51
|
Acute footshock-stress increases spatial learning–memory and correlates to increased hippocampal BDNF and VEGF and cell numbers in adolescent male and female rats. Neurosci Lett 2012; 514:141-6. [DOI: 10.1016/j.neulet.2012.02.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/22/2012] [Accepted: 02/14/2012] [Indexed: 12/17/2022]
|
52
|
Abstract
Prenatal cocaine exposure impairs brain development and produces lasting alterations in cognitive function. In a prenatal cocaine exposure mouse model, we found that tangential migration of GABA neurons from the basal to the dorsal forebrain and radial neuron migration within the dorsal forebrain were significantly decreased during the embryonic period. The decrease in the tangential migration occurred early in gestation and normalized by late gestation, despite ongoing cocaine exposure. The decrease in radial migration was associated with altered laminar positioning of neurons in the medial prefrontal cortex. The cocaine exposure led to transient decreases in the expression of Tbr2 and Tbr1, transcription factors associated with intermediate progenitor cells and newborn neurons of the dorsal forebrain, respectively, although neurogenesis was not significantly altered. Since cocaine can modulate brain derived neurotrophic factor (BDNF) expression in the mature brain, we examined whether cocaine can alter BDNF expression in the embryonic brain. We found a transient decrease in BDNF protein expression in the cocaine-exposed embryonic forebrain early in gestation. By late gestation, the BDNF expression recovered to control levels, despite ongoing cocaine exposure. In basal forebrain explants from cocaine-exposed embryos, cell migration was significantly decreased, corroborating the in vivo data on tangential GABA neuron migration. Since BDNF can influence tangential neuronal migration, we added BDNF to the culture medium and observed increased cell migration. Our data suggest that cocaine can alter tangential and radial neuronal migration as well as BDNF expression in the embryonic brain and that decreased BDNF may mediate cocaine's effects on neuronal migration.
Collapse
|
53
|
Uysal N, Sisman AR, Dayi A, Aksu I, Cetin F, Gencoglu C, Tas A, Buyuk E. Maternal exercise decreases maternal deprivation induced anxiety of pups and correlates to increased prefrontal cortex BDNF and VEGF. Neurosci Lett 2011; 505:273-8. [PMID: 22044872 DOI: 10.1016/j.neulet.2011.10.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/12/2011] [Accepted: 10/16/2011] [Indexed: 11/16/2022]
Abstract
Maternal deprivation (MD) may cause neuropsychiatric disorders such as anxiety disorder by negatively affecting the cognitive functions and behavior in pups. The aim of this study is to investigate whether maternal exercise during pregnancy has beneficial effects on anxiety that increases with MD, and on the levels of VEGF and BDNF which have anxiolytic effects on the prefrontal cortex, the anxiety-related region of the brain. The anxiety level in the deprivation group was greater than the control group and found more in male than female pups. The prefrontal cortex VEGF and BDNF levels were decreased in the deprivation group compared to control group while serum corticosterone levels were increased in the deprivation group. Anxiety and serum corticosterone levels were decreased in maternally exercised female and male pups, while the prefrontal cortex VEGF and BDNF levels were increased, compared to sedentary mother's pups. These results indicate that maternal exercise may attenuate the negative effect of stresses such as maternal deprivation that can be encountered early in life.
Collapse
Affiliation(s)
- Nazan Uysal
- Dokuz Eylul University, School of Medicine, Department of Physiology, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Phencyclidine-induced loss of asymmetric spine synapses in rodent prefrontal cortex is reversed by acute and chronic treatment with olanzapine. Neuropsychopharmacology 2011; 36:2054-61. [PMID: 21677652 PMCID: PMC3158322 DOI: 10.1038/npp.2011.96] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Enduring cognitive deficits exist in schizophrenic patients, long-term abusers of phencyclidine (PCP), as well as in animal PCP models of schizophrenia. It has been suggested that cognitive performance and memory processes are coupled with remodeling of pyramidal dendritic spine synapses in prefrontal cortex (PFC), and that reduced spine density and number of spine synapses in the medial PFC of PCP-treated rats may potentially underlie, at least partially, the cognitive dysfunction previously observed in this animal model. The present data show that the decrease in number of asymmetric (excitatory) spine synapses in layer II/III of PFC, previously noted at 1-week post PCP treatment also occurs, to a lesser degree, in layer V. The decrease in the number of spine synapses in layer II/III was sustained and persisted for at least 4 weeks, paralleling the observed cognitive deficits. Both acute and chronic treatment with the atypical antipsychotic drug, olanzapine, starting at 1 week after PCP treatment at doses that restore cognitive function, reversed the asymmetric spine synapse loss in PFC of PCP-treated rats. Olanzapine had no significant effect on spine synapse number in saline-treated controls. These studies demonstrate that the effect of PCP on asymmetric spine synapse number in PFC lasts at least 4 weeks in this model. This spine synapse loss in PFC is reversed by acute treatment with olanzapine, and this reversal is maintained by chronic oral treatment, paralleling the time course of the restoration of the dopamine deficit, and normalization of cognitive function produced by olanzapine.
Collapse
|
55
|
Chiba S, Numakawa T, Ninomiya M, Yoon HS, Kunugi H. Cabergoline, a dopamine receptor agonist, has an antidepressant-like property and enhances brain-derived neurotrophic factor signaling. Psychopharmacology (Berl) 2010; 211:291-301. [PMID: 20526584 DOI: 10.1007/s00213-010-1894-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 05/23/2010] [Indexed: 01/19/2023]
Abstract
RATIONALE Dopamine agonists have been implicated in the treatment of depression. Cabergoline is an ergot derivative with a high affinity to dopamine D(2)-like receptors; however, there have been few preclinical studies on its antidepressant-like effects. MATERIALS AND METHODS Behavioral effects of cabergoline were examined in rats using forced swimming (FST), novelty-suppressed feeding (NST), open field (OFT), and elevated-plus maze (EPT) tests. In a single treatment paradigm, behaviors of rats were analyzed 4 h after single injection of cabergoline (s.c., 0-4 micromol/kg). In a repeated-treatment paradigm, OFT, EPT, and FST were conducted on days 11, 12, and 13-14, respectively, during daily cabergoline injections (s.c., 0.5 micromol/kg), and then hippocampus was removed 24 h after the last injection. NST was conducted in a separate experiment at day 14. Western blotting was used for the analysis of the protein levels of brain-derived neurotrophic factor (BDNF) and the activation of intracellular signaling molecules. RESULTS Single injection of cabergoline demonstrated decreased immobility in FST and distance traveled during 0-10 min in OFT, while time spent and entry into open arms were increased at 4 micromol/kg. When cabergoline was repeatedly administered, immobility in FST and the latency of feeding in NSF were significantly reduced, while vertical movement was increased in OFT. The time in closed arms was tended to be decreased in EPT. Expression of BDNF and activation of extracellular signal-regulated kinase 1 were up-regulated after the chronic administration of cabergoline. CONCLUSIONS Cabergoline exerts antidepressant- and anxiolytic-like effects, which may be mediated by potentiation of intracellular signaling of BDNF.
