51
|
Feurra M, Paulus W, Walsh V, Kanai R. Frequency specific modulation of human somatosensory cortex. Front Psychol 2011; 2:13. [PMID: 21713181 PMCID: PMC3111335 DOI: 10.3389/fpsyg.2011.00013] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/13/2011] [Indexed: 11/25/2022] Open
Abstract
Oscillatory neuronal activities are commonly observed in response to sensory stimulation. However, their functional roles are still the subject of debate. One-way to probe the roles of oscillatory neural activities is to deliver alternating current to the cortex at biologically relevant frequencies and examine whether such stimulation influences perception and cognition. In this study, we tested whether transcranial alternating current stimulation (tACS) over the primary somatosensory cortex (SI) could elicit tactile sensations in humans in a frequency-dependent manner. We tested the effectiveness of tACS over SI at frequency bands ranging from 2 to 70 Hz. Our results show that stimulation in alpha (10–14 Hz) and high gamma (52–70 Hz) frequency range produces a tactile sensation in the contralateral hand. A weaker effect was also observed for beta (16–20 Hz) stimulation. These findings highlight the frequency dependency of effective tACS over SI with the effective frequencies corresponding to those observed in previous electroencephalography/magnetoencephalography studies of tactile perception. Our present study suggests that tACS could be used as a powerful online stimulation technique to reveal the causal roles of oscillatory brain activities.
Collapse
Affiliation(s)
- Matteo Feurra
- Institute of Cognitive Neuroscience, Department of Psychology, University College London London, UK
| | | | | | | |
Collapse
|
52
|
Saxena S, Gale JT, Eskandar EN, Sarma SV. Modulations in the oscillatory activity of the Globus Pallidus internus neurons during a behavioral task-A point process analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2011:4179-4182. [PMID: 22255260 PMCID: PMC3822773 DOI: 10.1109/iembs.2011.6091037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The behavioral state of a subject is hypothesized to be reflected in the oscillatory modulations of the spiking activity of certain groups of neurons. In particular, the beta- and gamma-bands have been experimentally shown to be related to movement in the motor cortex and parts of the basal ganglia. Here, we analyze the relationship between directional tuning and oscillations in the beta- and gamma-bands of the neurons in the Globus Pallidus internus (GPi) of two healthy nonhuman primates during a radial center-out motor task. We find that, during the planning stages of the movement, the percentage of directionally tuned neurons displaying gamma oscillations increases when compared to the percentage of directionally tuned neurons displaying beta oscillations. A similar trend is not seen in non-directionally tuned neurons. This suggests that the GPi neurons involved in the planning of movement communicate information using an emergence of oscillations in the gamma-band.
Collapse
Affiliation(s)
- Shreya Saxena
- Department of Biomedical Engineering, Johns Hopkins University, USA
| | | | | | | |
Collapse
|
53
|
Crone NE, Korzeniewska A, Franaszczuk PJ. Cortical γ responses: searching high and low. Int J Psychophysiol 2011; 79:9-15. [PMID: 21081143 PMCID: PMC3958992 DOI: 10.1016/j.ijpsycho.2010.10.013] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
In this paper, a brief, preliminary attempt is made to frame a scientific debate about how functional responses at gamma frequencies in electrophysiological recordings (EEG, MEG, ECoG, and LFP) should be classified and interpreted. In general, are all gamma responses the same, or should they be divided into different classes according to criteria such as their spectral characteristics (frequency range and/or shape), their spatial-temporal patterns of occurrence, and/or their responsiveness under different task conditions? In particular, are the responses observed in intracranial EEG at a broad range of "high gamma" frequencies (~60-200Hz) different from gamma responses observed at lower frequencies (~30-80Hz), typically in narrower bands? And if they are different, how should they be interpreted? Does the broad spectral shape of high gamma responses arise from the summation of many different narrow-band oscillations, or does it reflect something completely different? If we are not sure, should we refer to high gamma activity as oscillations? A variety of theories have posited a mechanistic role for gamma activity in cortical function, often assuming narrow-band oscillations. These theories continue to influence the design of experiments and the interpretation of their results. Do these theories apply to all electrophysiological responses at gamma frequencies? Although no definitive answers to these questions are immediately anticipated, this paper will attempt to review the rationale for why they are worth asking and to point to some of the possible answers that have been proposed.
Collapse
Affiliation(s)
- Nathan E Crone
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, Maryland 21287, United States.
| | | | | |
Collapse
|
54
|
Schalk G, Leuthardt EC. Brain-Computer Interfaces Using Electrocorticographic Signals. IEEE Rev Biomed Eng 2011; 4:140-54. [DOI: 10.1109/rbme.2011.2172408] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
55
|
Stępień M, Conradi J, Waterstraat G, Hohlefeld FU, Curio G, Nikulin VV. Event-related desynchronization of sensorimotor EEG rhythms in hemiparetic patients with acute stroke. Neurosci Lett 2010; 488:17-21. [PMID: 21056625 DOI: 10.1016/j.neulet.2010.10.072] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/21/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
Previous neuroimaging studies based on neurovascular coupling have shown that stroke affects both, strength and spatial extent of brain activation during upper limb movements. Here, we investigated the sub-second amplitude dynamics of a direct neuronal measure, i.e., event-related desynchronization (ERD) of EEG oscillations during finger movements, in patients with acute cortical and subcortical stroke. Acute cortical strokes were found to decrease the ERD of alpha oscillations for the affected pericentral sensorimotor areas compared to a control group. Within the cortical stroke group, the affected hemisphere showed a smaller alpha-ERD compared to the unaffected hemisphere when each was contralateral to the acting hand. Furthermore, when cortical stroke patients moved their paretic hand, the ipsilateral (i.e., contralesional) alpha-ERD was stronger than the contralateral (ipsilesional) ERD. Interestingly, the alpha-ERD amplitude in a hemisphere with a cortical stroke was relatively well preserved for non-paretic hand movements compared to alpha-ERD amplitude for paretic hand movements. This finding provides a new perspective for assessing the rehabilitative potential, which could be utilized through training of the still responsive cortical network, e.g., via enforced use of the paretic hand.
Collapse
Affiliation(s)
- Magdalena Stępień
- Neurophysics Group, Department of Neurology, Charité University Medicine Berlin, Germany
| | | | | | | | | | | |
Collapse
|
56
|
|
57
|
Weinberger M, Hutchison WD, Dostrovsky JO. Pathological subthalamic nucleus oscillations in PD: Can they be the cause of bradykinesia and akinesia? Exp Neurol 2009; 219:58-61. [DOI: 10.1016/j.expneurol.2009.05.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/01/2009] [Accepted: 05/09/2009] [Indexed: 11/16/2022]
|
58
|
Darvas F, Scherer R, Ojemann JG, Rao RP, Miller KJ, Sorensen LB. High gamma mapping using EEG. Neuroimage 2009; 49:930-8. [PMID: 19715762 DOI: 10.1016/j.neuroimage.2009.08.041] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/30/2009] [Accepted: 08/18/2009] [Indexed: 11/25/2022] Open
Abstract
High gamma (HG) power changes during motor activity, especially at frequencies above 70 Hz, play an important role in functional cortical mapping and as control signals for BCI (brain-computer interface) applications. Most studies of HG activity have used ECoG (electrocorticography) which provides high-quality spatially localized signals, but is an invasive method. Recent studies have shown that non-invasive modalities such as EEG and MEG can also detect task-related HG power changes. We show here that a 27 channel EEG (electroencephalography) montage provides high-quality spatially localized signals non-invasively for HG frequencies ranging from 83 to 101 Hz. We used a generic head model, a weighted minimum norm least squares (MNLS) inverse method, and a self-paced finger movement paradigm. The use of an inverse method enables us to map the EEG onto a generic cortex model. We find the HG activity during the task to be well localized in the contralateral motor area. We find HG power increases prior to finger movement, with average latencies of 462 ms and 82 ms before EMG (electromyogram) onset. We also find significant phase-locking between contra- and ipsilateral motor areas over a similar HG frequency range; here the synchronization onset precedes the EMG by 400 ms. We also compare our results to ECoG data from a similar paradigm and find EEG mapping and ECoG in good agreement. Our findings demonstrate that mapped EEG provides information on two important parameters for functional mapping and BCI which are usually only found in HG of ECoG signals: spatially localized power increases and bihemispheric phase-locking.
Collapse
Affiliation(s)
- F Darvas
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA.
| | | | | | | | | | | |
Collapse
|
59
|
Direct electrophysiological measurement of human default network areas. Proc Natl Acad Sci U S A 2009; 106:12174-7. [PMID: 19584247 DOI: 10.1073/pnas.0902071106] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuroimaging-based investigations in humans have established the existence of brain regions that are selectively metabolically active while resting. We report a population-scale neurophysiological measurement of activity in regions of this "default network," by recording high-frequency power (76-200 Hz) electrical potentials directly from these regions in three human subjects. A selective increase observed during only resting, when compared with activity, firmly establishes a neuronal origin for default network phenomena.
Collapse
|
60
|
Bazhenov M, Rulkov NF, Timofeev I. Effect of synaptic connectivity on long-range synchronization of fast cortical oscillations. J Neurophysiol 2008; 100:1562-75. [PMID: 18632897 DOI: 10.1152/jn.90613.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cortical gamma oscillations in the 20- to 80-Hz range are associated with attentiveness and sensory perception and have strong connections to both cognitive processing and temporal binding of sensory stimuli. These gamma oscillations become synchronized within a few milliseconds over distances spanning a few millimeters in spite of synaptic delays. In this study using in vivo recordings and large-scale cortical network models, we reveal a critical role played by the network geometry in achieving precise long-range synchronization in the gamma frequency band. Our results indicate that the presence of many independent synaptic pathways in a two-dimensional network facilitate precise phase synchronization of fast gamma band oscillations with nearly zero phase delays between remote network sites. These findings predict a common mechanism of precise oscillatory synchronization in neuronal networks.
