51
|
Wang X, Li M, Cao Y, Wang J, Zhang H, Zhou X, Li Q, Wang L. Tenuigenin inhibits LPS-induced inflammatory responses in microglia via activating the Nrf2-mediated HO-1 signaling pathway. Eur J Pharmacol 2017; 809:196-202. [DOI: 10.1016/j.ejphar.2017.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
|
52
|
de Rus Jacquet A, Tambe MA, Ma SY, McCabe GP, Vest JHC, Rochet JC. Pikuni-Blackfeet traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson's disease-related symptoms. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:393-407. [PMID: 28088492 PMCID: PMC6149223 DOI: 10.1016/j.jep.2017.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a multifactorial neurodegenerative disorder affecting 5% of the population over the age of 85 years. Current treatments primarily involve dopamine replacement therapy, which leads to temporary relief of motor symptoms but fails to slow the underlying neurodegeneration. Thus, there is a need for safe PD therapies with neuroprotective activity. In this study, we analyzed contemporary herbal medicinal practices used by members of the Pikuni-Blackfeet tribe from Western Montana to treat PD-related symptoms, in an effort to identify medicinal plants that are affordable to traditional communities and accessible to larger populations. AIM OF THE STUDY The aims of this study were to (i) identify medicinal plants used by the Pikuni-Blackfeet tribe to treat individuals with symptoms related to PD or other CNS disorders, and (ii) characterize a subset of the identified plants in terms of antioxidant and neuroprotective activities in cellular models of PD. MATERIALS AND METHODS Interviews of healers and local people were carried out on the Blackfeet Indian reservation. Plant samples were collected, and water extracts were produced for subsequent analysis. A subset of botanical extracts was tested for the ability to induce activation of the Nrf2-mediated transcriptional response and to protect against neurotoxicity elicited by the PD-related toxins rotenone and paraquat. RESULTS The ethnopharmacological interviews resulted in the documentation of 26 medicinal plants used to treat various ailments and diseases, including symptoms related to PD. Seven botanical extracts (out of a total of 10 extracts tested) showed activation of Nrf2-mediated transcriptional activity in primary cortical astrocytes. Extracts prepared from Allium sativum cloves, Trifolium pratense flowers, and Amelanchier arborea berries exhibited neuroprotective activity against toxicity elicited by rotenone, whereas only the extracts prepared from Allium sativum and Amelanchier arborea alleviated PQ-induced dopaminergic cell death. CONCLUSIONS Our findings highlight the potential clinical utility of plants used for medicinal purposes over generations by the Pikuni-Blackfeet people, and they shed light on mechanisms by which the plant extracts could slow neurodegeneration in PD.
Collapse
Affiliation(s)
- Aurélie de Rus Jacquet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Mitali Arun Tambe
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Sin Ying Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - George P McCabe
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
53
|
Protective Effects of Wogonin against Alzheimer's Disease by Inhibition of Amyloidogenic Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3545169. [PMID: 28680449 PMCID: PMC5478820 DOI: 10.1155/2017/3545169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/15/2017] [Accepted: 04/12/2017] [Indexed: 11/17/2022]
Abstract
One of the pathogenic systems of Alzheimer's disease (AD) is the formation of β-amyloid plaques in the brains of patients, and amyloidogenic activity becomes one of the therapeutic targets. Here, we report wogonin, one of the major active constituting components in Scutellaria baicalensis, which has the neuroprotective effects on amyloid-β peptides- (Aβ-) induced toxicity. Oral wogonin treatment improved the performance of triple transgenic AD mice (h-APPswe, h-Tau P301L, and h-PS1 M146V) on the Morris water maze, Y-maze, and novel object recognition. Furthermore, wogonin activated the neurite outgrowth of AD cells by increasing neurite length and complexity of Tet-On Aβ42-GFP SH-SY5Y neuroblastoma cells (AD cells) and attenuated amyloidogenic pathway by decreasing the levels of β-secretase, APP β-C-terminal fragment, Aβ-aggregation, and phosphorylated Tau. Wogonin also increased mitochondrial membrane potential (∆ψm) and protected against apoptosis by reducing the expression of Bax and cleaved PARP. Collectively, these results conclude that wogonin may be a promising multifunctional drug candidate for AD.
Collapse
|
54
|
Jhelum P, Wahul AB, Kamle A, Kumawat S, Kumar A, Bhutani KK, Tripathi SM, Chakravarty S. Sameerpannag Ras Mixture (SRM) improved neurobehavioral deficits following acute ischemic stroke by attenuating neuroinflammatory response. JOURNAL OF ETHNOPHARMACOLOGY 2017; 197:147-156. [PMID: 27457696 DOI: 10.1016/j.jep.2016.07.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebral ischemic stroke is one of the leading causes of death and long-term disability worldwide. Unfortunately, due to the failure of most of drugs in clinical trials recently, attentions have moved towards the traditional system of medicines including Ayurveda. In Ayurveda, Sameerpannag Ras (SR) is a mineral and metallic origin based formulation which has been used for the treatment of arthritis and chronic systematic inflammatory disorder. The current study was designed to investigate the neuroprotective effects of Sameerpannag Ras Mixture (SRM), on the neurobehavioral dysfunction and associated neuroinflammation, induced by transient Internal Carotid Artery Occlusion (ICAO) in mice model. MATERIALS AND METHODS In the present study, mice were treated with Sameerpannag Ras Mixture (SRM) at the dose of 40mg/kg body weight by oral gavages for 3 and 7days respectively, twice a day, after the induction of ICAO for 90min followed by reperfusion. The efficacy of SRM was examined by scoring neurological behavioral deficit using the standard neurological deficit score (NDS), grip strength and rotarod performance tests at different time intervals of post-ICAO. RESULTS Post-ischemic treatment with Sameerpannag Ras Mixture (SRM) at 40mg/kg significantly reduced Neurological Deficit Score and improved the motor coordination at different time intervals post-ICAO. The analysis of RT-qPCR data showed that transient cerebral ischemia could induce the inflammatory response genes in the affected striatal region of ICAO group, as compared to sham group, on day3 and day7 post-ICAO. Interestingly, SRM treatment showed marked improvement in the ischemia-induced neurobehavioral deficits by attenuating ischemia-induced neuroinflammatory response at both gene and protein level. CONCLUSION The present study suggests that Sameerpannag Ras Mixture (SRM) treatment ameliorates behavioral outcomes after mild ischemia through the suppression of a number of inflammatory response genes involved in neuronal damage. This is the first report of the molecular mechanism underlying the significant neuroprotective action of the Ayurvedic drug, Sameerpannag Ras Mixture (SRM), using a mild stroke in mice model.
Collapse
Affiliation(s)
- Priya Jhelum
- Chemical Biology, CSIR - Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Abhipradnya B Wahul
- Chemical Biology, CSIR - Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Avijeet Kamle
- CSIR - Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India
| | - Sudhir Kumawat
- CSIR - Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India
| | - Arvind Kumar
- CSIR - Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, India
| | - Kamlesh Kumar Bhutani
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Chandigarh 500037, India
| | - Shailendra Mani Tripathi
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Chandigarh 500037, India.
| | - Sumana Chakravarty
- Chemical Biology, CSIR - Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
55
|
Wei CY, Sun HL, Yang ML, Yang CP, Chen LY, Li YC, Lee CY, Kuan YH. Protective effect of wogonin on endotoxin-induced acute lung injury via reduction of p38 MAPK and JNK phosphorylation. ENVIRONMENTAL TOXICOLOGY 2017; 32:397-403. [PMID: 26892447 DOI: 10.1002/tox.22243] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/13/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Acute lung injury (ALI) is a serious inflammatory disorder which remains the primary cause of incidence and mortality in patients with acute pulmonary inflammation. However, there is still no effective medical strategy available clinically for the improvement of ALI. Wogonin, isolated from roots of Scutellaria baicalensis Georgi, is a common medicinal herb which presents biological and pharmacological effects, including antioxidation, anti-inflammation, and anticancer. Preadministration of wogonin inhibited not only lung edema but also protein leakage into the alveolar space in murine model of lipopolysaccharide (LPS)-induced ALI. Moreover, wogonin not only reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 but also inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) induced by LPS. We further found wogonin inhibited the phosphorylation of p38 MAPK and JNK at a concentration lower than ERK. In addition, inhibition of lung edema, protein leakage, expression of iNOS and COX-2, and phosphorylation of p38 MAPK and JNK were all observed in a parallel concentration-dependent manner. These results suggest that wogonin possesses potential protective effect against LPS-induced ALI via downregulation of iNOS and COX-2 expression by blocking phosphorylation of p38 MAPK and JNK. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 397-403, 2017.
