodes an enzyme that converts 17β-estradiol into 2-hydroxyestradiol. However, (ERα) does not repress the CYP1B1 gene, which encodes an enzyme that converts 17β-estradiol into 4-hydroxyestradiol, one of the most genotoxic estrogen metabolites. In this review, we discuss how chronic exposure to xenobiotic chemicals, such as pesticides, might affect the expression of genes regulated by the AhR–ERα crosstalk. Here, we focus on recent advances in the understanding of molecular mechanisms that mediate this crosstalk repression, and particularly on how ERα represses the AhR target gene CYP1A1, and could subsequently promote breast cancer. Finally, we propose that genes implicated in this crosstalk could constitute important biomarkers to assess long-term effects of pesticides on human health.
Collapse
Affiliation(s)
- Fanny L'Héritier
- Département de Biologie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| | - Maud Marques
- Département de Biologie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| | - Myriam Fauteux
- Département de Biologie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| | - Luc Gaudreau
- Département de Biologie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
62
|
Perepechaeva ML, Stefanova NA, Grishanova AY. Expression of Genes for AhR and Nrf2 Signal Pathways in the Retina of OXYS Rats during the Development of Retinopathy and Melatonin-Induced Changes in This Process. Bull Exp Biol Med 2014; 157:424-9. [DOI: 10.1007/s10517-014-2582-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Indexed: 10/24/2022]
|
63
|
The Mitochondria-Targeted Antioxidant SkQ1 Downregulates Aryl Hydrocarbon Receptor-Dependent Genes in the Retina of OXYS Rats with AMD-Like Retinopathy. J Ophthalmol 2014; 2014:530943. [PMID: 25132985 PMCID: PMC4123489 DOI: 10.1155/2014/530943] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/01/2014] [Indexed: 12/14/2022] Open
Abstract
The mitochondria-targeted antioxidant SkQ1 is a novel drug thought to retard development of age-related diseases. It has been shown that SkQ1 reduces clinical signs of retinopathy in senescence-accelerated OXYS rats, which are a known animal model of human age-related macular degeneration (AMD). The aim of this work was to test whether SkQ1 affects transcriptional activity of AhR (aryl hydrocarbon receptor) and Nrf2 (nuclear factor erythroid 2-related factor 2), which are considered as AMD-associated genes in the retina of OXYS and Wistar rats. Our results showed that only AhR and AhR-dependent genes were sensitive to SkQ1. Dietary supplementation with SkQ1 decreased the AhR mRNA level in both OXYS and Wistar rats. At baseline, the retinal Cyp1a1 mRNA level was lower in OXYS rats. SkQ1 supplementation decreased the Cyp1a1 mRNA level in Wistar rats, but this level remained unchanged in OXYS rats. Baseline Cyp1a2 and Cyp1b1 mRNA expression was stronger in OXYS than in Wistar rats. In the OXYS strain, Cyp1a2 and Cyp1b1 mRNA levels decreased as a result of SkQ1 supplementation. These data suggest that the Cyp1a2 and Cyp1b1 enzymes are involved in the pathogenesis of AMD-like retinopathy of OXYS rats and are possible therapeutic targets of SkQ1.