Collapse
Affiliation(s)
- M Bazhenov
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
61
|
Ball T, Demandt E, Mutschler I, Neitzel E, Mehring C, Vogt K, Aertsen A, Schulze-Bonhage A. Movement related activity in the high gamma range of the human EEG. Neuroimage 2008; 41:302-10. [PMID: 18424182 DOI: 10.1016/j.neuroimage.2008.02.032] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/15/2008] [Accepted: 02/19/2008] [Indexed: 11/24/2022] Open
|
62
|
Dalal SS, Guggisberg AG, Edwards E, Sekihara K, Findlay AM, Canolty RT, Berger MS, Knight RT, Barbaro NM, Kirsch HE, Nagarajan SS. Five-dimensional neuroimaging: localization of the time-frequency dynamics of cortical activity. Neuroimage 2008; 40:1686-700. [PMID: 18356081 PMCID: PMC2426929 DOI: 10.1016/j.neuroimage.2008.01.023] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 01/08/2008] [Accepted: 01/17/2008] [Indexed: 11/18/2022] Open
Abstract
The spatiotemporal dynamics of cortical oscillations across human brain regions remain poorly understood because of a lack of adequately validated methods for reconstructing such activity from noninvasive electrophysiological data. In this paper, we present a novel adaptive spatial filtering algorithm optimized for robust source time-frequency reconstruction from magnetoencephalography (MEG) and electroencephalography (EEG) data. The efficacy of the method is demonstrated with simulated sources and is also applied to real MEG data from a self-paced finger movement task. The algorithm reliably reveals modulations both in the beta band (12-30 Hz) and high gamma band (65-90 Hz) in sensorimotor cortex. The performance is validated by both across-subjects statistical comparisons and by intracranial electrocorticography (ECoG) data from two epilepsy patients. Interestingly, we also reliably observed high frequency activity (30-300 Hz) in the cerebellum, although with variable locations and frequencies across subjects. The proposed algorithm is highly parallelizable and runs efficiently on modern high-performance computing clusters. This method enables the ultimate promise of MEG and EEG for five-dimensional imaging of space, time, and frequency activity in the brain and renders it applicable for widespread studies of human cortical dynamics during cognition.
Collapse
Affiliation(s)
- Sarang S Dalal
- Department of Radiology, University of California, San Francisco, CA 94143-0628, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Riddle CN, Baker SN. Digit displacement, not object compliance, underlies task dependent modulations in human corticomuscular coherence. Neuroimage 2006; 33:618-27. [PMID: 16963283 DOI: 10.1016/j.neuroimage.2006.07.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/25/2006] [Accepted: 07/25/2006] [Indexed: 11/16/2022] Open
Abstract
Human sensorimotor EEG shows oscillatory activity at approximately 10 and approximately 20 Hz; the latter frequency is coherent with contralateral EMG. The functional significance of this activity is obscure. A recent study found that corticomuscular coherence varied systematically with increasing lever compliance during a precision grip task. However, since subjects exerted the same force in all conditions, changes in lever compliance also produced changes in how far the digits moved. In this study, we disambiguated whether corticomuscular coherence modulates with object compliance or digit displacement. Subjects performed a precision grip task. Under computer control, the manipulandum could simulate a load of arbitrary compliance (spring constant). Subjects were required to produce a hold-ramp-hold profile of lever displacement, under visual feedback. Subjects first performed tasks with different sized lever movements, against an isotonic load (zero spring constant). Corticomuscular coherence was calculated between left sensorimotor EEG and EMG from five right hand and forearm muscles during the hold phase of the task. Coherence magnitude showed a clear dependence on the extent of digit displacement. In the next task, lever compliance instantaneously changed at the onset of the second hold phase of the task. Corticomuscular coherence modulated not with lever compliance during the analysed hold phase, but with digit displacement during the preceding ramp movement. These data suggest that human corticomuscular coherence is directly related to digit displacement during the preceding movement and not to object compliance. We speculate that corticomuscular coherence may reflect a sensorimotor recalibration, providing updated information about system state following movement.
Collapse
Affiliation(s)
- C Nicholas Riddle
- Department of Anatomy, University of Cambridge, Cambridge, CB2 3DY, UK
| | | |
Collapse
|
64
|
Szurhaj W, Labyt E, Bourriez JL, Kahane P, Chauvel P, Mauguière F, Derambure P. Relationship between intracerebral gamma oscillations and slow potentials in the human sensorimotor cortex. Eur J Neurosci 2006; 24:947-54. [PMID: 16930422 DOI: 10.1111/j.1460-9568.2006.04876.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Changes in sensorimotor rhythms (mu, beta and gamma) and movement-related cortical potentials (MRCPs) are both generated principally by the contralateral sensorimotor areas during the execution of self-paced movement. They appear to reflect movement control mechanisms, which remain partially unclear. With the aim of better understanding their sources and significance, we recorded MRCPs and sensorimotor rhythms during and after self-paced movement using intracerebral electrodes in eight epileptic subjects investigated by stereoelectroencephalography. The results showed that: (i) there is a strong spatial relationship between the late components of movement--the so-called motor potential (MP) and post-movement complex (PMc)--and gamma event-related synchronization (ERS) within the 40-60 Hz band, as the MP/PMc always occurred in contacts displaying gamma ERS (the primary sensorimotor areas), whereas mu and beta reactivities were more diffuse; and (ii) MPs and PMc are both generated by the primary motor and somatosensory areas, but with distinct sources. Hence, this could mean that kinesthesic sensory afferences project to neurons other than those firing during the pyramidal tract volley. The PMc and low gamma ERS represent two electrophysiological facets of kinesthesic feedback from the joints and muscles involved in the movement to the sensorimotor cortex. It could be suggested that gamma oscillations within the 40-60 Hz band could serve to synchronize the activities of the various neuronal populations involved in control of the ongoing movement.
Collapse
Affiliation(s)
- William Szurhaj
- EA 2683, Service de Neurophysiologie Clinique, CHRU Lille, France.
| | | | | | | | | | | | | |
Collapse
|
65
|
Gurtubay IG, Alegre M, Valencia M, Artieda J. Cortical gamma activity during auditory tone omission provides evidence for the involvement of oscillatory activity in top-down processing. Exp Brain Res 2006; 175:463-70. [PMID: 16763832 DOI: 10.1007/s00221-006-0561-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 05/15/2006] [Indexed: 10/24/2022]
Abstract
Perception is an active process in which our brains use top-down influences to modulate afferent information. To determine whether this modulation might be based on oscillatory activity, we asked seven subjects to detect a silence that appeared randomly in a rhythmic auditory sequence, counting the number of omissions ("count" task), or responding to each omission with a right index finger extension ("move" task). Despite the absence of physical stimuli, these tasks induced a 'non-phase-locked' gamma oscillation in temporal-parietal areas, providing evidence of intrinsically generated oscillatory activity during top-down processing. This oscillation is probably related to the local neural activation that takes place during the process of stimulus detection, involving the functional comparison between the tones and the absence of stimuli as well as the auditory echoic memory processes. The amplitude of the gamma oscillations was reduced with the repetition of the tasks. Moreover, it correlated positively with the number of correctly detected omissions and negatively with the reaction time. These findings indicate that these oscillations, like others described, may be modulated by attentional processes. In summary, our findings support the active and adaptive concept of brain function that has emerged over recent years, suggesting that the match of sensory information with memory contents generates gamma oscillations.
Collapse
Affiliation(s)
- I G Gurtubay
- Neurophysiology Section, Clínica Universitaria, University of Navarra, Apdo. 4209 31008 Pamplona, Spain
| | | | | | | |
Collapse
|
66
|
Perez MA, Lundbye-Jensen J, Nielsen JB. Changes in corticospinal drive to spinal motoneurones following visuo-motor skill learning in humans. J Physiol 2006; 573:843-55. [PMID: 16581867 PMCID: PMC1779755 DOI: 10.1113/jphysiol.2006.105361] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have previously demonstrated an increase in the excitability of the leg motor cortical area in relation to acquisition of a visuo-motor task in healthy humans. It remains unknown whether the interaction between corticospinal drive and spinal motoneurones is also modulated following motor skill learning. Here we investigated the effect of visuo-motor skill training involving the ankle muscles on the coupling between electroencephalographic (EEG) activity recorded from the motor cortex (Cz) and electromyographic (EMG) activity recorded from the left tibialis anterior (TA) muscle in 11 volunteers. Coupling in the time (cumulant density function) and frequency domains (coherence) between EEG-EMG and EMG-EMG activity were calculated during tonic isometric dorsiflexion before and after 32 min of training a visuo-motor tracking task involving the ankle muscles or performing alternating dorsi- and plantarflexion movements without visual feedback. A significant increase in EEG-EMG coherence around 15-35 Hz was observed following the visuo-motor skill session in nine subjects and in only one subject after the control task. Changes in coherence were specific to the trained muscle as coherence for the untrained contralateral TA muscle was unchanged. EEG and EMG power were unchanged following the training. Our results suggest that visuo-motor skill training is associated with changes in the corticospinal drive to spinal motorneurones. Possibly these changes reflect sensorimotor integration processes between cortex and muscle as part of the motor learning process.