Collapse
Affiliation(s)
- Cheng-Yu Wei
- Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua County, Taiwan, Republic of China
- Department of Neurology, Show Chwan Memorial Hospital, Changhua County, Taiwan, Republic of China
- Department of Exercise and Health Promotion, College of Education, Chinese Culture University, Taipei, Taiwan, Republic of China
| | - Hai-Lun Sun
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung Taiwan
| | - Ching-Ping Yang
- Department of Biotechology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-You Chen
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung Taiwan
| | - Yi-Ching Li
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
56
|
Han L, Xie YH, Wu R, Chen C, Zhang Y, Wang XP. Traditional Chinese medicine for modern treatment of Parkinson’s disease. Chin J Integr Med 2017; 23:635-640. [DOI: 10.1007/s11655-016-2537-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Indexed: 01/30/2023]
|
57
|
Scheff SW, Ansari MA. Natural Compounds as a Therapeutic Intervention following Traumatic Brain Injury: The Role of Phytochemicals. J Neurotrauma 2016; 34:1491-1510. [PMID: 27846772 DOI: 10.1089/neu.2016.4718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
There has been a tremendous focus on the discovery and development of neuroprotective agents that might have clinical relevance following traumatic brain injury (TBI). This type of brain injury is very complex and is divided into two major components. The first component, a primary injury, occurs at the time of impact and is the result of the mechanical insult itself. This primary injury is thought to be irreversible and resistant to most treatments. A second component or secondary brain injury, is defined as cellular damage that is not immediately obvious after trauma, but that develops after a delay of minutes, hours, or even days. This injury appears to be amenable to treatment. Because of the complexity of the secondary injury, any type of therapeutic intervention needs to be multi-faceted and have the ability to simultaneously modulate different cellular changes. Because of diverse pharmaceutical interactions, combinations of different drugs do not work well in concert and result in adverse physiological conditions. Research has begun to investigate the possibility of using natural compounds as a therapeutic intervention following TBI. These compounds normally have very low toxicity and have reduced interactions with other pharmaceuticals. In addition, many natural compounds have the potential to target numerous different components of the secondary injury. Here, we review 33 different plant-derived natural compounds, phytochemicals, which have been investigated in experimental animal models of TBI. Some of these phytochemicals appear to have potential as possible therapeutic interventions to offset key components of the secondary injury cascade. However, not all studies have used the same scientific rigor, and one should be cautious in the interpretation of studies using naturally occurring phytochemical in TBI research.
Collapse
Affiliation(s)
- Stephen W Scheff
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky
| | - Mubeen A Ansari
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
58
|
Sun HL, Peng ML, Lee SS, Chen CJ, Chen WY, Yang ML, Kuan YH. Endotoxin-induced acute lung injury in mice is protected by 5,7-dihydroxy-8-methoxyflavone via inhibition of oxidative stress and HIF-1α. ENVIRONMENTAL TOXICOLOGY 2016; 31:1700-1709. [PMID: 26213241 DOI: 10.1002/tox.22172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/05/2015] [Accepted: 07/06/2015] [Indexed: 01/13/2025]
Abstract
Up to date, the morbidity and mortality rates of acute lung injury (ALI) still rank high among clinical illnesses. Endotoxin, also called lipopolysaccharide (LPS), induced sepsis is the major cause for ALI. Beneficial biological effects, such as antioxidation, anti-inflammation, and neuroprotection was found to express by 5,7-dihydroxy-8-methoxyflavone (DHMF). The purpose of present study was to investigate the potential protective effects of DHMF and the possibile mechanisms involved in LPS-induced ALI. In our experimental model, ALI was induced in mice by intratracheal injection of LPS, and DHMF at various concentrations was injected intraperitoneally for 30 min prior to LPS administration. Pretreatment with DHMF inhibited not only the histolopatholgical changes occurred in lungs but also leukocytes infiltration in LPS-induced ALI. Decreased activity of antioxidative enzymes (AOE) such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) caused by LPS was reversed by DHMF. LPS-induced lipid peroxidation HIF-1α accumulation, NF-κB phosphorylation, and IκBα degradation were all inhibited by DHMF. In addition, LPS-induced expression of proinflammatory mediators such as TNF-α and IL-1β were also inhibited by 5,7-dihydroxy-8-methoxyflavone. These results suggested that the protective mechanisms of DHMF on endotoxin-induced ALI might be via up-regulation of antioxidative enzymes, inhibition of NFκB phosphorylation, and HIF-1α accumulation. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1700-1709, 2016.
Collapse
Affiliation(s)
- Hai-Lun Sun
- Department of Pediatric, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Mei-Ling Peng
- Department of Ophthalmology, School of Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
59
|
Clinical and Preclinical Cognitive Function Improvement after Oral Treatment of a Botanical Composition Composed of Extracts from Scutellaria baicalensis and Acacia catechu. Behav Neurol 2016; 2016:7240802. [PMID: 28042201 PMCID: PMC5155129 DOI: 10.1155/2016/7240802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 11/18/2022] Open
Abstract
Dementia and cognitive impairment have become the major concerns worldwide due to a significantly aging population, increasing life span and lack of effective pharmacotherapy. In light of limited pharmaceutical drug choices and the socioeconomic implications of these conditions, the search for safe and effective alternatives from natural sources has gained many attractions within the medical food and dietary supplement industry. Two polyphenol extracts derived from roots of Scutellaria baicalensis and heartwoods of Acacia catechu containing free-B-ring flavonoids and flavans, respectively, were combined into a proprietary blend called UP326. A similar bioflavonoid composition, UP446, has been reported with modulation of pathways related to systemic inflammation. To test the effect of UP326 on memory and learning, a radial arm water maze (RAWM) and contextual fear conditioning (CF) were utilized in aged F344 rats fed with UP326 at doses of 3, 7, and 34 mg/kg for 11 weeks. The 7 and 34 mg/kg dosage groups had significantly fewer errors than aged vehicle control animals and their performance was equivalent to young animal controls. In a separate human clinical trial, test subjects orally given 300 mg of UP326 BID for 30 days showed marked improvement in speed and accuracy of processing complex information in computer tasks and reduced their standard deviation of performance compared to baseline and the placebo group. This data suggest that UP326 may help maintain memory, sustain speed of processing, and reduce the number or memory errors as we age.
Collapse
|
60
|
Anti-Inflammatory Effects of Traditional Chinese Medicines against Ischemic Injury in In Vivo Models of Cerebral Ischemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5739434. [PMID: 27703487 PMCID: PMC5040804 DOI: 10.1155/2016/5739434] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Inflammation plays a crucial role in the pathophysiology of acute ischemic stroke. In the ischemic cascade, resident microglia are rapidly activated in the brain parenchyma and subsequently trigger inflammatory mediator release, which facilitates leukocyte-endothelial cell interactions in inflammation. Activated leukocytes invade the endothelial cell junctions and destroy the blood-brain barrier integrity, leading to brain edema. Toll-like receptors (TLRs) stimulation in microglia/macrophages through the activation of intercellular signaling pathways secretes various proinflammatory cytokines and enzymes and then aggravates cerebral ischemic injury. The secreted cytokines activate the proinflammatory transcription factors, which subsequently regulate cytokine expression, leading to the amplification of the inflammatory response and exacerbation of the secondary brain injury. Traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, and TCM formulations, exert neuroprotective effects against inflammatory responses by downregulating the following: ischemia-induced microglial activation, microglia/macrophage-mediated cytokine production, proinflammatory enzyme production, intercellular adhesion molecule-1, matrix metalloproteinases, TLR expression, and deleterious transcription factor activation. TCMs also aid in upregulating anti-inflammatory cytokine expression and neuroprotective transcription factor activation in the ischemic lesion in the inflammatory cascade during the acute phase of cerebral ischemia. Thus, TCMs exert potent anti-inflammatory properties in ischemic stroke and warrant further investigation.
Collapse
|
61
|
Ghura S, Tai L, Zhao M, Collins N, Che CT, Warpeha KM, LaDu MJ. Arabidopsis thaliana extracts optimized for polyphenols production as potential therapeutics for the APOE-modulated neuroinflammation characteristic of Alzheimer's disease in vitro. Sci Rep 2016; 6:29364. [PMID: 27383500 PMCID: PMC4935988 DOI: 10.1038/srep29364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/17/2016] [Indexed: 01/14/2023] Open
Abstract
Although the cause of Alzheimer's disease (AD) is unknown, glial-induced neuroinflammation is an early symptom. Familial AD is caused by increases in amyloid-beta (Aβ) peptide, particularly soluble oligomeric (oAβ), considered a proximal neurotoxin and neuroinflammatory stimuli. APOE4, a naturally occurring genotype of APOE, is the greatest genetic risk factor for AD; increasing risk up to 12-fold compared to APOE3 and APOE2. oAβ-induced neuroinflammation is greater with APOE4 compared to APOE3 and APOE2. As sinapates and flavonoids have anti-inflammatory properties, a protocol was developed for optimizing polyphenol production in seedlings of Arabidopsis thaliana (A. thaliana). Three mutants (cop1, prn1, xpf3) were identified, and the extracts treated with liver microsomes to mimic physiological metabolism, with HPLC and MS performed on the resulting metabolites for peak identification. These extracts were used to treat primary glial cells isolated from human APOE-targeted-replacement (APOE-TR) and APOE-knock-out (KO) mice, with neuroinflammation induced by lipopolysaccharide (LPS) or oAβ. The dose-response data for TNFα secretion demonstrate the followed the order: APOE-KO > APOE4 > APOE3 > APOE2, with xpf3 the most effective anti-neuroinflammatory across APOE genotypes. Thus, the plant-based approach described herein may be particularly valuable in treating the APOE4-induced neuroinflammatory component of AD risk.