Collapse
|
64
|
Zhang T, Kimura Y, Jiang S, Harada K, Yamashita Y, Ashida H. Luteolin modulates expression of drug-metabolizing enzymes through the AhR and Nrf2 pathways in hepatic cells. Arch Biochem Biophys 2014; 557:36-46. [PMID: 24914470 DOI: 10.1016/j.abb.2014.05.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 05/07/2014] [Accepted: 05/24/2014] [Indexed: 01/06/2023]
Abstract
UNLABELLED Drugs, xenobiotics including environmental pollutants, and certain food components modulate expression of drug-metabolizing enzymes. An aryl hydrocarbon receptor (AhR) possesses possible expression of phase I and phase II enzymes directly by binding of its ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and indirectly by regulating expression of nuclear factor-erythroid-2-related factor 2 (Nrf2). Previous our result demonstrated that luteolin, a natural flavonoid existing in vegetables and herbs, competed the binding of TCDD to AhR. In the present study, we investigated the effect of luteolin on the expression of drug-metabolizing enzymes through the AhR and Nrf2 pathways. Luteolin inhibited TCDD-induced protein expression of phase I enzyme cytochrome P450 1A1 (CYP1A1), phase II enzymes NAD(P)H quinone oxidoreductase-1 (NQO1) and glutathione-S-transferase P1 (GSTP1) in HepG2, Hepa1c1c7 and RL-34 cells in a dose-dependent manner. Luteolin suppressed TCDD- and tert-butylhydroquinone-induced Nrf2 protein by decreasing its stability in HepG2 cells. In tert-butylhydroquinone treated cells, luteolin dose-dependently inhibited NQO1, GSTP1 and aldo-keto reductases (AKRs). Of these, protein expression of CYP1A1 and GSTP1 was mainly dominated by the AhR pathway, while that of NQO1 and AKRs was by the Nrf2 pathway. In conclusion, luteolin inhibits expression of phase I and phase II drug-metabolizing enzymes by modulating the AhR and Nrf2 pathways.
Collapse
Affiliation(s)
- Tianshun Zhang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yuki Kimura
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Songyan Jiang
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kiyonari Harada
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
65
|
Petriello MC, Newsome B, Hennig B. Influence of nutrition in PCB-induced vascular inflammation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6410-8. [PMID: 23417440 PMCID: PMC3686851 DOI: 10.1007/s11356-013-1549-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/04/2013] [Indexed: 04/15/2023]
Abstract
The nutritional profile of an individual can influence the toxicity of persistent environmental toxicants. Polychlorinated biphenyls (PCBs), prevalent environmental pollutants, are highly lipid-soluble toxic compounds that biomagnify through trophic levels and pose cancer, neurocognitive, and atherosclerotic risk to human populations. There is a growing body of knowledge that PCBs can initiate inflammatory responses in vivo, and this inflammation can be either exacerbated or ameliorated by nutrition. Data indicate that diets high in certain dietary lipids such as omega-6 fatty acids can worsen PCB-induced vascular toxicity while diets enriched with bioactive food components such as polyphenols and omega-3 polyunsaturated fatty acids can improve the toxicant-induced inflammation. There is evidence that bioactive nutrients protect through multiple cell signaling pathways, but we have shown that lipid raft caveolae and the antioxidant defense controller nuclear factor (erythroid-derived 2)-like 2 (Nrf2) both play a predominant role in nutritional modulation of PCB-induced vascular toxicity. Interestingly, there appears to be an intimate cross-talk between caveolae-related proteins and cellular Nrf2, and focusing on the use of specific bioactive food components that simultaneously alter both pathways may produce a more effective and efficient cytoprotective response to toxicant exposure. The use of nutrition as a protective tool is an economically beneficial means to address the toxicity of persistent environmental toxicants and may become a sensible means to protect human populations from PCB-induced vascular inflammation and associated chronic diseases.