Collapse
Affiliation(s)
- Shuichi Chiba
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | |
Collapse
|
56
|
Brain-derived neurotrophic factor controls cannabinoid CB1 receptor function in the striatum. J Neurosci 2010; 30:8127-37. [PMID: 20554863 DOI: 10.1523/jneurosci.1683-10.2010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The role of brain-derived neurotrophic factor (BDNF) in emotional processes suggests an interaction with the endocannabinoid system. Here, we addressed the functional interplay between BDNF and cannabinoid CB(1) receptors (CB(1)Rs) in the striatum, a brain area in which both BDNF and CB(1)s play a role in the emotional consequences of stress and of rewarding experiences. BDNF potently inhibited CB(1)R function in the striatum, through a mechanism mediated by altered cholesterol metabolism and membrane lipid raft function. The effect of BDNF was restricted to CB(1)Rs controlling GABA-mediated IPSCs (CB(1)R(GABA)), whereas CB(1)Rs modulating glutamate transmission and GABA(B) receptors were not affected. The action of BDNF on CB(1)R(GABA) function was tyrosine kinase dependent and was complete even after receptor sensitization with cocaine or environmental manipulations activating the dopamine (DA)-dependent reward system. In mice lacking one copy of the BDNF gene (BDNF(+/-)), CB(1)R(GABA) responses were potentiated and were preserved from the action of haloperidol, a DA D(2) receptor (D(2)R) antagonist able to fully abolish CB(1)R(GABA) function in rewarded animals. Haloperidol also enhanced BDNF levels in the striatum, suggesting that this neurotrophin may act as a downstream effector of D(2)Rs in the modulation of cannabinoid signaling. Accordingly, 5 d cocaine exposure both reduced striatal BDNF levels and increased CB(1)R(GABA) activity, through a mechanism dependent on D(2)Rs. The present study identifies a novel mechanism of CB(1)R regulation mediated by BDNF and cholesterol metabolism and provides some evidence that DA D(2)R-dependent modulation of striatal CB(1)R activity is mediated by this neurotrophin.
Collapse
|
57
|
Li B, Arime Y, Hall FS, Uhl GR, Sora I. Impaired spatial working memory and decreased frontal cortex BDNF protein level in dopamine transporter knockout mice. Eur J Pharmacol 2010; 628:104-7. [PMID: 19932884 PMCID: PMC3724416 DOI: 10.1016/j.ejphar.2009.11.036] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/26/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), one of the key brain neurotrophins, has been implicated in neuronal plasticity and memory. Recent studies document the importance of BDNF for normal long-term memory functions. However, there are few studies of the roles of BDNF in short-term memory. Dopamine is likely to play important roles in BDNF gene expression in specific brain regions, including frontal cortical regions that are implicated in short-term working memory processes that include spontaneous alternation. We have thus tested spatial working memory in dopamine transporter knockout (DAT KO) and wild-type mice. Spontaneous alternation in the Y-maze, an index of short-term spatial working memory in mice, was significantly decreased in DAT KO mice compared to wild-type mice. BDNF protein was significantly decreased in frontal cortex, though not in striatum or hippocampus, of the DAT KO mice. The data support the hypothesis that impaired spatial working memory in DAT KO mice may be related to decreased frontal cortical BDNF in these animals, and document apparent roles for BDNF in a short-term memory process.
Collapse
Affiliation(s)
- BingJin Li
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Japan
- Morden Research Center for Traditional Chinese Medicine of Shanxi University, TaiYuan, China
| | - Yosefu Arime
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Japan
| | - F. Scott Hall
- Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Baltimore, MD, USA
| | - George R. Uhl
- Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Baltimore, MD, USA
| | - Ichiro Sora
- Department of Biological Psychiatry, Tohoku University Graduate School of Medicine, Japan
| |
Collapse
|
58
|
Williams SN, Undieh AS. Brain-derived neurotrophic factor signaling modulates cocaine induction of reward-associated ultrasonic vocalization in rats. J Pharmacol Exp Ther 2010; 332:463-8. [PMID: 19843976 PMCID: PMC2812116 DOI: 10.1124/jpet.109.158535] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 10/20/2009] [Indexed: 11/22/2022] Open
Abstract
Cocaine exhibits high liability for inducing addictive behaviors, but the mechanisms of neuroplasticity underlying the behavioral effects remain unclear. As a crucial mediator of neuroplasticity in diverse functional models, brain-derived neurotrophic factor (BDNF) could contribute to the mechanisms of addiction-related neuroplasticity. Here, we addressed the hypothesis that cocaine increases synaptic dopamine, which induces BDNF protein expression to initiate addiction-related behavior in the rat. An enzyme-linked immunosorbent assay was used to measure BDNF protein expression in rat striatal tissues. For behavioral readout, we used a noninvasive measurement system to measure the emission of 50-kHz ultrasonic vocalization (USV), a response that correlates with electrical brain stimulation and conditioned place preference behavior in rodents. A single injection of cocaine significantly increased BDNF protein expression, but this effect was not further augmented by repeated cocaine administration. A single administration of cocaine elicited significant and dose-related USV responses, and the magnitude of the behavior increased with repeated drug administration. R-(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH23390), but not raclopride, significantly attenuated cocaine-induced BDNF protein expression, whereas either the D(1)-like or D(2)-like receptor antagonist blocked cocaine-induced USV behavior. Furthermore, significant USV behavior was elicited by the nonselective dopamine agonist, apomorphine, but not by agonists that are selective for D(1)-like or D(2)-like receptors. Intracerebroventricular injection of the neurotrophin TrkB receptor inhibitor, K252a, blocked cocaine-induced USV behavior but not locomotor activity. These results suggest that neurotrophin signaling downstream of dopamine receptor function probably constitutes a crucial link in cocaine induction of USV behavior and may contribute to the mechanisms underlying the development of addiction-related behaviors.