Collapse
Affiliation(s)
- Shivesh Ghura
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Leon Tai
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ming Zhao
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nicole Collins
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chun-Tao Che
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Katherine M Warpeha
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
62
|
Jiang L, Liu Y, He P, Chen J, Liu S, Tan N. Geraniin ameliorates cisplatin-induced nephrotoxicity in mice. Free Radic Res 2016; 50:813-9. [DOI: 10.3109/10715762.2016.1173206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
63
|
Cao Y, Liang L, Xu J, Wu J, Yan Y, Lin P, Chen Q, Zheng F, Wang Q, Ren Q, Gou Z, Du Y. The effect of Scutellaria baicalensis stem-leaf flavonoids on spatial learning and memory in chronic cerebral ischemia-induced vascular dementia of rats. Acta Biochim Biophys Sin (Shanghai) 2016; 48:437-46. [PMID: 27118553 DOI: 10.1093/abbs/gmw024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 01/23/2016] [Indexed: 12/19/2022] Open
Abstract
Flavonoids have been shown to improve cognitive function and delay the dementia progression. However, the underlying mechanisms remain elusive. In the present study, we examined the effect of Scutellaria baicalensis stem-leaf total flavonoids (SSTFs) extracted from S. baicalensis Georgi on spatial learning and memory in a vascular dementia (VaD) rat model and explored its molecular mechanisms. The VaD rats were developed by permanent bilateral occlusion of the common carotid artery. Seven days after recovery, the VaD rats were treated with either 50 or 100 mg/kg of SSTF for 60 days. The spatial learning and memory was evaluated in the Morris water maze (MWM) test. The tau hyperphosphorylation and the levels of the related protein kinases or phosphatases were examined by western blot analysis. In VaD rats, SSTF treatment at 100 mg/kg significantly reduced the escape latency in training trial in MWM test. In the probe trial, SSTF treatment increased the searching time and travel distance in the target quadrant. SSTF treatment inhibited the tau phosphorylation in both cortex and hippocampus in VaD rats. Meanwhile, SSTF reduced the activity of glycogen synthase kinase 3β and cyclin-dependent kinase 5 in VaD rats. In contrast, SSTF treatment increased the level of the protein phosphatase 2A subunit B in VaD rats. SSTF treatment significantly improved the spatial cognition in VaD rats. Our results suggest that SSTF may alleviate tau-hyperphosphorylation-induced neurotoxicity through coordinating the activity of kinases and phosphatase after a stroke. SSTF may be developed into promising novel therapeutics for VaD.
Collapse
Affiliation(s)
- Yanjing Cao
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250013, China Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Lizhen Liang
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Jian Xu
- Department of Histology and Embryology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiali Wu
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Yongxing Yan
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Ping Lin
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Qiang Chen
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Fengming Zheng
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Qin Wang
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Qian Ren
- Department of Neurology, Third Hospital of Hangzhou, Hangzhou 310009, China
| | - Zengmei Gou
- Department of Neurology, The Second People's Hospital of Weifang, Weifang 261041, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan 250013, China
| |
Collapse
|
64
|
Zou H, Long J, Zhang Q, Zhao H, Bian B, Wang Y, Zhang J, Zhao H, Wang L. Induced cortical neurogenesis after focal cerebral ischemia--Three active components from Huang-Lian-Jie-Du Decoction. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:115-124. [PMID: 26657578 DOI: 10.1016/j.jep.2015.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/28/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian-Jie-Du-Decoction (HLJDD) is a Traditional Chinese Medicine (TCM) clinical prescription noted for its neuroprotective effects. The total alkaloids, flavonoids, and iridoids are the main active components of HLJDD. In the present study we explored the possible effects of the total alkaloids, flavonoids, and iridoids from HLJDD on behavioral recovery and cortical neurogenesis after stroke. METHODS The stroke model was induced by permanent middle cerebral artery occlusion (pMACO). The total alkaloids (44 mg/kg), flavonoids (50 mg/kg), and iridoids (80 mg/kg) from HLJDD were orally administered for 2h after stroke and daily thereafter. Neurological function was assessed and then rats were sacrificed 7 days after pMACO. Following repeated intraperitoneal injections of the cell proliferation - specific marker 5-bromodeoxyuridine (BrdU) after stroke induction, precursor cell proliferation and differentiation was monitored by immunofluorescent staining. The levels of relevant proteins were determined by western blotting and the mRNA expressions were assessed by quantitative real time-polymerase chain reaction (qRT-PCR). RESULTS Total alkaloids, flavonoids and iridoids from HLJDD showed improved functional outcome after brain ischemia. The total alkaloids and iridoids increased number of BrdU-positive cells and enhanced neuronal differentiation in the cortex. Alkaloids-enhanced neurogenesis might be associated with increased VEGF, Ang-1, and Ang-2 protein expression. And the neuroproliferative effect of alkaloids was partially correlated with increased phosphorylation of AKT, and GSK-3β. Flavonoids treatment was found to promote differentiation of cortical precursor cells into neuronal but not glial cells, which may be at least attributable to the regulation of AKT, GSK-3β mRNA and Ang-1 protein levels. CONCLUSIONS Total alkaloids, iridoids and flavonoids from HLJDD promoted functional recovery likely via enhancing cortical neurogenesis and thus have potential as a treatment for ischemic brain injury.
Collapse
Affiliation(s)
- Haiyan Zou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing 100069, China
| | - Jianfei Long
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing 100069, China; Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiuxia Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing 100069, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yali Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing 100069, China
| | - Jian Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing 100069, China.
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing 100069, China.
| |
Collapse
|
65
|
Huang FM, Chang YC, Lee SS, Yeh CH, Lee KG, Huang YC, Chen CJ, Chen WY, Pan PH, Kuan YH. BisGMA-induced cytotoxicity and genotoxicity in macrophages are attenuated by wogonin via reduction of intrinsic caspase pathway activation. ENVIRONMENTAL TOXICOLOGY 2016; 31:176-184. [PMID: 26756871 DOI: 10.1002/tox.22032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 06/05/2023]
Abstract
Bisphenol-A-glycidyldimethacrylate (BisGMA) is a frequently used monomer in dental restorative resins. However, BisGMA could leach from dental restorative resins after polymerization leading to inflammation in the peripheral environment. Wogonin, a natural flavone derivative, has several benefits, such as antioxidative, anti-inflammatory and neuroprotective properties. Pretreatment of macrophage RAW264.7 cells with wogonin inhibited cytotoxicity which is induced by BisGMA in a concentration-dependent manner. BisGMA induced apoptotic responses, such as redistribution of phosphatidylserine from the internal to the external membrane and DNA fragmentation, were decreased by wogonin in a concentration-dependent manner. In addition, BisGMA-induced genotoxicity, which detected by cytokinesis-blocked micronucleus and single-cell gel electrophoresis assays, were inhibited by wogonin in a concentration-dependent manner. Furthermore, wogonin suppressed BisGMA-induced activation of intrinsic caspase pathways, such as caspases-3 and -8. Parallel trends were observed in inhibition of caspase-3 and -8 activities, apoptosis, and genotoxicity. These results indicate wogonin suppressed the BisGMA-induced apoptosis and genotoxicity mainly via intrinsic caspase pathway in macrophages.
Collapse
Affiliation(s)
- Fu-Mei Huang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Chung-Hsin Yeh
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Nursing, College of Medicine & Nursing, Hung Kuang University, Taichung, Taiwan
| | - Kevin Gee Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Chun Huang
- School of Health, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Pin-Ho Pan
- Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
66
|
Vijayakumar S, Prabhu S, Rajalakhsmi S, Manogar P. Review on potential phytocompounds in drug development for Parkinson disease: A pharmacoinformatic approach. INFORMATICS IN MEDICINE UNLOCKED 2016. [DOI: 10.1016/j.imu.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
67
|
Hussain F, Mittal S, Joshee N, Parajuli P. Application of Bioactive Compounds from Scutellaria in Neurologic Disorders. ADVANCES IN NEUROBIOLOGY 2016; 12:79-94. [PMID: 27651249 DOI: 10.1007/978-3-319-28383-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inflammation of the brain is one of the most highly researched yet mysterious areas in modern day neurology. The process of inflammation is a normal mechanism of wound healing that can result from acute injuries such as traumas or can be caused by genetic/environmental factors. After the initial insult, the immune system defenses, specifically microglial cells, are activated in order to combat the infection or injury. However, prolonged or chronic inflammation is often deleterious due mainly to accumulation of free reactive oxygen species (ROS) and other pro-inflammatory cytokines in the brain FADDIN EN.CITE. Plant-derived natural compounds have the potential to ameliorate the causes and symptoms of neuroinflammation, due to their various anti-oxidant and anti-inflammatory activities, without completely muting the immune defenses. Scutellaria is a perennial plant in the mint family that has been used to treat diseases in Asia and Eastern Europe throughout history. This chapter reviews the active components of various Scutellaria species and their mechanisms of action to prevent chronic neurologic disorders involving neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Farhan Hussain
- Department of Neurosurgery, Wayne State University School of Medicine, and Karmanos Cancer Institute, Lande Research Building, #460, 540 E. Canfield St., Detroit, MI, 48201, USA
| | - Sandeep Mittal
- Departments of Neurosurgery and Oncology, Wayne State University School of Medicine, and Karmanos Cancer Institute, 930 Harper POB, 4100 John R. St, Detroit, MI, 48201, USA
| | - Nirmal Joshee
- Graduate Program in Biotechnology, Agricultural Research Station, Fort Valley State University, Fort Valley, GA, USA
| | - Prahlad Parajuli
- Department of Neurosurgery, Wayne State University School of Medicine, and Karmanos Cancer Institute, Lande Research Building, #460, 540 E. Canfield St., Detroit, MI, 48201, USA.
| |
Collapse
|
68
|
Yang CM, Yang SH, Lee TH, Fang JY, Lin CF, Jou MJ, Hsieh HL. Evaluation of Anti-Inflammatory Effects of Helminthostachys zeylanica Extracts via Inhibiting Bradykinin-Induced MMP-9 Expression in Brain Astrocytes. Mol Neurobiol 2015; 53:5995-6005. [PMID: 26526842 DOI: 10.1007/s12035-015-9511-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
Abstract
Phytochemicals present in vegetables, fruits, and herbs are believed to reduce the risk of several major diseases including cardiovascular or neurodegenerative disorders. The roots of the fern Helminthostachys zeylanica (L.) Hook. (Ophioglossaceae) have been used for centuries in the treatment of inflammation and as a folk medicine in several countries. The plant has been shown to possess an array of medicinal properties, including antioxidants and anti-inflammatory activities. Moreover, a rising level of matrix metalloproteinase-9 (MMP-9) has been found in blood fluid of these patients suffering from brain inflammatory diseases, which may be considered an inflammatory biomarker in several inflammatory diseases including the central nervous system (CNS) inflammation. Previously, we have demonstrated the signaling mechanisms of bradykinin (BK)-induced MMP-9 expression in brain astrocytes. Herein, we evaluate the effects of H. zeylanica extracts on BK-induced MMP-9 expression in brain astrocytes and its influencing mechanism. The results showed that H. zeylanica extracts, including E0, E1, and E2 significantly reduce MMP-9 induced by BK in brain astrocytes (RBA-1 cells). These H. zeylanica extracts can inhibit BK-stimulated phosphorylation of c-Src, Pyk2, and PKC(α/δ). Moreover, BK-stimulated NADPH oxidase (Nox)-derived reactive oxygen species (ROS) generation has also been attenuated by pretreatment with these extracts, suggesting that the H. zeylanica extracts have an antioxidative activity. We further demonstrated that the H. zeylanica extracts blocked activation of MAPKs (e.g., ERK1/2 and p38 MAPK) by BK. These data indicated that the H. zeylanica extracts may be has anti-inflammatory activity by reducing BK-induced ROS-dependent MMP-9 expression via these related pathways in brain astrocytes.