Collapse
Affiliation(s)
- Monica A Perez
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | | | |
Collapse
|
67
|
LaBerge D. Sustained attention and apical dendrite activity in recurrent circuits. ACTA ACUST UNITED AC 2006; 50:86-99. [PMID: 15921761 DOI: 10.1016/j.brainresrev.2005.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 04/13/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
Recurrent neural activity is a pervasive mode of cortical operations and is believed to underlie cognitive functions of working memory, attention, and the generation of spontaneous activity during sleep . It is proposed here that activity in corticothalamic recurrent circuits underlies the sustaining of attention, and that extended durations of attention are made possible by the stabilizing effects of electrical activity in long apical dendrites of pyramidal neurons. Using the cue-target delay task as a framework, the present paper describes sustained attention during the cue-target delay as activity in recurrent circuits involving layer 5/6 pyramidal neurons. At target onset, persistent activity in apical dendrites of layer 2/3 pyramidal neurons (projected from the recurrent circuits) can enhance the processing of incoming pulse trains at basal dendrites. Apical dendrite activity is assumed to modulate the soma processing of layer 2/3 and layer 5/6 pyramidal neurons at subthreshold voltage levels. The variability of successive soma depolarizations from the apical dendrite strongly influences the stability of activity in the corticothalamic recurrent circuit. Lower variability promotes higher stability. According to the present model of apical dendrite function, soma depolarizations can be reduced in variability and maintained within subthreshold levels by increasing the distance that EPSPs propagate along the apical dendrite. The close relationship between sustained attention and the electrical field potentials produced by repeated EPSP propagations in apical dendrites is supported in a brief review of sustained attention experiments that have employed measures of EEG, ERS/ERD, ERP, and LFP.
Collapse
Affiliation(s)
- David LaBerge
- Simon's Rock College of Bard, 84 Alford Road, Great Barrington, MA 01230, USA.
| |
Collapse
|
68
|
Miyanari A, Kaneoke Y, Ihara A, Watanabe S, Osaki Y, Kubo T, Kato A, Yoshimine T, Sagara Y, Kakigi R. Neuromagnetic Changes of Brain Rhythm Evoked by Intravenous Olfactory Stimulation in Humans. Brain Topogr 2006; 18:189-99. [PMID: 16544208 DOI: 10.1007/s10548-006-0268-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2006] [Indexed: 11/30/2022]
Abstract
To identify the changes in the respective frequency band and brain areas related to olfactory perception, we measured magnetoencephalographic (MEG) signals before and after instilling intravenously thiamine propyl disulfide (TPD) and thiamine tetrahydrofurfuryl disulfide monohydrochloride (TTFD), which evoked a strong and weak sensation of odor, respectively. For the frequency analysis of MEG, a beamformer program, synthetic aperture magnetometry (SAM), was employed and event-related desynchronization (ERD) or synchronization (ERS) was statistically determined. Both strong and weak odors induced ERD in (1) beta band (13-30 Hz) in the right precentral gyrus, and the superior and middle frontal gyri in both hemispheres, (2) low gamma band (30-60 Hz) in the left superior frontal gyrus and superior parietal lobule, and the middle frontal gyrus in both hemispheres, and (3) high gamma band 2 (100-200 Hz) in the right inferior frontal gyrus. TPD induced ERD in the left temporal, parietal and occipital lobes, while TTFD induced ERD in the right temporal, parietal and occipital lobes. The results indicate that physiological functions in several regions in the frontal lobe may change and the strength of the odor may play a different role in each hemisphere during olfactory perception in humans.
Collapse
Affiliation(s)
- Ai Miyanari
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Soteropoulos DS, Baker SN. Cortico-cerebellar coherence during a precision grip task in the monkey. J Neurophysiol 2006; 95:1194-206. [PMID: 16424458 DOI: 10.1152/jn.00935.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the synchronization of single units in macaque deep cerebellar nuclei (DCN) with local field potentials (LFPs) in primary motor cortex (M1) bilaterally during performance of a precision grip task. Analysis was restricted to periods of steady holding, during which M1 oscillations are known to be strongest. Significant coherence between DCN units and M1 LFP oscillations bilaterally was seen at approximately 10-40 Hz (contralateral M1: 25/87 units; ipsilateral: 9/87 units). Averaged coherence between DCN units and contralateral M1 LFP showed a prominent approximately 17-Hz coherence peak and an average phase of approximately -pi/2 radians, implying that the DCN units fired around the time of maximal depolarization of M1 cells. The lack of a time delay between DCN and M1 activity suggests that the cerebellum and cortex may form a pair of phase coupled oscillators. Although coherence values were low (mean peak coherence, 0.018), we used a computational model to show that this probably resulted from the nonlinearity of spike generating mechanisms within the DCN. DCN unit discharge and DCN LFPs also showed significant coherence at approximately 10-40 Hz, with similarly low magnitude (mean peak coherence, 0.012). The average coherence phase was -2.5 radians for the 6- to 14-Hz range and -1.1 radians for the 17- to 41-Hz range, suggesting different frequency-specific underlying mechanisms. Finally, 4/40 pairs of simultaneously recorded DCN units showed a significant cross-correlation peak, and 16/40 pairs showed significant unit-unit coherence. The extensive oscillatory synchronization observed between cerebellum and motor cortex may have functional importance in sensorimotor processing.
Collapse
Affiliation(s)
- Demetris S Soteropoulos
- University of Newcastle, Sir James Spence Institute, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
70
|
Ihara A, Kakigi R. Oscillatory activity in the occipitotemporal area related to the visual perception of letters of a first/second language and pseudoletters. Neuroimage 2006; 29:789-96. [PMID: 16209929 DOI: 10.1016/j.neuroimage.2005.08.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 05/22/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022] Open
Abstract
The objective of this study was to reveal the oscillatory activity in the occipitotemporal area related to the visual perception of the letters of first (L1) and second languages (L2) and pseudoletters. We recorded neuromagnetic signals while Korean native speakers were exposed to a phonogram of Korean, acquired at school age as their L1 (Hangul), that of Japanese, learned in adulthood as a L2 (Kana) and pseudoletter (Pseudo), and quantified the event-related desynchronization (ERD) and synchronization (ERS). In all conditions, sustained ERDs in the alpha band were observed in both hemispheres. ERD for Pseudo was gradually attenuated after approximately 400-500 ms after stimulus onset, whereas both Hangul and Kana produced stronger and longer-lasting ERD. ERD for Kana showed a broader alpha band than Hangul. Furthermore, transient ERSs in the gamma band around 70 Hz were observed between 100 and 400 ms in the bilateral occipitotemporal areas. In the left hemisphere, gamma band oscillations showed similar enhancement in all conditions, suggesting that gamma band activity in the left occipitotemporal area might be enhanced not only by the bottom-up process as visual perception but also by the top-down process as attention to prelexical visual stimuli. In the right hemisphere, gamma band ERS was stronger for Hangul than Pseudo and no differences were shown between Kana and Pseudo. The differences of oscillatory activity in the alpha and gamma bands suggest that neuronal networks, including the occipitotemporal area, are related to the visual perception of letters differing between L1 and L2.
Collapse
Affiliation(s)
- Aya Ihara
- Department of Integrative Physiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki 444-8585, Japan.
| | | |
Collapse
|
71
|
Birca A, Carmant L, Lortie A, Lassonde M. Interaction between the flash evoked SSVEPs and the spontaneous EEG activity in children and adults. Clin Neurophysiol 2006; 117:279-88. [PMID: 16376144 DOI: 10.1016/j.clinph.2005.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 09/26/2005] [Accepted: 10/06/2005] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To evaluate the interaction between the steady-state visual evoked potentials (SSVEPs) recorded during the intermittent photic stimulation (IPS) and the spontaneous EEG activities both in children and adults. METHODS EEG was recorded during the rest and under 5, 7.5, 10 and 12.5 Hz IPS in 41 children between 3 and 16 years and 10 adults. We distinguished between the spontaneous resting EEG spectra, SSVEPs (1st harmonic) and undriven (ongoing) EEG spectra recorded during the IPS. RESULTS We show that IPS influences spontaneous EEG activity by specifically suppressing or desynchronizing individual posterior dominant resting EEG frequencies (DF) in both children and adults. Further, this highly significant and consistent suppressing effect positively correlates with the SSVEPs amplitude. CONCLUSIONS Our data suggest that the desynchronization of the spontaneous EEG activity under IPS and the SSVEPs are related to each other. SIGNIFICANCE These relationships could be interesting to study in pathological conditions where the neural synchronization and the responses to IPS have been shown to be affected, such as epilepsy and schizophrenia.