Collapse
Affiliation(s)
- Michael C. Petriello
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0200
- University of Kentucky SRP Center, University of Kentucky, Lexington, KY 40536-0200
| | - Bradley Newsome
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055
- University of Kentucky SRP Center, University of Kentucky, Lexington, KY 40536-0200
| | - Bernhard Hennig
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0200
- University of Kentucky SRP Center, University of Kentucky, Lexington, KY 40536-0200
- Corresponding author: Kentucky SRP Center, Room 599, Wethington Building, 900 South Limestone Street, University of Kentucky, Lexington, KY 40536-0200, USA. Phone: (859) 218-1343; Fax: (859) 257-1811;
| |
Collapse
|
66
|
PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling. Toxicol Appl Pharmacol 2014; 277:192-9. [PMID: 24709675 DOI: 10.1016/j.taap.2014.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/18/2014] [Accepted: 03/22/2014] [Indexed: 12/11/2022]
Abstract
Environmental toxicants such as polychlorinated biphenyls (PCBs) have been implicated in the promotion of multiple inflammatory disorders including cardiovascular disease, but information regarding mechanisms of toxicity and cross-talk between relevant cell signaling pathways is lacking. To examine the hypothesis that cross-talk between membrane domains called caveolae and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways alters PCB-induced inflammation, caveolin-1 was silenced in vascular endothelial cells, resulting in a decreased PCB-induced inflammatory response. Cav-1 silencing (siRNA treatment) also increased levels of Nrf2-ARE transcriptional binding, resulting in higher mRNA levels of the antioxidant genes glutathione s-transferase and NADPH dehydrogenase quinone-1 in both vehicle and PCB-treated systems. Along with this upregulated antioxidant response, Cav-1 siRNA treated cells exhibited decreased mRNA levels of the Nrf2 inhibitory protein Keap1 in both vehicle and PCB-treated samples. Silencing Cav-1 also decreased protein levels of Nrf2 inhibitory proteins Keap1 and Fyn kinase, especially in PCB-treated cells. Further, endothelial cells from wildtype and Cav-1-/- mice were isolated and treated with PCB to better elucidate the role of functional caveolae in PCB-induced endothelial inflammation. Cav-1-/- endothelial cells were protected from PCB-induced cellular dysfunction as evidenced by decreased vascular cell adhesion molecule (VCAM-1) protein induction. Compared to wildtype cells, Cav-1-/- endothelial cells also allowed for a more effective antioxidant response, as observed by higher levels of the antioxidant genes. These data demonstrate novel cross-talk mechanisms between Cav-1 and Nrf2 and implicate the reduction of Cav-1 as a protective mechanism for PCB-induced cellular dysfunction and inflammation.
Collapse
|
67
|
Schäfer M, Willrodt AH, Kurinna S, Link AS, Farwanah H, Geusau A, Gruber F, Sorg O, Huebner AJ, Roop DR, Sandhoff K, Saurat JH, Tschachler E, Schneider MR, Langbein L, Bloch W, Beer HD, Werner S. Activation of Nrf2 in keratinocytes causes chloracne (MADISH)-like skin disease in mice. EMBO Mol Med 2014; 6:442-57. [PMID: 24503019 PMCID: PMC3992072 DOI: 10.1002/emmm.201303281] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The transcription factor Nrf2 is a key regulator of the cellular stress response, and pharmacological Nrf2 activation is a promising strategy for skin protection and cancer prevention. We show here that prolonged Nrf2 activation in keratinocytes causes sebaceous gland enlargement and seborrhea in mice due to upregulation of the growth factor epigen, which we identified as a novel Nrf2 target. This was accompanied by thickening and hyperkeratosis of hair follicle infundibula. These abnormalities caused dilatation of infundibula, hair loss, and cyst development upon aging. Upregulation of epigen, secretory leukocyte peptidase inhibitor (Slpi), and small proline-rich protein 2d (Sprr2d) in hair follicles was identified as the likely cause of infundibular acanthosis, hyperkeratosis, and cyst formation. These alterations were highly reminiscent to the phenotype of chloracne/“metabolizing acquired dioxin-induced skin hamartomas” (MADISH) patients. Indeed, SLPI, SPRR2, and epigen were strongly expressed in cysts of MADISH patients and upregulated by dioxin in human keratinocytes in an NRF2-dependent manner. These results identify novel Nrf2 activities in the pilosebaceous unit and point to a role of NRF2 in MADISH pathogenesis.