Collapse
Affiliation(s)
| | - Sien-Hung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Tsong-Hai Lee
- Stroke Center and Stroke Section, Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center and Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Jia-You Fang
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Gui-Shan, Tao-Yuan, Taiwan
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Gui-Shan, Tao-Yuan, Taiwan
| | | | - Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, and Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Gui-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
69
|
Sucher NJ, Carles MC. A pharmacological basis of herbal medicines for epilepsy. Epilepsy Behav 2015; 52:308-18. [PMID: 26074183 DOI: 10.1016/j.yebeh.2015.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/25/2023]
Abstract
Epilepsy is the most common chronic neurological disease, affecting about 1% of the world's population during their lifetime. Most people with epilepsy can attain a seizure-free life upon treatment with antiepileptic drugs (AEDs). Unfortunately, seizures in up to 30% do not respond to treatment. It is estimated that 90% of people with epilepsy live in developing countries, and most of them receive no drug treatment for the disease. This treatment gap has motivated investigations into the effects of plants that have been used by traditional healers all over the world to treat seizures. Extracts of hundreds of plants have been shown to exhibit anticonvulsant activity in phenotypic screens performed in experimental animals. Some of those extracts appear to exhibit anticonvulsant efficacy similar to that of synthetic AEDs. Dozens of plant-derived chemical compounds have similarly been shown to act as anticonvulsants in various in vivo and in vitro assays. To a significant degree, anticonvulsant effects of plant extracts can be attributed to widely distributed flavonoids, (furano)coumarins, phenylpropanoids, and terpenoids. Flavonoids and coumarins have been shown to interact with the benzodiazepine site of the GABAA receptor and various voltage-gated ion channels, which are targets of synthetic AEDs. Modulation of the activity of ligand-gated and voltage-gated ion channels provides an explanatory basis of the anticonvulsant effects of plant secondary metabolites. Many complex extracts and single plant-derived compounds exhibit antiinflammatory, neuroprotective, and cognition-enhancing activities that may be beneficial in the treatment of epilepsy. Thus, botanicals provide a base for target-oriented antiepileptic drug discovery and development. In the future, preclinical work should focus on the characterization of the effects of plant extracts and plant-derived compounds on well-defined targets rather than on phenotypic screening using in vivo animal models of acute seizures. At the same time, available data provide ample justification for clinical studies with selected standardized botanical extracts and plant-derived compounds. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
Affiliation(s)
- Nikolaus J Sucher
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA.
| | - Maria C Carles
- Science Department, Roxbury Community College, MA, USA; FLAS, Northern Essex Community College, MA, USA; Biology Department, Salem State University, MA, USA
| |
Collapse
|
70
|
Using Bioinformatics Approach to Explore the Pharmacological Mechanisms of Multiple Ingredients in Shuang-Huang-Lian. ScientificWorldJournal 2015; 2015:291680. [PMID: 26495421 PMCID: PMC4606080 DOI: 10.1155/2015/291680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/10/2015] [Accepted: 07/07/2015] [Indexed: 11/17/2022] Open
Abstract
Due to the proved clinical efficacy, Shuang-Huang-Lian (SHL) has developed a variety of dosage forms. However, the in-depth research on targets and pharmacological mechanisms of SHL preparations was scarce. In the presented study, the bioinformatics approaches were adopted to integrate relevant data and biological information. As a result, a PPI network was built and the common topological parameters were characterized. The results suggested that the PPI network of SHL exhibited a scale-free property and modular architecture. The drug target network of SHL was structured with 21 functional modules. According to certain modules and pharmacological effects distribution, an antitumor effect and potential drug targets were predicted. A biological network which contained 26 subnetworks was constructed to elucidate the antipneumonia mechanism of SHL. We also extracted the subnetwork to explicitly display the pathway where one effective component acts on the pneumonia related targets. In conclusions, a bioinformatics approach was established for exploring the drug targets, pharmacological activity distribution, effective components of SHL, and its mechanism of antipneumonia. Above all, we identified the effective components and disclosed the mechanism of SHL from the view of system.
Collapse
|
71
|
Yeh CH, Shih HC, Hong HM, Lee SS, Yang ML, Chen CJ, Kuan YH. Protective effect of wogonin on proinflammatory cytokine generation via Jak1/3-STAT1/3 pathway in lipopolysaccharide stimulated BV2 microglial cells. Toxicol Ind Health 2015; 31:960-966. [PMID: 23592745 DOI: 10.1177/0748233713485886] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Wogonin is a flavonoid compound which exhibits antioxidation, anti-inflammation, neuroprotection, and antitumorgenesis functions. However, the mechanism of how wogonin reduces proinflammatory cytokine generation in activated microglia is unclear. At present, we found wogonin inhibited lipopolysaccharide (LPS)-/interferon-γ (INF-γ)-induced generation of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Wogonin exhibited parallel inhibition on LPS-/INF-γ-induced expression of IL-6 and TNF-α messenger RNA at the same concentration range. LPS-/INF-γ-induced phosphorylation of signal transduction and transcription 1 and 3 (STAT1/3) were also inhibited by wogonin. Although wogonin expressed only weak inhibitory effect on LPS-/INF-γ-induced phosphorylation of Janus kinase-2 (Jak-2) and tyrosine kinase (Tyk)-2, it significantly attenuated the phosphorylation of Jak-1 and Jak-3. These results indicated that the blockade of IL-6 and TNF-α production by wogonin in LPS-/INF-γ-stimulated BV2 microglial cells was attributed mainly to the interference in Jak-1/-3-STAT1/3 signaling pathway.
Collapse
Affiliation(s)
- Chung-Hsin Yeh
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Hung-Che Shih
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taiwan Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Mei Hong
- School of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan Center for General Education, Tunghai University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taiwan Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
72
|
Adams AC, Kyle M, Beaman-Hall CM, Monaco EA, Cullen M, Vallano ML. Microglia in Glia-Neuron Co-cultures Exhibit Robust Phagocytic Activity Without Concomitant Inflammation or Cytotoxicity. Cell Mol Neurobiol 2015; 35:961-75. [PMID: 25894384 PMCID: PMC11486331 DOI: 10.1007/s10571-015-0191-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/28/2015] [Indexed: 12/19/2022]
Abstract
A simple method to co-culture granule neurons and glia from a single brain region is described, and microglia activation profiles are assessed in response to naturally occurring neuronal apoptosis, excitotoxin-induced neuronal death, and lipopolysaccharide (LPS) addition. Using neonatal rat cerebellar cortex as a tissue source, glial proliferation is regulated by omission or addition of the mitotic inhibitor cytosine arabinoside (AraC). After 7-8 days in vitro, microglia in AraC(-) cultures are abundant and activated based on their amoeboid morphology, expressions of ED1 and Iba1, and ability to phagocytose polystyrene beads and the majority of neurons undergoing spontaneous apoptosis. Microglia and phagocytic activities are sparse in AraC(+) cultures. Following exposure to excitotoxic kainate concentrations, microglia in AraC(-) cultures phagocytose most dead neurons within 24 h without exacerbating neuronal loss or mounting a strong or sustained inflammatory response. LPS addition induces a robust inflammatory response, based on microglial expressions of TNF-α, COX-2 and iNOS proteins, and mRNAs, whereas these markers are essentially undetectable in control cultures. Thus, the functional effector state of microglia is primed for phagocytosis but not inflammation or cytotoxicity even after kainate exposure that triggers death in the majority of neurons. This model should prove useful in studying the progressive activation states of microglia and factors that promote their conversion to inflammatory and cytotoxic phenotypes.
Collapse
Affiliation(s)
- Alexandra C Adams
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Pulmonary and Critical Care, Mount Sinai Beth Israel Medical Center, New York, NY, 10003, USA
| | - Michele Kyle
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Carol M Beaman-Hall
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Edward A Monaco
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Matthew Cullen
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Anesthesiology, Phelps Memorial Hospital Center, Sleepy Hollow, NY, 10591, USA
| | - Mary Lou Vallano
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
73
|
Syed Hussein SS, Kamarudin MNA, Abdul Kadir H. (+)-Catechin Attenuates NF-κB Activation Through Regulation of Akt, MAPK, and AMPK Signaling Pathways in LPS-Induced BV-2 Microglial Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:927-52. [DOI: 10.1142/s0192415x15500548] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
(+)-catechin is a flavanol that possesses various health and medicinal values, which include neuroprotection, anti-oxidation, antitumor and antihepatitis activities. This study investigated the modulatory effects of (+)-catechin on the lipopolysaccharides (LPS)-stimulated BV-2 cells. (+)-catechin attenuated LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and inhibited microglial NO and ROS production. Additionally, (+)-catechin suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, while augmenting IL-4. (+)-catechin attenuated LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation via the inhibition of IκB-α phosphorylation. Moreover, (+)-catechin blocked the activation of Akt and its inhibition was shown to play a crucial role in LPS-induced inflammation in BV-2 microglial cells. (+)-catechin also attenuated the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK1/2), and p-38 mitogen activated protein kinases (p38 MAPK) and specific inhibitors of ERK1/2 (UO126) and p38 MAPK (SB202190) subsequently down-regulated the expression of the proinflammatory mediators iNOS and COX-2. Further mechanistic study revealed that (+)-catechin acted through the amelioration of the LPS-induced suppression of adenosine monophosphate-activated protein kinase (AMPK) activity. Taken together, our data indicate that (+)-catechin exhibits anti-inflammatory effects in BV-2 cells by suppressing the production of proinflammatory mediators and mitigation of NF-κB through Akt, ERK, p38 MAPK, and AMPK pathways.