Collapse
Affiliation(s)
- Stacey N Williams
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | | |
Collapse
|
59
|
The COMT Val108/158Met polymorphism and medial temporal lobe volumetry in patients with schizophrenia and healthy adults. Neuroimage 2009; 53:992-1000. [PMID: 20026221 DOI: 10.1016/j.neuroimage.2009.12.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/19/2009] [Accepted: 12/09/2009] [Indexed: 01/06/2023] Open
Abstract
Abnormalities of the medial temporal lobe have been consistently demonstrated in schizophrenia. A common functional polymorphism, Val108/158Met, in the putative schizophrenia susceptibility gene, catechol-O-methyltransferase (COMT), has been shown to influence medial temporal lobe function. However, the effects of this polymorphism on volumes of medial temporal lobe structures, particularly in patients with schizophrenia, are less clear. Here we measured the effects of COMT Val108/158Met genotype on the volume of two regions within the medial temporal lobe, the amygdala and hippocampus, in patients with schizophrenia and healthy control subjects. We obtained MRI and genotype data for 98 schizophrenic patients and 114 matched controls. An automated atlas-based segmentation algorithm was used to generate volumetric measures of the amygdala and hippocampus. Regression analyses included COMT met allele load as an additive effect, and also controlled for age, intracranial volume, gender and acquisition site. Across patients and controls, each copy of the COMT met allele was associated on average with a 2.6% increase in right amygdala volume, a 3.8% increase in left amygdala volume and a 2.2% increase in right hippocampus volume. There were no effects of COMT genotype on volumes of the whole brain and prefrontal regions. Thus, the COMT Val108/158Met polymorphism was shown to influence medial temporal lobe volumes in a linear-additive manner, mirroring its effect on dopamine catabolism. Taken together with previous work, our data support a model in which lower COMT activity, and a resulting elevation in extracellular dopamine levels, stimulates growth of medial temporal lobe structures.
Collapse
|
60
|
Rossato JI, Bevilaqua LRM, Izquierdo I, Medina JH, Cammarota M. Dopamine controls persistence of long-term memory storage. Science 2009; 325:1017-20. [PMID: 19696353 DOI: 10.1126/science.1172545] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The paradigmatic feature of long-term memory (LTM) is its persistence. However, little is known about the mechanisms that make some LTMs last longer than others. In rats, a long-lasting fear LTM vanished rapidly when the D1 dopamine receptor antagonist SCH23390 was injected into the dorsal hippocampus 12 hours, but not immediately or 9 hours, after the fearful experience. Conversely, intrahippocampal application of the D1 agonist SK38393 at the same critical post-training time converted a rapidly decaying fear LTM into a persistent one. This effect was mediated by brain-derived neurotrophic factor and regulated by the ventral tegmental area (VTA). Thus, the persistence of LTM depends on activation of VTA/hippocampus dopaminergic connections and can be specifically modulated by manipulating this system at definite post-learning time points.
Collapse
Affiliation(s)
- Janine I Rossato
- Centro de Memória, Instituto do Cérebro, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | |
Collapse
|
61
|
Brito VI, Rozanski VE, Beyer C, Küppers E. Dopamine regulates the expression of the glutamate transporter GLT1 but not GLAST in developing striatal astrocytes. J Mol Neurosci 2009; 39:372-9. [PMID: 19685014 DOI: 10.1007/s12031-009-9273-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 07/22/2009] [Indexed: 11/25/2022]
Abstract
Dopamine and L: -glutamate are important signals which guide the development of functional neural circuits within the striatal complex. Disequilibrium of these neurotransmitter systems is believed to be etiological for the genesis of neurological and psychiatric diseases. Since dopamine plays a crucial role for the early transmitter-regulated differentiation of striatal GABAergic neurons, we emphasized that dopaminergic transmission may also be involved in the fine tuning of intra-striatal glutamate action. In this study, we report that dopamine decreases the expression of the glutamate transporter GLT1 but not GLAST in striatal astrocytes by measuring gene and protein expression. Using glutamate-uptake approaches, we demonstrate an increase in glutamate clearance of externally added glutamate in dopamine-treated cultures compared to controls. Our findings imply that dopamine regulates the availability of L: -glutamate in the developing striatum. It is also suggested that the application of dopaminergic drugs can interfere with ontogenetic processes within the striatal complex.
Collapse
Affiliation(s)
- Veronica I Brito
- Department of Cellular Neurobiology, Eberhard-Karls University of Tübingen, Institute of Anatomy, 72074 Tübingen, Germany
| | | | | | | |
Collapse
|
62
|
Williams SN, Undieh AS. Dopamine D1-like receptor activation induces brain-derived neurotrophic factor protein expression. Neuroreport 2009; 20:606-10. [PMID: 19295451 PMCID: PMC2834182 DOI: 10.1097/wnr.0b013e32832a0a98] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies showed that dopamine or D1 receptor-selective agonists increased brain-derived neurotrophic factor (BDNF) mRNA and protein expression in neuronal cultures, and this action was blocked by SCH23390. Moreover, SKF38393 activated Trk receptors and downstream signaling in striatal neurons. This study examined whether dopamine agonists induce the expression of BDNF protein in rat brain tissue. Acute slice preparations were incubated with dopamine agonists in Hibernate A medium and BDNF protein was measured by a sensitive enzyme-linked immunosorbent assay. Results showed that dopamine increased BDNF in tissue slices after 24 h of incubation. Furthermore, SKF38393 produced a significant increase in BDNF protein in striatal and hippocampal tissue slices. These findings suggest that the induction of BDNF expression may constitute a downstream response to D1-like dopamine receptor activation.
Collapse
Affiliation(s)
- Stacey N. Williams
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Ashiwel S. Undieh
- Department of Pharmaceutical Sciences, Thomas Jefferson University School of Pharmacy, Philadelphia, Pennsylvania, USA
| |
Collapse
|
63
|
Honea R, Verchinski BA, Pezawas L, Kolachana BS, Callicott JH, Mattay VS, Weinberger DR, Meyer-Lindenberg A. Impact of interacting functional variants in COMT on regional gray matter volume in human brain. Neuroimage 2009; 45:44-51. [PMID: 19071221 PMCID: PMC2702693 DOI: 10.1016/j.neuroimage.2008.10.064] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 10/21/2008] [Accepted: 10/31/2008] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Functional variants in the catechol-O-methyltransferase (COMT) gene have been shown to impact cognitive function, cortical physiology and risk for schizophrenia. A recent study showed that previously reported effects of the functional val158met SNP (rs4680) on brain function are modified by other functional SNPs and haplotypes in the gene, though it was unknown if these effects are also seen in brain structure. METHODS We used voxel-based morphometry to investigate the impact of multiple functional variants in COMT on gray matter volume in a large group of 151 healthy volunteers from the CBDB/NIMH Genetic Study of Schizophrenia. RESULTS We found that the previously described rs4680 val risk variant affects hippocampal and dorsolateral prefrontal (DLPFC) gray matter volume. In addition, we found that this SNP interacts with a variant in the P2 promoter region (rs2097603) in predicting changes in hippocampal gray matter volume consistent with a nonlinear effect of extracellular dopamine. CONCLUSIONS We report evidence that interacting functional variants in COMT affect gray matter regional volume in hippocampus and DLPFC, providing further in vivo validation of the biological impact of complex genetic variation in COMT on neural systems relevant for the pathophysiology of schizophrenia and extending observations of nonlinear dependence of prefrontal neurons on extracellular dopamine to the domain of human brain structure.