Collapse
Affiliation(s)
- Matthias Schäfer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Anwar-Mohamed A, Elshenawy OH, Soshilov AA, Denison MS, Chris Le X, Klotz LO, El-Kadi AOS. Methylated pentavalent arsenic metabolites are bifunctional inducers, as they induce cytochrome P450 1A1 and NAD(P)H:quinone oxidoreductase through AhR- and Nrf2-dependent mechanisms. Free Radic Biol Med 2014; 67:171-87. [PMID: 24161444 DOI: 10.1016/j.freeradbiomed.2013.10.810] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/29/2013] [Accepted: 10/16/2013] [Indexed: 02/06/2023]
Abstract
Activation of the aryl hydrocarbon receptor (AhR) ultimately leads to the induction of the carcinogen-activating enzyme cytochrome P450 1A1 (CYP1A1), and activation of the nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) in addition to the AhR pathway induces the expression of the NADP(H):quinone oxidoreductase (NQO1). Therefore, the aim of this study was to examine the effect of As(III) pentavalent metabolites, MMA(V), DMA(V), and TMA(V), on AhR and Nrf2 activation and on the expression of their prototypical downstream targets CYP1A1 and NQO1, respectively. Our results showed that treatment of HepG2 cells with MMA(V), DMA(V), or TMA(V) in the absence and presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin or sulforaphane significantly induced both CYP1A1 and NQO1 at the mRNA, protein, and catalytic activity levels. Furthermore, these metabolites increased the AhR-dependent XRE-driven and the Nrf2-dependent ARE-driven luciferase reporter activities, which coincided with increased nuclear accumulation of both transcription factors. However, none of these metabolites were shown to be AhR ligands. The induction of CYP1A1 by these metabolites seems to be ligand-independent, possibly through a decrease in HSP90 protein expression levels. The metabolites also increased ROS production, which was significantly higher than that produced by As(III). Upon knockdown of AhR and Nrf2 the MMA(V)-, DMA(V)-, and TMA(V)-mediated induction of both CYP1A1 and NQO1 proteins was significantly decreased. In conclusion, this study demonstrates for the first time that methylated pentavalent arsenic metabolites are bifunctional inducers, as they increase CYP1A1 by activating the AhR/XRE signaling pathway and they increase NQO1 by activating the Nrf2/ARE signaling pathway in addition to the AhR/XRE pathway.
Collapse
Affiliation(s)
- Anwar Anwar-Mohamed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Osama H Elshenawy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Anatoly A Soshilov
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - Michael S Denison
- Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616, USA
| | - X Chris Le
- Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada T6G 2G3
| | - Lars-Oliver Klotz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E1; College of Pharmacy, Qatar University, Doha 02713, Qatar.
| |
Collapse
|
69
|
Esakky P, Hansen DA, Drury AM, Moley KH. Modulation of cell cycle progression in the spermatocyte cell line [GC-2spd(ts) Cell-Line] by cigarette smoke condensate (CSC) via arylhydrocarbon receptor-nuclear factor erythroid 2-related factor 2 (Ahr-Nrf2) pathway. Biol Reprod 2014; 90:9. [PMID: 24258214 DOI: 10.1095/biolreprod.113.113225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Prior studies in our laboratory have demonstrated that cigarette smoke condensate (CSC) activates arylhydrocarbon receptor (Ahr) leading to upregulation of several antioxidant enzymes in murine spermatocytes. In this study, we show that exposure of the spermatocyte cell line GC-2spd(ts) to CSC induces an increase in Cyp1a1, demonstrating AHR activation, and simultaneous expression and nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), where it is believed to modulate Ahr expression by a feedback mechanism. Pharmacological inhibition by the AHR-antagonist CH223191 and interference by Ahr- and Nrf2-small interfering RNA followed by quantitative real-time PCR implicate the Ahr-Nrf2 pathway in the modulation of DNA damage and growth suppression genes such as Gadd45a and P21 and oxidative stress-related genes Cyp1a1, Nrf2, and Ahrr. Flow cytometry accompanied with cell proliferation assay indicate the CSC induces accumulation of spermatocytes at the S-G2/M phase of the cell cycle. Thus, the data obtained suggest that CSC contains several AHR-agonists that are capable of altering the growth pattern of spermatocytes in vitro through the Ahr-Nrf2 signaling mechanism.