Collapse
Affiliation(s)
- Sharifah Salwa Syed Hussein
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Habsah Abdul Kadir
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
74
|
Zhao L, Miao HC, Li WJ, Sun Y, Huang SL, Li ZY, Guo QL. LW-213 induces G2/M cell cycle arrest through AKT/GSK3β/β-catenin signaling pathway in human breast cancer cells. Mol Carcinog 2015; 55:778-92. [PMID: 25945460 DOI: 10.1002/mc.22321] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 03/08/2015] [Accepted: 03/16/2015] [Indexed: 01/21/2023]
Abstract
LW-213 is a derivative of Wogonin and the anticancer activities of Wogonin have been reported. To study whether LW-213 inhibits cancer cells and explore a possible mechanism, we investigate the compound in several cancer cell lines. We found LW-213 arrests G2/M cycle in breast cancer cells by suppression of Akt/Gsk3β/β-catenin signaling pathway. In compound treated cells, cell cycle-related proteins cyclin A, cyclin B1, p-CDK1, p-Cdc25C, and p-Chk2 (Thr68) were upregulated, and β-catenin nuclear translocation was inhibited. Electrophoretic mobility shift assay revealed LW-213 inhibits binding of β-catenin/LEF complex to DNA. GSK3β inhibitor LiCl and siRNA against GSK3β partially reversed G2/M arrest in breast cancer MCF-7 cells. These results suggest LW-213 triggered G2/M cell cycle arrest through suppression of β-catenin signaling. In BALB/c mice, growth of xenotransplanted MCF-7 tumor was also inhibited after treatment of LW-213. Regulation of cyclin A, cyclin B1, and β-catenin by LW-213 in vivo was the same as in vitro study. In conclusion, we found LW-213 exerts its anticancer effect on cell proliferation and cell cycle through repression of Akt/Gsk3β/β-catenin signaling pathway. LW-213 could be a potential candidate for anticancer drug development.
Collapse
Affiliation(s)
- Li Zhao
- School of pharmacy, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Han-Chi Miao
- School of pharmacy, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Wen-Jun Li
- School of pharmacy, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Yang Sun
- School of pharmacy, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Shao-Liang Huang
- School of pharmacy, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Zhi-Yu Li
- School of pharmacy, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| | - Qing-Long Guo
- School of pharmacy, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, People's Republic of China
| |
Collapse
|
75
|
Wogonin suppresses inflammatory response and maintains intestinal barrier function via TLR4-MyD88-TAK1-mediated NF-κB pathway in vitro. Inflamm Res 2015; 64:423-31. [PMID: 25917044 DOI: 10.1007/s00011-015-0822-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/17/2015] [Indexed: 12/11/2022] Open
Abstract
AIMS AND OBJECTIVE Wogonin has multiple pharmacological effects, including anti-inflammatory effects. Here, we hypothesize that wogonin can protect intestinal barrier function in lipopolysaccharide (LPS)-induced Caco-2 cells, which is an in vitro model of intestinal inflammation. METHODS We measured intestinal barrier function in LPS-induced Caco-2 cells by using transepithelial electrical resistance (TEER) and transport of fluorescent markers. A quantitative (q) RT-PCR and immunofluorescent staining analysis was used to detect the expression of tight junction proteins (claudin-1 and ZO-1) in LPS-induced Caco-2 cells. We measured inflammatory molecules in LPS-induced Caco-2 cells using ELISA and qRT-PCR. In addition, the expression of TLR4, MyD88 and TAK1 and their interaction, and NF-κB activity in LPS-induced Caco-2 cells were investigated by western blot analysis and immune-precipitation. RESULTS We found that exposing Caco-2 cells to wogonin (10 and 50 μM for 24 h) attenuated the LPS-induced changes in TEER and transport of fluorescent markers. In addition, wogonin suppressed LPS-induced down-regulation of tight junction proteins (claudin-1 and ZO-1). Furthermore, LPS-induced up-regulation of inflammatory mediators, including interleukin (IL)-1β, IL-6 and IL-8, cyclooxygenase-2 (COX-2), inducible nitric oxide synthases (iNOS) were reduced after being pre-treated with wogonin. Moreover, wogonin not only inhibited the expression of TLR4, MyD88 and TAK1 and the interaction between these molecules, but also reduced NF-κB translocation to nucleus and its DNA-binding activity in LPS-induced Caco-2 cells. CONCLUSION Our results suggested that pre-treatment with wogonin could attenuate the TLR4-mediated inflammatory response and maintain intestinal barrier function in LPS-induced Caco-2 cells, thus might be a potential therapy for treating IBD.
Collapse
|
76
|
Yans A, Shahamati SZ, Maghsoudi AH, Maghsoudi N. Digitoflavone provokes mitochondrial biogenesis in PC12 cells: A protective approach to oxidative stress. PHARMACEUTICAL BIOLOGY 2015; 53:1727-1734. [PMID: 25856707 DOI: 10.3109/13880209.2015.1005749] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Reactive oxygen species (ROS) are known to be one of the main causes of neurodegenerative disorders, and flavonoids play characteristic roles in a variety of biological activities, and specially are known to be antioxidant reagents. OBJECTIVE In this study, we investigated neuroprotective effects of digitoflavone to suppress H2O2 -induced cell death in neuron-like PC12 cells. MATERIAL AND METHODS PC12 cells were pre-treated with digitoflavone for 2 h and then cells were exposed to H2O2 for 18 h. The cells' viability was evaluated by MTT assay. Rhodamine 123 staining was used for the determination of mitochondrial membrane potential (ΔΨm). The intracellular ROS aggregation was determined by using 2',7'-dichlorofluorescein diacetate. Also, the level of mitochondrial biogenesis factors was measured by western blot. The antioxidant capacity of digitoflavone was also determined by measuring reduced glutathione (GSH) level and catalase (CAT) activity quantification. RESULTS Digitoflavone significantly elevated cells' viability at concentrations of 10 and 20 µM. Also, digitoflavone attenuated intracellular level of ROS, and stabilized ΔΨm. Moreover, digitoflavone increased phosphorylation of AMP-activated protein kinase (AMPK) and, consequently, elevated mitochondrial biogenesis factors which were reduced after H2O2 exposure. We emphasized on the protective effect of digitoflavone through increasing mitochondrial biogenesis by specifically inhibiting AMPK. Antioxidant ability of digitoflavone was indicated by the elevation of GSH level and CAT activity. CONCLUSION As a result, digitoflavone stabilize ΔΨm, enhanced cell viability through inducing mitochondrial biogenesis pathway, and increased antioxidant capacity of the cells which lead to better combating the oxidative stress.
Collapse
|
77
|
Xu S, Zhao X, Zhao Q, Zheng Q, Fang Z, Yang X, Wang H, Liu P, Xu H. Wogonin prevents rat dorsal root ganglion neurons death via inhibiting tunicamycin-induced ER stress in vitro. Cell Mol Neurobiol 2015; 35:389-398. [PMID: 25381475 PMCID: PMC11486207 DOI: 10.1007/s10571-014-0134-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/28/2014] [Indexed: 02/06/2023]
Abstract
Wogonin is a natural flavonoid isolated from the root of Scutellaria baicalensis Georgi, which has been widely used in various research areas for its anti-oxidant, anti-inflammatory, and anti-cancer activities. It also presents a neuroprotective effect in the brain while encounters stress conditions, but the mechanisms controlling the neuroprotective effect of wogonin are not clear. In this study, we investigated the biomechanism underlying the neuroprotective effect of wogonin on rat dorsal root ganglion (DRG) neurons. Wogonin pre-treatment at 75 μM significantly increased the cell viability of DRG neurons and decreased the number of the propidium iodide-positive DRG neurons before the endoplasmic reticulum (ER) stress is being induced by tunicamycin (TUN) (0.75 μg/mL). In addition, Wogonin also inhibited the release of LDH and up-regulated the level of GSH. Furthermore, wogonin decreased the activation of ER stress-related molecules, including glucose-regulated protein 78 (GRP78), GRP94, C/EBP-homologous protein, active caspase12 and active caspase3, phosphorylation of pancreatic ER stress kinase, and eukaryotic initiation factor 2 alpha (eIF2α). In summary, our results indicated that wogonin could protect DRG neurons against TUN-induced ER stress.