Collapse
Affiliation(s)
- A Birca
- Centre de recherche de l'Hôpital Sainte-Justine, Faculté de Médecine, Université de Montréal, Montréal, Que., Canada
| | | | | | | |
Collapse
|
72
|
Polack PO, Charpier S. Intracellular activity of cortical and thalamic neurones during high-voltage rhythmic spike discharge in Long-Evans rats in vivo. J Physiol 2006; 571:461-76. [PMID: 16410284 PMCID: PMC1796797 DOI: 10.1113/jphysiol.2005.100925] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Spontaneous high-voltage rhythmic spike (HVRS) discharges at 6-12 Hz have been widely described in the electrocorticogram (EcoG) of Long-Evans rats. These ECoG oscillations have been proposed to reflect a state of attentive immobility allowing the optimization of sensory integration within the corticothalamic pathway. This hypothesis has been challenged by recent studies emphasizing similarities between HVRS discharges and spike-and-wave discharges (SWDs) in well-established rat genetic models of absence epilepsy. Here, we made in vivo intracellular recordings to determine, for the first time, the cellular mechanisms responsible for the synchronized oscillations in the corticothalamic loop during HVRS discharges in the Long-Evans rats. We show that HVRS discharges are associated in corticothalamic neurones with rhythmic suprathreshold synaptic depolarizations superimposed on a tonic hyperpolarization, likely due to a process of synaptic disfacilitation. Simultaneously, thalamocortical neurones exhibit a large-amplitude 'croissant'-shaped membrane hyperpolarization with a voltage sensitivity suggesting a potassium-dependent mechanism. This thalamic hyperpolarizing envelope was associated with a membrane oscillation resulting from interactions between excitatory synaptic inputs, a chloride-dependent inhibitory conductance and voltage-gated intrinsic currents. These cortical and thalamic cellular mechanisms underlying HVRS activity in Long-Evans rats are remarkably similar to those previously described in the thalamocortical networks during SWDs. Thus, the present study provides an additional support to the hypothesis that HVRS activity in Long-Evans rats is an absence-like seizure activity.
Collapse
Affiliation(s)
- Pierre-Olivier Polack
- Institut National de la Santé et de la Recherche Médicale U667, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | | |
Collapse
|
73
|
Abstract
The Cortical Activation Model (CAM) is an attempt to explain whether an internally or externally paced event reveals an event-related desynchronization (ERD) or event-related synchronization (ERS) in a specific frequency band. It is assumed that the amplitude of network-specific oscillations depends on, in addition to other factors, the number of neurons available for synchronization and the excitability level of neurons and forms a bell-shaped curve with a maximum of oscillatory activity at a certain balance of both factors. Depending on the baseline level of cortical activation (CA) and the location of the "working point" (WP), a sudden change of activation can induce either ERD or ERS in a given area.
Collapse
Affiliation(s)
- Gert Pfurtscheller
- Laboratory of Brain-Computer Interface (BCI-Lab), Institute of Knowledge Discovery, Graz University of Technology, Krenngasse 37, A-8010 Graz, Austria.
| |
Collapse
|
74
|
Rektor I, Sochůrková D, Bocková M. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task. PROGRESS IN BRAIN RESEARCH 2006; 159:311-30. [PMID: 17071240 DOI: 10.1016/s0079-6123(06)59021-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In order to study cerebral activity related to preparation and execution of movement, evoked and induced brain electrical activities were compared to each other and to fMRI results in voluntary self-paced movements. Also, the event-related desynchronization and synchronization (ERD/ERS) were studied in complex movements with various degrees of cognitive load. The Bereitschaftspotential (BP) and alpha (8-12 Hz) and beta (16-24 Hz) ERD/ERS rhythms in self-paced simple movements were analyzed in 14 epilepsy surgery candidates. In previous studies, the cortical sources of BP were consistently displayed contralateral to the movement in the primary motor cortex and somatosensory cortex, and bilateral in the supplementary motor area (SMA) and in the cingulate cortex. There were also small and inconstant BP generators in the ipsilateral sensorimotor, premotor, and dorsolateral prefrontal cortex. Alpha and beta ERD/ERS were also observed in these cortical regions. The distribution of contacts showing ERD or ERS was larger than of those showing BP. In contrast to BP, ERD, and ERS frequently occurred in the orbitofrontal, lateral and mesial temporal cortices, and inferior parietal lobule. The spatial location of brain activation for self-paced repetitive movements, i.e., writing simple dots, was studied using event-related functional MRI (fMRI) in 10 healthy right-handed subjects. We observed significant activation in regions known to participate in motor control: contralateral to the movement in the primary sensorimotor and supramarginal cortices, the SMA and the underlying cingulate, and, to a lesser extent, the ipsilateral sensorimotor region. When the fMRI was compared with the map of the brain areas electrically active with self-paced movements (intracerebral recordings; Rektor et al., 1994, 1998, 2001b, c; Rektor, 2003), there was an evident overlap of most results. Nevertheless, the electrophysiological studies were more sensitive in uncovering small active areas, i.e., in the premotor and prefrontal cortices. The BP and the event-related hemodynamic changes were displayed in regions known to participate in motor control. The cortical occurrence of oscillatory activities in the alpha-beta range was clearly more widespread. Four epilepsy surgery candidates with implanted depth brain electrodes performed two visuomotor-cognitive tasks with cued complex movements: a simple task--copying randomly presented letters from the monitor; and a more complex task--writing a letter other than that which appears on the monitor. The second task demanded an increased cognitive load, i.e., of executive functions. Alpha and beta ERD/ERS rhythms were evaluated. Similar results for both tasks were found in the majority of the frontal contacts, i.e., in the SMA, anterior cingulate, premotor, and dorsolateral prefrontal cortices. The most frequent observed activity was ERD in the beta rhythm; alpha ERS and ERD were also present. Significant differences between the two tasks appeared in several frontal areas--in the dorsolateral and ventrolateral prefrontal and orbitofrontal cortices (BA 9, 45, 11), and in the temporal neocortex (BA 21). In several contacts localized in these areas, namely in the lateral temporal cortex, there were significant changes only with the complex task--mostly beta ERD. Although the fMRI results fit well with the map of the evoked activity (BP), several discrepant localizations were displayed when the BP was compared with the distribution of the oscillatory activity (ERD-ERS). The BP and hemodynamic changes are closely related to the motor control areas; ERD/ERS represent the broader physiological aspects of motor execution and control. The BP probably reflects regional activation, while the more widespread ERD/ERS may reflect the spread of task-relevant information across relevant areas. In the writing tasks, the spatial distribution of the alpha-beta ERD/ERS in the frontal and lateral temporal cortices was partially task dependent. The ERD/ERS occurred there predominantly in the more complex of the writing tasks. Some sites were only active in the task with the increased demand on executive functions. In the temporal neocortex only, the oscillatory, but not the evoked, activity was recorded in the self-paced movement. The temporal appearance of changes of oscillatory activities in the self-paced movement task as well as in the cued movement task with an increased load of executive functions raises the interesting question of the role of this region in cognitive-movement information processing.
Collapse
Affiliation(s)
- I Rektor
- First Department of Neurology, Medical Faculty of Masaryk University, St. Anne's Teaching Hospital, Pekarská 53, 656 91 Brno, Czech Republic.
| | | | | |
Collapse
|
75
|
Szurhaj W, Derambure P. Intracerebral study of gamma oscillations in the human sensorimotor cortex. PROGRESS IN BRAIN RESEARCH 2006; 159:297-310. [PMID: 17071239 DOI: 10.1016/s0079-6123(06)59020-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Since few years, gamma oscillations have given rise to an increasing interest. They have been successively described as being involved in cognitive function and various sensory systems. However, their role remains the subject of much debate. Gamma rhythms are difficult to study in scalp recordings due to low amplitudes and because the skull filters out high-frequency signals. Hence, their study makes necessary intracerebral recordings. Here, we report our intracerebral data issuing from study of gamma oscillations in the human sensorimotor cortex during the preparation and execution of voluntary movements. These studies have been performed in epileptic patients explored by stereoelectroencephalography (SEEG). Whereas mu and beta rhythms reactivity was diffused, the gamma rhythm reactivity to the movement was very focused and was observed predominantly in the primary sensorimotor areas that were involved in the movement, as assessed by the electrical cortical stimulations. Gamma oscillations seemed to be related to the movement execution rather than to the movement preparation. We have compared the temporo-spatial relationships between movement-related cortical potentials (MRCPs) and sensorimotor rhythms. We show that (i) the late components of MRCPs (motor potential--MP and post-movement complex--PMc) and the gamma event-related synchronization (ERS) within the 40-60-Hz band always occurred in the same contacts (located in the primary sensorimotor areas) and (ii) the PMc peaked during the gamma ERS, whereas the MP began before it. The PMc, so-called 'Reafferent Potential', is supposed to reflect the somesthetic reafferentation of the sensorimotor cortex. Hence, it seems that the PMc and the gamma ERS represent two electrophysiological facets of the reafferentation of the cortex during the movement. We suggest that gamma oscillations within the 40-60-Hz band serve to facilitate kinesthesic afferences from the muscles and joints involved in the movement to the primary sensorimotor cortex, which would be necessary for controlling the ongoing movement.