Collapse
Affiliation(s)
- Prabagaran Esakky
- Research, Department of Veterans Affairs Medical Center, St. Louis, Missouri
| | | | | | | |
Collapse
|
70
|
Budinsky RA, Schrenk D, Simon T, Van den Berg M, Reichard JF, Silkworth JB, Aylward LL, Brix A, Gasiewicz T, Kaminski N, Perdew G, Starr TB, Walker NJ, Rowlands JC. Mode of action and dose–response framework analysis for receptor-mediated toxicity: The aryl hydrocarbon receptor as a case study. Crit Rev Toxicol 2013; 44:83-119. [DOI: 10.3109/10408444.2013.835787] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
71
|
AhR signalling and dioxin toxicity. Toxicol Lett 2013; 230:225-33. [PMID: 24239782 DOI: 10.1016/j.toxlet.2013.10.039] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 12/02/2022]
Abstract
Dioxins are a family of molecules associated to several industrial accidents such as Ludwigshafen in 1953 or Seveso in 1976, to the Agent Orange used during the war of Vietnam, and more recently to the poisoning of the former president of Ukraine, Victor Yushchenko. These persistent organic pollutants are by-products of industrial activity and bind to an intracellular receptor, AhR, with a high potency. In humans, exposure to dioxins, in particular 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces a cutaneous syndrome known as chloracne, consisting in the development of many small skin lesions (hamartoma), lasting for 2-5 years. Although TCDD has been classified by the WHO as a human carcinogen, its carcinogenic potential to humans is not clearly demonstrated. It was first believed that AhR activation accounted for most, if not all, biological properties of dioxins. However, certain AhR agonists found in vegetables do not induce chloracne, and other chemicals, in particular certain therapeutic agents, may induce a chloracne-like syndrome without activating AhR. It is time to rethink the mechanism of dioxin toxicity and analyse in more details the biological events following exposure to these compounds and other AhR agonists, some of which have a very different chemical structure than TCDD. In particular various food-containing AhR agonists are non-toxic and may on the contrary have beneficial properties to human health.
Collapse
|
72
|
Green tea diet decreases PCB 126-induced oxidative stress in mice by up-regulating antioxidant enzymes. J Nutr Biochem 2013; 25:126-35. [PMID: 24378064 DOI: 10.1016/j.jnutbio.2013.10.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 12/18/2022]
Abstract
Superfund chemicals such as polychlorinated biphenyls pose a serious human health risk due to their environmental persistence and link to multiple diseases. Selective bioactive food components such as flavonoids have been shown to ameliorate PCB toxicity, but primarily in an in vitro setting. Here, we show that mice fed a green tea-enriched diet and subsequently exposed to environmentally relevant doses of coplanar PCB exhibit decreased overall oxidative stress primarily due to the up-regulation of a battery of antioxidant enzymes. C57BL/6 mice were fed a low-fat diet supplemented with green tea extract (GTE) for 12 weeks and exposed to 5 μmol PCB 126/kg mouse weight (1.63 mg/kg-day) on weeks 10, 11 and 12 (total body burden: 4.9 mg/kg). F2-isoprostane and its metabolites, established markers of in vivo oxidative stress, measured in plasma via HPLC-MS/MS exhibited fivefold decreased levels in mice supplemented with GTE and subsequently exposed to PCB compared to animals on a control diet exposed to PCB. Livers were collected and harvested for both messenger RNA and protein analyses, and it was determined that many genes transcriptionally controlled by aryl hydrocarbon receptor and nuclear factor (erythroid-derived 2)-like 2 proteins were up-regulated in PCB-exposed mice fed the green tea-supplemented diet. An increased induction of genes such as SOD1, GSR, NQO1 and GST, key antioxidant enzymes, in these mice (green tea plus PCB) may explain the observed decrease in overall oxidative stress. A diet supplemented with green tea allows for an efficient antioxidant response in the presence of PCB 126, which supports the emerging paradigm that healthful nutrition may be able to bolster and buffer a physiological system against the toxicities of environmental pollutants.