Collapse
Affiliation(s)
- Shujuan Xu
- Department of Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Xin Zhao
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Quanlai Zhao
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Quan Zheng
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Zhen Fang
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Xiaoming Yang
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Hong Wang
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Ping Liu
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Hongguang Xu
- Department of Orthopedic Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, People's Republic of China.
| |
Collapse
|
78
|
Castro-Torres RD, Chaparro-Huerta V, Flores-Soto ME, Jave-Suárez L, Camins A, Armendáriz-Borunda J, Beas-Zárate C, Mena-Munguía S. Pirfenidone Attenuates Microglial Reactivity and Reduces Inducible Nitric Oxide Synthase mRNA Expression After Kainic Acid-Mediated Excitotoxicity in Pubescent Rat Hippocampus. J Mol Neurosci 2015; 56:245-54. [DOI: 10.1007/s12031-015-0509-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/01/2015] [Indexed: 12/20/2022]
|
79
|
Dhama K, Kesavan M, Karthik K, . A, Tiwari R, Sunkara LT, Singh R. Neuroimmunomodulation Countering Various Diseases, Disorders, Infections, Stress and Aging. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.76.94] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
80
|
Solanki I, Parihar P, Mansuri ML, Parihar MS. Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutr 2015; 6:64-72. [PMID: 25593144 PMCID: PMC4288281 DOI: 10.3945/an.114.007500] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During the past several years, there has been enormous progress in the understanding of the causative factors that initiate neuronal damage in various neurodegenerative diseases, including Alzheimer disease, Parkinson disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. Preventing neuronal damage and neuronal death will have a huge clinical benefit. However, despite major advances in causative factors that trigger these neurodegenerative diseases, to date there have been no therapies available that benefit patients who suffer from these diseases. Because most neurodegenerative diseases are late-onset and remain asymptomatic for most of the phases, the therapies initiated in advanced stages of the disease have limited value to patients. It may be possible to prevent or halt the disease progression to a great extent if therapies start at the initial stage of the disease. Such therapies may restore neuronal function by reducing or even eliminating the primary stressor. Flavonoids are key compounds for the development of a new generation of therapeutic agents that are clinically effective in treating neurodegenerative diseases. Regular consumption of flavonoids has been associated with a reduced risk of neurodegenerative diseases. In addition to their antioxidant properties, these polyphenolic compounds exhibit neuroprotective properties by their interaction with cellular signaling pathways followed by transcription and translation that mediate cell function under both normal and pathologic conditions. This review focuses on human intervention studies as well as animal studies on the role of various flavonoids in the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Mordhwaj S Parihar
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, India
| |
Collapse
|
81
|
Velagapudi R, Aderogba M, Olajide OA. Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-κB/p38-mediated neuroinflammation in activated BV2 microglia. Biochim Biophys Acta Gen Subj 2014; 1840:3311-9. [DOI: 10.1016/j.bbagen.2014.08.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/16/2022]
|
82
|
Yang JY, Xue X, Tian H, Wang XX, Dong YX, Wang F, Zhao YN, Yao XC, Cui W, Wu CF. Role of microglia in ethanol-induced neurodegenerative disease: Pathological and behavioral dysfunction at different developmental stages. Pharmacol Ther 2014; 144:321-37. [DOI: 10.1016/j.pharmthera.2014.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 01/04/2023]
|
83
|
Schmitz K, Barthelmes J, Stolz L, Beyer S, Diehl O, Tegeder I. "Disease modifying nutricals" for multiple sclerosis. Pharmacol Ther 2014; 148:85-113. [PMID: 25435020 DOI: 10.1016/j.pharmthera.2014.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/20/2014] [Indexed: 12/26/2022]
Abstract
The association between vitamin D and multiple sclerosis has (re)-opened new interest in nutrition and natural compounds in the prevention and treatment of this neuroinflammatory disease. The dietary amount and type of fat, probiotics and biologicals, salmon proteoglycans, phytoestrogens and protease inhibitor of soy, sodium chloride and trace elements, and fat soluble vitamins including D, A and E were all considered as disease-modifying nutraceuticals. Studies in experimental autoimmune encephalomyelitis mice suggest that poly-unsaturated fatty acids and their 'inflammation-resolving' metabolites and the gut microflora may reduce auto-aggressive immune cells and reduce progression or risk of relapse, and infection with whipworm eggs may positively change the gut-brain communication. Encouraged by the recent interest in multiple sclerosis-nutrition nature's pharmacy has been searched for novel compounds with anti-inflammatory, immune-modifying and antioxidative properties, the most interesting being the scorpion toxins that inhibit specific potassium channels of T cells and antioxidative compounds including the green tea flavonoid epigallocatechin-3-gallate, curcumin and the mustard oil glycoside from e.g. broccoli and sulforaphane. They mostly also inhibit pro-inflammatory signaling through NF-κB or toll-like receptors and stabilize the blood brain barrier. Disease modifying functions may also complement analgesic and anti-spastic effects of cannabis, its constituents, and of 'endocannabinoid enhancing' drugs or nutricals like inhibitors of fatty acid amide hydrolase. Nutricals will not solve multiple sclerosis therapeutic challenges but possibly support pharmacological interventions or unearth novel structures.
Collapse
Affiliation(s)
- Katja Schmitz
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Julia Barthelmes
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Leonie Stolz
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Susanne Beyer
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Olaf Diehl
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany
| | - Irmgard Tegeder
- The MS Study Group of the TRIP-Graduate School, Goethe-University Frankfurt, Germany.
| |
Collapse
|
84
|
Chen F, Wu R, Zhu Z, Yin W, Xiong M, Sun J, Ni M, Cai G, Zhang X. Wogonin protects rat dorsal root ganglion neurons against tunicamycin-induced ER stress through the PERK-eIF2α-ATF4 signaling pathway. J Mol Neurosci 2014; 55:995-1005. [PMID: 25417142 DOI: 10.1007/s12031-014-0456-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/08/2014] [Indexed: 02/07/2023]
Abstract
Endoplasmic reticulum (ER) stress has been demonstrated to contribute to neurodegeneration in multiple nervous system diseases. Wogonin is a flavonoid isolated from Scutellaria baicalensis root and has multiple pharmacological effects, including anti-inflammatory, antioxidant, and anticancer effects. It has a protective role in nervous system diseases; however, the pharmacological function of wogonin in the spinal cord is still with limited acquaintance. In the present study, rat dorsal root ganglion (DRG) neurons were pretreated with different concentrations of wogonin (0-100 μM) before inducing ER stress using tunicamycin (TUN) (0.75 μg/ml). Wogonin pretreatment at 75 and 100 μM had a cytoprotective effect on cells against TUN-induced toxicity. Wogonin also decreased the number of the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive DRG neurons and increased expression of superoxide dismutase (SOD), which was accompanied by decreased malondialdehyde (MDA) level. The induction of apoptosis was prevented with reduction in expression level of Bax and concomitant increase in B cell lymphoma 2 (Bcl-2) level. Furthermore, wogonin downregulated expression level of ER stress genes coding for glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), active caspase 12, transcription factor 4 (ATF4), and phosphorylation of pancreatic ER stress kinase (PERK) and eukaryotic initiation factor 2 alpha (eIF2α). The current study indicated that wogonin modulated stress-responsive genes, helping DRG neurons prevent TUN-induced ER stress through the PERK-eIF2α-ATF4 signaling pathway.
Collapse
Affiliation(s)
- Fangyi Chen
- Department of Orthopedics, Affiliated Jinshan Hospital, Fudan University, Shanghai, 201508, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Yeh CH, Yang ML, Lee CY, Yang CP, Li YC, Chen CJ, Kuan YH. Wogonin attenuates endotoxin-induced prostaglandin E2 and nitric oxide production via Src-ERK1/2-NFκB pathway in BV-2 microglial cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:1162-1170. [PMID: 23362215 DOI: 10.1002/tox.21847] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/25/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Microglia are the major component of intrinsic brain immune system in neuroinflammation. Although wogonin expresses anti-inflammatory function in microglia, little is known about the molecular mechanisms of the protective effect of wogonin against microglia activation. The aim of this study was to evaluate how wogonin exerts its anti-inflammatory function in BV2 microglial cells after LPS/INFγ administration. Wogonin not only inhibited LPS/ INFγ-induced PGE2 and NO production without affecting cell viability but also exhibited parallel inhibition on LPS/INFγ-induced expression of iNOS and COX-2 in the same concentration range. While LPS/INFγ-induced expression of P-p65 and P-IκB was inhibited by wogonin-only weak inhibition on P-p38 and P-JNK were observed, whereas it significantly attenuated the P-ERK1/2 and its upstream activators P-MEK1/2 and P-Src in a parallel concentration-dependent manner. These results indicated that the blockade of PGE2 and NO production by wogonin in LPS/INFγ-stimulated BV2 cells is attributed mainly to interference in the Src-MEK1/2-ERK1/2-NFκB-signaling pathway.
Collapse
Affiliation(s)
- Chung-Hsin Yeh
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
86
|
Nam KN, Woo BC, Moon SK, Park SU, Park JY, Hwang JW, Bae HS, Ko CN, Lee EH. Paeonol attenuates inflammation-mediated neurotoxicity and microglial activation. Neural Regen Res 2014; 8:1637-43. [PMID: 25206460 PMCID: PMC4145915 DOI: 10.3969/j.issn.1673-5374.2013.18.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/13/2013] [Indexed: 11/18/2022] Open
Abstract
Chronic activation of microglial cells endangers neuronal survival through the release of various proinflammatory and neurotoxic factors. The root of Paeonia lactiflora Pall has been considered useful for the treatment of various disorders in traditional oriental medicine. Paeonol, found in the root of Paeonia lactiflora Pall, has a wide range of pharmacological functions, including anti-oxidative, anti-inflammatory and neuroprotective activities. The objective of this study was to examine the efficacy of paeonol in the repression of inflammation-induced neurotoxicity and microglial cell activation. Organotypic hippocampal slice cultures and primary microglial cells from rat brain were stimulated with bacterial lipopolysaccharide. Paeonol pretreatment was performed for 30 minutes prior to lipopolysaccharide addition. Cell viability and nitrite (the production of nitric oxide), tumor necrosis factor-alpha and interleukin-1beta products were measured after lipopolysaccharide treatment. In organotypic hippocampal slice cultures, paeonol blocked lipopolysaccharide-related hippocampal cell death and inhibited the release of nitrite and interleukin-1beta. Paeonol was effective in inhibiting nitric oxide release from primary microglial cells. It also reduced the lipopolysaccharide-stimulated release of tumor necrosis factor-alpha and interleukin-1β from microglial cells. Paeonol possesses neuroprotective activity in a model of inflammation-induced neurotoxicity and reduces the release of neurotoxic and proinflammatory factors in activated microglial cells.