Collapse
Affiliation(s)
- Robyn Honea
- Genes, Cognition and Psychosis Program, National Institute of Mental Health; Division of Intramural Research; National Institutes of Health; Department of Health and Human Services, Bethesda, 20892, USA
| | - Beth A. Verchinski
- Genes, Cognition and Psychosis Program, National Institute of Mental Health; Division of Intramural Research; National Institutes of Health; Department of Health and Human Services, Bethesda, 20892, USA
| | - Lukas Pezawas
- Genes, Cognition and Psychosis Program, National Institute of Mental Health; Division of Intramural Research; National Institutes of Health; Department of Health and Human Services, Bethesda, 20892, USA
| | - Bhaskar S. Kolachana
- Genes, Cognition and Psychosis Program, National Institute of Mental Health; Division of Intramural Research; National Institutes of Health; Department of Health and Human Services, Bethesda, 20892, USA
| | - Joseph H. Callicott
- Genes, Cognition and Psychosis Program, National Institute of Mental Health; Division of Intramural Research; National Institutes of Health; Department of Health and Human Services, Bethesda, 20892, USA
| | - Venkata S. Mattay
- Genes, Cognition and Psychosis Program, National Institute of Mental Health; Division of Intramural Research; National Institutes of Health; Department of Health and Human Services, Bethesda, 20892, USA
| | - Daniel R. Weinberger
- Genes, Cognition and Psychosis Program, National Institute of Mental Health; Division of Intramural Research; National Institutes of Health; Department of Health and Human Services, Bethesda, 20892, USA
| | - Andreas Meyer-Lindenberg
- Genes, Cognition and Psychosis Program, National Institute of Mental Health; Division of Intramural Research; National Institutes of Health; Department of Health and Human Services, Bethesda, 20892, USA
- Central Institute for Mental Health, J5, 68159 Mannheim, Germany
| |
Collapse
|
64
|
Lieberman JA, Bymaster FP, Meltzer HY, Deutch AY, Duncan GE, Marx CE, Aprille JR, Dwyer DS, Li XM, Mahadik SP, Duman RS, Porter JH, Modica-Napolitano JS, Newton SS, Csernansky JG. Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol Rev 2008; 60:358-403. [PMID: 18922967 PMCID: PMC4821196 DOI: 10.1124/pr.107.00107] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Various lines of evidence indicate the presence of progressive pathophysiological processes occurring within the brains of patients with schizophrenia. By modulating chemical neurotransmission, antipsychotic drugs may influence a variety of functions regulating neuronal resilience and viability and have the potential for neuroprotection. This article reviews the current literature describing preclinical and clinical studies that evaluate the efficacy of antipsychotic drugs, their mechanism of action and the potential of first- and second-generation antipsychotic drugs to exert effects on cellular processes that may be neuroprotective in schizophrenia. The evidence to date suggests that although all antipsychotic drugs have the ability to reduce psychotic symptoms via D(2) receptor antagonism, some antipsychotics may differ in other pharmacological properties and their capacities to mitigate and possibly reverse cellular processes that may underlie the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Jeffrey A Lieberman
- Department of Psychiatry, Columbia University College of Physicians and Surgeons and the New York State Psychiatric Institute, 1051 Riverside Dr., Unit 4, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Affiliation(s)
- Katya Rubia
- Department of Child Psychiatry/Medical Research Council Social, Genetic, and Developmental Psychiatry Research Center (SGDP), Institute of Psychiatry, 16 De Crespigny Park, SG DP PO46, London SE5 8AF, United Kingdom.
| |
Collapse
|
66
|
Hünnerkopf R, Strobel A, Gutknecht L, Brocke B, Lesch KP. Interaction between BDNF Val66Met and dopamine transporter gene variation influences anxiety-related traits. Neuropsychopharmacology 2007; 32:2552-60. [PMID: 17392738 DOI: 10.1038/sj.npp.1301383] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The involvement in neural plasticity and the mediation of effects of repeated stress exposure and long-term antidepressant treatment on hippocampal neurogenesis supports a critical role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of affective and other stress-related disorders. A previously reported valine to methionine substitution at amino-acid position 66 (BDNF Val66Met) seems to account for memory disturbance and hippocampal dysfunction. In the present study, we evaluated the impact of the BDNF Val66Met polymorphism on individual differences in personality traits in a sample of healthy volunteers in relation to other common gene variants thought to be involved in the pathophysiology of affective disorders, such as the serotonin transporter promoter polymorphism (5-HTTLPR) and a variable number of tandem repeat polymorphism of the dopamine transporter gene (DAT VNTR). Personality traits were assessed using the NEO personality inventory (NEO-PI-R) and Tridimensional Personality Questionnaire (TPQ). There was a significant DAT VNTR-dependent association between NEO-PI-R Neuroticism and the BDNF Val66Met polymorphism. Among individuals with at least one copy of the DAT 9-repeat allele, carriers of the BDNF Met allele exhibited significantly lower Neuroticism scores than noncarriers. This interaction was also observed for TPQ Harm Avoidance, a personality dimension related to Neuroticism. Our results support the notion that allelic variation at the BDNF locus--in interaction with other gene variants--influences anxiety- and depression-related personality traits.
Collapse
Affiliation(s)
- Regina Hünnerkopf
- Molecular and Clinical Psychobiology, Department of Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
67
|
DARPP-32 expression in rat brain after electroconvulsive stimulation. Brain Res 2007; 1179:35-41. [DOI: 10.1016/j.brainres.2007.08.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 08/16/2007] [Accepted: 08/17/2007] [Indexed: 11/23/2022]
|
68
|
Graham DL, Edwards S, Bachtell RK, DiLeone RJ, Rios M, Self DW. Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 2007; 10:1029-37. [PMID: 17618281 DOI: 10.1038/nn1929] [Citation(s) in RCA: 324] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 05/30/2007] [Indexed: 11/08/2022]
Abstract
A single exposure to cocaine rapidly induces the brief activation of several immediate early genes, but the role of such short-term regulation in the enduring consequences of cocaine use is poorly understood. We found that 4 h of intravenous cocaine self-administration in rats induced a transient increase in brain-derived neurotrophic factor (BDNF) and activation of TrkB-mediated signaling in the nucleus accumbens (NAc). Augmenting this dynamic regulation with five daily NAc BDNF infusions caused enduring increases in cocaine self-administration, and facilitated relapse to cocaine seeking in withdrawal. In contrast, neutralizing endogenous BDNF regulation with intra-NAc infusions of antibody to BDNF subsequently reduced cocaine self-administration and attenuated relapse. Using localized inducible BDNF knockout in mice, we found that BDNF originating from NAc neurons was necessary for maintaining increased cocaine self-administration. These findings suggest that dynamic induction and release of BDNF from NAc neurons during cocaine use promotes the development and persistence of addictive behavior.