Collapse
|
73
|
Joo MS, Lee CG, Koo JH, Kim SG. miR-125b transcriptionally increased by Nrf2 inhibits AhR repressor, which protects kidney from cisplatin-induced injury. Cell Death Dis 2013; 4:e899. [PMID: 24176857 PMCID: PMC3920955 DOI: 10.1038/cddis.2013.427] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) have a role in the cellular defense mechanism. Nuclear factor erythroid-2-related factor 2 (Nrf2) increases antioxidant enzyme capacity. However, miRNA transcriptionally controlled by Nrf2 had been uncharacterized. Here we report that miR-125b is transactivated by Nrf2 and inhibits aryl hydrocarbon receptor (AhR) repressor (AhRR). Bioinformatic approaches enabled us to extract six candidate miRNAs. Of them, only miR-125b was increased in the kidney of mice treated with oltipraz. Nrf2 overexpression enhanced primary, precursor and mature miR-125b levels. Functional assays revealed MIR125B1 is a bona fide target gene of Nrf2. Oltipraz treatment protected the kidney from cisplatin toxicity with increase of miR-125b. Consistently, Nrf2 knockout abrogated an adaptive increase of miR-125b elicited by cisplatin, augmenting kidney injury. An integrative network of miRNA and messenger RNA changes enabled us to predict miR-125b as an inhibitor of AhRR for the control of AhR activity and cell survival. In our molecular study, miR-125b inhibited AhRR and thereby activated AhR, leading to the induction of mdm2. Consistently, p53 activation by cisplatin was diminished by either miR-125b or oltipraz treatment. The results of experiments using miR-125b mimic or small interfering RNA of AhRR verified the role of miR-125b in AhRR regulation for kidney protection. In conclusion, miR-125b is transcriptionally activated by Nrf2 and serves as an inhibitor of AhRR, which contributes to protecting kidney from acute injury.
Collapse
Affiliation(s)
- M S Joo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
74
|
Turpaev KT. Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles. BIOCHEMISTRY (MOSCOW) 2013; 78:111-26. [PMID: 23581983 DOI: 10.1134/s0006297913020016] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The transcription factor Nrf2 governs the expression of a considerable group of genes involved in cell protection against oxidants, electrophiles, and genotoxic compounds. The activity of Nrf2 is sensitive to xenobiotics and endogenous electrophiles. Nrf2 is negatively regulated by specific suppressor protein Keap1, which is also a receptor of electrophiles and adapter for Cul3 ubiquitin ligase. Electrophiles react with critical thiol groups of Keap1 leading to the loss of its ability to inhibit Nrf2. The Keap1-Nrf2 signaling pathway also down-regulates NF-κB transcriptional activity and attenuates cytokine-mediated induction of proinflammatory genes. Pharmacological activation of the Keap1-Nrf2 pathway can be used for treatment and prevention of many diseases. Widely known natural Keap1-Nrf2 activators include curcumin, quercetin, resveratrol, and sulforaphane. The most effective Keap1-Nrf2 activators are synthetic oleanane triterpenoids.
Collapse
Affiliation(s)
- K T Turpaev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
75
|
The aryl hydrocarbon receptor and estrogen receptor alpha differentially modulate nuclear factor erythroid-2-related factor 2 transactivation in MCF-7 breast cancer cells. Toxicol Appl Pharmacol 2013; 270:139-48. [DOI: 10.1016/j.taap.2013.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 12/15/2022]
|
76
|
Di Giacomo G, Rizza S, Montagna C, Filomeni G. Established Principles and Emerging Concepts on the Interplay between Mitochondrial Physiology and S-(De)nitrosylation: Implications in Cancer and Neurodegeneration. Int J Cell Biol 2012; 2012:361872. [PMID: 22927857 PMCID: PMC3425078 DOI: 10.1155/2012/361872] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/19/2012] [Indexed: 01/10/2023] Open
Abstract
S-nitrosylation is a posttranslational modification of cysteine residues that has been frequently indicated as potential molecular mechanism governing cell response upon redox unbalance downstream of nitric oxide (over)production. In the last years, increased levels of S-nitrosothiols (SNOs) have been tightly associated with the onset of nitroxidative stress-based pathologies (e.g., cancer and neurodegeneration), conditions in which alterations of mitochondrial homeostasis and activation of cellular processes dependent on it have been reported as well. In this paper we aim at summarizing the current knowledge of mitochondria-related proteins undergoing S-nitrosylation and how this redox modification might impact on mitochondrial functions, whose impairment has been correlated to tumorigenesis and neuronal cell death. In particular, emphasis will be given to the possible, but still neglected implication of denitrosylation reactions in the modulation of mitochondrial SNOs and how they can affect mitochondrion-related cellular process, such as oxidative phosphorylation, mitochondrial dynamics, and mitophagy.