Collapse
Affiliation(s)
- Kyong Nyon Nam
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 446-701, Republic of Korea
| | - Byung-Cheol Woo
- Department of Cardiovascular & Neurologic Diseases (Stroke Center), Hospital of Oriental Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Sang-Kwan Moon
- Department of Cardiovascular & Neurologic Diseases (Stroke Center), Hospital of Oriental Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Seong-Uk Park
- Department of Cardiovascular & Neurologic Diseases (Stroke Center), Hospital of Oriental Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Joo-Young Park
- Department of Cardiovascular & Neurologic Diseases (Stroke Center), Hospital of Oriental Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Jae-Woong Hwang
- Department of Cardiovascular & Neurologic Diseases (Stroke Center), Hospital of Oriental Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Hyung-Sup Bae
- Department of Cardiovascular & Neurologic Diseases (Stroke Center), Hospital of Oriental Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Chang-Nam Ko
- Department of Cardiovascular & Neurologic Diseases (Stroke Center), Hospital of Oriental Medicine, Kyung Hee University, Seoul 130-702, Republic of Korea
| | - Eunjoo Hwang Lee
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si 446-701, Republic of Korea
| |
Collapse
|
87
|
Nam KW, Chae S, Song HY, Mar W, Han MD. The role of wogonin in controlling SOCS3 expression in neuronal cells. Biochem Biophys Res Commun 2014; 450:1518-24. [PMID: 25035930 DOI: 10.1016/j.bbrc.2014.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/05/2014] [Indexed: 11/16/2022]
Abstract
The mechanism underlying the wogonin-mediated increase in the expression of suppressor of cytokine signaling 3 (SOCS3) is unclear. Promoter deletion assay results revealed that wogonin-induced SOCS3 expression is dependent on the AP-1 consensus sequences and two STAT responsive elements (TTACAAGAA and TTCCAGGAA) in the 5'-flanking region of the SOCS3 gene in SH-SY5Y cells. Wogonin-induced SOCS3 expression was blocked by inhibitors of PI3K, Akt, Raf, p38, JNK, MEK, and STAT3, respectively. However, JAK2 inhibitors did not inhibit wogonin-induced SOCS3 expression. These results indicate that SOCS3-inducing effect of wogonin is caused by the activation of PI3K-mediated MAPK signaling pathways (Akt, ERK1/2, p38, and JNK), and the subsequent activation of AP-1 consensus sequences and STAT responsive elements in SH-SY5Y cells.
Collapse
Affiliation(s)
- Kung-Woo Nam
- Department of Life Science and Biotechnology, College of Natural Science, Soonchunhyang University, Asan 336-745, Republic of Korea
| | - Sungwook Chae
- Herbal Quality Control Center, Korea Institute of Oriental Medicine, 488 Expo, Daejeon 305-811, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 330-721, Republic of Korea
| | - Woongchon Mar
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Man-Deuk Han
- Department of Life Science and Biotechnology, College of Natural Science, Soonchunhyang University, Asan 336-745, Republic of Korea.
| |
Collapse
|
88
|
Lee J, Jo DG, Park D, Chung HY, Mattson MP. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev 2014; 66:815-68. [PMID: 24958636 PMCID: PMC4081729 DOI: 10.1124/pr.113.007757] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Dong-Gyu Jo
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Daeui Park
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Mark P Mattson
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| |
Collapse
|
89
|
Ghosh N, Ghosh R, Bhat ZA, Mandal V, Bachar SC, Nima ND, Sunday OO, Mandal SC. Advances in Herbal Medicine for Treatment of Ischemic Brain Injury. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ischemic brain injury is one of the leading causes of death worldwide and has attracted a lot of attention in the field of drug discovery. Cerebral ischemia is a complex pathological process involving a series of mechanisms, including generation of free radicals, oxidative stress, disruption of the membrane function, release of neurotransmitters and apoptosis. Thrombolytic therapy is the most effective therapeutic strategy, but the benefits are far from being absolute. Increased attention in the field of drug discovery has been focused on using natural compounds from traditional medicinal herbs for neuroprotection, which appears to be a promising therapeutic option for cerebral ischemia with minimal systemic adverse effects that could limit their long term use. The scenario calls for extensive investigations which can result in the development of lead molecules for neuroprotection in the future. In this context, the present review focuses on possible mechanisms underlying the beneficial effects of herbal drugs in patients with cerebral ischemic injury. Natural compounds have been demonstrated to have neurofunctional regulatory actions with antioxidative, anti-inflammatory, calcium antagonizing and anti-apoptotic activities. Among the several leads obtained from plant sources as potential neuroprotective agents, resveratrol, EGb761, curcumin and epigallocatechin-3-gallate have shown significant therapeutic benefits in cerebral ischemic conditions. However, ligustilide, tanshinone, scutellarin and shikonin are the few lead molecules which are under investigation for treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Nilanjan Ghosh
- Dr B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, India 713206
| | - Rituparna Ghosh
- Dr B.C. Roy College of Pharmacy and Allied Health Sciences, Durgapur, India 713206
| | - Zulfiqar A Bhat
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India 190006
| | - Vivekananda Mandal
- Institute of Pharmacy, Guru Ghasidas University, Bilaspur, India, 495009
| | - Sitesh C. Bachar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Bangladesh
| | - Namsa D. Nima
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India 784028
| | - Otimenyin O. Sunday
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Plateau State, Nigeria
| | - Subhash C. Mandal
- Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India 700032
| |
Collapse
|
90
|
Zhao Y, Yao J, Wu XP, Zhao L, Zhou YX, Zhang Y, You QD, Guo QL, Lu N. Wogonin suppresses human alveolar adenocarcinoma cell A549 migration in inflammatory microenvironment by modulating the IL-6/STAT3 signaling pathway. Mol Carcinog 2014; 54 Suppl 1:E81-93. [PMID: 24976450 DOI: 10.1002/mc.22182] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/14/2014] [Accepted: 04/28/2014] [Indexed: 12/22/2022]
Abstract
Increasing evidence from various clinical and experimental studies has demonstrated that the inflammatory microenvironment facilitates tumor metastasis. Clinically, it will be a promising choice to suppress tumor metastasis by targeting inflammatory microenvironment. Our previous studies have demonstrated that wogonin (a bioflavonoid isolated from the traditional Chinese medicine of Huang-Qin) possesses the anti-metastatic and anti-inflammatory activity, but we have little idea about its efficacy on inflammatory-induced tumor metastasis and the mechanism underlying it. In this study, we focused on epithelial mesenchymal transition (EMT), the first step of tumor metastasis, to evaluate the effects of wogonin on tumor metastasis in inflammatory microenvironment. We found that wogonin inhibited THP-1 conditioned-medium- (CM-) and IL-6-induced EMT by inactivating STAT3 signal. And in wogonin-treated A549 cells which pretreated with THP-1 CM or IL-6, the expression level of E-cadherin, an EMT negative biomarker, increased while that of N-cadherin, Vimentin, and EMT-related transcription factors including Snail and Twist decreased. Moreover, wogonin inhibited IL-6-induced phosphorylation of STAT3, prevented p-STAT3 dimer translocation into the nucleus, and suppressed the DNA-binding activity of p-STAT3. Interestingly, similar results were obtained in the tumor xenografts mice, including downregulation of p-STAT3, N-cadherin, and Vimentin while up-regulation of E-cadherin. Wogonin also inhibit the metastasis of A549 cells in vivo. Taken all data together, we concluded that wogonin suppresses tumor cells migration in inflammatory microenvironment by inactivating STAT3 signal.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, People's Republic of China
| | - Jing Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, People's Republic of China
| | - Xiao-Ping Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, People's Republic of China
| | - Yu-Xin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, People's Republic of China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, People's Republic of China
| | - Qing-Long Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, People's Republic of China
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, People's Republic of China
| |
Collapse
|
91
|
Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citri reticulatae pericarpium). Food Chem Toxicol 2014; 71:176-82. [PMID: 24955543 DOI: 10.1016/j.fct.2014.06.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/22/2022]
Abstract
Inhibiting microglial activation-mediated neuroinflammation has become a convincing target for the development of functional foods to treat neurodegenerative diseases. Tangerine peel (Citri reticulatae pericarpium) has potent anti-inflammatory capacity; however, its anti-neuroinflammatory capacity and the corresponding active compounds remain unclear. To this end, the composition of a tangerine peel ethanolic extract was analysed by LC-MS, and the anti-neuroinflammatory ability was evaluated using a lipopolysaccharide (LPS)-activated BV2 microglia culture system. Hesperidin is the most predominant flavonoid in tangerine peel, followed by tangeretin and nobiletin. Among the eight tested flavanone glycosides and polymethoxy flavones, only nobiletin displayed a capacity of>50% to inhibit LPS-induced proinflammatory NO, TNF-α, IL-1β and IL-6 secretion at a concentration of 100 μM. At 2 mg/ml, tangerine peel extract attenuated LPS-induced NO, TNF-α, IL-1β and IL-6 secretion by 90.6%, 80.2%, 66.7%, and 86.8%, respectively. Hesperidin, nobiletin, and tangeretin individually (at concentrations of 135, 40, and 60 μM, respectively) in 2 mg/ml tangerine peel extract were only mildly inhibitory, whereas in combination, they significantly inhibited LPS-induced proinflammatory cytokine expression at levels equal to that of 2 mg/ml tangerine peel extract. Overall, tangerine peel possesses potent anti-neuroinflammatory capacity, which is attributed to the collective effect of hesperidin, nobiletin, and tangeretin.