Collapse
Affiliation(s)
- Danielle L Graham
- Department of Psychiatry, The Seay Center for Basic and Applied Research in Psychiatric Illness, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9070, USA
| | | | | | | | | | | |
Collapse
|
69
|
Fumagalli F, Molteni R, Racagni G, Riva MA. Stress during development: Impact on neuroplasticity and relevance to psychopathology. Prog Neurobiol 2007; 81:197-217. [PMID: 17350153 DOI: 10.1016/j.pneurobio.2007.01.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/23/2006] [Accepted: 01/23/2007] [Indexed: 02/05/2023]
Abstract
Development represents a critical moment for shaping adult behavior and may set the stage to disease vulnerability later in life. There is now compelling evidence that stressful experiences during gestation or early in life can lead to enhanced susceptibility for mental illness. In this paper we review the data from experimental studies aimed at investigating behavioral, hormonal, functional and molecular consequences of exposure to stressful events during prenatal or early postnatal life that might contribute to later psychopathology. The use of the newest methodology in the field and the intensive efforts produced by researchers have opened the possibility to reveal the complex, finely tuned and previously unappreciated sets of molecular interactions between different factors that are critical for neurodevelopment thus leading to important discoveries regarding perinatal life. The major focus of our work has been to revise and discuss data from animal studies supporting the role of neuronal plasticity in the long-term effects produced by developmental adversities on brain function as well as the possible implications for disease vulnerability. We believe these studies might prove useful for the identification of novel targets for more effective pharmacological treatments of mental illnesses.
Collapse
Affiliation(s)
- Fabio Fumagalli
- Center of Neuropharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | |
Collapse
|
70
|
Carter CJ. Multiple genes and factors associated with bipolar disorder converge on growth factor and stress activated kinase pathways controlling translation initiation: implications for oligodendrocyte viability. Neurochem Int 2007; 50:461-90. [PMID: 17239488 DOI: 10.1016/j.neuint.2006.11.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 02/06/2023]
Abstract
Famine and viral infection, as well as interferon therapy have been reported to increase the risk of developing bipolar disorder. In addition, almost 100 polymorphic genes have been associated with this disease. Several form most of the components of a phosphatidyl-inositol signalling/AKT1 survival pathway (PIK3C3, PIP5K2A, PLCG1, SYNJ1, IMPA2, AKT1, GSK3B, TCF4) which is activated by growth factors (BDNF, NRG1) and also by NMDA receptors (GRIN1, GRIN2A, GRIN2B). Various other protein products of genes associated with bipolar disorder either bind to or are affected by phosphatidyl-inositol phosphate products of this pathway (ADBRK2, HIP1R, KCNQ2, RGS4, WFS1), are associated with its constituent elements (BCR, DUSP6, FAT, GNAZ) or are downstream targets of this signalling cascade (DPYSL2, DRD3, GAD1, G6PD, GCH1, KCNQ2, NOS3, SLC6A3, SLC6A4, SST, TH, TIMELESS). A further pathway relates to endoplasmic reticulum-stress (HSPA5, XBP1), caused by problems in protein glycosylation (ALG9), growth factor receptor sorting (PIK3C3, HIP1R, SYBL1), or aberrant calcium homoeostasis (WFS1). Key processes relating to these pathways appear to be under circadian control (ARNTL, CLOCK, PER3, TIMELESS). DISC1 can also be linked to many of these pathways. The growth factor pathway promotes protein synthesis, while the endoplasmic reticulum stress pathway, and other stress pathways activated by viruses and cytokines (IL1B, TNF, Interferons), oxidative stress or starvation, all factors associated with bipolar disorder risk, shuts down protein synthesis via control of the EIF2 alpha and beta translation initiation complex. For unknown reasons, oligodendrocytes appear to be particularly prone to defects in the translation initiation complex (EIF2B) and the convergence of these environmental and genomic signalling pathways on this area might well explain their vulnerability in bipolar disorder.
Collapse
|
71
|
Chase T, Carrey N, Soo E, Wilkinson M. Methylphenidate regulates activity regulated cytoskeletal associated but not brain-derived neurotrophic factor gene expression in the developing rat striatum. Neuroscience 2006; 144:969-84. [PMID: 17156936 DOI: 10.1016/j.neuroscience.2006.10.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 09/28/2006] [Accepted: 10/26/2006] [Indexed: 12/20/2022]
Abstract
Methylphenidate (MPH) is a psychostimulant drug used to treat attention deficit hyperactivity disorder in children. To explore the central effects of chronic MPH, we investigated the expression of an effector immediate early gene, activity regulated cytoskeletal associated (arc), and the neurotrophin, brain-derived neurotrophic factor (bdnf) in the brain of immature and adult rats following repeated MPH. Prepubertal (postnatal day (PD) 25-38) and adult (PD 53-66) male rats were injected once daily for: a) 14 days with saline or MPH (2 or 10 mg/kg; s.c.) or b) 13 days with saline followed by a single dose of MPH (2 or 10 mg/kg; s.c.). To determine possible long-term effects of MPH, prepubertal rats were allowed a drug-free period of 4 weeks following the 14 days of treatment, and then were given a challenge dose of MPH. We demonstrated, for the first time, that an acute injection of MPH increased levels of activity-regulated cytoskeletal protein (ARC) and arc mRNA in the prepubertal rat striatum and cingulate/frontal cortex. This response was significantly attenuated by chronic MPH. The desensitization in arc expression observed in prepubertal rats persisted in the adult striatum following a later MPH challenge. In contrast to these data we observed little effect of MPH on bdnf expression. We also developed an effective, non-stressful technique to treat freely moving immature rats with oral MPH. Consistent with the results described above, we observed that oral MPH (7.5 and 10 mg/kg) also increased arc expression in the prepubertal rat striatum. However, unlike the effects of injected MPH, repeated oral MPH (7.5 mg/kg) did not alter the normal arc response. This result raises the important possibility that oral doses of MPH that reproduce clinically relevant blood levels of MPH may not down-regulate gene expression, at least in the short term (14 days). We confirmed, using mass spectrometry, that the oral doses of MPH used in our experiments yielded blood levels within the clinical range observed in children. The novel oral administration paradigm that we describe thus provides a clinically relevant animal model to further explore the effects of chronic drug exposure on central gene expression in the developing rat brain.