Collapse
Affiliation(s)
- Giuseppina Di Giacomo
- Research Centre IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166 Rome, Italy
| | | | | | | |
Collapse
|
77
|
Anttila S, Raunio H, Hakkola J. Cytochrome P450-mediated pulmonary metabolism of carcinogens: regulation and cross-talk in lung carcinogenesis. Am J Respir Cell Mol Biol 2011; 44:583-90. [PMID: 21097654 DOI: 10.1165/rcmb.2010-0189rt] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Lung cancer is strongly associated with exogenous risk factors, in particular tobacco smoking and asbestos exposure. New research data are accumulating about the regulation of the metabolism of tobacco carcinogens and the metabolic response to oxidative stress. These data provide mechanistic details about why well known risk factors cause lung cancer. The purpose of this review is to evaluate the present knowledge of the role of cytochrome P450 (CYP) enzymes in the metabolism of tobacco carcinogens and associations with tobacco and asbestos carcinogenesis. Major emphasis is placed on human data and regulatory pathways involved in CYP regulation and lung carcinogenesis. The most exciting new research findings concern cross-talk of the CYP-regulating aryl hydrocarbon receptor with other transcription factors, such as nuclear factor-erythroid 2-related factor 2, involved in the regulation of xenobiotic metabolism and antioxidant enzymes. This cross-talk between transcription factors may provide mechanistic evidence for clinically relevant issues, such as differences in lung cancers between men and women and the synergism between tobacco and asbestos as lung carcinogens.
Collapse
Affiliation(s)
- Sisko Anttila
- Dept. of Pathology, HUSLAB and Helsinki University Hospital, Finland.
| | | | | |
Collapse
|
78
|
Tamási V, Monostory K, Prough RA, Falus A. Role of xenobiotic metabolism in cancer: involvement of transcriptional and miRNA regulation of P450s. Cell Mol Life Sci 2011; 68:1131-46. [PMID: 21184128 PMCID: PMC11115005 DOI: 10.1007/s00018-010-0600-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/04/2010] [Accepted: 11/18/2010] [Indexed: 02/06/2023]
Abstract
Cytochrome P450 enzymes (P450s) are important targets in cancer, due to their role in xenobiotic metabolism. Since P450s are the "bridges" between the environment and our body, their function can be linked in many ways to carcinogenesis: they activate dietary and environmental components to ultimate carcinogens (i), the cancer tissue maintains its drug resistance with altered expression of P450s (ii), P450s metabolize (sometimes activate) drugs used for cancer treatment (iii) and they are potential targets for anticancer therapy (iiii). These highly polymorphic enzymes are regulated at multiple molecular levels. Regulation is as important as genetic difference in the existing individual variability in P450 activity. In this review, examples of the transcriptional (DNA methylation, histone modification, modulation by xenosensors) and post-transcriptional (miRNA) regulation will be presented and thereby introduce potential molecular targets at which the metabolism of anticancer drugs, the elimination of cancerogenes or the progress of carcinogenesis could be affected.
Collapse
Affiliation(s)
- Viola Tamási
- Department of Genetics, Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, PO Box 370, Budapest, 1445, Hungary.
| | | | | | | |
Collapse
|
79
|
Niestroy J, Barbara A, Herbst K, Rode S, van Liempt M, Roos PH. Single and concerted effects of benzo[a]pyrene and flavonoids on the AhR and Nrf2-pathway in the human colon carcinoma cell line Caco-2. Toxicol In Vitro 2011; 25:671-83. [PMID: 21256954 DOI: 10.1016/j.tiv.2011.01.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 01/07/2023]
Abstract
As phytochemicals have the potential to counteract adverse effects of carcinogens we investigated the influence of the flavonoids quercetin and kaempferol on benzo[a]pyrene (BaP) mediated effects on human colon cancer cells, Caco-2. We focused on concerted effects on the expression of AhR and Nrf2 pathway components. In contrast to kaempferol, BaP and quercetin efficiently induced CYP1A1, CYP1A2 and CYP1B1-mRNA in Caco-2 cells. BaP not only acted via AhR activation but sustainably also by increasing AhR and by down-regulating AhRR mRNA. The flavonoids did not affect AhR expression but counteracted the BaP mediated AhRR repression. Only quercetin was found to induce AhRR mRNA. ARNT mRNA appeared to be slightly but significantly down-regulated by BaP as well as by flavonoids while expression of AIP was not or only slightly modulated. The Nrf2 pathway was activated by BaP and by the flavonoids shown by induction of Nrf2 and several of its target genes such as NQO1, GSTP1, GSTA1 and GCLC. Induction effects of 10 μm BaP on Nrf2, GSTP1 and NQO1 were abolished by the flavonoids. In summary, we show that quercetin supports AhR mediated effects. Both flavonoids, however, may counteract the effects of BaP on expression of AhR, AhRR, Nrf2, GSTP1 and NQO1. In conclusion, quercetin appears to have two faces, a flavonoid-like one and a PAH-like one which supports Ahr-mediated effects while kaempferol acts "just like a flavonoid". Thus, flavonoids have to be treated individually with respect to their anti-adverse activity.