Collapse
|
92
|
Gaire BP, Moon SK, Kim H. Scutellaria baicalensis in stroke management: nature's blessing in traditional Eastern medicine. Chin J Integr Med 2014; 20:712-20. [PMID: 24752475 DOI: 10.1007/s11655-014-1347-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Indexed: 01/17/2023]
Abstract
Scutellaria baicalensis Georgi is the most widely used medicinal plant in traditional Eastern medicine, especially in Chinese medicine. The major phytochemicals isolated from S. baicalensis are flavonoids, glycosides and their glucoronides such as baicalin, baicalein, wogonin etc. More than 30 different kinds of flavonoids are isolated from this plant. S. baicalensis and its flavonoids are reported to have several pharmacological activities, which includes anti-allergic, antioxidant, anti apoptic, anti-inflammatory effects and many more. Recently, S. baicalensis and its isolated flavonoids have been studied for their neuroprotective effects, through a variety of in vitro and in vivo models of neurodegenerative diseases, plausibly suggesting that S. baicalensis has salutary effect as a nature's blessing for neuroprotection. In this review, we are focousing on the neuroprotective effects of S. baicalensis and its flavonoids in ischemia or stroke-induced neuronal cell death. We aimed at compiling all the information regarding the neuroprotective effect of S. baicalensis in various experimental models of cerebral ischemia or stroke.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea,
| | | | | |
Collapse
|
93
|
Lee H, Kim BG, Ahn JH. Production of bioactive hydroxyflavones by using monooxygenase from Saccharothrix espanaensis. J Biotechnol 2014; 176:11-7. [DOI: 10.1016/j.jbiotec.2014.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 12/17/2022]
|
94
|
Natural Compounds (Small Molecules) as Potential and Real Drugs of Alzheimer's Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-444-63281-4.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
95
|
Lose dose genistein inhibits glucocorticoid receptor and ischemic brain injury in female rats. Neurochem Int 2014; 65:14-22. [DOI: 10.1016/j.neuint.2013.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/23/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022]
|
96
|
Li WC, Jiang R, Jiang DM, Zhu FC, Su B, Qiao B, Qi XT. Lipopolysaccharide preconditioning attenuates apoptotic processes and improves neuropathologic changes after spinal cord injury in rats. Int J Neurosci 2013; 124:585-92. [PMID: 24205811 DOI: 10.3109/00207454.2013.864289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have shown earlier that administration of low-dose lipopolysaccharide (LPS) significantly contributed to recovery of motor function after traumatic spinal cord injury in the adult female rat. Using the same standardized animal model, we have now designed a set of experiments to test the hypothesis that LPS preconditioning attenuates stress-related apoptotic processes early after spinal cord trauma. The lower thoracic spinal cord injury in adult female Sprague-Dawley rats was caused by a 10 g weight rod drop from 25 mm on the dural surface of the exposed spinal cord at T10. The rats were randomly assigned to three groups: Sham injury, control (received normal saline alone), and LPS preconditioning (0.2 mg/kg, ip; 72 h prior to the injury). The animals were euthanized at 72 h postinjury. Neuropathologic changes were assessed using hematoxylin and eosin staining. SCI-induced apoptosis were observed by transmission electron microscopy. Caspase-3, cleaved caspase-3, Bax, and Bcl-2 were examined with immunohistochemistry or Western blotting. Compared with the control group, LPS preconditioning group showed significant improvement in the SCI-induced morphology changes. Furthermore, LPS preconditioning reduced the expressions of apoptotic markers caspase-3, cleaved caspase-3, and Bax, upregulated the expression of antiapoptotic marker Bcl-2 in the samples of spinal cord. Low-dose LPS attenuated the recruitment of inflammatory cells and the proliferation of glial cells in the site of injury. LPS preconditioning has neuroprotective effects against TSCI in rats due to its antiapoptosis properties as shown by the inhibition of caspase pathway and the upregulation of antiapoptotic protein.
Collapse
Affiliation(s)
- Wei-Chao Li
- 1Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
97
|
|
98
|
Wogonin induced G1 cell cycle arrest by regulating Wnt/β-catenin signaling pathway and inactivating CDK8 in human colorectal cancer carcinoma cells. Toxicology 2013; 312:36-47. [DOI: 10.1016/j.tox.2013.07.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 02/02/2023]
|
99
|
Yan BC, Park JH, Shin BN, Ahn JH, Kim IH, Lee JC, Yoo KY, Hwang IK, Choi JH, Park JH, Lee YL, Suh HW, Jun JG, Kwon YG, Kim YM, Kwon SH, Her S, Kim JS, Hyun BH, Kim CK, Cho JH, Lee CH, Won MH. Neuroprotective effect of a new synthetic aspirin-decursinol adduct in experimental animal models of ischemic stroke. PLoS One 2013; 8:e74886. [PMID: 24073226 PMCID: PMC3779249 DOI: 10.1371/journal.pone.0074886] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 08/07/2013] [Indexed: 02/04/2023] Open
Abstract
Stroke is the second leading cause of death. Experimental animal models of cerebral ischemia are widely used for researching mechanisms of ischemic damage and developing new drugs for the prevention and treatment of stroke. The present study aimed to comparatively investigate neuroprotective effects of aspirin (ASA), decursinol (DA) and new synthetic aspirin-decursinol adduct (ASA-DA) against transient focal and global cerebral ischemic damage. We found that treatment with 20 mg/kg, not 10 mg/kg, ASA-DA protected against ischemia-induced neuronal death after transient focal and global ischemic damage, and its neuroprotective effect was much better than that of ASA or DA alone. In addition, 20 mg/kg ASA-DA treatment reduced the ischemia-induced gliosis and maintained antioxidants levels in the corresponding injury regions. In brief, ASA-DA, a new synthetic drug, dramatically protected neurons from ischemic damage, and neuroprotective effects of ASA-DA may be closely related to the attenuation of ischemia-induced gliosis and maintenance of antioxidants.
Collapse
Affiliation(s)
- Bing Chun Yan
- Institute of Integrative traditional & western Medicine,Medical College, Yangzhou University, Yangzhou, China
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bich Na Shin
- Department of Physiology, College of Medicine and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Ki-Yeon Yoo
- Department of Oral Anatomy, College of Dentistry, Gangneung-Wonju National University, Gangneung, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jeong Ho Park
- Division of Applied Chemistry and Biotechnology, Hanbat National University, Daejeon, South Korea
| | - Yun Lyul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Hong-Won Suh
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine Hallym University, Chuncheon, South Korea
| | - Jong-Gab Jun
- Department of Chemistry and Institute of Applied Chemistry, Hallym University, Chuncheon, South Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young-Myeong Kim
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Seung-Hae Kwon
- Division of Analytical Bio-imaging, Chuncheon Center, Korea Basic Science Institute, Chuncheon, Kangwon, South Korea
| | - Song Her
- Division of Analytical Bio-imaging, Chuncheon Center, Korea Basic Science Institute, Chuncheon, Kangwon, South Korea
| | - Jin Su Kim
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Byung-Hwa Hyun
- Laboratory Animal Center, OSONG Medical Innovation Foundation, Osong, South Korea
| | - Chul-Kyu Kim
- Laboratory Animal Center, OSONG Medical Innovation Foundation, Osong, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine and Institute of Medical Sciences, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Choong Hyun Lee
- Department of Anatomy and Physiology, College of Pharmacy, Dankook University, Cheonan, South Korea
- * E-mail: (MHW); (CHL)
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
- * E-mail: (MHW); (CHL)
| |
Collapse
|
100
|
Bihaqi SW, Singh AP, Tiwari M. Supplementation of Convolvulus pluricaulis attenuates scopolamine-induced increased tau and amyloid precursor protein (AβPP) expression in rat brain. Indian J Pharmacol 2013; 44:593-8. [PMID: 23112420 PMCID: PMC3480791 DOI: 10.4103/0253-7613.100383] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 05/21/2012] [Accepted: 07/04/2012] [Indexed: 01/20/2023] Open
Abstract
Aim: Scopolamine is known to produce amnesia due to blockade of the cholinergic neurotransmission. The present study investigated the potential of Convolvulus pluricaulis (CP) to attenuate scopolamine (2 mg/kg, i.p) induced increased protein and mRNA levels of tau, amyloid precursor protein (AβPP), amyloid β (Aβ) levels and histopathological changes in rat cerebral cortex. Materials and Methods: The study was conducted on male Wistar rats (250 ± 20 g) divided into four groups of eight animals each. Groups 1 and 2 served as controls receiving normal saline and scopolamine for 4 weeks, respectively. Group 3 received rivastigmine (standard) and group 4 received aqueous extract of CP simultaneously with scopolamine. Western blot and RT-PCR analysis were used to evaluate the levels of protein and mRNA of amyloid precursor protein (AβPP) and tau in rat cortex and ELISA was used to measure the amyloid β (Aβ) levels. Histopathology was also performed on cortical section of all groups. Result: Oral administration of CP extract (150 mg/kg) to scopolamine treated rats reduced the increased protein and mRNA levels of tau and AβPP levels followed by reduction in Aβ levels compared with scopolamine treated group. The potential of extract to prevent scopolamine neurotoxicity was reflected at the microscopic level as well, indicative of its neuroprotective effects. Conclusion: CP treatment alleviated neurotoxic effect of scopolamine reflects its potential as potent neuroprotective agent.
Collapse
Affiliation(s)
- Syed Waseem Bihaqi
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, RI, USA
| | | | | |
Collapse
|