Collapse
Affiliation(s)
- T Chase
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, College Street, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | | | |
Collapse
|
72
|
Do T, Kerr B, Kuzhikandathil EV. Brain-derived neurotrophic factor regulates the expression of D1 dopamine receptors. J Neurochem 2006; 100:416-28. [PMID: 17116228 DOI: 10.1111/j.1471-4159.2006.04249.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously demonstrated that the CAD catecholaminergic neuronal cell line is an appropriate model system to study the regulation of D(1) dopamine receptor expression. In this report, we show that brain-derived neurotrophic factor (BDNF) up-regulates the expression of D(1) dopamine receptor in CAD cells. In addition, by comparing D(1) receptor mRNA expression in wild-type, heterozygous and homozygous trkB knockout mice, we show that TrkB receptor signaling up-regulates D(1) receptor expression in vivo. In CAD cells expressing the TrkB receptor, BDNF increased D(1) receptor mRNA in a time- and dose-dependent manner with a fourfold increase in D(1) receptor mRNA observed as early as 3 h with 10 ng/mL of BDNF. Using different classes and concentrations of kinase inhibitors, we determined that BDNF-induced increase of D(1) receptor mRNA is mediated by the phosphatidylinositol 3-kinase signaling pathway. The increase required both new transcription and protein synthesis, as it was blocked by actinomycin D and cyclohexamide, respectively. Promoter deletion analysis identified a D(1) promoter region necessary for mediating the effect of BDNF. These results provide novel evidence that D(1) dopamine receptor expression is regulated by BDNF and its signaling pathway.
Collapse
Affiliation(s)
- Thuy Do
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
73
|
de Pablos RM, Villarán RF, Argüelles S, Herrera AJ, Venero JL, Ayala A, Cano J, Machado A. Stress increases vulnerability to inflammation in the rat prefrontal cortex. J Neurosci 2006; 26:5709-19. [PMID: 16723527 PMCID: PMC6675274 DOI: 10.1523/jneurosci.0802-06.2006] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 04/05/2006] [Accepted: 04/07/2006] [Indexed: 12/29/2022] Open
Abstract
Inflammation could be involved in some neurodegenerative disorders that accompany signs of inflammation. However, because sensitivity to inflammation is not equal in all brain structures, a direct relationship is not clear. Our aim was to test whether some physiological circumstances, such as stress, could enhance susceptibility to inflammation in the prefrontal cortex (PFC), which shows a relative resistance to inflammation. PFC is important in many brain functions and is a target for some neurodegenerative diseases. We induced an inflammatory process by a single intracortical injection of 2 microg of lipopolysaccharide (LPS), a potent proinflammogen, in nonstressed and stressed rats. We evaluated the effect of our treatment on inflammatory markers, neuronal populations, BDNF expression, and behavior of several mitogen-activated protein (MAP) kinases and the transcription factor cAMP response element-binding protein. Stress strengthens the changes induced by LPS injection: microglial activation and proliferation with an increase in the levels of the proinflammatory cytokine tumor necrosis factor-alpha; loss of cells such as astroglia, seen as loss of glial fibrillary acidic protein immunoreactivity, and neurons, studied by neuronal-specific nuclear protein immunohistochemistry and GAD67 and NMDA receptor 1A mRNAs expression by in situ hybridization. A significant increase in the BDNF mRNA expression and modifications in the levels of MAP kinase phosphorylation were also found. In addition, we observed a protective effect from RU486 [mifepristone (11beta-[p-(dimethylamino)phenyl]-17beta-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one)], a potent inhibitor of the glucocorticoid receptor activation. All of these data show a synergistic effect between inflammation and stress, which could explain the relationship described between stress and some neurodegenerative pathologies.
Collapse
|
74
|
Wang H, Yuan G, Prabhakar NR, Boswell M, Katz DM. Secretion of brain-derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling. J Neurochem 2005; 96:694-705. [PMID: 16390493 DOI: 10.1111/j.1471-4159.2005.03572.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Expression of brain-derived neurotrophic factor (BDNF) is sensitive to changes in oxygen availability, suggesting that BDNF may be involved in adaptive responses to oxidative stress. However, it is unknown whether or not oxidative stress actually increases availability of BDNF by stimulating BDNF secretion. To approach this issue we examined BDNF release from PC12 cells, a well-established model of neurosecretion, in response to hypoxic stimuli. BDNF secretion from neuronally differentiated PC12 cells was strongly stimulated by exposure to intermittent hypoxia (IH). This response was inhibited by N-acetyl-l-cysteine, a potent scavenger of reactive oxygen species (ROS) and mimicked by exogenous ROS. IH-induced BDNF release requires activation of tetrodotoxin sensitive Na+ channels and Ca2+ influx through N- and L-type channels, as well as mobilization of internal Ca2+ stores. These results demonstrate that oxidative stress can stimulate BDNF release and that underlying mechanisms are similar to those previously described for activity-dependent BDNF secretion from neurons. Surprisingly, we also found that IH-induced secretion of BDNF was blocked by dopamine D2 receptor antagonists or by inhibition of dopamine synthesis with alpha-methyl-p-tyrosine. These data indicate that oxidative stress can stimulate BDNF release through an autocrine or paracrine loop that requires dopamine receptor activation.
Collapse
Affiliation(s)
- Hong Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
75
|
Du F, Li R, Huang Y, Li X, Le W. Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons. Eur J Neurosci 2005; 22:2422-30. [PMID: 16307585 DOI: 10.1111/j.1460-9568.2005.04438.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anti-parkinsonian agents, pramipexole (PPX) and ropinirole (ROP), have been reported to possess neuroprotective properties, both in vitro and in vivo. The mechanisms underlying neuroprotection afforded by the D3-preferring receptor agonists remain poorly understood. The present study demonstrates that incubation of primary mesencephalic cultures with PPX and ROP or the conditioned medium from PPX- or ROP-treated primary cultures induced a marked increase in the number of dopamine (DA) neurons in the cultures. Similar effects can be observed after incubating with the conditioned medium derived from PPX- and ROP-treated substantia nigra astroglia. Meanwhile, PPX and ROP can protect the primary cells from insult of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). Furthermore, the neurotrophic effects of PPX and ROP on mesencephalic dopamine neurons could be significantly blocked by D3 receptor antagonist, but not by D2 receptor antagonist. Moreover, we found that the levels of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in the conditioned medium of mesencephalic cultures treated with PPX and ROP were significantly increased. Blocking GDNF and BDNF with the neutralizing antibodies, the neurotrophic effects of PPX and ROP were greatly diminished. These results suggest that D3 dopamine receptor-preferring agonists, PPX and ROP, exert neurotrophic effects on cultured DA neurons by modulating the production of endogenous GDNF and BDNF, which may participate in their neuroprotection.