Collapse
Affiliation(s)
- William Szurhaj
- Department of Clinical Neurophysiology, EA 2683, CHRU, Lille, France.
| | | |
Collapse
|
76
|
Crone NE, Sinai A, Korzeniewska A. High-frequency gamma oscillations and human brain mapping with electrocorticography. PROGRESS IN BRAIN RESEARCH 2006; 159:275-95. [PMID: 17071238 DOI: 10.1016/s0079-6123(06)59019-3] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Invasive EEG recordings with depth and/or subdural electrodes are occasionally necessary for the surgical management of patients with epilepsy refractory to medications. In addition to their vital clinical utility, electrocorticographic (ECoG) recordings provide an unprecedented opportunity to study the electrophysiological correlates of functional brain activation in greater detail than non-invasive recordings. The proximity of ECoG electrodes to the cortical sources of EEG activity enhances their spatial resolution, as well as their sensitivity and signal-to-noise ratio, particularly for high-frequency EEG activity. ECoG recordings have, therefore, been used to study the event-related dynamics of brain oscillations in a variety of frequency ranges, and in a variety of functional-neuroanatomic systems, including somatosensory and somatomotor systems, visual and auditory perceptual systems, and cortical networks responsible for language. These ECoG studies have confirmed and extended the original non-invasive observations of ERD/ERS phenomena in lower frequencies, and have discovered novel event-related responses in gamma frequencies higher than those previously observed in non-invasive recordings. In particular, broadband event-related gamma responses greater than 60 Hz, extending up to approximately 200 Hz, have been observed in a variety of functional brain systems. The observation of these "high gamma" responses requires a recording system with an adequate sampling rate and dynamic range (we use 1000 Hz at 16-bit A/D resolution) and is facilitated by event-related time-frequency analyses of the recorded signals. The functional response properties of high-gamma activity are distinct from those of ERD/ERS phenomena in lower frequencies. In particular, the timing and spatial localization of high-gamma ERS often appear to be more specific to the putative timing and localization of functional brain activation than alpha or beta ERD/ERS. These findings are consistent with the proposed role of synchronized gamma oscillations in models of neural computation, which have in turn been inspired by observations of gamma activity in animal preparations, albeit at somewhat lower frequencies. Although ECoG recordings cannot directly measure the synchronization of action potentials among assemblies of neurons, they may demonstrate event-related interactions between gamma oscillations in macroscopic local field potentials (LFP) generated by different large-scale populations of neurons engaged by the same functional task. Indeed, preliminary studies suggest that such interactions do occur in gamma frequencies, including high-gamma frequencies, at latencies consistent with the timing of task performance. The neuronal mechanisms underlying high-gamma activity and its unique response properties in humans are still largely unknown, but their investigation through invasive methods is expected to facilitate and expand their potential clinical and research applications, including functional brain mapping, brain-computer interfaces, and neurophysiological studies of human cognition.
Collapse
Affiliation(s)
- Nathan E Crone
- Department of Neurology, The Johns Hopkins University School of Medicine, 600 N. Wolfe St., Meyer 2-147, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
77
|
Abstract
The main topic of this overview is an analysis of the concepts of phase and synchrony, as used in neurophysiology, in their various meanings. A number of notions related to the concepts of phase and synchrony, which are incorporated in contemporary neurophysiology, particularly in the domain of neuro-cognitive physiology are discussed. These notions need a critical examination, since their use sometimes is not clear, or it may even be ambiguous. We present some of these concepts, namely (a) (des)synchronization, (b) phase resetting, (c) phase synchrony and phase/time delays, and (d) phase clustering within one signal, while discussing what type of neuronal activities may underlie these EEG phenomena.
Collapse
Affiliation(s)
- Fernando H Lopes da Silva
- Center of Neurosciences, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands.
| |
Collapse
|
78
|
Lange RK, Braun C, Godde B. Coordinate processing during the left-to-right hand transfer investigated by EEG. Exp Brain Res 2005; 168:547-56. [PMID: 16328313 DOI: 10.1007/s00221-005-0117-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 06/25/2005] [Indexed: 11/28/2022]
Abstract
Information about visuomotor tasks is coded in extrinsic, object-centered and intrinsic, body-related coordinates. For the reproduction of a trained task in mirror orientation with the opposite untrained hand, acquired extrinsic coordinates must be transformed. In contrast, intrinsic coordinates have to be modified during the execution of the originally oriented task. As shown recently, processes of coordinate transformations during the right-to-left hand transfer are associated with movement preparation and occur preferentially in the left hemisphere. Here, movement-related potentials, EEG power, and EEG coherence were recorded during the repetition of a drawing task previously trained by the nondominant left hand (Learned-task) and its execution in original and mirror orientation by the right hand (Normal- and Mirror-task). To identify EEG correlates of coordinate processing during intermanual transfer rather than effects due to the use of the right versus left hand, only those EEG data were analyzed which differed between the Normal- and Mirror-tasks. Whereas the Normal-task did not differ from the Learned-task in any of these predefined EEG parameters, beta coherence increased in the Mirror-task in the period ranging from 1 to 2 s after movement onset. These increases were especially prominent between hemispheres but were also observed symmetrically in the parieto-frontal electrode pairs of both hemispheres. Behavioral data revealed that the performance in the Learned- and both transfer tasks improved after left-hand training. Results of the present study indicate that coordinate transformation during the left-to-right hand transfer occurs in the phase of movement execution and affects predominantly extrinsic coordinates. Intrinsic coordinates are presumably mainly used in their original form. The modification of extrinsic coordinates is accompanied by increased information flow between both hemispheres; thereby inter-hemispheric connections--as mediated via the corpus callosum--seem to play a central role.
Collapse
Affiliation(s)
- Regine K Lange
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
79
|
Mazaheri A, Picton TW. EEG spectral dynamics during discrimination of auditory and visual targets. ACTA ACUST UNITED AC 2005; 24:81-96. [PMID: 15922161 DOI: 10.1016/j.cogbrainres.2004.12.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 12/17/2004] [Accepted: 12/20/2004] [Indexed: 11/30/2022]
Abstract
This study measured the changes in the spectrum of the EEG (electroencephalogram) and in the event-related potentials (ERPs) as subjects detected an improbable target in a train of standard stimuli. The intent was to determine how these measurements are related, and to what extent the ERPs might represent phase-locked changes in EEG rhythms. The experimental manipulations were the stimulus modality (auditory or visual), the discriminability of the target, and the presence or absence of distraction. The ERPs showed sensory-evoked potentials that were specific to the modality and a target-evoked P300 wave that was later in the visual modality than in the auditory, and later and smaller when the discrimination was more difficult. The averaged EEG spectrograms showed that targets increased the frontal theta activity, decreased posterior and central alpha and beta activity, and decreased the central gamma activity. The scalp topography of the changes in the alpha and beta activity indicated a posterior desynchronization specific for the visual task and occurring with both targets and standards and a more widespread desynchronization for targets in either modality. Increased phase synchronization occurred during the event-related potentials, but modeling demonstrated that this can be seen when an evoked potential waveform is simply added to the background EEG. However, subtracting the spectrogram of the average ERP from the average spectrogram of the single trials indicated that phase-resetting of the background EEG rhythms can occur during the ERP. The idea that the ERPs and the EEG rhythms "share generators" can explain these findings.
Collapse
Affiliation(s)
- Ali Mazaheri
- Rotman Research Institute, Baycrest Centre for Geriatric Care, 3560 Bathurst Street, Toronto, Canada M6A 2E1
| | | |
Collapse
|
80
|
Pineda JA. The functional significance of mu rhythms: translating "seeing" and "hearing" into "doing". ACTA ACUST UNITED AC 2005; 50:57-68. [PMID: 15925412 DOI: 10.1016/j.brainresrev.2005.04.005] [Citation(s) in RCA: 675] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 04/15/2005] [Accepted: 04/21/2005] [Indexed: 11/25/2022]
Abstract
Existing evidence indicates that mu and other alpha-like rhythms are independent phenomena because of differences in source generation, sensitivity to sensory events, bilateral coherence, frequency, and power. Although mu suppression and enhancement echo sensorimotor processing in frontoparietal networks, they are also sensitive to cognitive and affective influences and likely reflect more than an idling brain state. Mu rhythms are present at early stages of human development and in other mammalian species. They exhibit adaptive and dynamically changing properties, including frequency acceleration and posterior-to-anterior shifts in focus. Furthermore, individuals can learn to control mu rhythms volitionally in a very short period of time. This raises questions about the mu rhythm's open neural architecture and ability to respond to cognitive, affective, and motor imagery, implying an even greater developmental and functional role than has previously been ascribed to it. Recent studies have suggested that mu rhythms reflect downstream modulation of motor cortex by prefrontal mirror neurons, i.e., cells that may play a critical role in imitation learning and the ability to understand the actions of others. It is proposed that mu rhythms represent an important information processing function that links perception and action-specifically, the transformation of "seeing" and "hearing" into "doing." In a broader context, this transformation function results from an entrainment/gating mechanism in which multiple alpha networks (visual-, auditory-, and somatosensory-centered domains), typically producing rhythmic oscillations in a locally independent manner, become coupled and entrained. A global or 'diffuse and distributed alpha system' comes into existence when these independent sources of alpha become coherently engaged in transforming perception to action.
Collapse
Affiliation(s)
- Jaime A Pineda
- Department of Cognitive Science and Neuroscience, University of California, San Diego, La Jolla, CA 92037-0515, USA.
| |
Collapse
|
81
|
Riddle CN, Baker SN. Manipulation of peripheral neural feedback loops alters human corticomuscular coherence. J Physiol 2005; 566:625-39. [PMID: 15919711 PMCID: PMC1464768 DOI: 10.1113/jphysiol.2005.089607] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Sensorimotor EEG shows approximately 20 Hz coherence with contralateral EMG. This could involve efferent and/or afferent components of the sensorimotor loop. We investigated the pathways responsible for coherence genesis by manipulating nervous conduction delays using cooling. Coherence between left sensorimotor EEG and right EMG from three hand and two forearm muscles was assessed in healthy subjects during the hold phase of a precision grip task. The right arm was then cooled to 10 degrees C for approximately 90 min, increasing peripheral motor conduction time (PMCT) by approximately 35% (assessed by F-wave latency). EEG and EMG recordings were repeated, and coherence recalculated. Control recordings revealed a heterogeneous subject population. In 6/15 subjects (Group A), the corticomuscular coherence phase increased linearly with frequency, as expected if oscillations were propagated along efferent pathways from cortex to muscle. The mean corticomuscular conduction delay for intrinsic hand muscles calculated from the phase-frequency regression slope was 10.4 ms; this is smaller than the delay expected for conduction over fast corticospinal pathways. In 8/15 subjects (Group B), the phase showed no dependence with frequency. One subject showed both Group A and Group B patterns over different frequency ranges. Following cooling, averaged corticomuscular coherence was decreased in Group A subjects, but unchanged for Group B, even though both groups showed comparable slowing of nervous conduction. The delay calculated from the slope of the phase-frequency regression was increased following cooling. However, the size of this increase was around twice the rise in PMCT measured using the F-wave (regression slope 2.33, 95% confidence limits 1.30-3.36). Both afferent and efferent peripheral nerves will be slowed by similar amounts following cooling. The change in delay calculated from the coherence phase therefore better matches the rise in total sensorimotor feedback loop time caused by cooling, rather than just the change in the efferent limb. A model of corticomuscular coherence which assumes that only efferent pathways contribute cannot be reconciled to these results. The data rather suggest that afferent feedback pathways may also play a role in the genesis of corticomuscular coherence.