Collapse
Affiliation(s)
- Jeanette Niestroy
- Leibniz Research Centre for Working Environment and Human Factors, D-44139 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
80
|
Xu S, Weerachayaphorn J, Cai SY, Soroka CJ, Boyer JL. Aryl hydrocarbon receptor and NF-E2-related factor 2 are key regulators of human MRP4 expression. Am J Physiol Gastrointest Liver Physiol 2010; 299:G126-35. [PMID: 20395535 PMCID: PMC2904108 DOI: 10.1152/ajpgi.00522.2010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multidrug resistance protein 4 (MRP4; ABCC4) is an ATP binding cassette transporter that facilitates the excretion of bile salt conjugates and other conjugated steroids in hepatocytes and renal proximal tubule epithelium. MRP4/Mrp4 undergoes adaptive upregulation in response to oxidative and cholestatic liver injury in human and animal models of cholestasis. However, the molecular mechanism of this regulation remains to be determined. The aryl hydrocarbon receptor (AhR) and NF-E2-related factor 2 (Nrf2) play important roles in protecting cells from oxidative stress. Here we examine the role of these two nuclear factors in the regulation of the expression of human MRP4. HepG2 cells and human hepatocytes were treated with the AhR and Nrf2 activators, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3-methylcholanthrene (3-MC), or oltipraz and other nuclear receptor agonists. TCDD, 3-MC, and oltipraz significantly increased MRP4 expression at mRNA and protein levels. Computer program analysis revealed three Xenobiotic response element (XRE) and one Maf response element sites within the first 500 bp of the MRP4 proximal promoter. Luciferase reporter assay detected strong promoter activity (53-fold higher than vector control) in this region. TCDD and 3-MC also induced promoter activity in the reporter assays. Mutation of any of these XRE sites significantly decreased MRP4 promoter activity in reporter assays, although XRE2 demonstrated the strongest effects on both basal and TCDD-inducible activity. EMSA and chromatin immunoprecipitation assays further confirmed that both AhR and Nrf2 bind to the proximal promoter of MRP4. Our findings indicate that AhR and Nrf2 play important roles in regulating MRP4 expression and suggest that agents that activate their activity may be of therapeutic benefit for cholestasis.
Collapse
Affiliation(s)
- Shuhua Xu
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Jittima Weerachayaphorn
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Shi-Ying Cai
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - Carol J. Soroka
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut
| | - James L. Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
81
|
Amacher DE. The effects of cytochrome P450 induction by xenobiotics on endobiotic metabolism in pre-clinical safety studies. Toxicol Mech Methods 2010; 20:159-66. [DOI: 10.3109/15376511003690307] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
82
|
Shimada Y, Dewa Y, Ichimura R, Suzuki T, Mizukami S, Hayashi SM, Shibutani M, Mitsumori K. Antioxidant enzymatically modified isoquercitrin suppresses the development of liver preneoplastic lesions in rats induced by β-naphthoflavone. Toxicology 2010; 268:213-8. [DOI: 10.1016/j.tox.2009.12.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/05/2009] [Accepted: 12/21/2009] [Indexed: 02/06/2023]
|