Collapse
Affiliation(s)
- Fang Du
- Joint Laboratory of Institutes of Biomedical Sciences, Ruijin Hospital, Jiao Tong University Medical School, and Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200025, P. R. China
| | | | | | | | | |
Collapse
|
76
|
Nathan PJ, O'Neill B, Croft RJ. Is the loudness dependence of the auditory evoked potential a sensitive and selective in vivo marker of central serotonergic function? Neuropsychopharmacology 2005; 30:1584-5; author reply 1586-7. [PMID: 16178075 DOI: 10.1038/sj.npp.1300775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
77
|
Fumagalli F, Bedogni F, Perez J, Racagni G, Riva MA. Corticostriatal brain-derived neurotrophic factor dysregulation in adult rats following prenatal stress. Eur J Neurosci 2004; 20:1348-54. [PMID: 15341606 DOI: 10.1111/j.1460-9568.2004.03592.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Prenatal stress represents a well-established experimental protocol resembling some features of schizophrenia, including deficits in social interactions, disruption of prepulse inhibition and enhanced response to psychomotor stimulants. In order to evaluate molecular changes that could participate in long-lasting effects on brain function, we analysed the effects of prenatal stress on the expression of brain-derived neurotrophic factor (BDNF), an important molecular determinant of synaptic plasticity and cellular homeostasis, in adult male rats under basal conditions as well as in response to a chronic stress. The main finding is that BDNF expression is reduced in the prefrontal cortex and striatum of prenatally stressed rats. Furthermore, when exposed to chronic stress in adulthood, these rats display an altered regulation of BDNF expression in these brain structures, implying that adverse life events during gestation may interfere with the expression and function of this neurotrophin at adulthood in a region-specific manner. The dysregulation of corticostriatal BDNF expression might thus contribute to permanent alterations in brain functions leading to heightened susceptibility to psychiatric disorders.
Collapse
Affiliation(s)
- Fabio Fumagalli
- Center of Neuropharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133, Italy
| | | | | | | | | |
Collapse
|
78
|
Van Kampen JM, Hagg T, Robertson HA. Induction of neurogenesis in the adult rat subventricular zone and neostriatum following dopamine D3 receptor stimulation. Eur J Neurosci 2004; 19:2377-87. [PMID: 15128392 DOI: 10.1111/j.0953-816x.2004.03342.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Discrete regions of the adult CNS, including the subventricular zone (SVZ), do retain the capacity for neurogenesis. These progenitor cells may represent a potential new source of cells for replacement therapies in neuroregenerative diseases. An understanding of the microenvironmental signals regulating neurogenesis in the adult brain would facilitate the development of such therapeutic approaches. A particularly strong expression of dopamine D(3) receptor mRNA occurs in the proliferative SVZ during prenatal and early postnatal ontogeny. Although its expression diminishes following development, a restricted D(3) receptor expression persists in this region through adulthood, coincident with continued proliferation in this region. Here, we demonstrate a two-fold induction of cell proliferation (BrdU incorporation) in the SVZ and rostral migratory stream of the adult Sprague-Dawley rat brain following intrasubventricular administration of the dopamine D(3) receptor agonist, 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) for 2 weeks. The number of BrdU-positive cells was elevated ten-fold from very low baseline levels in the neighbouring neostriatum, another region known to express D(3) receptors. These striatal BrdU-positive cells appeared within 3 days following intracerebral infusion of 7-OH-DPAT and were distributed homogeneously throughout the striatum following systemic administration. This suggests that these cells originate from resident progenitor cells rather than the SVZ. Dopamine D(3) receptor activation may serve as a proneuronal differentiation signal as 60-70% of the new cells had neuronal markers following 7-OH-DPAT infusion. These results suggest that the dopamine D(3) receptor may be a good drug target for cell replacement strategies, particularly because of the fact that its expression is almost exclusively limited to the nervous system.
Collapse
Affiliation(s)
- Jackalina M Van Kampen
- Department Pharmacology, Dalhousie University, Tupper Building, 5850 College St, Halifax, Nova Scotia, B3H 15X Canada
| | | | | |
Collapse
|
79
|
Roceri M, Cirulli F, Pessina C, Peretto P, Racagni G, Riva MA. Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol Psychiatry 2004; 55:708-14. [PMID: 15038999 DOI: 10.1016/j.biopsych.2003.12.011] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Revised: 09/25/2003] [Accepted: 12/06/2003] [Indexed: 12/20/2022]
Abstract
BACKGROUND Adverse life events occurring early in development may alter the correct program of brain maturation and render the organism more vulnerable to psychiatric disorders. Identification of persistent changes associated with these events is crucial for the development of novel therapeutic strategies. METHODS We used postnatal repeated maternal deprivation (MD) from postnatal day (PND) 2-14 to investigate changes in brain-derived neurotrophic factor (BDNF) levels. RNase protection assay and enzyme linked immunosorbent assay were employed to determine the anatomic profile of neurotrophin expression at different ages following MD. RESULTS We found that MD produces a short-term up-regulation of neurotrophin expression in hippocampus and prefrontal cortex, as measured on PND 17, whereas at adulthood, a selective reduction of BDNF expression was observed in prefrontal cortex. When adult animals were challenged with a chronic swim stress paradigm, both a reduced expression of BDNF in prefrontal cortex and a significant reduction in striatal protein levels were found only in control subjects, whereas levels in the MD group were not further decreased. CONCLUSIONS Our data suggest that MD produces a significant reduction of BDNF expression within prefrontal cortex and striatum, which may render these structures less plastic and more vulnerable under challenging conditions.
Collapse
Affiliation(s)
- Mila Roceri
- Department of Pharmacological Sciences and Center of Excellence for Neurodegenerative Disorders, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
80
|
Brito V, Beyer C, Küppers E. BDNF-dependent stimulation of dopamine D5receptor expression in developing striatal astrocytes involves PI3-kinase signaling. Glia 2004; 46:284-95. [PMID: 15048851 DOI: 10.1002/glia.10356] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well known that brain-derived neurotrophic factor (BDNF) and the early nigrostriatal dopaminergic input are implicated in the regulation of developmental processes in the neostriatum. There is growing evidence that interactions between these developmental signals rather than singular actions are critical for cellular differentiation and compartmentation of the striatum. In the present report, our goal is to identify striatal target cells for BDNF and dopamine. Using primary neuronal and astroglial cell cultures, we have demonstrated that BDNF selectively regulates D(5) but not D(1) receptor expression in astrocytes. This effect was not observed in neurons. Pharmacological approaches indicated that BDNF effects on dopamine D(5) receptor expression were mediated at the intracellular level by an activation of the PI3- but not MAP-kinase cascade. FACS analysis and confocal laser microscopy revealed that the newly synthesized D(5) receptors were integrated into the plasma membrane of astrocytes. Our findings clearly show that developing striatal astrocytes are targets for BDNF. Furthermore, BDNF appears to regulate the dopamine responsiveness of astrocytes. This implicates that functional interactions between BDNF, dopamine, and astrocytes are necessary to warrant proper differentiation of the striatal anlage.