Collapse
Affiliation(s)
- C Nicholas Riddle
- Department of Anatomy, University of Cambridge, Cambridge CB2 3DY, UK
| | | |
Collapse
|
82
|
Szurhaj W, Bourriez JL, Kahane P, Chauvel P, Mauguière F, Derambure P. Intracerebral study of gamma rhythm reactivity in the sensorimotor cortex. Eur J Neurosci 2005; 21:1223-35. [PMID: 15813932 DOI: 10.1111/j.1460-9568.2005.03966.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The generators and functional correlates of gamma oscillations within the sensorimotor cortex remain unclear. With the goal of locating the oscillations' sources precisely and then studying the relationship between oscillatory reactivity and ongoing movement, we recorded stereoelectroencephalograms with intracerebral electrodes in eight epileptic subjects awaiting surgical treatment. The sensorimotor cortex was free of lesions and was exhaustively explored with the electrodes. Subjects were asked to perform various self-paced movements contralateral to the exploration zone, brief and sustained, distal movements and a pointing movement. We used the event-related desynchronization method to quantify the reactivity of the 40-60-Hz band before, during and after the performance of movement. A very focused, event-related synchronization of gamma rhythms was found in all subjects. It was predominantly observed in the primary sensorimotor area and its distribution was consistent with the functional map established using electrical stimulations. Two different temporal patterns were observed, the event-related synchronization of gamma rhythms was related either to movement onset or to movement offset but was never recorded before movement. This observation suggests that gamma oscillations are more probably related to movement execution than to motor planning. The different patterns argue in favour of multiple functional roles; it has been shown that gamma oscillations may support the efferent drive to the muscles and here we show that they are also likely to be related to somatosensory integration. We therefore suggest that gamma oscillations in the 40-60-Hz band may support afferent sensory feedback to the sensorimotor cortex during the performance of movement.
Collapse
Affiliation(s)
- William Szurhaj
- EA 2683, Service de Neurophysiologie Clinique, Hôpital Salengro, CHRU, F-59037 Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
83
|
Santhosh J, Bhatia M, Sahu S, Anand S. Quantitative EEG analysis for assessment to 'plan' a task in amyotrophic lateral sclerosis patients: a study of executive functions (planning) in ALS patients. ACTA ACUST UNITED AC 2005; 22:59-66. [PMID: 15561501 DOI: 10.1016/j.cogbrainres.2004.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2004] [Indexed: 11/24/2022]
Abstract
An attempt has been made to study the ability of patients with amyotrophic lateral sclerosis (ALS) to 'plan' a task. Electroencephalogram (EEG) data corresponding to 'planning of a movement task' is analyzed in comparison with a normal relaxed state. The study was conducted on 12 patients with ALS (6 males, 3 females, mean age 46.75 years) and on same number of controls (10 males, 2 females, mean age 48.75 years) to evaluate a difference in the ability to 'plan' a movement task between them. Patients with ALS were divided in two groups defined by unclear/clear speech. It has been observed that patients with ALS having unclear speech (Group I) showed considerable reduction (p<0.0001) in 'planning' a movement task, whereas patients with ALS having clear speech (Group II) showed no deficit in 'planning' a movement task (p=0.0577), both in comparison with age-matched controls. Apart from supporting the earlier reports of a possible extended neuronal degeneration across wide area of the frontal lobes, the findings reveal a possible reduction in planning, an executive function of the prefrontal cortex of brain, and also reveal that speech impairment may be associated with cognitive deficits in patients with ALS.
Collapse
Affiliation(s)
- Jayashree Santhosh
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016, India.
| | | | | | | |
Collapse
|
84
|
Semmler JG, Sale MV, Meyer FG, Nordstrom MA. Motor-unit coherence and its relation with synchrony are influenced by training. J Neurophysiol 2004; 92:3320-31. [PMID: 15269232 DOI: 10.1152/jn.00316.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to quantify the strength of motor-unit coherence from the left and right first dorsal interosseous muscles in untrained, skill-trained (musicians), and strength-trained (weightlifters) individuals who had long-term specialized use of their hand muscles. The strength of motor-unit coherence was quantified from a total of 394 motor-unit pairs in 13 subjects using data from a previous study in which differences were found in the strength of motor-unit synchronization depending on training status. In the present study, we found that the strength of motor-unit coherence was significantly greater in the left compared with the right hand of untrained right-handed subjects with the largest differences observed between 21 and 24 Hz. The strength of motor-unit coherence was lower in both hands of skill-trained subjects (21-27 Hz) and the right (skilled) hand of untrained subjects (21-24 Hz), whereas the largest motor-unit coherence was observed in both hands of strength-trained subjects (3-9 and 21-27 Hz). A strong curvilinear association was observed between motor-unit synchronization and the integral of coherence at 10-30 Hz in all motor-unit pairs (r2 = 0.77), and was most pronounced in strength-trained subjects (r2 = 0.90). Furthermore, this association was accentuated when using synchronization data with broad peaks (>11 ms), suggesting that the 10- to 30-Hz coherence is due to oscillatory activity in indirect branched common inputs. The altered coherence with training may be due to an interaction between cortical inhibition and the number of direct common inputs to motor neurons in skill- or strength-trained hands.
Collapse
Affiliation(s)
- John G Semmler
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, 3125 Victoria, Australia.
| | | | | | | |
Collapse
|
85
|
Riddle CN, Baker MR, Baker SN. The effect of carbamazepine on human corticomuscular coherence. Neuroimage 2004; 22:333-40. [PMID: 15110023 DOI: 10.1016/j.neuroimage.2003.12.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 12/16/2003] [Accepted: 12/18/2003] [Indexed: 11/15/2022] Open
Abstract
EEG recordings from motor cortex show oscillations at approximately 10 and 20 Hz. The 20-Hz oscillations are coherent with contralateral EMG; in most studies those at 10 Hz are not. However, significant 10-Hz coherence has recently been reported in a group of epileptic patients, all of whom were taking the anticonvulsant drug carbamazepine (CBZ). In a double blind study, we investigated the effects of CBZ on corticomuscular coherence in eight healthy human subjects (all male). Subjects performed a precision grip task against an auxotonic load, whilst left sensorimotor EEG and EMGs from five muscles in the right hand and forearm were recorded. CBZ (100 mg) or a placebo was then given orally, and 6 h later subjects were re-tested. One week separated CBZ and placebo experiments in each subject. Coherence averaged across subjects and muscles during the hold phase of the task was maximal at 21 Hz; it increased significantly (P < 0.05, Z-test) by 89% after CBZ administration. This was significantly greater than a much smaller increase following placebo, which itself may reflect an effect of the time of day when experiments were performed. There was no significant approximately 10-Hz coherence either before or after CBZ administration. CBZ did not significantly alter EEG power at either 10 or 20 Hz. Recently, we showed that diazepam markedly increases the power of approximately 20-Hz motor cortical oscillations with little effect on coherence. We show here that CBZ raises coherence without altering EEG power. This pharmacological dissociation may indicate an important role for corticomuscular coherence in motor control.
Collapse
Affiliation(s)
- C Nicholas Riddle
- Department of Anatomy, University of Cambridge, Cambridge CB2 3DY, UK
| | | | | |
Collapse
|
86
|
Dziewas R, Sörös P, Ishii R, Chau W, Henningsen H, Ringelstein EB, Knecht S, Pantev C. Neuroimaging evidence for cortical involvement in the preparation and in the act of swallowing. Neuroimage 2003; 20:135-44. [PMID: 14527576 DOI: 10.1016/s1053-8119(03)00285-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
This study employed whole head magnetoencephalography and synthetic aperture magnetometry to investigate the cortical topography of the preparation and the execution of volitional and reflexive water swallowing and of a simple tongue movement. Concerning movement execution, activation of the mid-lateral primary sensorimotor cortex was strongly lateralized to the left during volitional water swallowing, less strongly lateralized to the left during reflexive water swallowing, and not lateralized at all during tongue movement. In contrast, the preparation for both volitional water swallowing and tongue movement showed a bilateral activation of the primary sensorimotor cortex. No activation was seen prior to reflexive water swallowing. Activation of the left insula and frontal operculum was observed only during both the preparation and the execution of volitional water swallowing. These new findings suggest a left hemispheric dominance for the cortical control of swallowing in humans.
Collapse
Affiliation(s)
- R Dziewas
- Rotman Research Institute, Baycrest Centre for Geriatric Care, University of Toronto, Toronto, Ontario, M6A 2E1,Canada
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Pfurtscheller G. Spatiotemporal ERD/ERS patterns during voluntary movement and motor imagery. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2003; 53:196-8. [PMID: 12740996 DOI: 10.1016/s1567-424x(09)70157-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- G Pfurtscheller
- Ludwig Boltzmann Institute of Medical Informatics and Neuroinformatics, Department of Medical Informatics, Institute of Biomedical Engineering, Graz University of Technology, Inffeldgasse 16a/II, A-8010 Graz, Austria.
| |
Collapse
|
88
|
Karmos G, Lakatos P, Pincze Z, Rajkai C, Ulbert I. Frequency of gamma activity is modulated by motivation in the auditory cortex of cat. ACTA BIOLOGICA HUNGARICA 2003; 53:473-83. [PMID: 12501932 DOI: 10.1556/abiol.53.2002.4.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Repetitive acoustic stimuli elicit steady-state response (SSR) in the gamma-band both in humans and in mammals. Our aim was to investigate changes of the spontaneous gamma activity and the SSR in the auditory cortex of cats in the background of an instrumental conditioning situation. Epidural electrodes were chronically implanted above the auditory neocortex. The presentation rate of the clicks varied between 20 and 65/s. Spontaneous EEG and SSR were collected in three behavioral states: in an indifferent environment, in the instrumental cage while the cat was waiting for the light CS, and when she stepped on the pedal and was waiting for the meat reward. Using different repetition rate clicks we determined which stimulus rate elicited the largest SSR in these three situations. In quiet animal the highest SSR appeared at 28-30/s. Before and during the CS the optimal stimulus rate shifted to 32-38/s. The frequency of the spontaneous gamma activity changed in parallel way depending on the situation. We conclude that both the SSR and the spontaneous gamma activity reflect resonant activity of the same neuronal circuit of the auditory cortex, and it is modulated by the motivational state of the animal.
Collapse
Affiliation(s)
- G Karmos
- Institute for Psychology of the Hungarian Academy of Sciences, P.O. Box 398, H-1394 Budapest, Hungary.
| | | | | | | | | |
Collapse
|
89
|
Ihara A, Hirata M, Yanagihara K, Ninomiya H, Imai K, Ishii R, Osaki Y, Sakihara K, Izumi H, Imaoka H, Kato A, Yoshimine T, Yorifuji S. Neuromagnetic gamma-band activity in the primary and secondary somatosensory areas. Neuroreport 2003; 14:273-7. [PMID: 12598745 DOI: 10.1097/00001756-200302100-00024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To evaluate the gamma-band activity related to somatosensory processing, we recorded neuromagnetic signals from seven healthy subjects. The source power changes evoked by electrical stimulation of the median nerve were estimated with synthetic aperture magnetometry (SAM). Source power in the low gamma band (40 Hz) decreased in the contralateral primary somatosensory cortex (SI) for a few hundred milliseconds (i.e. middle and long latency) and then increased inversely. Source power in the high gamma band (70-90 Hz) increased simultaneously both in the contralateral SI and contra/ipsilateral secondary somatosensory cortex (SII) in 80-180 ms. These results suggest that low and high gamma oscillations work under independent mechanisms during somatosensory processing. In particular, high gamma oscillations may play an essential role in making a functional connection between SI and SII.
Collapse
Affiliation(s)
- Aya Ihara
- Department of Basic Laboratory Science, Osaka University Graduate School of Medicine, Suita, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Baker MR, Baker SN. The effect of diazepam on motor cortical oscillations and corticomuscular coherence studied in man. J Physiol 2003; 546:931-42. [PMID: 12563016 PMCID: PMC2342588 DOI: 10.1113/jphysiol.2002.029553] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
EEG recordings from sensorimotor cortex show oscillations around 10 and 20 Hz. These modulate with task performance, and are strongest during periods of steady contraction. The 20 Hz oscillations are coherent with contralateral EMG. Computer modelling suggests that oscillations arising within the cortex may be especially dependent on inhibitory systems. The benzodiazepine diazepam enhances the size of GABA(A) IPSPs; its effects are reversed by the antagonist flumazenil. We tested the effect of these drugs on spectral measures of EEG and EMG, whilst eight healthy human subjects performed a precision grip task containing both holding and movement phases. Either an auxotonic or isometric load was used. EEG changes following electrical stimulation of the contralateral median nerve were also assessed. The EEG power showed similar changes in all task/stimulation protocols used. Power around 20 Hz doubled at the highest dose of diazepam used (5 mg), and returned to control levels following flumazenil. EEG power at 10 Hz was by contrast little altered. The peak frequency of EEG power in both bands was not changed by diazepam. Corticomuscular coherence at ca 20 Hz was reduced following diazepam injection, but the magnitude of this effect was small (mean coherence during steady holding in the auxotonic task was 0.062 in control recordings, 0.051 after 2.5 mg and 5 mg doses of diazepam). These results imply that 20 Hz oscillations in the sensorimotor cortex are at least partially produced by local cortical circuits reliant on GABA(A)-mediated intracortical inhibition, whereas 10 Hz rhythms arise by a different mechanism. Rhythms generated during different tasks, or following nerve stimulation, are likely to arise from similar mechanisms. By examining the formulae used to calculate coherence, we show that if cortical oscillations are simply transmitted to the periphery, corticomuscular coherence should increase in parallel with the ratio of EEG to EMG power. The relative constancy of coherence even when the amplitude of cortical oscillations is perturbed suggests that corticomuscular coherence itself may have a functional role in motor control.
Collapse
Affiliation(s)
- Mark R Baker
- Department of Anatomy, University of Cambridge, Cambridge CB2 3DY, UK
| | | |
Collapse
|
91
|
Szurhaj W, Derambure P, Labyt E, Cassim F, Bourriez JL, Isnard J, Guieu JD, Mauguière F. Basic mechanisms of central rhythms reactivity to preparation and execution of a voluntary movement: a stereoelectroencephalographic study. Clin Neurophysiol 2003; 114:107-19. [PMID: 12495771 DOI: 10.1016/s1388-2457(02)00333-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To localize the sources of mu, beta and gamma rhythms and to explore the functional significance of their reactivity. METHODS We used the method of quantification of event-related desynchronization (ERD) and synchronization (ERS) to analyze the reactivity of intracerebral rhythms recorded in stereoelectroencephalography within the sensorimotor areas during the preparation and the execution of a simple self-paced hand movement. We recorded 3 epileptic subjects who were explored before a surgical treatment. RESULTS An ERD of mu and beta rhythms has been recorded before the movement onset in the precentral gyrus, spreading then to the postcentral gyrus and to the frontal medial cortex. The frontal lateral cortex was inconstantly involved during the movement. The movement offset was followed by an important and focused beta ERS which was found within the pre- and post-central gyrus and the frontal medial cortex. Within the beta band, we observed several narrower bands with different reactivities and locations. Focused gamma reactivity was also found in the precentral and postcentral gyri. CONCLUSIONS The reactivities of mu and beta rhythms are different but their locations overlap. Mu ERD is a diffuse phenomenon that reflects the activation of all the sensorimotor areas during a simple movement. Beta band is likely to be composed of different rhythms with different functional significance. The primary motor area seems to contain two distinct areas with different reactivity to the movement preparation and execution.
Collapse
Affiliation(s)
- William Szurhaj
- EA HU6, Department of Clinical Neurophysiology, Hôpital Salengro, CHRU, 59037, Lille Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Nicolelis MAL, Fanselow EE. Dynamic shifting in thalamocortical processing during different behavioural states. Philos Trans R Soc Lond B Biol Sci 2002; 357:1753-8. [PMID: 12626009 PMCID: PMC1693080 DOI: 10.1098/rstb.2002.1175] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent experiments in our laboratory have indicated that as rats shift the behavioural strategy employed to explore their surrounding environment, there is a parallel change in the physiological properties of the neuronal ensembles that define the main thalamocortical loop of the trigeminal somatosensory system. Based on experimental evidence from several laboratories, we propose that this concurrent shift in behavioural strategy and thalamocortical physiological properties provides rats with an efficient way to optimize either the detection or analysis of complex tactile stimuli.
Collapse
Affiliation(s)
- Miguel A L Nicolelis
- Department of Neurobiology and Duke Centre for Neuroengineering, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
93
|
Semmler JG, Kornatz KW, Dinenno DV, Zhou S, Enoka RM. Motor unit synchronisation is enhanced during slow lengthening contractions of a hand muscle. J Physiol 2002; 545:681-95. [PMID: 12456843 PMCID: PMC2290686 DOI: 10.1113/jphysiol.2002.026948] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study examined the strength of motor unit synchronisation based on time- and frequency-domain measures during postural, shortening and lengthening contractions of a hand muscle in young adults. Single motor unit activity was recorded with intramuscular electrodes in the left first dorsal interosseus muscle as the subject held the index finger at a constant position while supporting a light load for 2-5 min. The subject then performed slow (1.7 deg s(-1)) shortening and lengthening contractions to lift and lower the load. The movement required subjects to perform 10-25 constant-velocity contractions with the index finger over a 10 deg range of motion by using 6 s shortening and lengthening contractions. Individual discharge times were obtained from 23 pairs of motor units in 14 subjects to assess the strength of motor unit synchronisation and coherence during the three tasks. The strength of motor unit synchronisation was approximately 50 % greater during the lengthening contractions compared with the postural and shortening contractions, and the width of the central synchronous peak in the cross-correlation histogram was approximately 4 ms narrower during shortening contractions. These findings reveal that there is an increase in common input to motoneurones during lengthening contractions and a greater relative contribution of direct common inputs to motoneurones during shortening contractions compared with postural tasks. Furthermore, the amount of motor unit coherence in the low-frequency band (2-12 Hz) was reduced during shortening contractions compared with postural and lengthening contractions. These data indicate that the timing of inputs received by the motoneurones innervating the first dorsal interosseus of young adults differs during postural, shortening and lengthening contractions against a light load.