Collapse
Affiliation(s)
- Veronica Brito
- Department of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | | | | |
Collapse
|
81
|
Abstract
The present study evaluated whether environmental enrichment-related effects on the development of stereotyped behavior in deer mice were associated with alterations in neurotrophin levels. Deer mice were reared in enriched or standard cage conditions for 60 days. The mice were then tested in automated photocell detectors and classified as either stereotypic or nonstereotypic. This testing paradigm yielded four behaviorally distinct groups: enriched stereotypic, enriched nonstereotypic, standard cage stereotypic, and standard cage nonstereotypic. The motor cortex, striatum, and hippocampus were dissected, and the levels of brain-derived neurotrophin factor (BDNF) and nerve growth factor (NGF) in each brain region were analyzed using Promega ELISA kits. There were no differences in either NGF or BDNF in either the motor cortex or the hippocampus. In the striatum, the enriched nonstereotypic mice exhibited significantly more BDNF than the enriched stereotypic, the standard cage nonstereotypic, or the standard cage stereotypic mice. There were no differences in NGF in the striatum. These results provide evidence that the enrichment-related prevention of stereotyped behavior in deer mice is associated with increased BDNF in the striatum.
Collapse
Affiliation(s)
- Cortney A Turner
- Mental Health Research Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
82
|
Fang H, Chartier J, Sodja C, Desbois A, Ribecco-Lutkiewicz M, Walker PR, Sikorska M. Transcriptional activation of the human brain-derived neurotrophic factor gene promoter III by dopamine signaling in NT2/N neurons. J Biol Chem 2003; 278:26401-9. [PMID: 12738784 DOI: 10.1074/jbc.m211539200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a functional cAMP-response element (CRE) in the human brain-derived neurotrophic factor (BDNF) gene promoter III and established that it participated in the modulation of BDNF expression in NT2/N neurons via downstream signaling from the D1 class of dopamine (DA) receptors. The up-regulation of BDNF expression, in turn, produced neuroprotective signals through receptor tyrosine kinase B (TrkB) and promoted cell survival under the conditions of oxygen and glucose deprivation. To our knowledge this is the first evidence showing the presence of a functional CRE in the human BDNF gene and the role of DA signaling in establishing transcriptional competence of CRE in post-mitotic NT2/N neurons. This ability of DA to regulate the expression of the BDNF survival factor has a profound significance for the nigrostriatal pathway, because it indicates the existence of a feedback loop between the neutrophin, which promotes both the maturation and survival of dopaminergic neurons, and the neurotransmitter, which the mature neurons ultimately produce and release.
Collapse
Affiliation(s)
- Hung Fang
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada.
| | | | | | | | | | | | | |
Collapse
|
83
|
Tsai SJ. Attention-deficit hyperactivity disorder and brain-derived neurotrophic factor: a speculative hypothesis. Med Hypotheses 2003; 60:849-51. [PMID: 12699711 DOI: 10.1016/s0306-9877(03)00052-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is important for normal neuronal development. Attention-deficit hyperactivity disorder (ADHD), a childhood-onset neurodevelopmental disorder, is characterized by inattention and hyperactivity. Psychostimulants and antidepressants are the agents commonly used for the treatment of ADHD and were also found to elevate central BDNF. It is proposed here that BDNF may play a role in the therapeutic action and pathogenesis of ADHD. This hypothesis may provide a new direction for the treatment and the pathogenesis of ADHD.
Collapse
Affiliation(s)
- Shih-Jen Tsai
- Department of Psychiatry, Veterans General Hospital-Taipei, Taiwan, ROC.
| |
Collapse
|
84
|
Abstract
Dopamine is a neuromodulator the functions of which in the regulation of complex behaviors such as mood, motivation, and attention are well known. Dopamine appears in the brain early in the embryonic period when none of those behaviors is robust, raising the possibility that dopamine may influence brain development. The effects of dopamine on specific developmental processes such as neurogenesis are not fully characterized. The neostriatum is a dopamine-rich region of the developing and mature brain. If dopamine influenced neurogenesis, the effects would likely be pronounced in the neostriatum. Therefore, we examined whether dopamine influenced neostriatal neurogenesis by influencing the cell cycle of progenitor cells in the lateral ganglionic eminence (LGE), the neuroepithelial precursor of the neostriatum. We show that dopamine arrives in the LGE via the nigrostriatal pathway early in the embryonic period and that neostriatal neurogenesis progresses in a dopamine-rich milieu. Dopamine D1-like receptor activation reduces entry of progenitor cells from the G(1)- to S-phase of the cell cycle, whereas D2-like receptor activation produces the opposite effects by promoting G(1)- to S-phase entry. D1-like effects are prominent in the ventricular zone, and D2-like effects are prominent in the subventricular zone. The overall effects of dopamine on the cell cycle are D1-like effects, most likely because of the preponderance of D1-like binding sites in the embryonic neostriatum. These data reveal a novel developmental role for dopamine and underscore the relevance of dopaminergic signaling in brain development.
Collapse
|
85
|
Guo H, Tang Z, Yu Y, Xu L, Jin G, Zhou J. Apomorphine induces trophic factors that support fetal rat mesencephalic dopaminergic neurons in cultures. Eur J Neurosci 2002; 16:1861-70. [PMID: 12453049 DOI: 10.1046/j.1460-9568.2002.02256.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apomorphine, the catechol-derived dopamine D1/D2 receptor agonist, is currently in use as an antiparkinsonian drug. It has previously been reported that apomorphine was able to elicit expression of the enzyme tyrosine hydroxylase, a marker for DA neurons, in the fetal rat cerebrocortical cultures whilst in the presence of brain-derived neurotrophic factor. The present study demonstrated that treatment of fetal rat ventral mesencephalic cultures with apomorphine caused a marked increase in the number of dopaminergic neurons. The action of apomorphine can be mimicked by dopamine receptor (D1 and D2) agonists or blocked by preincubation with D1/D2 receptor antagonists. Incubation of recipient mesencephalic cultures with the conditioned medium derived from apomorphine-stimulated donor mesencephalic cultures elicited a 3.72-fold increase in the number of TH-positive neurons. Increased mRNA expression levels of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor were also found in the apomorphine-treated mesencephalic cells along with concomitant protein expression increases in the conditioned medium. Moreover, the trophic activity observed could be partially neutralized by antibodies against either brain-derived neurotrophic factor or glial cell line-derived neurotrophic factor. Cultured fetal striatal cells, but not hippocampal cells, also responded to apomorphine treatment. The membrane filtration studies revealed that both <30 kDa and >50 kDa fractions contained trophic activities. The latter characterization distinguishes them from most known neurotrophic factors. These results suggest that the apomorphine-modulated development of dopaminergic neurons may be mediated by activation of the dopamine receptor subtypes D1 and D2 thereby increasing the production of multiple growth factors.
Collapse
Affiliation(s)
- Hong Guo
- Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, PR China
| | | | | | | | | | | |
Collapse
|