Collapse
Affiliation(s)
- John G Semmler
- Department of Kinesiology and Applied Physiology, University of Colorado at Boulder 80309-0354, USA.
| | | | | | | | | |
Collapse
|
94
|
Nicolelis MAL, Fanselow EE. Thalamocortical [correction of Thalamcortical] optimization of tactile processing according to behavioral state. Nat Neurosci 2002; 5:517-23. [PMID: 12037519 DOI: 10.1038/nn0602-517] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We propose a conceptual model that describes the operation of the main thalamocortical loop of the rat somatosensory system. According to this model, the asynchronous convergence of ascending and descending projections dynamically alters the physiological properties of thalamic neurons in the ventral posterior medial (VPM) nucleus as rats shift between three behavioral states. Two of these states are characterized by distinct modes of rhythmic whisker movements. We posit that these simultaneous shifts in exploratory behavioral strategy and in the physiological properties of VPM neurons allow rats to either (i) optimize the detection of stimuli that are novel or difficult to sense or (ii) process complex patterns of multi-whisker stimulation.
Collapse
Affiliation(s)
- Miguel A L Nicolelis
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
95
|
Krause CM, Aromäki A, Sillanmäki L, Aström T, Alanko K, Salonen E, Peltola O. Alcohol-induced alterations in ERD/ERS during an auditory memory task. Alcohol 2002; 26:145-53. [PMID: 12057775 DOI: 10.1016/s0741-8329(01)00204-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The purpose of the present study was to examine the effects of alcohol on EEG event-related desynchronization (ERD) and event-related synchronization (ERS) of the 4-6, 6-8, 8-10, and 10-12 Hz frequency bands during an auditory memory task. Twenty subjects performed an auditory memory task during which the EEG was recorded. Half the subjects performed the task without the administration of alcohol and half under the influence of alcohol ( approximately 0.7 g/l). The administration of alcohol itself did not alter the ERD/ERS responses. However, when the effects of alcohol were studied as a function of time and task (encoding vs. retrieval), we observed significant effects in the 4-6, 6-8, and 8-10 Hz frequency bands such that the administration of alcohol decreased the early-appearing ERS responses during auditory encoding and increased the later-appearing ERD responses during retrieval. Our results indicate that alcohol has disorganizing effects on brain electric oscillatory systems in the theta and lower alpha frequency range during cognitive processing.
Collapse
Affiliation(s)
- Christina M Krause
- Laboratory of Computational Engineering, PB 9400, Helsinki University of Technology, 02015, Espoo, Finland.
| | | | | | | | | | | | | |
Collapse
|
96
|
Slobounov S, Sebastianelli W, Simon R. Neurophysiological and behavioral concomitants of mild brain injury in collegiate athletes. Clin Neurophysiol 2002; 113:185-93. [PMID: 11856624 DOI: 10.1016/s1388-2457(01)00737-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES There is still limited understanding regarding the effect of mild brain injury (MBI) on normal functioning of the human brain with respect to motor control and coordination. To our knowledge, no research exists on how both the accuracy of force production and underlying neurophysiological concomitants are interactively affected by MBI. The aim of this study is to provide empirical evidence that there are at least transient functional changes in the brain associated with motor control and coordination in collegiate athletes suffering from MBI as reflected in alterations of force trajectory patterns and electroencephalogram (EEG) potentials both in time and frequency domains. METHODS Comparisons of the performance and concomitant EEG waveforms both in time and frequency domains of 6 collegiate athletes with MBI and 6 normal subjects in a series of isometric force production tasks were made. The traditional averaging techniques to obtain the slow-wave movement-related potentials (MRP) and Morlet wavelet transform to obtain EEG time-frequency (TF) profiles associated with task performance were used. Subjects performed isometric force production tasks when the level of nominal force was experimentally manipulated. EEG recordings from the frontal-central areas were analyzed with respect to the accuracy of force production during the ramp phase. RESULTS Behaviorally, the accuracy of force trajectory performance was considerably impaired in MBI subjects even when the amount of task force was only increased from 25 to 50% maximum voluntary contraction (MVC) within a given subject. Electro-cortically, impaired performance in MBI subjects was associated with alterations in EEG waveforms, amplitude of MRP and TF profiles of EEG. CONCLUSIONS Both behavioral and electro-cortical data of control subjects generally were comparable with those from subjects with MBI when small amounts of force were regulated. However, differences become apparent as the amount of task force production was increased. Overall our findings identify the presence of transient functional changes in the brain associated with motor control and coordination in subjects suffering from MBI.
Collapse
Affiliation(s)
- S Slobounov
- Department of Kinesiology, The Pennsylvania State University, 19 Recreation Hall, University Park, PA 16802-5702, USA.
| | | | | |
Collapse
|
97
|
Hirata M, Kato A, Taniguchi M, Ninomiya H, Cheyne D, Robinson SE, Maruno M, Kumura E, Ishii R, Hirabuki N, Nakamura H, Yoshimine T. Frequency-dependent spatial distribution of human somatosensory evoked neuromagnetic fields. Neurosci Lett 2002; 318:73-6. [PMID: 11796189 DOI: 10.1016/s0304-3940(01)02483-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using synthetic aperture magnetometry (SAM), we examined the spatial distribution of frequency changes in magnetoencephalography signal rhythms on individual magnetic resonance images following somatosensory stimulation. SAM is a novel statistical spatial filtering method that uses an adaptive beamformer. Electrical stimulation of the right median nerve demonstrated high-frequency event-related synchronization (ERS) in the 50-200-Hz range, consistently localized in the contralateral primary sensorimotor area in all subjects (n=7). Event-related desynchronization (ERD) was demonstrated in the 8-13, 13-25 and 25-50-Hz ranges bilaterally in the area surrounding the central sulcus. The differences in the spatial distribution as well as the frequency bands between ERS and ERD suggest that ERS and ERD reflect the responses of different cell assemblies rather than a frequency shift of the same cell assembly.
Collapse
Affiliation(s)
- Masayuki Hirata
- Department of Neurosurgery, Osaka University Graduate School of Medicine, E6 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
|
99
|
Keil A, Müller MM, Gruber T, Wienbruch C, Elbert T. Human large-scale oscillatory brain activity during an operant shaping procedure. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 2001; 12:397-407. [PMID: 11689299 DOI: 10.1016/s0926-6410(01)00094-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study aimed at examining the oscillatory brain-electric correlates of human operant learning using high-density electroencephalography (EEG). Induced gamma-band activity (GBA) was studied using a fixed-interval reinforcement schedule with a variable limited hold period, which was decreased depending on response accuracy. Thus, participants' behavior was shaped during the course of the learning session. After each response, numbers indicating the money value of that response served as reinforcing stimuli. Random reinforcement and self-paced button pressing without reinforcement were added as control conditions. GBA around 40 Hz was enhanced at posterior electrodes in response to visual feedback stimuli during shaping and random reward compared to the self-paced pressing condition where no visual feedback was provided. Furthermore, shaping was associated with a pronounced left frontal lower gamma (20-30 Hz) increase in response to feedback stimuli, whereas this pattern was not observed in the random reinforcement and self-paced pressing conditions. The present findings are in line with the notion that macroscopic high-frequency dynamics of neuronal cell assemblies may be regarded as a mechanism involved in learning and memory formation.
Collapse
Affiliation(s)
- A Keil
- Department of Psychology, University of Konstanz, Box D-25, D-78434, Konstanz, Germany.
| | | | | | | | | |
Collapse
|
100
|
Aoki F, Fetz EE, Shupe L, Lettich E, Ojemann GA. Changes in power and coherence of brain activity in human sensorimotor cortex during performance of visuomotor tasks. Biosystems 2001; 63:89-99. [PMID: 11595332 DOI: 10.1016/s0303-2647(01)00149-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electrocorticograms (ECoG) were recorded using subdural grid electrodes in forearm sensorimotor cortex of six human subjects. The subjects performed three visuomotor tasks, tracking a moving visual target with a joystick-controlled cursor; threading pieces of tubing; and pinching the fingers sequentially against the thumb. Control conditions were resting and active wrist extension. ECoGs were recorded at 14 sites in hand- and arm-sensorimotor area, functionally identified with electrical stimulation. For each behavior we computed spectral power of ECoG in each site and coherence in all pair-wise sites. In three out of six subjects, gamma-oscillations were observed when the subjects started the tasks. All subjects showed widespread power decrease in the range of 11-20 Hz and power increase in the 31-60 Hz ranges during performance of the visuomotor tasks. The changes in gamma-range power were more vigorous during the tracking and threading tasks compared with the wrist extension. Coherence analysis also showed similar task-related changes in coherence estimates. In contrast to the power changes, coherence estimates increased not only in gamma-range but also at lower frequencies during the manipulative visuomotor tasks. Paired sites with significant increases in coherence estimates were located within and between sensory and motor areas. These results support the hypothesis that coherent cortical activity may play a role in sensorimotor integration or attention.
Collapse
Affiliation(s)
- F Aoki
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290, USA.
| | | | | | | | | |
Collapse
|